Canad. J. Math. Vol. **76** (1), 2024 pp. 104–125 <http://dx.doi.org/10.4153/S0008414X22000645> © The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

A note on the nuclear dimension of Cuntz–Pimsner *C*[∗]-algebras associated with minimal shift space[s](#page-0-0)

Zhuofeng He and S[i](https://orcid.org/0000-0002-0925-5232)han Wei^D

Abstract. For every minimal one-sided shift space *X* over a finite alphabet, left special elements are those points in *X* having at least two preimages under the shift operation. In this paper, we show that the Cuntz–Pimsner *C*∗-algebra O*^X* has nuclear dimension 1 when *X* is minimal and the number of left special elements in *X* is finite. This is done by describing concretely the cover of *X*, which also recovers an exact sequence, discovered before by Carlsen and Eilers.

1 Introduction

The Cuntz–Pimsner C^* -algebra \mathcal{O}_X is an invariant of conjugacy associated with any shift space *X*. This interplay between shift spaces and *C*[∗]-algebras starts from the study of the *C*[∗]-algebra \mathcal{O}_A of a two-sided shift of finite type represented by a $\{0,1\}$ matrix *A* in a canonical way (see [\[11\]](#page-20-0)), in which the associated *C*[∗]-algebra is originally called a *Cuntz–Krieger algebra*. In the next 30 years, the C^* -algebra \mathcal{O}_X , to every shift space *X*, is constructed and studied in $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ $[1, 5, 7-9, 13, 14, 16-18]$ by several authors (for example, Matsumoto, Eilers, Carlsen, Brix, and their collaborators, to name a few), but in different manners for their own uses. We additionally remark that the associated *C*[∗]-algebra considered in the paper is first defined by Carlsen in [\[7\]](#page-20-3) using a Cuntz– Pimsner construction, which is why we call it a *Cuntz–Pimsner C*[∗]*-algebra*, as is also pointed out in [\[4\]](#page-20-5).

Among these approaches, the cover $(\tilde{X}, \sigma_{\widetilde{X}})$, of a one-sided shift space X , is a dynamical system constructed by Carlsen in [\[4\]](#page-20-5), and used to define the \mathcal{O}_X as the full groupoid C^* -algebra of $\mathcal{G}_{\tilde{\mathbf{X}}}$. In particular, the reason why Carlsen considers the groupoid *C*[∗]-algebra of the cover but not the shift space *X* itself is that every such cover defines a dynamical system whose underlying map is a local homeomorphism, whereas this is not always the case for a one-sided shift. Actually, a one-sided shift on an infinite space is a local homeomorphism if and only if it is of finite type, as in [\[19\]](#page-21-4).

Received by the editors April 1, 2022; revised October 23, 2022; accepted December 5, 2022. Published online on Cambridge Core December 12, 2022.

The authors were partially supported by a grant from the Shanghai Key Laboratory of PMMP, Science and Technology Commission of Shanghai Municipality (STCSM) (13dz2260400) and by a grant from the NNSF (11531003). The first named author was also supported by Project funded by China Postdoctoral Science Foundation under Grant2020M681221.

AMS subject classification: **46L05**, **37A55**.

Keywords: Cuntz–Pimsner algebras, nuclear dimension, minimal shift spaces.

In $[6]$, it is shown that for every shift space *X* with the property $(*)$, there is a surjective homomorphism ρ : $\mathcal{O}_X \to C(\underline{X}) \rtimes_{\sigma} \mathbb{Z}$, which sends the diagonal subalgebra D_X onto the canonical commutative C^* -subalgebra $C(\underline{X})$, with \underline{X} the corresponding two-sided shift space of *X* and σ the natural two-sided shift operation. In addition, if *X* has the property (**), then

$$
ker \rho \cong \mathbb{K}^{n_X},
$$

where n_X is a positive integer related to the structure of the left special elements in X , namely, the number of right shift tail equivalence classes of *X* containing a left special element. Consequently, for every minimal shift space X , if it has the property $(*^*)$, which is equivalent to *X* having finitely many left special elements, then its Cuntz– Pimsner C^* -algebra \mathcal{O}_X is an extension of a unital simple AT-algebra by a finite direct sum of the compact operators. Also note that this extension makes \mathcal{O}_X falls into a class of *C*[∗]-algebras considered by Lin and Su in [\[15\]](#page-21-5), called the direct limits of generalized Toeplitz algebras.

In [\[3\]](#page-20-7), Brix considers the *C*[∗]-algebra O*^α* of a one-sided Sturmian shift *X^α* for *α* an irrational number, by describing the cover of X_α . In particular, he proves that the cover \widetilde{X}_α of X_α is a union of the two-sided Sturmian shift X_α and a dense orbit consisting of isolated points. The unique dense orbit corresponds to the unique point ω_{α} in X_{α} , which has two preimages under the shift operation. This is the first concrete description of covers of non-sofic systems, whereas the cover of a sofic system is a specific class of shifts of finite type. We remark here that the uniqueness of *ω^α* benefits from the well-known fact that X_α has the smallest complexity growth for shift spaces with no ultimately periodic points: $p_X(n) = n + 1$ for all $n \ge 1$.

There are two corollaries from the concrete description of the cover of a Sturmian system in [\[3\]](#page-20-7): one for a reducing of the exact sequence in [\[6\]](#page-20-6) to its simplest form, that is, \mathcal{O}_α is an extension of $C(X_\alpha) \rtimes_\sigma \mathbb{Z}$ by K; one for the precise value of dynamic asymptotic dimension of the associated groupoid. The latter together with the exact sequence make the \mathcal{O}_{α} be of nuclear dimension 1, where the nuclear dimension is a concept that plays a key role in the classification programs for *C*[∗]-algebras.

In this note, we generalize this interesting approach and show that for every minimal one-sided shift *X* with finitely many left special elements, the Cuntz–Pimsner algebra O_X has nuclear dimension 1. More specifically, with our concrete description, the cover of each such space will be a finite disjoint union: a copy of the corresponding minimal two-sided shift space *X* (induced from the projection limit of the original one-sided shift), and \mathbf{n}_X dense orbits, each consisting of isolated points. This also recovers the whole situation of the exact sequence in [\[6\]](#page-20-6). We also hope that with this description, more *K*-information can be read out from the groupoid for many other minimal shifts, such as nonperiodic Toeplitz shifts *X* with lower complexity growth (which is to sufficiently make *X* have finitely many left special elements, or equivalently, have the property (**)).

Finally, we also want to emphatically point out that there is a large class of minimal shifts for which our results apply, such as those with bounded complexity growth (see Example [3.15](#page-8-0) for the definition and Proposition [3.16](#page-8-1) for details). This class of minimal shifts includes minimal Sturmian shifts considered by Brix, which are defined to be the minimal shifts associated with irrational rotations; minimal shifts associated

with interval exchange transformations, whose complexity functions are known to satisfy $p_X(n+1) - p_X(n) \le d$ where *d* is the number of subintervals; minimal shifts constructed from (p, q) -Toeplitz words in [\[10\]](#page-20-8), where p, q are natural numbers and *p* $|q$, whose complexity functions are shown to be linear; or also minimal shifts associated with a class of translations on 2-torus in [\[2\]](#page-20-9), whose complexity functions satisfy $p_X(n) = 2n + 1$, to name a few.

1.1 Outline of the paper

The paper is organized as follows. Section [2](#page-2-0) will provide definitions, including basic notions of one-sided shift spaces, the corresponding two-sided shift spaces, and *C*[∗]-algebras. In Section [3,](#page-4-0) we recall definitions of past equivalence, right tail equivalence, covers, and their properties. A couple of technical preparations will also be presented for the later use. Section [4](#page-11-0) is devoted to the main body of the paper, in which we give a concrete description to the cover of a minimal shift with finitely many left special elements. We divide the description into three parts: (i) for isolated points in the cover, see Theorem [4.1;](#page-11-1) (ii) for the surjective factor π_X , see Theorems [4.6](#page-14-0) and [4.7;](#page-15-0) and (iii) for nonisolated points in the cover, see Theorem [4.8.](#page-16-0) Finally, we conclude our main result for the nuclear dimension of \mathcal{O}_X in Section [5.](#page-19-0)

2 Preliminaries

Throughout the paper, we denote by $\mathbb N$ the set of nonnegative integers. For a finite set *S*, we will always use #*S* to denote its cardinality.

2.1 Shift spaces

Let $A = \{0, 1\}$. Endowed with the product topology, the spaces $A^{\mathbb{Z}}$ and $A^{\mathbb{N}}$ are homeomorphic to the Cantor space, i.e., the totally disconnected compact metric space with no isolated point. Note that $A^{\mathbb{Z}}$ and $A^{\mathbb{N}}$ can be given the following metrics:

$$
\underline{d}(\underline{x}, \underline{y}) = \sup\{1/2^N : \underline{x}_k = \underline{y}_k \text{ for all } 0 \le |k| \le N - 1\},
$$

$$
d(x, y) = \sup\{1/2^N : x_k = y_k \text{ for all } 0 \le k \le N - 1\}.
$$

We use A^* and A^∞ to denote the monoid of finite words and the set of infinite one-sided sequences with letters from A, that is,

$$
\mathcal{A}^* = \bigsqcup_{n \geq 1} \mathcal{A}^n \cup \{\epsilon\}, \ \mathcal{A}^\infty = \mathcal{A}^\mathbb{N},
$$

where ϵ is the unique empty word in \mathcal{A}^* . For a word $\mu \in A^*$, we use $|\mu|$ to denote the length of μ and write $|\mu| = n$ if $\mu \in \mathcal{A}^n$. For the empty word, we usually define $|\epsilon| = 0$. In addition, the length of any element μ in \mathcal{A}^{∞} is defined to be ∞ . Let $\mu \in \mathcal{A}^*$ and $ν$ ∈ $A^* ⊔ A^∞$, and we say *μ* occurs in *ν*, if there exists $a ∈ A^*$ and $b ∈ A^* ⊔ A^∞$ such that

$$
v = a\mu b.
$$

If *μ* occurs in *ν*, we also say *μ* is a factor of *ν*.

A note on the nuclear dimension of Cuntz–Pimsner C∗*-algebras* 107

A full shift is a continuous map $\sigma : x \mapsto \sigma(x)$ from $A^{\mathbb{N}}$ to $A^{\mathbb{N}}$ (or $A^{\mathbb{Z}}$ to $A^{\mathbb{Z}}$) such that

$$
(\sigma(x))_n=x_{n+1}.
$$

A one-sided (two-sided, respectively) shift space is a nonempty compact *σ*-invariant subspace *X* of $A^{\mathbb{N}}$ (or $A^{\mathbb{Z}}$, respectively) together with the restriction $\sigma|_X$. Note that by *σ*-invariant, we mean $\sigma(X) \subset X$. Any two-sided shift is a homeomorphism, and any one-sided shift σ : *X* → *X* is injective if and only if *X* is finite. Throughout the paper, we will only consider one-sided shifts on infinite compact spaces.

If *X* is a shift space, *x* ∈ *X*, and $-\infty < n \le m < \infty$, we define $x_{(n-1,m]} = x_{[n,m+1)} =$ $x_{[n,m]} = x_n x_{n+1} \cdots x_m$. We also use $x_{(-\infty,m]} = x_{(-\infty,m+1)}$ or $x_{[n,\infty)} = x_{(n-1,\infty)}$ to denote the natural infinite positive and negative parts of *x*, respectively.

For any two-sided shift space *X*, we use X_+ to stand for the corresponding onesided shift space, that is, $X_+ = \{x_{[0,\infty)} : x \in X\}$. If *X* is a one-sided shift space, then <u>*X*</u> is used, in this paper, to denote the inverse limit of the projective system

$$
X \xleftarrow{\sigma} X \xleftarrow{\sigma} \cdots \xleftarrow{\sigma} X \xleftarrow{\sigma} \cdots
$$

Note that *X* is a two-sided shift space under a canonical identification.

For any shift space *X*, its language $\mathcal{L}(X)$ will play a central role, whose elements are those finite words over A occurring in some $x \in X$. A language uniquely determines a shift space, or in other words, $x \in X$ if and only if any factor μ of x is an element of $\mathcal{L}(X)$. This fact implies that for any two-sided shift space *Y*, $\sigma(Y) = Y$, and therefore for any one-sided shift space *X*, $\sigma(X) = X$ if and only if $X = (X)_+$. Any topologically transitive one-sided shift (for the definition of topologically transitivity, see Proposition [3.10\)](#page-7-0) is automatically surjective since its image is a dense compact subset.

Definition 2.1 Let *X* be a one-sided shift space, and let *x* ∈ *X*. We define the *forward and backward orbits* of *x* to be

Orb<sub>$$
\sigma
$$</sub>⁺ $(x) = {\sigman(x) : n \ge 0}$ and Orb _{σ} ⁻ $(x) = {y \in X : \exists n > 0$ ($\sigman(y) = x$)},

respectively, and the whole orbit of *x* to be $Orb_{\sigma}(x) = Orb_{\sigma}^{+}(x) \cup Orb_{\sigma}^{-}(x)$.

2.2 *C*[∗]**-algebras and groupoids**

Definition 2.2 (Cf. [\[21,](#page-21-6) Definition 2.1]) Let *A* and *B* be *C*[∗]-algebras. A $*$ -homomorphism π : $A \rightarrow B$ is said to have *nuclear dimension* at most *n*, denoted $\dim_{\text{nuc}}(\pi) \leq n$, if for any finite set $\mathcal{F} \subset A$ and $\varepsilon > 0$, there is a finite-dimensional subalgebra *F* and completely positive maps $\psi : A \rightarrow F$ and $\varphi : F \rightarrow B$ such that ψ is contractive, *φ* is *n*-decomposable in the sense that we can write

$$
F = F^{(0)} \oplus F^{(1)} \oplus \cdots F^{(n)}
$$

satisfying $\varphi|_{F^{(i)}}$ is completely positive contractive and order zero for all *i*, and for every $a \in \mathcal{F}$,

$$
\|\pi(a)-\varphi\psi(a)\|<\varepsilon.
$$

The *nuclear dimension* of a C^* -algebra *A*, denoted dim_{nuc}(*A*), is defined as the nuclear dimension of the identity homomorphism id*A*.

We now recall the definitions of groupoid and its dynamic asymptotic dimension.

Definition 2.3 (Cf. [\[20,](#page-21-7) equation (3.1)]) Let *X* be a local homeomorphism on a compact Hausdorff space *X*. We then obtain a dynamical system (*X*, *T*). The corresponding *Deaconu–Renault Groupoid* is defined to be the set

$$
\mathcal{G}_X = \{ (x, m-n, y) \in X \times \mathbb{Z} \times X : T^m(x) = T^n(y), m, n \in \mathbb{N} \},
$$

with the unit space $\mathcal{G}_X^0 = \{(x, 0, x) : x \in X\}$ identified with *X*, range and source maps $r(x, n, y) = x$ and $s(x, n, y) = y$, and operations $(x, n, y)(y, m, z) = (x, n + m, z)$ and $(x, n, y)^{-1} = (y, -n, x)$.

By Lemma 2.3 in [\[4\]](#page-20-5) and Lemmas 3.1 and 3.5 in [\[20\]](#page-21-7), the groupoids $\mathcal{G}_{\widetilde{X}}$ considered in the paper will all be locally compact, Hausdorff, amenable, and étale, where \ddot{X} is the cover of *X* in the sense of Definition [3.19.](#page-9-0) They are also principal since all such \widetilde{X} have no periodic point, as is shown in Section [4.](#page-11-0)

The *Cuntz–Pimsner* C^* -algebra \mathcal{O}_X of a one-sided shift space *X* is defined to be the (full) groupoid *C*[∗]-algebra *C*[∗](G*^X* ̃). The *diagonal subalgebra* D*^X* is defined to be $C(X)$ ⊂ \mathcal{O}_X .

Finally, we recall the definition of dynamic asymptotic dimension for étale groupoids.

Definition 2.4 (Cf. [\[12,](#page-21-8) Definition 5.1]) Let G be an étale groupoid. Then G has *dynamic asymptotic dimension* $d \in \mathbb{N}$ *if <i>d* is the smallest number with the following property: for every open relatively compact subset K of G , there are open subsets U_0, U_1, \ldots, U_d of \mathcal{G}^0 that covers $s(K) \cup r(K)$ such that for each *i*, the set {*g* ∈ *K* ∶ $s(g)$, $r(g) \in U_i$ is contained in a relatively compact subgroupoid of G .

It is known that for a minimal \mathbb{Z} -action on a compact space, the associated groupoid has dynamic asymptotic dimension 1 (see Theorem 3.1 in [\[12\]](#page-21-8)).

3 Definitions and preparations

From now on, to avoid invalidity or triviality, we only consider infinite one-sided shift space *X* with $\sigma(X) = X$. We use *X* to denote the associated two-sided shift space.

3.1 Left special elements and past equivalence

Definition 3.1 (Cf. [\[8,](#page-20-10) subsection 2.2, the first paragraph]) Let *X* be a one-sided shift space and $z \in \underline{X}$. We say that *z* is *left special* if there exists $z' \in \underline{X}$ such that $z_{-1} \neq z'_{-1}$ and $z_{[0,\infty)} = z'_{[0,\infty)}$. If $z \in \underline{X}$ is left special, we also say $x = z_{[0,\infty)}$ is *left special* in *X*. We use $\mathrm{Sp}_{\mathrm{I}}(\underline{X})$ and $\mathrm{Sp}_{\mathrm{I}}(X)$ to denote the collections of left special elements in \underline{X} and *X*, respectively.

We say $x \in X$ *has a unique past* if $\#(\sigma^k)^{-1}(\{x\}) = 1$ for all $k \geq 1$. Moreover, we say *x* \in *X* has a totally unique past if σ ^{*n*}(*x*) has a unique past for all *n* \geq 1.

It is clear from the definition that for any one-sided shift space *X* with $\sigma(X) = X$, a point $x \in X$ is left special precisely when *x* has at least two preimages

under σ , that is, $\#\sigma^{-1}(\{x\}) \geq 2$. Therefore, for any such one-sided shift on an infinite space, left special element always exists, or *σ* will be injective, which implies that *X* is finite. It is also immediate that *x* has a totally unique past if and only if $x \notin \text{Orb}_{\sigma}(\omega)$ for any $\omega \in \mathrm{Sp}_1(X)$.

 $\boldsymbol{Proposition}$ 3.2 $\boldsymbol{Suppose}$ that $\text{Sp}_1(X)$ contains no periodic point of X. Then #Sp_l(\underline{X}) < ∞ *if and only if* #Sp_l(X) < ∞*.*

Proof The map $\pi_+ : z \mapsto z_{[0,\infty)}$ induces a surjective map from $\text{Sp}_1(\underline{X})$ to $\text{Sp}_1(X)$. Therefore, if $\text{Sp}_1(\underline{X})$ is finite, so is $\text{Sp}_1(X)$.

Now assume that $\text{Sp}(\underline{X})$ is infinite. If $\text{Sp}(X)$ is finite, then we can take $x \in \text{Sp}_1(X)$ with infinitely many preimages in $\mathrm{Sp}_{\mathrm{l}}(\underline{X})$ under $\pi_+.$ Denote this infinite preimage by *F*. Since A is finite, the Pigeonhole principle ensures the existence of an infinite subset *F*₁ ⊂ *F* such that for every $x \neq y \in F_1$, $x_{[-1,\infty)} = y_{[-1,\infty)}$. Then we choose $n_1 \leq -1$ such that there exists x^1 , $y^1 \in F_1$ with

$$
(x^1)_{n_1-1} \neq (y^1)_{n_1-1}
$$
 but $x_{n_1\infty} = y_{n_1,\infty}$ for all $x, y \in F_1$.

This means that there is some $z^1 \in F_1$ such that $(z^1)_{[n_1,\infty)} \in Sp_1(X)$. Similarly, choose an infinite subset $F_2 \subset F_1$, an integer $n_2 \leq n_1 - 1$ with the same property as the first step, and a point $z^2 \in F_2$ such that $(z^2)_{[n_2,\infty)} \in Sp_1(X)$. Repeating this procedure, we have a strictly decreasing sequence of negative integers ${n_k}_{k\geq 1}$ and an infinite sequence { z^k }_{*k*≥1} ⊂ Sp₁(\underline{X}) with the following property:

$$
(z^k)_{[n_k,\infty)} \in \mathrm{Sp}_1(X)
$$
 and $(z^k)_{[n_k,\infty)} = (z^{k+1})_{[n_k,\infty)}$ $(k = 1, 2, ...).$

Note that it follows from the latter condition that $(z^k)_{[n_k,\infty)}$ all lie on a single orbit in *X*. Since $Sp₁(X)$ is finite, it has to contain a periodic point, which is a contradiction.

Notation. Let *S* ⊂ *X* be a set, and let *l* ∈ N. We define S _[0,*l*] to be the set whose elements are the prefixes of $x \in S$ of length $l + 1$.

Definition 3.3 (Cf. [\[8,](#page-20-10) subsection 2.4, the first paragraph]) Let *X* be a one-sided shift space, and let $l \geq 1$. For $x \in X$, set

$$
P_l(x) = \{ \mu \in \mathcal{L}(X) : |\mu| = l, \mu x \in X \} = (\sigma^l)^{-1}(\{x\})_{[0, l-1]}.
$$

For *x*, *y* ∈ *X*, we say *x* and *y* are *l-past equivalent* and write *x* ∼*l y*, if P *l*(*x*) = P *l*(*y*). In particular, *x* and *y* are said to be *past equivalent* if $x \sim_l y$ for some $l \geq 1$.

We call *x isolated in past equivalent* if there exists *l* ≥ 1 such that *x* ∼*^l y* implies *x* = *y*.

If *x* ∼*l*₊₁ *y*, then *x* ∼*k y* for all $1 \le k \le l$. Consequently, if *x* is isolated in *l*-past equivalent, then *x* is isolated in *k*-past equivalent for every $k \geq l$.

Lemma 3.4 *Suppose that x* ∈ *X has a unique past. Then, for every l* ≥ 1*, there exists N* ∈ *N such that, whenever* $y \in X$ *with* $y_{[0,N]} = x_{[0,N]}$ *,* $#P_l(y) = 1$ *.*

Proof Assume that there exists $l_0 \ge 1$ such that for every $n \in \mathbb{N}$, we can always find some $y^n \in X$ with $y_{[0,n]}^n = x_{[0,n]}$, but $\#P_{l_0}(y^n) \geq 2$. We are then given a sequence $\{y^n\}_{n\geq 0}$ which is easily seen to converge to *x* as $n \to \infty$.

Note that the alphabet A is finite, we now claim that there exist two distinct words *μ*, *ν* in *L*(*X*) of length *l*₀ such that two sequences of natural numbers ${n_k}_{k\geq0}$ and ${m_k}_{k\geq0}$ can be chosen, satisfying

$$
\mu y^{n_k} \in X \text{ and } \nu y^{m_k} \in X.
$$

In fact, from the Pigeonhole principle, there is at least one word *μ* with $|\mu| = l_0$ such that *μ* can be a prefix of infinitely many y^n , say, y^{n_k} for $k \ge 1$. However, if *μ* is the unique word with such property, then all others in $\mathcal{L}(X)$ with length l_0 can only be prefixes of finitely many of *yn*, and which means that for some natural number *N*, *yⁿ* will only have the unique prefix μ whenever $n \geq N$. This is then a contradiction.

Finally, note that since $y^n \to x$ as $n \to \infty$, every finite word occurring in μx and νx is an element of $\mathcal{L}(X)$. This proves $\mu x, \nu x \in X$, and hence *x* does not have a unique past. ∎

3.2 Right tail equivalence and j**-maximal elements**

Definition 3.5 (Cf. [\[8,](#page-20-10) subsection 2.2, the last paragraph] [a slightly different version)] Let *x*, $x' \in X$. The notation $x \sim_{\text{rte}} x'$ is used to mean that *x* and x' are *right tail equivalent*, in the sense that there exist $M, M' \in \mathbb{N}$ satisfying

$$
\sigma^M(x)=\sigma^{M'}(x').
$$

Set \mathcal{J}_X = Sp₁(X)/ \sim _{rte}. Let $j \in \mathcal{J}_X$ and $\omega \in j$. We say ω is j-*maximal* if, for any $\omega' \in j$, there is an $m \in \mathbb{N}$ such that $\sigma^m(\omega') = \omega$.

 \boldsymbol{P} roposition 3.6 $\,$ Suppose that $\mathrm{Sp}_\mathrm{l}(X)$ is finite and contains no periodic point of X. Then *every j ∈ J_X has a unique j-maximal element. In particular, an element ω ∈ S* $p_l(X)$ *is* j*-maximal if and only if*

$$
\omega \in \mathfrak{j} \text{ and } \sigma^m(\omega) \notin \mathrm{Sp}_1(X) \text{ for all } m \in \mathbb{N} \setminus \{0\}.
$$

Proof Let $\eta \in \mathfrak{j}$ be arbitrary. Since $\text{Sp}_1(X)$ is finite and contains no periodic point, we can take $K \in \mathbb{N}$ such that $\sigma^K(\eta) \in \mathrm{Sp}_1(X)$, but $\sigma^k(\eta) \notin \mathrm{Sp}_1(X)$ for all $k \geq K + 1$. Denote $σ^K(η)$ by *ω*. We prove the proposition by showing that *ω* is j-maximal.

Let $\omega' \in j \setminus \{\omega\}$. Since $\omega \sim_{\text{rte}} \omega'$, there are $M, M' \in \mathbb{N}$ such that

$$
\sigma^M(\omega) = \sigma^{M'}(\omega').
$$

Take the minimal nonnegative integer *M* so that there is $M' \in \mathbb{N}$ with $\sigma^{M}(\omega) = \sigma^{M'}(\omega')$. If $M > 0$, then $\omega_{M-1} \neq \omega'_{M'-1}$, which means that $\omega_{M,\infty} =$ $ω'_{[M',\infty)}$ is left special. Note that $ω_{[M,\infty)} = σ^{k+M} (η)$. However, this contradicts to the assumption that $\sigma^k(\eta) \notin \mathrm{Sp}_1(X)$ for all $k \geq K + 1$. Consequently, $M = 0$; in other words, $\omega = \sigma^{M'-1}(\omega')$. This proves the existence of j-maximal elements.

The uniqueness follows directly from the absence of periodic point in $Sp₁(X)$. Finally, the above argument verifies the second assertion at the same time.

Definition 3.7 Let *X* be a one-sided shift space with finite left special elements. From now on, for any $j \in \mathcal{J}_X$, we will always denote the unique j-maximal element by ω_j .

A note on the nuclear dimension of Cuntz–Pimsner C∗*-algebras* 111

For every $j \in \mathcal{J}_X$, define

$$
U_j=\big\{\omega\in\mathfrak{j}: \text{Orb}^-_\sigma\big(\omega\big)\cap\mathfrak{j}=\varnothing\big\}.
$$

Note that for all $\omega \in U_j$, $\alpha \omega$ has a unique past whenever $\alpha \omega \in X$ for some $\alpha \in A$.

 ${\cal L}$ emma 3.8 $\,$ Suppose ${\rm Sp}_{\rm l}(X)$ *is finite and contains no periodic point. For every* ω \in $\mathrm{Sp}_1(X)$, there is $N \in \mathbb{N}$ such that $\sigma^n(\omega)$ is isolated in l-past equivalence for all $l > n \geq N$.

Proof Let $\omega \in \text{Sp}_1(X)$. From Proposition [3.6,](#page-6-0) let $m \in \mathbb{N}$ be such that $w_j = \sigma^m(\omega)$ is j-maximal for some $j \in \mathcal{J}_X$. Since $Sp_1(X)$ is finite, there exists $N' \in \mathbb{N}$ with the following property:

for all $y, y' \in X$, $y, y' \in Sp_1(X)$ and $y_{[0,N']} = y'_{[0,N']}$ implies $y = y'$.

Let $N = N' + m$. Then $\sigma^{N}(\omega)$ is isolated in $N' + 1$ -past equivalence, and therefore for every $l > n \ge N$, $\sigma^n(\omega)$ is isolated in *l*-past equivalence as well.

3.3 Properties (*) and ()**

Definition 3.9 (Cf. [\[8,](#page-20-10) Definition 3.1]) A one-sided shift space *X has property (*)* if for every $\mu \in \mathcal{L}(X)$, there exists $x \in X$ such that $P_{|\mu|}(x) = {\mu}$. We will also say \underline{X} has *property (*)* if *X* does so.

Proposition 3.10 *Let X be a one-sided shift space. Suppose that X is topologically transitive, namely, there is a point* $x^0 \in X$ *such that its forward orbit is dense in X. If* $\mathrm{Sp}_\mathrm{l}(X)$ *is finite and contains no periodic point in X, then X has property (*).*

Actually, the proof is basically the same as that of Example 3.6 in $[8]$ for the minimal case, which goes like follows. Since *X* is transitive, take $x^0 \in X$ with a dense forward orbit, which follows that every word in $\mathcal{L}(X)$ occurs in x^0 . Therefore, it suffices to show that, for every word *μ* occurring in x^0 , there exists y^0 such that $P_{|u|}(y^0) = {\mu}.$ Now, since x^0 is a transitive point, *μ* appears in x^0 infinitely many times. Consider the intersection

Orb<sub>$$
\sigma
$$</sub>⁺(x ⁰) \cap Sp₁(X).

Since $\text{Sp}_1(X)$ is finite and contains no periodic point, this intersection has to be finite, which means that there exists $N \ge 1$ such that $\sigma^n(x^0) \notin \mathrm{Sp}_1(X)$ for all $n \ge N$. This follows that for all $n \ge N$, $\sigma^n(x^0)$ has only one preimage. Upon taking $L > N + |\mu|$ with $(x^0)_{[L-|\mu|+1,L]} = \mu$, we conclude that $\sigma^{L+1}(x^0)$ has only one preimage of length ∣*μ*∣, and which is exactly *μ*.

Definition 3.11(Cf. [\[8,](#page-20-10) Definition 3.2]) Let *X* be a one-sided shift space with property (*). If, in addition, $\text{Sp}_1(X)$ is finite and contains no periodic point in *X*, then we say *X has property (**)*.

Proposition [3.10](#page-7-0) together with Proposition [3.2](#page-5-0) implies the following corollary.

Corollary 3.12 *A transitive one-sided shift space X has property (**) if and only if* $\mathrm{Sp}_\mathrm{l}(X)$ is finite and contains no periodic point. In particular, if X is minimal, then X has property (**) exactly when $\mathrm{Sp}_\mathrm{l}(X)$ is finite.

Example 3.13 Every nonregular Toeplitz shifts has property (*), as is shown in [\[8\]](#page-20-10).

We now prove that this is the case for every nonperiodic Toeplitz shift. The same notations as in [\[22\]](#page-21-9) will be used in the following proposition.

Proposition 3.14 *Let η be a nonperiodic Toeplitz sequence. Then X^η has property (*).*

Proof Let $\mu \in \mathcal{L}(X_n)$. Without loss of generality, assume that $\eta_{[0,m-1]} = \mu$ for $m = |\mu|$. We show that

$$
P_{|\mu|}(\eta_{[m,\infty)})=\{\mu\}.
$$

Suppose $\mu' \in \mathcal{L}(X_\eta)$ with $\mu' \eta_{[m,\infty)} \in X_\eta$. Then $\mu' \eta_{[m,\infty)}$ can be approximated by a sequence $\sigma^{n_k}(\eta)$. Write $\mu = \mu_1 \mu_2 \ldots \mu_{|\mu|}$. We then note that $\eta_{m-1} = \mu_{|\mu|}$.

Consider the p_{m-1} -skeleton of η , say, $\tilde{\eta} \in (\mathcal{A} \cup {\infty})^{\mathbb{N}}$. Then $\tilde{\eta}$ is a periodic sequence with period orbit { $\tilde{\eta}$, σ($\tilde{\eta}$),..., σ^{*p*_{*m*−1}−1}($\tilde{\eta}$)}. From the Pigeonhole principle, there is $0 \le l \le p_{m-1} - 1$ such that there exist infinitely many n_{k_i} ($j = 1, 2, ...$) satisfying

$$
n_{k_j} - (m-1) \equiv l \bmod p_{m-1}
$$

for some $l \in \{0, 1, \ldots, p_{m-1} - 1\}$, which follows $(\sigma^{n_k}(\eta))_n = \eta_{m-1}$ for all $n \in (l + m - 1)$ $1) + p_{m-1}$ ^N, and therefore

$$
(\mu'\eta)_n=\eta_{m-1}
$$

for all *n* ∈ $(l + m - 1) + p_{m-1}$ N. Due to the fact that the *p*-skeleton of a given Toeplitz sequence is the "maximal" periodic part with the given period, $\tilde{\eta}$ plays the central role. Hence, the assumption that $\mu' \eta_{[m,\infty)}$ and $\mu \eta_{[m,\infty)}$ have a common right infinite section yields that *l* = 0. We then conclude that for all $n \in m - 1 + p_{m-1}N$,

$$
(\mu'\eta)_n=\eta_{m-1}=\mu_m
$$

and, in particular, $\mu'_m = \mu_m$. By repeatedly applying this procedure to $m-1$, $m-2, \ldots, 0$, we therefore have $\mu' = \mu$.

Example 3.15 Let *X* be a one-sided shift. The *complexity function* p_X is defined on positive integers, which sends every $n \geq 1$ to the number of finite words in $\mathcal{L}(X)$ of length *n*. Namely,

$$
p_X(n) = \#\{\mu \in \mathcal{L}(X) : |\mu| = n\}.
$$

We say that *X* has a bounded complexity growth if there exists $K > 0$ such that

$$
p_X(n+1)-p_X(n)\leq K,
$$

for all $n \geq 1$. Then every minimal one-sided shift space with a bounded complexity growth has property (**), as is shown in Proposition [3.16.](#page-8-1)

Proposition 3.16 *If X is a minimal one-sided shift space with a bounded complexity growth, then X has property (**).*

Proof It suffices to show that *X* has only finitely many left special elements. Let $K \in \mathbb{N}$ be a growth bound of *X*. We actually have $\#\text{Sp}_1(X) \leq K$.

If not, then we take $K + 1$ distinct points $\{\omega^1, \ldots, \omega^{K+1}\} \subset Sp_1(X)$ and an integer *N* ∈ $\mathbb N$ such that the following *K* + 1 finite words

$$
\omega^1_{\llbracket 0,N\rrbracket}, \omega^2_{\llbracket 0,N\rrbracket}, \ldots, \omega^{K+1}_{\llbracket 0,N\rrbracket}
$$

are distinct. Note that these finite words are all of length $N + 1$ and each of which can be extended to the left in at least two different ways. This immediately follows that

$$
p_X(N+2)-p_X(N+1)\geq K+1,
$$

a contradiction. The proposition follows. ∎

3.4 Covers of one-sided shift spaces

Definition 3.17 We use J to denote the set $\{(k, l) \in \mathbb{N} \times \mathbb{N} : 1 \leq k \leq l\}$ and D its diagonal $\{(k, k) \in \mathcal{I} : k \geq 1\}$. The partial order \leq on \mathcal{I} is defined by

$$
(k_1, l_1) \le (k_2, l_2) \Leftrightarrow (k_1 \le k_2) \wedge (l_1 - k_1 \le l_2 - k_2).
$$

For the later use, we prove a lemma first.

Lemma 3.18 *Let* F ⊂ I *be an infinite set. Then* F *has an infinite subchain, or in other words, an infinite totally ordered subset of* F*.*

Proof Take $(k_0, l_0) \in \mathcal{F}$ satisfying

$$
l_0 - k_0 = \min\{l - k : (k, l) \in \mathcal{F}\}.
$$

Set $\mathcal{F}_0 = \{(k, l) \in \mathcal{F} : k \leq k_0\}$. Then \mathcal{F}_0 is nonempty. If $\mathcal{F}(\mathcal{F}_0 \neq \emptyset)$, then take $(k_1, l_1) \in \mathcal{F} \setminus \mathcal{F}_0$ such that

$$
l_1 - k_1 = \min\{l - k : (k, l) \in \mathcal{F}\backslash \mathcal{F}_0\}
$$

and set $\mathcal{F}_1 = \{(k, l) \in \mathcal{F} \setminus \mathcal{F}_0 : k \leq k_1\}$. By repeating this step, we are given a sequence of sets $\{\mathcal{F}_n\}_{n\geq0}$. If each of \mathcal{F}_n is finite, then every \mathcal{F}_n is nonempty, and this is when $\{(k_n, l_n)\}\$ becomes an infinite chain. Conversely, if one of \mathcal{F}_n is infinite, say, \mathcal{F}_N , then by a partition of \mathcal{F}_N into the following $k_{N+1} - k_N$ parts:

$$
O_k^N = \{(k', l') \in \mathcal{F}_N : k' = k\} (k_N < k \le k_{N+1}),
$$

we see that there exists one of O_k^N being infinite, which is a chain as well. ■

As in [\[4\]](#page-20-5), for every $(k, l) ∈ I$, we define an equivalence relation $\stackrel{k, l}{\sim}$ on *X* by

$$
x \stackrel{k,l}{\sim} x'
$$
 if $x_{[0,k)} = x'_{[0,k)}$ and $P_l(\sigma^k(x)) = P_l(\sigma^k(x')).$

We write $_k[x]_l$ for the $\stackrel{k,l}{\sim}$ equivalence class of *x* and $_kX_l$ the set of $\stackrel{k,l}{\sim}$ equivalence classes. It is clear that $_kX_l$ is finite. We then have a projective system

$$
(k_1, l_1) Q(k_2, l_2) : k_2 X_{l_2} \ni k_2 [x]_{l_2} \mapsto k_1 [x]_{l_1} \in k_1 X_{l_1}
$$

for all $(k_1, l_1) \leq (k_2, l_2)$.

Definition 3.19 (Cf. [\[4,](#page-20-5) Definition 2.1]) Let *X* be a one-sided shift space with $\sigma(X) = X$. By the *cover* \widetilde{X} of X , we mean the projective limit $\lim ({}_{k}X_{l}, {}_{(k,l)}Q_{(k',l')})$.

The shift operation $\sigma_{\widetilde{X}}$ on \widetilde{X} is defined so that $_k \sigma_{\widetilde{X}}(\widetilde{x})_l = k[\sigma(k+1 \widetilde{x}_l)]_l$ where $_{k+1} \widetilde{x}_l$ is a representative of a ^{$k+1, l$} -equivalence relation class in \tilde{x} .

The following sets give a base for the topology of *X*̃:

$$
U(z, k, l) = \{ \tilde{x} \in \widetilde{X} : z \stackrel{k, l}{\sim} {}_{k} \tilde{x}_{l} \}
$$

for $z \in X$ and $(k, l) \in \mathcal{I}$. It is known that $\sigma_{\widetilde{X}}$ is a surjective local homeomorphism (see [\[4\]](#page-20-5) for details).

Definition 3.20 (Cf. [\[4,](#page-20-5) Definition 2.1]) Let $\pi_X : \widetilde{X} \to X$ to be the map which sends each $\tilde{x} \in \tilde{X}$ to a point $x = \pi(\tilde{x})$ so that $x_{[0,k)}$ are determined uniquely by $(k\tilde{x}_l)_{[0,k)}$ for every $(k, l) \in \mathcal{I}$. Define $\iota_X : X \to \widetilde{X}$ by $\iota_k \iota_X(x)_l = \iota_k[x]_l$ for every $(k, l) \in \mathcal{I}$.

In fact, π_X is a continuous surjective factor map from $(\widetilde{X}, \sigma_{\widetilde{X}})$ to (X, σ) and ι_X is an injective map (not necessarily continuous) such that $\pi_X \circ \iota_X = id_X$.

Before the sequel, we recall the following lemmas.

Lemma 3.21 (Cf. [\[3,](#page-20-7) Lemma 4.2]) *Let X be a one-sided shift space. Any isolated point in the cover* \widetilde{X} *is contained in the image of* ι_X *and each fiber* $\pi_X^{-1}(\{x\})$ *contains at most one isolated point. In particular, if* $x \in X$ *is isolated in past equivalence, then* $i_X(x)$ *is an isolated point in X.* ̃

Lemma 3.22 (Cf. [\[3,](#page-20-7) Lemma 4.4]) *Let X be a one-sided shift space. Suppose that* $x \in X$ *has a unique past, then any* $\tilde{x} \in \pi_X^{-1}(\{x\})$ *also has a unique past.*

We also note the following lemmas for the later use.

Lemma 3.23 Let X be a one-sided shift space with property (**). Suppose that ω , $\omega' \in X$ *are left special elements, and* $\{(k_m, l_m)\}_{m\geq 1}$ *is an infinite sequence in* J *where* $\{k_m\}_{m\geq 1}$ *is an unbounded sequence with* $k_m < k_{m+1}$ *for all m* \geq 1*. Assume that to every m* \geq 1*, an integer* $0 \le n_{(k_m,l_m)} < l_m$ *is associated such that*

$$
P_{l_m}\big(\sigma^{n_{(k_m,l_m)}}(\omega')\big)=P_{l_m}\big(\omega_{[k_m,k_{m+1})}\sigma^{n_{(k_{m+1},l_{m+1})}}(\omega')\big),
$$

for all m \geq 1*. Then the sequence* $\{n_{(k_m, l_m)}\}_{m \geq 1}$ *is unbounded.*

Proof Assume that $\{n_{(k_m, l_m)}\}_{m \geq 1}$ is bounded. Then there exists an infinite subsequence $\{(k_{m_i}, l_{m_i})\}_{i \geq 1}$ and an $n \in \mathbb{N}$ such that

$$
n_{(k_{m_i},l_{m_i})}=n \text{ for all } i.
$$

By passing to the subsequence $\{(k_{m_i}, l_{m_i})\}_{i \geq 1}$ and checking the equality of $P_{l_{m_i}}$, we assume, without loss of generality, that $n_{(k_m,l_m)} = n$ for some *n* and all $m \geq 1$. Note that $0 \leq n < l_m$. Now, we have

$$
P_{l_m}(\sigma^n(\omega'))=P_{l_m}(\omega_{[k_m,k_{m+1})}\sigma^n(\omega')),
$$

for all $m \ge 1$. The condition $k_m < k_{m+1}$ together with the property (**) then infers that

$$
\sigma^n(\omega') \neq \omega_{[k_m,k_{m+1})} \sigma^n(\omega'),
$$

for all $m \geq 1$. Also note that because ω is not periodic, there are infinitely many distinct finite words $\omega_{k,m,k_{m+1}}$ and we just assume that $\omega_{k,m,k_{m+1}}$ are all distinct without loss of generality.

A note on the nuclear dimension of Cuntz–Pimsner C∗*-algebras* 115

The condition $0 \le n < l_m$ follows that $#P_{l_m}(\sigma^n(\omega')) \ge 2$, and therefore

$$
\#P_{l_m}(\omega_{[k_m,k_{m+1})}\sigma^n(\omega'))\geq 2,
$$

for all $m \ge 1$. This immediately tells us that every $\omega_{[k_m,k_{m+1})}\sigma^n(\omega')$ lies on the forward orbit of some left special element. However, since $w_{[k_m,k_{m+1}]} \sigma^n(\omega')$ are distinct points lying in the backward orbit of $\sigma^n(\omega'),$ we will then have infinitely many distinct special left elements, which contradicts to the assumption that *X* has property (**).

Lemma 3.24 *Let X be a minimal one-sided shift with property (**), and let* $x \in X$ *. If x has a totally unique past, then* $\iota_X(x) \in \widetilde{X}$ *is not isolated. Consequently,* $\pi_X^{-1}(\{x\})$ *contains no isolated point for any x having a totally unique past.*

Proof Let $z \in X$, and let $(k, l) \in J$ be so that $\iota_X(x) \in U(z, k, l)$. Then $z \stackrel{k, l}{\sim} x$. Denote *P*_{*l*} ($\sigma^k(x)$) = { $\mu x_{[0,k)}$ } with $|\mu| = 1 - k$. It suffices to find an element \tilde{x} in \tilde{X} such that *z*^{*k*},^{*l*}</sup> *k*^{*x*}_{*l*}</sub> *k*^{*x*}_{*l*}^{*l*} *x*^{*l*}_{*x*}^{*l*} *x*_{*f*} for some (*k'*, *l'*) ∈ *J*.

Let ω_i be an arbitrary j-maximal element for some $j \in \mathcal{J}_X$. Since *X* is minimal, then $\mu x_{[0,k)}$ occurs infinitely many times in the forward orbit of ω_j . Take $L \in \mathbb{N}$ sufficiently large so that

$$
(\sigma^L(\omega_j))_{[0,k)} = \mu x_{[0,k)}.
$$

Set $\tilde{x} = i_X(\sigma^{L+l-k}(\omega_j))$. Then $(\sigma^{L+l-k}(\omega_j))_{[0,k)} = x_{[0,k)}$ and $P_l(\sigma^{L+l}(\omega_j)) =$ $\{\mu x_{[0,k)}\}$. This verifies $_k x_l \stackrel{k,l}{\sim} z$. However, it is clear that $_{k'}\tilde{x}_{l'} \stackrel{k',l'}{\sim} x$ for some sufficiently large *l'*, since $\sigma^L(\omega_j)$ sits in the forward orbit of a left special element. ■

4 The description of covers

In this section, *X* is always assumed to be a one-sided minimal shift space over the alphabet $A = \{0, 1\}$, having property (**). We will, as before, still use *X* to denote the corresponding two-sided shift space. Note that *X* is also minimal. We also remark that similar conclusions can be drawn for an arbitrary finite alphabet A , but we instead restrict in this paper to the binary shifts for the simplicity of formulations.

First, we point out the isolated points in *X*̃.

4.1 Isolated points in cover

Theorem 4.1 The set of isolated points in \widetilde{X} is dense in \widetilde{X} , which is exactly

$$
i\left(\bigsqcup_{j\in\mathcal{J}_X}\mathrm{Orb}_{\sigma}(\omega_j)\right),\,
$$

*where ω*j*'s are the unique* j*-maximal elements.*

Proof Write $I(\widetilde{X})$ for the set of isolated points in \widetilde{X} . We know from Lemma [3.24](#page-11-2) that every isolated point of \widetilde{X} has the form $\iota_X(x)$ for some $x \in X$, which does not have a totally unique past. This means $x \in \mathrm{Orb}_\sigma(\omega)$ for some $\omega \in \mathrm{Sp}_\mathrm{l}(X)$. Assume now that $\omega \in j_0$, where j_0 is one of right tail equivalence classes. By the definition of j-maximal

elements, we immediately see that $x \in Orb_{\sigma}(\omega_{i_0})$. This implies the inclusion

$$
I(\widetilde{X})\subset \iota\bigg(\bigsqcup_{\mathfrak{j}\in\mathfrak{J}_X}\mathrm{Orb}_{\sigma}(\omega_{\mathfrak{j}})\bigg).
$$

Conversely, according to the proof of Lemma [3.8,](#page-7-1) for every $j \in \mathcal{J}_X$, there is a point $z \in \text{Orb}_{\sigma}^{+}(\omega_{j})$ isolated in past equivalence, which makes, from Lemma [3.21,](#page-10-0) $i_{X}(z)$ an isolated point in \widetilde{X} . On the other hand, recall that as a local homeomorphism, $\sigma_{\widetilde{X}}$ preserves isolatedness and nonisolatedness, which follows that every point in $\iota(\mathrm{Orb}_{\sigma}(\omega_{i}))$ is isolated in X̃. Since j is arbitrary,

$$
i\left(\bigsqcup_{\mathfrak{j}\in\mathfrak{F}_X}\mathrm{Orb}_{\sigma}(\omega_{\mathfrak{j}})\right)\subset I(\widetilde{X}).
$$

This proves the second assertion. We now show that the set of isolated points in \overline{X} is dense. Let $z \in X$ and $(k, l) \in \mathcal{I}$. To show the density, it suffices to take $x \in Orb(\omega_j)$ such that $z\stackrel{k,l}{\sim}x$ for some $\mathfrak j\in\mathcal J_X.$ We may assume $z\notin\mathrm{Orb}_\sigma(\omega_\mathfrak j)$ for all $\mathfrak j\in\mathcal J_X.$ The argument of the existence of such *x* is then exactly the same as that of Lemma [3.24.](#page-11-2) ■

Corollary 4.2 *There are precisely* n_X *distinct discrete orbits in* \widetilde{X} *each of which forms an open invariant subspace* \widetilde{X} , where $\mathfrak{n}_X = \#\mathfrak{Z}_X$ *is the number of right tail equivalence* classes in Sp $_{\rm l}$ (X). The union of these isolated orbits forms an open dense subset in $\widecheck{\rm X}.$

4.2 The surjective factor *π^X*

Recall that for every $j \in \mathcal{J}_X$, the set U_j is defined to be

$$
U_j = \big\{\omega \in \mathfrak{j} : \mathrm{Orb}_\sigma^-(\omega) \cap \mathfrak{j} = \varnothing \big\}.
$$

Remark 4.3 Elements in U_i are called *adjusted* and *j*-maximal elements ω_i are called *cofinal* in [\[8\]](#page-20-10). It is easy to see that U_i is nonempty for every $j \in \mathcal{J}_X$.

Lemma 4.4 *For every* $j \in \mathcal{J}_X$ *and* $\omega \in U_j$, $\#\pi_X^{-1}(\{\omega\}) = 3$ *.*

Proof We first show that there are at least three distinct elements in $\pi_X^{-1}(\{\omega\})$. The construction below of these three preimages is similar to that of [\[3\]](#page-20-7).

For every $\alpha \in \{0,1\}$ and $(k, l) \in \mathcal{I}\setminus\mathcal{D}$, let $\mu_{(k, l)}^{\alpha} \in \mathcal{L}(X)$ with $|\mu_{(k, l)}^{\alpha}| = l - k - 1$ be such that $\mu_{(k,l)}^{\alpha} \alpha \omega \in X$. Note that such finite word $\mu_{(k,l)}^{\alpha}$ is unique because $\omega \in U_j$. Now, since \hat{X} has property (**), we can take $x_{(k,l)}^{\alpha} \in X$ satisfying

$$
P_l(x_{(k,l)}^{\alpha}) = {\mu_{(k,l)}^{\alpha} \alpha \omega_{[0,k)}} \quad (\alpha = 0,1).
$$

Define $_k x_l^{\alpha} = \omega_{[0,k)} x_{(k,l)}^{\alpha}$. Note that for $\alpha = 0, 1$, we have

$$
\omega \stackrel{k,l}{\sim}_k x_l^{\alpha}
$$
 and $_k x_l^0 \stackrel{k,l}{\sim}_k x_l^1$.

We now define representatives on each $(k, k) \in \mathcal{D}$. Take $x_{(k, k)}^{\alpha} \in X$ with $P_k(x_{(k, k)}^{\alpha}) =$ $\{\omega_{[0,k)}\}$. Let $_k x_k^{\alpha} = \omega_{[0,k)} x_{(k,k)}^{\alpha}$. Now, for $\alpha = 0, 1$, set $\tilde{x}^{\alpha} \in \tilde{X}$ satisfying

$$
{k}(\tilde{x}^{\alpha}){l}=[_{k}x_{l}^{\alpha}].
$$

<https://doi.org/10.4153/S0008414X22000645>Published online by Cambridge University Press

It is clear that $\pi(\tilde{x}^{\alpha}) = \omega$ and $\{i(\omega), \tilde{x}^{0}, \tilde{x}^{1}\}$ are three distinct elements. It is now enough to show that \tilde{x}^{α} are well defined. We will only verify the case for $\alpha = 0$, since the other one is exactly the same. For the simplicity of notations, we drop all the superscripts and abbreviate \tilde{x}^0 to \tilde{x} , for instance.

 (\mathbf{i}) Let $(k_1, l_1) \leq (k_2, l_2)$ be indices in $\mathcal{I} \setminus \mathcal{D}$. It is trivial that $(k_1, [x]_l)_{[0, k_1)} = \omega_{[0, k_1)} =$ $(k_2[x]_l)_{[0,k_1)}$, so it remains to show that

$$
\{\mu_{(k_1,l_1)}0\omega_{[0,k_1)}\}=P_{l_1}(x_{(k_1,l_1)})=P_{l_1}(\omega_{[k_1,k_2)}x_{(k_2,l_2)}).
$$

For every $v \in P_{l_1}(\omega_{[k_1,k_2)}x_{(k_2,l_2)}), v\omega_{[k_1,k_2)} \in P_{k_2-k_1+l_1}(x_{(k_2,l_2)}),$ and since $l_1 + k_2$ $k_1 \leq l_2$, $v\omega_{k_1,k_2}$ is the suffix of an element in $P_l(x_{k_2,l_2})$, which follows *ν* = *ν*^{$′$} 0*ω*_{[0,*k*₁}), where *ν*^{$′$} is the suffix of *μ*_(*k*₂,*l*₂) with length *l*₁ − *k*₁ − 1. However, as 0*ω* has a unique past, $v' = \mu_{(k_1, l_1)}$.

(ii) Let $(k_1, k_1) \in \mathcal{D}$ and $(k_2, l_2) \in \mathcal{J} \setminus \mathcal{D}$ with $k_1 \leq k_2$. We shall confirm that

$$
\{\omega_{[0,k_1)}\}=P_{k_1}(\omega_{[k_1,k_2)}x_{(k_2,l_2)}).
$$

Since for every $v \in P_{k_1}(\omega_{[k_1,k_2)}x_{(k_2,l_2)}, v\omega_{[k_1,k_2)} \in P_{k_2}(x_{(k_2,l_2)})$. The inequality $k_2 \leq l_2$ infers that $v\omega_{[k_1,k_2)}$ is the suffix of some element in $P_{l_2}(x_{(k_2,l_2)}) = {\mu_{(k_2,l_2)}0\omega_{[0,k_2)}}$, which has to be $\omega_{[0,k_2)}$. Therefore, $\nu = \omega_{[0,k_1)}$.

(iii) The case for (k_1, k_1) , $(k_2, k_2) \in \mathcal{D}$ where $k_1 \leq k_2$ is quite similar to the case (ii) and hence we omit the verification.

Now, we have shown $\#\pi_X^{-1}(\{\omega\}) \geq 3$. We next prove that these are exactly the only three elements on this fiber.

Take $\tilde{x} \in \pi_X^{-1}(\omega)$ and write $_k \tilde{x}_l = k[\omega_{[0,k)} x_{(k,l)}]_l$ for some $x_{(k,l)} \in X$.

Claim. If there exists $(k_0, l_0) \in \mathcal{I}$ such that $#P_{l_0}(x_{(k_0, l_0)}) = 1$, then $\tilde{x} \in {\{\tilde{x}^0, \tilde{x}^1\}}$.

This is immediate. Suppose $P_{l_0}(x_{(k_0,l_0)}) = \{\mu 0 \omega_{[0,k_0)}\}$, then every $x_{(k',l')}$ with $(k', l') \leq (k_0, l_0)$ are determined. Also note that for all (k', l') with $(k_0, l_0) \leq (k', l')$ are also unique determined because 0ω has a unique past. Then $x_{(k,l)}$ are all determined, because J is directed in the sense that given any two points (k^i, l^i) , $(k'', l'') \in J$, we can always find $(k''', l''') \in J$ with $(k', l') \leq (k''', l''')$ and $(k'', l'') \leq (k''', l''').$

Now, assume that $#P_l(x_{(k,l)}) \geq 2$ for all $(k, l) \in \mathcal{I}$. We then show that $\tilde{x} = i_X(\omega)$, which will finish the proof. Fix any $(k_0, l_0) \in \mathcal{I}$. Note that this leads to the fact that, for every $(k, l) \in \mathcal{I}$ with $(k_0, l_0) \leq (k, l)$, there exists $\omega_{(k, l)} \in \mathrm{Sp}_1(X)$ and integers $0 \leq n_{k,l} \leq l-1$ such that

$$
x_{(k,l)} = \sigma^{n_{(k,l)}}(\omega_{(k,l)}).
$$

The finiteness of $Sp_1(X)$ implies that there is $\omega' \in Sp_1(X)$ and infinitely many $(k_m, l_m) \in \mathcal{I}$ satisfying $(k_0, l_0) \leq (k_m, l_m)$, $k_m < k_{m+1}$ for all $m \geq 1$, $\lim_{m \to \infty} k_m = \infty$, and

$$
x_{(k_m, l_m)} = \sigma^{n_{(k_m, l_m)}}(\omega'), \text{ for all } m \ge 1.
$$

Upon passing to a subsequence, we may assume, according to Lemma [3.18,](#page-9-1) that $\{(k_m, l_m)\}_{m\geq 1}$ is a chain in the sense that $(k_m, l_m) \leq (k_{m'}, l_{m'})$ whenever $m \geq m'$. By the definition of cover, we then have

$$
P_{l_m}\big(\sigma^{n_{(k_m,l_m)}}\big(\omega'\big)\big)=P_{l_m}\big(\omega_{[k_m,k_{m+1})}\sigma^{n_{(k_{m+1},l_{m+1})}}\big(\omega'\big)\big).
$$

Now, Lemma [3.23](#page-10-1) applies, indicating that $n_{(k_m, l_m)}$ is unbounded. Hence, we may assume, without loss of generality, that $n_{(k_m,l_m)} \rightarrow \infty$ as $m \rightarrow \infty$.

On the other hand, from Lemma [3.8,](#page-7-1) we can take an $N \in \mathbb{N}$ such that $\sigma^n(\omega')$ is isolated in *l* past equivalence whenever $l > n \ge N$. Choose $M \in \mathbb{N}$ such that $n_{(k_m, l_m)}$ > *N* whenever *m* > *M*. This follows that

$$
x_{(k_m, l_m)} = \sigma^{n_{(k_m, l_m)}}(\omega') \text{ is } l-\text{isolated}
$$

whenever $m > M$, $l > n_{(k_m, l_m)}$. In particular, $x_{(k_m, l_m)}$ is l_m -isolated because $l_m > n_{(k_m, l_m)}$. Then, we know from

$$
P_{l_m}(\sigma^{n_{(k_m,l_m)}}(\omega')) = P_{l_m}(\omega_{[k_m,k_{m+1})}x_{(k_{m+1},l_{m+1})})
$$

that $x_{(k_m, l_m)} = \sigma^{n_{(k_m, l_m)}}(\omega') = \omega_{[k_m, k_{m+1})} x_{(k_{m+1}, l_{m+1})}$ for all $m > M$. Finally, since $k_1 < k_2 < \cdots < k_m < k_{m+1} < \cdots$ and $\lim_{m \to \infty} k_m = \infty$, we conclude that for all $m > M$,

$$
x_{(k_m,l_m)}=\sigma^{k_m}(\omega),
$$

and therefore $k_m \tilde{x}_{l_m} = k_m [\omega]_{l_m}$. Recall that $(k_m, l_m) \ge (k_0, l_0)$ for every *m*, we then have $k_0 \tilde{x}_{l_0} = k_0 [\omega]_{l_0}$. Finally, as the above discussion can be applied to every $(k_0, l_0) \in \mathcal{I}, \tilde{x} = i_X(\omega)$, the lemma follows. ■

Definition 4.5 Let $x \in X$ and $\{z^m\}_{m \leq 0}$ be a sequence in *X*. We say $\{z^m\}_{m \leq 0}$ is a *directed path terminating at x* if $z^0 = x$ and $\sigma(z^{m-1}) = z^m$ for all $m \le 0$. It is not hard to see that for every one-sided shift space *X* with $\#\mathrm{Sp}_1(X)<\infty$ and every $x\in X,$ the number of directed paths in *X* terminating at *x* is finite. We denote this number by $\mathfrak{d}(x)$.

It immediately follows that for any fixed nonmaximal element $\omega \in \mathrm{Sp}_1(X)$ and $m_0 = \min\{m > 0 : \sigma^m(\omega) \in \text{Sp}_1(X)\},\$ we have that

$$
\mathfrak{d}(\omega) = \mathfrak{d}(\sigma(\omega)) = \dots = \mathfrak{d}(\sigma^{m_0-1}(\omega)) \text{ and } \mathfrak{d}(\omega) = \sum_{\omega' \in \sigma^{-1}(\{\omega\})} \mathfrak{d}(\omega').
$$

Theorem 4.6 *For every* $x \in \bigsqcup_{i \in \mathcal{J}_X} \text{Orb}_{\sigma}(\omega_i)$ *,*

$$
\#\pi_X^{-1}(\{x\}) = \mathfrak{d}(x) + 1.
$$

Proof First, we verify the situation for which *x* has a unique past, that is, $\mathfrak{d}(x) = 1$. This could happen, for example, when *x* lies in the backward orbit of some $\omega \in U_i$. Then it is clear that either $0x \in X$ or $1x \in X$. In any case, the procedure of Lemma [4.4](#page-12-0) defines a nonisolated point in $\pi_X^{-1}(\{x\})$ and an exactly same argument as in Lemma [4.4](#page-12-0) shows that $\#\pi_X^{-1}(\{x\}) = 2 = \mathfrak{d}(x) + 1$.

For the case when $x \in Sp_1(X)$, according to the definition of the integer-valued function $\mathfrak d$, there are at most $\mathfrak d(x)$ finite prefixes

$$
\mu^1_{(k,l)}, \mu^2_{(k,l)}, \ldots, \mu^{\mathfrak{d}(x)}_{(k,l)}
$$

with $|\mu_{(k,l)}^i| = l - k$ for sufficiently large $(k,l) \in \mathcal{I}$ such that $\mu_{(k,l)}^i x \in X$ and moreover, for each pair of $\mu_{(k,l)}^i x$ and $\mu_{(k,l)}^j x$ $(i \neq j)$ and every $n \in \mathbb{N}$, $\mu_{(k,l)}^i x \neq \sigma^n(\mu_{(k,l)}^j x)$ and $\mu_{(k,l)}^j x \neq \sigma^n(\mu_{(k,l)}^i x)$. Since *X* has property (**) as assumed, we can take

$$
x^1_{(k,l)}, x^2_{(k,l)}, \ldots, x^{\mathfrak{d}(x)}_{(k,l)} \in X
$$

satisfying $P_l(x_{(k,l)}^i) = {\mu_{(k,l)}^i x_{[0,k)}}$ for $i = 0, 1, ..., \mathfrak{d}(x)$.

Now, an easy adaption of the procedure in Lemma [4.4](#page-12-0) defines $\mathfrak{d}(x)$ distinct elements in $\pi_X^{-1}(\{x\})$ such that if $\tilde{x} \in \pi_X^{-1}(\{x\})$ is not one of the points we constructed above, then $\tilde{x} = \iota_X(x)$. This proves that for any left special element *x* in the whole orbit of any maximal left special element *ω*j,

$$
\pi_X^{-1}(\{x\})=\mathfrak{d}(x)+1.
$$

Finally, let us consider those elements $x \in \bigcup_{j \in \mathcal{J}_X} \mathrm{Orb}_{\sigma}(\omega_j)$ which are not left special. This divides into the following three cases:

- (i) *x* lies in the backward orbit of some $\omega \in Sp_1(X)$ having a unique past.
- (ii) *x* lies in the forward orbit of some maximal element ω_i for $j \in \mathcal{J}_X$.
- (iii) There are distinct left special elements ω , ω' such that ω lies in the backward orbit of *x* and *ω*′ lies in the forward orbit of *x*.

Note that the case (i) has already been included in the first paragraph above. For (ii) and (iii), let *ω* be a left special element and

$$
m_0(\omega)=\min\{m>0:\sigma^m(\omega)\in\mathrm{Sp}_1(X)\}.
$$

Without loss of generality, we may say $m_0(\omega) = \infty$ if ω is a maximal element. We now reach (ii) and (iii) by showing that

$$
\#\pi_X^{-1}(\{\omega\}) = \#\pi_X^{-1}(\{\sigma(\omega)\}) = \dots = \#\pi_X^{-1}(\{\sigma^s(\omega)\}) = \mathfrak{d}(\omega) + 1
$$

for any $1 \leq s < m_0(\omega)$.

For this, write $\pi_X^{-1}(\{\omega\}) = \{\iota_X(\omega), \tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^{\mathfrak{d}(\omega)}\}$, where $\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^{\mathfrak{d}(\omega)}$ are the elements in $\pi_X^{-1}(\{\omega\})$ constructed above. We then have

$$
\pi_X^{-1}(\{\sigma^s(\omega)\})=\{\sigma_{\widetilde{X}}^s(\iota(\omega)),\sigma_{\widetilde{X}}^s(\tilde{x}^1),\sigma_{\widetilde{X}}^s(\tilde{x}^2),\ldots,\sigma_{\widetilde{X}}^s(\tilde{x}^{0(\omega)})\}.
$$

It is clear that these $\mathfrak{d}(\omega)$ + 1 elements are distinct and in the preimage of $\sigma^s(\omega)$. Therefore, it suffices to show that there are no more elements in the fiber. Suppose that $\tilde{y} \in \pi_X^{-1}(\{\sigma^s(\omega)\})$. Since $\sigma_{\tilde{X}}$ is surjective, there exists \tilde{z} such that $\sigma_{\tilde{X}}^s(\tilde{z}) = \tilde{y}$. Take *z* = *π*_{*X*}(\tilde{z}). Since *π*_{*X*} is a factor, *σ*^{*s*}(*z*) = *σ*^{*s*}(*ω*). If *z* ≠ *ω*, then there exists 1 ≤ *j* ≤ *s* < *m*₀(*ω*) such that *σ*^{*j*}(*ω*) is left special, but this contradicts to the minimality of *m*₀. Therefore, $z = \omega$ and hence $\tilde{z} \in \{i_X(\omega), \tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^{\mathfrak{d}(\omega)}\}$. This shows that there are no more elements in the fiber. Noting that

$$
\pi_X^{-1}(\{\sigma^s(\omega)\})=\mathfrak{d}(\omega)+1=\mathfrak{d}(\sigma^s(\omega))+1,
$$

 (iii) and (iii) follow as desired.

For the last part of the subsection, we consider those $z \in X$ having totally unique past.

Theorem 4.7 Let
$$
z \in X \setminus \bigsqcup_{j \in \mathcal{J}_X} \text{Orb}_{\sigma}(\omega_j)
$$
. Then $\#\pi_X^{-1}(z) = 1$.

Proof Let $\tilde{z} \in \tilde{X}$ with $\pi_X(\tilde{z}) = z$. Let us show that $\tilde{z} = i_X(z)$. Write $_k \tilde{z}_l = z$ $k[z_{[0,k)}z_{(k,l)}]$ *l*. We turn to prove that

$$
z \stackrel{k,l}{\sim} z_{[0,k)} z_{(k,l)}
$$

for all (*k*, *l*) ∈ I. Obviously, they have the same initial sections of length *k*. Therefore, it remains to verify that

$$
P_l(z_{[k,\infty)})=P_l(z_{(k,l)}).
$$

Write $P_l(z_{[k,\infty)}) = \{ \mu z_{[0,k)} \}$ where μ is the unique prefix of length *l* − *k*. We turn to show the following claims to finish the proof.

Claim 1. $\mu z_{[0,k)}z_{(k,l)} \in X$: Since *z* has a unique past, so does \tilde{z} . Take the unique $\tilde{z}' \in \widetilde{X}$ so that $\sigma_{\widetilde{X}}(\tilde{z}') = \tilde{z}$. Note that this implies

$$
\sigma^{l-k}\pi_X(\tilde{z}')=\pi_X\sigma_{\widetilde{X}}^{l-k}(\tilde{z}')=\pi_X(\tilde{z})=z,
$$

and hence $\pi_X(\tilde{z}') = \mu z$. Denote $\tilde{z}' = k[x\tilde{z}'_l]_l$. We then have $(i\tilde{z}'_l)_{[0,l)} = \mu z_{[0,k)}$. On the other hand,

$$
{}_{k}\sigma_{\widetilde{X}}^{l-k}(\widetilde{z}')_{l} = {}_{k}\widetilde{z}_{l} = {}_{k}[\sigma^{l-k}(\iota \widetilde{z}'_{l})]_{l},
$$

which tells us $z_{[0,k)}z_{(k,l)} = k\tilde{z}_l \stackrel{k,l}{\sim} \sigma^{l-k}(\tilde{z}_l^{\prime})$. Therefore,

$$
\mu z_{[0,k)} \in P_l(\sigma^l(\iota \tilde{z}'_l)) = P_l(z_{(k,l)}).
$$

Claim 2. $\#P_l(z_{(k,l)}) = 1$: Since *z* has a totally unique past, $\sigma^k(z)$ has a unique past. By Lemma [3.4,](#page-5-1) we can choose $N_1 \in \mathbb{N}$ with the following property:

whenever $y \in X$ with $y_{[0,N_1]} = \sigma^k(z)_{[0,N_1]}$, $\#P_l(y) = 1$.

Set *N* = N_1 + k + 1. Since $(N, l + N - k) ≥ (k, l)$, we have

$$
{}_N\tilde{z}_{l+N-k}\stackrel{k,l}{\sim}{}_k\tilde{z}_l,
$$

which follows that

$$
P_l(\sigma^k({}_N\tilde{z}_{l+N-k}))=P_l(\tilde{z}_{(k,l)}).
$$

However, since $\sigma^k(\chi \tilde{z}_{l+N-k}) = z_k z_{k+1} \cdots z_{N-1} \tilde{z}_{(N,l+N-k)}$, it has a prefix of length N $k = N_1 + 1$, equal to $\sigma^k(z)_{[0,N_1]}$. Therefore, by how we choose N_1 , we conclude that

$$
\#P_l(\tilde{z}_{(k,l)}) = \#P_l(\sigma^k(\tilde{z}_{l+N-k})) = 1.
$$

This completes the proof. ■

4.3 Nonisolated points in the cover

Theorem 4.8 *Let*

$$
\tilde{\Lambda}_X = \widetilde{X} \setminus \bigsqcup_{\mathfrak{j} \in \mathcal{J}_X} \mathrm{Orb}_{\sigma_{\widetilde{X}}} \big(\iota_X \big(\omega_{\mathfrak{j}} \big) \big)
$$

be the nonisolated points in the cover. Then $\bar{\Lambda}_X \cong \underline{X}$ *, i.e., there is a canonical conjugacy from* $(\tilde{\Lambda}_X, \sigma_{\widetilde{X}})$ *to* (\underline{X}, σ) *, where* \underline{X} *is the two-sided shift associated with* X.

Proof Note that since the set of isolated points is open, $\tilde{\Lambda}_X$ is closed and invariant. We first show that every element of Λ_X has a unique past. For this, by Lemma [3.22,](#page-10-2) we only need to verify that, for any fixed $k > 0$, $\omega \in Sp_1(X)$ and $\tilde{z}\in \pi_X^{-1}(\sigma^k(\omega))\backslash\{\imath_X(\sigma^k(\omega))\},$ \tilde{z} has a unique past.

Denote $z = \sigma^k(\omega)$. Then $\pi_X(\tilde{z}) = z$. Define

$$
m_z = \min\{m > 0 : \exists \omega' \in \mathrm{Sp}_1(X) \left(\sigma^m(\omega') = z\right)\}.
$$

Note that because *ω* is left special and $z = σ^k(ω)$, m_z is well defined. Then we claim that the sets

$$
E_i = \{ \tilde{y} \in \tilde{X} : \sigma^i_{\tilde{X}}(\tilde{y}) = \tilde{z} \}
$$

are singletons for $i = 1, 2, ..., m_z$. In fact, for $i = 1$, if there are $\tilde{\gamma}_1, \tilde{\gamma}_2 \in E_1$, then

$$
\sigma\circ\pi_X(\tilde{y}_1)=\pi_X\circ\sigma_{\tilde{X}}(\tilde{y}_1)=\pi_X\circ\sigma_{\tilde{X}}(\tilde{y}_2)=\sigma\circ\pi_X(\tilde{y}_2),
$$

and therefore $\pi_X(\tilde{y}_1) = \pi_X(\tilde{y}_2) \in \sigma^{-1}(\{z\})$. This means $\tilde{y}_1, \tilde{y}_2 \in \pi_X^{-1}(\sigma^{-1}(\{z\}))$ with $\sigma_{\tilde{X}}(\tilde{y}_1) = \sigma_{\tilde{X}}(\tilde{y}_2)$. However, according to the final paragraph of Theorem [4.6](#page-14-0) and the minimality of m_z , the restriction of $\sigma_{\tilde{X}}$ from $\pi_X^{-1}(\{\tau^{-1}(\{z\}))$ to $\pi_X^{-1}(\{z\})$ is injective and onto, which means that $\tilde{y}_1 = \tilde{y}_2$, and therefore E_1 is a singleton. Note that by the minimality of m_z , we can clearly apply the same argument to the case $i = 2, 3, \ldots, m_z$.

For $i = m_z + 1$, from the construction in Lemma [4.4,](#page-12-0) there is a unique element corresponding to the prefix 0 or 1. Therefore, E_{m_z+1} is a singleton as well. Repeating this procedure and noting that there exists $K > 0$ such that *x* has a unique past whenever *k* ≥ *K* and $x \in \sigma^{-k}(z)$, we conclude that \tilde{z} has a unique past.

On the other hand, it is quite clear that $\sigma_{\tilde{X}}$ is a surjective map restricted on Λ_X , and from which we can then conclude that $\sigma_{\tilde{X}}$ is a homeomorphism from $\tilde{\Lambda}_X$ onto $\tilde{\Lambda}_X$.

Now, we construct a map from *X* to $\tilde{\Lambda}_X$. This is a natural construction, which is similar to that of the Sturmian case. Specifically,

(i) If $x \in \underline{X}$ such that $\sigma^k(x_{[0,\infty)})$ has a unique past for all $k \geq 0$, we set

$$
\Phi(x)=\tilde{x}=i_X(x_{[0,\infty)}),
$$

where $\iota_X(x_{[0,\infty)})$ is the unique element in $\pi_X^{-1}(x_{[0,\infty)})$ by Theorem [4.7.](#page-15-0) Explicitly, for every $x = (x_n)_{n \in \mathbb{Z}} \in \underline{X}$, since \underline{X} is an inverse limit, we regard *x* as a sequence of right infinite words in *X*:

$$
x=\{x_{[-n,\infty)}\}_{n\geq 1}.
$$

Then we have $\sigma_{\tilde{X}} \circ \Phi(x) = \sigma_{\tilde{X}} \circ \iota_X(x_{[0,\infty)}) = \iota_X(x_{[1,\infty)}) = \Phi \circ \sigma(x)$.

(ii) If $x \in \underline{X}$ such that there is some $k \geq 0$ making $\sigma^k(x_{[0,\infty)})$ do not have a unique past, since *X* has property (**), we can choose $K \geq 0$ such that every element in $\mathrm{Orb}_\sigma^+(\sigma^K(x))$ is not left special anymore. Therefore, it is enough to determine $\Phi(\sigma^K(x))$. By abuse of notation, we denote $\sigma^K(x)$ by *x*. Let *k* be the smallest natural number such that

$$
x_{[-k,\infty)} \in \mathrm{Sp}_1(X).
$$

Then there is a unique element in $\pi_X^{-1}(x_{[-k,\infty)})$ corresponding to the prefix *x*−*k*−1 ∈ {0,1}. Now, by applying this argument to $x_{[-(k+1),\infty)}$, together with the assumption that *X* only has finitely many of special elements, we get a unique element $\Phi(x)$ in $\tilde{\Lambda}_X$. Similar to the case (i), it is straightforward to verify that $\sigma_{\tilde{X}} \circ \Phi(x) = \Phi \circ \sigma(x)$ holds naturally.

Finally, to see that Φ is a homeomorphism, we first notice that since the topology on \underline{X} and $\overline{\Lambda}_X$ are both generated by the cylinder sets and that Φ does not change any finite prefix of any right infinite word in the sequence $x = \{x_{[-n,\infty)}\}\,$ Φ is clearly continuous and injective. For the surjectivity of Φ , let $\tilde{z} \in \tilde{\Lambda}_X$. Since \tilde{z} has a unique past, $\sigma_{\tilde{X}}^{-n}(\tilde{z})$ is well defined for all $n \geq 1$. Then define a sequence *z* in *X* by

$$
z=\{\pi_X\circ\sigma_{\tilde X}^{-n}(\tilde z)\}_{n\geq 1}.
$$

Since $\sigma \circ \pi_X \circ \sigma_{\tilde{X}}^{-n-1}(\tilde{z}) = \pi_X \circ \sigma_{\tilde{X}} \circ \sigma_{\tilde{X}}^{-n-1}(\tilde{z}) = \pi_X \circ \sigma_{\tilde{X}}^{-n}(\tilde{z}),$ we see that z corresponds to an element in the projective system $X \stackrel{\sigma}{\leftarrow} X$ and defines a point in <u>X</u>. From the construction above, we immediately have $\Phi(z) = \tilde{z}$. This verifies the surjectivity of Φ. Finally, since \underline{X} is compact and $\overline{\Lambda}_X$ is Hausdorff, Φ is a homeomorphism.

We now close Section [4](#page-11-0) by summarizing in the following theorem the main results in the section.

Theorem 4.9 *Let* (*X*, *σ*) *be a one-sided minimal shift over* {0, 1} *on an infinite space X* with finitely many left special elements. Let \widetilde{X} be its cover. Then we have the following.

(1) *The set I*(\widetilde{X}) *of isolated points in* \widetilde{X} *is a disjoint union:*

$$
I(\widetilde{X})=\bigsqcup_{\mathfrak{j}\in\mathcal{J}_X}\iota(\mathrm{Orb}_\sigma(\omega_\mathfrak{j})),
$$

which forms a dense open subset of X. ̃

- (2) *The subsystem* $(\breve{X}\backslash I(\breve{X}),\sigma_{\widetilde{X}}|_{\widetilde{X}\backslash I(\widetilde{X})})$ on the set of nonisolated points is invertible and *conjugate to the canonical two-sided shift space X of X.*
- (3) *For every* $x \in X \setminus \bigsqcup_{j \in \mathcal{J}_X} \text{Orb}_{\sigma}(\omega_j)$ *,*

$$
\#\pi_X^{-1}(x)=1.
$$

Moreover, for every $x \in \bigsqcup_{i \in J_X} \text{Orb}_{\sigma}(\omega_i)$,

$$
\#\pi_X^{-1}(x)=\mathfrak{d}(x)+1,
$$

where $\mathfrak{d}(x)$ *is the number of directed path in X terminating at x.*

Remark 4.10 Last but not least, since we only consider systems with alphabet $A = \{0, 1\}$ in order to simplify our proofs, we would also like to mention how our results depend on the number of symbols. In fact, all but (3) in Theorem [4.9](#page-18-0) hold for systems over any finite alphabet A. In fact, Lemma [4.4](#page-12-0) may fail even for $A = \{0, 1, 2\}$. This is because for a left special element, say *ω*, we do not know exactly what is the preimage of *ω*, for it could be any of {0*ω*, 1*ω*}, {1*ω*, 2*ω*}, {0*ω*, 2*ω*}, or {0*ω*, 1*ω*, 2*ω*}. On the other hand, we see that the proofs of (1) and (2) have nothing to do with the number of symbols.

5 A commutative diagram and the nuclear dimension

We conclude our main result in this short section, concerning the nuclear dimension of the Cuntz–Pimsner *C*∗-algebra O*^X* associated with every minimal one-sided shift over an infinite space *X* with finite special elements.

Theorem 5.1 *Let X be a one-sided minimal shift space with finite special elements. Then there is a commutative diagram*

where the horizontal arrows are short exact, the vertical arrows are inclusions, and \mathfrak{n}_X *is the number of right tail equivalence classes of left special elements in X. In addition, the Cuntz–Pimsner algebra* O_X *has nuclear dimension* 1*.*

Proof It suffices to show the exact sequence on the second row, since $c_0^{n_X}$ corresponds to the abelian C^* -algebra of the space of n_X discrete orbits and the commutativity of the diagram is induced by π_X . From the description of the cover \tilde{X} , the unit space of its groupoid $\mathcal{G}_{\widetilde X}$ decomposes into two parts:

$$
\mathcal{G}_{\widetilde{X}}^0 = \widetilde{\Lambda}_X \bigsqcup \left(\bigsqcup_{\mathfrak{j} \in \mathcal{J}_X} \iota_X(\mathrm{Orb}_{\sigma}(\omega_{\mathfrak{j}})) \right).
$$

In particular, the groupoid restricted to $\tilde{\Lambda}_X$ is isomorphic to $\underline{X} \rtimes_{\sigma} \mathbb{Z}$ by Theo-rem [4.8,](#page-16-0) whose C^* -algebra is $*$ -isomorphic to the crossed product $C(\underline{X}) \rtimes_{\sigma} \mathbb{Z}$, and the groupoid restricted to the open subset $\bigcup_{j\in\mathcal{J}_X} \iota_X(\mathrm{Orb}_\sigma(\omega_j))$ is the sum of full equivalence relations restricted on each discrete orbit $\iota_X(\text{Orb}_{\sigma}(\omega_i))$ ($j \in \mathcal{J}_X$), whose *C*[∗]-algebra is ∗-isomorphic to the direct sum \mathbb{K}^{n_x} . Then the exactness of the second row follows from Proposition 4.3.2 in [\[20\]](#page-21-7).

For the nuclear dimension of O_X , we first claim that

Claim. $\mathcal{G}_{\widetilde{X}}$ has dynamic asymptotic dimension 1.

To see this, let *K* be an open relative compact subset of $\mathcal{G}_{\widetilde{X}}$. Denote the groupoid restricted on $\tilde{\Lambda}_X = \underline{X}$ by $\mathcal{G}_{\tilde{\Lambda}}$. It has already been verified that $\mathcal{G}_{\tilde{\Lambda}}$ is a minimal reversible groupoid, or in other words, a groupoid of an invertible minimal action on an infinite compact space, which follows that it has asymptotic dimension 1. Then there are open subsets \tilde{U}_0 , \tilde{U}_1 of its unit space $\mathcal{G}^0_{\tilde{\Lambda}}$ that cover $s(K\cap \mathcal{G}_{\tilde{\Lambda}}) \cup r(K\cap \mathcal{G}_{\tilde{\Lambda}})$, and the set

$$
\{g \in K \cap \mathcal{G}_{\tilde{\Lambda}} : s(g), r(g) \in \tilde{U}_i\}
$$

is contained in a relatively compact subgroupoid of $\mathcal{G}_{\tilde{\Lambda}}$ for $i = 0, 1$. Let

$$
U_i = \tilde{U}_i \sqcup \left(\bigsqcup_{\mathfrak{j} \in \mathcal{J}_X} \iota_X(\mathrm{Orb}_{\sigma}(\omega_{\mathfrak{j}})) \right).
$$

It is clear that U_i are open and cover $s(K) \cup r(K)$. On the other hand, since the rightmost one is a discrete open set and K is relatively compact, the set

 ${g \in K \setminus \mathcal{G}_{\tilde{\Lambda}} : s(g), r(g) \in U_i}$ is a finite set for $i = 0, 1$. This implies that the groupoid generated by

$$
\{g \in K : s(g), r(g) \in U_i\}
$$

is a relatively compact subgroupoid for $i = 0, 1$. This shows that $\mathcal{G}_{\widetilde{X}}$ has dynamic asymptotic dimension 1.

Now, from Theorem 8.6 of [\[12\]](#page-21-8),

$$
\dim_{\text{nuc}}(\mathcal{O}_X)\leq 1.
$$

However, by the exact sequence and Proposition 2.9 of [\[21\]](#page-21-6),

$$
1 = \max\{ \dim_{\text{nuc}}(\mathbb{K}^{n_X}), \dim_{\text{nuc}}(C(\underline{X}) \rtimes_{\sigma} \mathbb{Z}) \}
$$

\$\leq\$ dim_{nuc} (\mathbb{U}_X)
\$\leq\$ dim_{nuc} (\mathbb{K}^{n_X}) + dim_{nuc} $(C(\underline{X}) \rtimes_{\sigma} \mathbb{Z}) + 1 = 2.$

We then conclude that dim_{nuc}(\mathcal{O}_X) = 1. This finishes the proof.

Remark 5.2 An alternative argument for the last part of Theorem [5.1](#page-19-1) would just be that, as a *C*[∗]-algebra of a groupoid associated with a minimal system over an infinite compact metric space, \mathcal{O}_X is not approximately finite-dimensional. This follows immediately that $\dim_{\text{nuc}}(\mathcal{O}_X) \geq 1$.

Acknowledgment We would like to thank members of the Research Center for Operator Algebras for providing online discussions weekly during the difficult period of COVID-19. The second named author would also like to thank his advisor Huaxin Lin from whom he is learning a lot as a doctoral student. The authors thank the anonymous referee for many helpful comments and suggestions as well.

References

- [1] T. Bates, T. Carlsen, and S. Eilers, *Dimension groups associated to β -expansions*. Math. Scand. **100**(2007), no. 2, 198–208.
- [2] V. Berthé, W. Steiner, and J. Thuswaldner, *Multidimensional continued fractions and symbolic codings of toral translations*. Preprint, 2021. [arXiv:2005.13038v3](https://arxiv.org/abs/2005.13038v3)
- [3] K. Brix, *Sturmian subshifts and their C*∗*-algebras*. Preprint, 2021. [arXiv:2107.10613v1](https://arxiv.org/abs/2107.10613v1)
- [4] K. Brix and T. Carlsen, *C*[∗] *-algebras, groupoids and covers of shift spaces*. Trans. Amer. Math. Soc. Ser. B **7**(2020), 134–185.
- [5] T. Carlsen, *On C*∗*-algebras associated with sofic shifts*. J. Operator Theory **49**(2003), no. 1, 203–212.
- [6] T. Carlsen, *Symbolic dynamics, partial dynamical systems, Boolean algebras and C*∗*-algebras generated by partial isometries*. Preprint, 2006. [arXiv:math/0604165v2](https://arxiv.org/abs/math/0604165v2)
- [7] T. Carlsen, *Cuntz–Pimsner C*[∗] *-algebras associated with subshifts*. Internat. J. Math. **19**(2008), no. 1, 47–70.
- [8] T. Carlsen and S. Eilers, *Matsumoto K -groups associated to certain shift spaces*. Doc. Math. **9**(2004), 639–671.
- [9] T. Carlsen and K. Matsumoto, *Some remarks on the C*[∗] *-algebras associated with subshifts*. Math. Scand. **95**(2004), no. 1, 145–160.
- [10] J. Cassaigne and J. Karhumäki, *Toeplitz words, generalized periodicity and periodically iterated morphisms*. European J. Combin. **18**(1997), 497–510.
- [11] J. Cuntz and W. Krieger, *A class of C*[∗]*-algebras and topological Markov chains*. Invent. Math. **56**(1980), no. 3, 251–268.

- [12] E. Guentner, R. Willett, and G. Yu, *Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and C*∗*-algebras*. Math. Ann. **367**(2017), nos. 1–2, 785–829.
- [13] Y. Katayama, K. Matsumoto, and Y. Watatani, *Simple C*∗*-algebras arising from β-expansion of real numbers*. Ergodic Theory Dynam. Systems **18**(1998), no. 4, 937–962.
- [14] W. Krieger and K. Matsumoto, *Shannon graphs, subshifts and lambda-graph systems*. J. Math. Soc. Japan **54**(2002), 877–899.
- [15] H. Lin and H. Su, *Classification of direct limits of generalized Toeplitz algebras*. Pacific J. Math. **181**(1997), 89–140.
- [16] K. Matsumoto, *K-theory for C*∗*-algebras associated with subshifts*. Math. Scand. **82**(1998), no. 2, 237–255.
- [17] K. Matsumoto, *Relations among generators of C*∗*-algebras associated with subshifts*. Internat. J. Math. **10**(1999), no. 3, 385–405.
- [18] K. Matsumoto, *Stabilized C*∗*-algebras constructed from symbolic dynamical systems*. Ergodic Theory Dynam. Systems **20**(2000), no. 3, 821–841.
- [19] W. Parry, *Symbolic dynamics and transformations of the unit interval*. Trans. Amer. Math. Soc. **122**(1966), 368–378.
- [20] A. Sims and D. Williams, *The primitive ideals of some étale groupoid C*∗*-algebras*. Algebr. Represent. Theory **19**(2016), no. 2, 255–276.
- [21] S. Williams, *Toeplitz minimal flows which are not uniquely ergodic*. Z. Wahrsch. Verw. Gebiete. **67**(1984), 95–107.
- [22] W. Winter and J. Zacharias, *The nuclear dimension of C*∗*-algebras*. Adv. Math. **224**(2010), no. 2, 461–498.

Research Center for Operator Algebras, East China Normal University, Shanghai, China e-mail: zfhe@math.ecnu.edu.cn

School of Mathematics and Science, East China Normal University, Shanghai, China e-mail: sihanwei2093@yeah.net