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A note on the nuclear dimension
of Cuntz–Pimsner C∗-algebras associated
with minimal shift spaces
Zhuofeng He and Sihan Wei
Abstract. For every minimal one-sided shift space X over a finite alphabet, left special elements are
those points in X having at least two preimages under the shift operation. In this paper, we show that
the Cuntz–Pimsner C∗-algebra OX has nuclear dimension 1 when X is minimal and the number of
left special elements in X is finite. This is done by describing concretely the cover of X, which also
recovers an exact sequence, discovered before by Carlsen and Eilers.

1 Introduction

The Cuntz–Pimsner C∗-algebra OX is an invariant of conjugacy associated with any
shift space X. This interplay between shift spaces and C∗-algebras starts from the
study of the C∗-algebra OA of a two-sided shift of finite type represented by a {0, 1}-
matrix A in a canonical way (see [11]), in which the associated C∗-algebra is originally
called a Cuntz–Krieger algebra. In the next 30 years, the C∗-algebra OX , to every shift
space X, is constructed and studied in [1, 5, 7–9, 13, 14, 16–18] by several authors (for
example, Matsumoto, Eilers, Carlsen, Brix, and their collaborators, to name a few), but
in different manners for their own uses. We additionally remark that the associated
C∗-algebra considered in the paper is first defined by Carlsen in [7] using a Cuntz–
Pimsner construction, which is why we call it a Cuntz–Pimsner C∗-algebra, as is also
pointed out in [4].

Among these approaches, the cover (X̃ , σX̃), of a one-sided shift space X, is a
dynamical system constructed by Carlsen in [4], and used to define the OX as the
full groupoid C∗-algebra of GX̃ . In particular, the reason why Carlsen considers the
groupoid C∗-algebra of the cover but not the shift space X itself is that every such
cover defines a dynamical system whose underlying map is a local homeomorphism,
whereas this is not always the case for a one-sided shift. Actually, a one-sided shift on
an infinite space is a local homeomorphism if and only if it is of finite type, as in [19].
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A note on the nuclear dimension of Cuntz–Pimsner C∗-algebras 105

In [6], it is shown that for every shift space X with the property (*), there is a
surjective homomorphism ρ ∶ OX → C(X) ⋊σ Z, which sends the diagonal subalgebra
DX onto the canonical commutative C∗-subalgebra C(X), with X the corresponding
two-sided shift space of X and σ the natural two-sided shift operation. In addition, if
X has the property (**), then

kerρ ≅ K
nX ,

where nX is a positive integer related to the structure of the left special elements in X,
namely, the number of right shift tail equivalence classes of X containing a left special
element. Consequently, for every minimal shift space X, if it has the property (**),
which is equivalent to X having finitely many left special elements, then its Cuntz–
Pimsner C∗-algebra OX is an extension of a unital simple AT-algebra by a finite direct
sum of the compact operators. Also note that this extension makesOX falls into a class
of C∗-algebras considered by Lin and Su in [15], called the direct limits of generalized
Toeplitz algebras.

In [3], Brix considers the C∗-algebra Oα of a one-sided Sturmian shift Xα for α
an irrational number, by describing the cover of Xα . In particular, he proves that
the cover X̃α of Xα is a union of the two-sided Sturmian shift Xα and a dense orbit
consisting of isolated points. The unique dense orbit corresponds to the unique point
ωα in Xα , which has two preimages under the shift operation. This is the first concrete
description of covers of non-sofic systems, whereas the cover of a sofic system is a
specific class of shifts of finite type. We remark here that the uniqueness of ωα benefits
from the well-known fact that Xα has the smallest complexity growth for shift spaces
with no ultimately periodic points: pX(n) = n + 1 for all n ≥ 1.

There are two corollaries from the concrete description of the cover of a Sturmian
system in [3]: one for a reducing of the exact sequence in [6] to its simplest form,
that is, Oα is an extension of C(Xα) ⋊σ Z by K; one for the precise value of dynamic
asymptotic dimension of the associated groupoid. The latter together with the exact
sequence make the Oα be of nuclear dimension 1, where the nuclear dimension is a
concept that plays a key role in the classification programs for C∗-algebras.

In this note, we generalize this interesting approach and show that for every
minimal one-sided shift X with finitely many left special elements, the Cuntz–Pimsner
algebra OX has nuclear dimension 1. More specifically, with our concrete description,
the cover of each such space will be a finite disjoint union: a copy of the corresponding
minimal two-sided shift space X (induced from the projection limit of the original
one-sided shift), and nX dense orbits, each consisting of isolated points. This also
recovers the whole situation of the exact sequence in [6]. We also hope that with
this description, more K-information can be read out from the groupoid for many
other minimal shifts, such as nonperiodic Toeplitz shifts X with lower complexity
growth (which is to sufficiently make X have finitely many left special elements, or
equivalently, have the property (**)).

Finally, we also want to emphatically point out that there is a large class of minimal
shifts for which our results apply, such as those with bounded complexity growth
(see Example 3.15 for the definition and Proposition 3.16 for details). This class of
minimal shifts includes minimal Sturmian shifts considered by Brix, which are defined
to be the minimal shifts associated with irrational rotations; minimal shifts associated
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106 Z. He and S. Wei

with interval exchange transformations, whose complexity functions are known to
satisfy pX(n + 1) − pX(n) ≤ d where d is the number of subintervals; minimal shifts
constructed from (p, q)-Toeplitz words in [10], where p, q are natural numbers and
p∣q, whose complexity functions are shown to be linear; or also minimal shifts
associated with a class of translations on 2-torus in [2], whose complexity functions
satisfy pX(n) = 2n + 1, to name a few.

1.1 Outline of the paper

The paper is organized as follows. Section 2 will provide definitions, including basic
notions of one-sided shift spaces, the corresponding two-sided shift spaces, and
C∗-algebras. In Section 3, we recall definitions of past equivalence, right tail equiv-
alence, covers, and their properties. A couple of technical preparations will also be
presented for the later use. Section 4 is devoted to the main body of the paper, in which
we give a concrete description to the cover of a minimal shift with finitely many left
special elements. We divide the description into three parts: (i) for isolated points in
the cover, see Theorem 4.1; (ii) for the surjective factor πX , see Theorems 4.6 and 4.7;
and (iii) for nonisolated points in the cover, see Theorem 4.8. Finally, we conclude our
main result for the nuclear dimension of OX in Section 5.

2 Preliminaries

Throughout the paper, we denote by N the set of nonnegative integers. For a finite set
S, we will always use #S to denote its cardinality.

2.1 Shift spaces

Let A = {0, 1}. Endowed with the product topology, the spaces AZ and AN are
homeomorphic to the Cantor space, i.e., the totally disconnected compact metric
space with no isolated point. Note that AZ and AN can be given the following metrics:

d(x , y) = sup{1/2N ∶ xk = y
k

for all 0 ≤ ∣k∣ ≤ N − 1},

d(x , y) = sup{1/2N ∶ xk = yk for all 0 ≤ k ≤ N − 1}.

We use A∗ and A∞ to denote the monoid of finite words and the set of infinite
one-sided sequences with letters from A, that is,

A∗ = ⊔
n≥1

An ∪ {ε}, A∞ = AN ,

where ε is the unique empty word in A∗. For a word μ ∈ A∗, we use ∣μ∣ to denote the
length of μ and write ∣μ∣ = n if μ ∈ An . For the empty word, we usually define ∣ε∣ = 0.
In addition, the length of any element μ in A∞ is defined to be ∞. Let μ ∈ A∗ and
ν ∈ A∗ ⊔A∞, and we say μ occurs in ν, if there exists a ∈ A∗ and b ∈ A∗ ⊔A∞ such
that

ν = aμb.

If μ occurs in ν, we also say μ is a factor of ν.
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A full shift is a continuous map σ ∶ x ↦ σ(x) from AN to AN (or AZ to AZ) such
that

(σ(x))n = xn+1 .

A one-sided (two-sided, respectively) shift space is a nonempty compact σ-invariant
subspace X of AN (or AZ, respectively) together with the restriction σ ∣X . Note that by
σ-invariant, we mean σ(X) ⊂ X. Any two-sided shift is a homeomorphism, and any
one-sided shift σ ∶ X → X is injective if and only if X is finite. Throughout the paper,
we will only consider one-sided shifts on infinite compact spaces.

If X is a shift space, x ∈ X, and −∞ < n ≤ m < ∞, we define x(n−1,m] = x[n ,m+1) =
x[n ,m] = xn xn+1⋅⋅⋅xm . We also use x(−∞,m] = x(−∞,m+1) or x[n ,∞) = x(n−1,∞) to denote
the natural infinite positive and negative parts of x, respectively.

For any two-sided shift space X, we use X+ to stand for the corresponding one-
sided shift space, that is, X+ = {x[0,∞) ∶ x ∈ X}. If X is a one-sided shift space, then X
is used, in this paper, to denote the inverse limit of the projective system

X σ← X σ← ⋅⋅⋅ σ← X σ← ⋅⋅⋅.

Note that X is a two-sided shift space under a canonical identification.
For any shift space X, its language L(X)will play a central role, whose elements are

those finite words over A occurring in some x ∈ X. A language uniquely determines
a shift space, or in other words, x ∈ X if and only if any factor μ of x is an element
of L(X). This fact implies that for any two-sided shift space Y, σ(Y) = Y , and
therefore for any one-sided shift space X, σ(X) = X if and only if X = (X)+. Any
topologically transitive one-sided shift (for the definition of topologically transitivity,
see Proposition 3.10) is automatically surjective since its image is a dense compact
subset.

Definition 2.1 Let X be a one-sided shift space, and let x ∈ X. We define the forward
and backward orbits of x to be

Orb+σ (x) = {σ n(x) ∶ n ≥ 0} and Orb−σ (x) = {y ∈ X ∶ ∃n > 0(σ n(y) = x)},

respectively, and the whole orbit of x to be Orbσ(x) = Orb+σ (x) ∪ Orb−σ (x).

2.2 C∗-algebras and groupoids

Definition 2.2 (Cf. [21, Definition 2.1]) Let A and B be C∗-algebras.
A ∗-homomorphism π ∶ A → B is said to have nuclear dimension at most n, denoted
dimnuc(π) ≤ n, if for any finite set F ⊂ A and ε > 0, there is a finite-dimensional
subalgebra F and completely positive maps ψ ∶ A → F and φ ∶ F → B such that ψ is
contractive, φ is n-decomposable in the sense that we can write

F = F(0) ⊕ F(1) ⊕ ⋅⋅⋅F(n)

satisfying φ∣F(i) is completely positive contractive and order zero for all i, and for every
a ∈ F,

∥π(a) − φψ(a)∥ < ε.
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108 Z. He and S. Wei

The nuclear dimension of a C∗-algebra A, denoted dimnuc(A), is defined as the nuclear
dimension of the identity homomorphism idA.

We now recall the definitions of groupoid and its dynamic asymptotic dimension.
Definition 2.3 (Cf. [20, equation (3.1)]) Let X be a local homeomorphism on a
compact Hausdorff space X. We then obtain a dynamical system (X , T). The corre-
sponding Deaconu–Renault Groupoid is defined to be the set

GX = {(x , m − n, y) ∈ X ×Z × X ∶ T m(x) = T n(y), m, n ∈ N},

with the unit space G0
X = {(x , 0, x) ∶ x ∈ X} identified with X, range and source maps

r(x , n, y) = x and s(x , n, y) = y, and operations (x , n, y)(y, m, z) = (x , n + m, z)
and (x , n, y)−1 = (y,−n, x).

By Lemma 2.3 in [4] and Lemmas 3.1 and 3.5 in [20], the groupoids GX̃ considered
in the paper will all be locally compact, Hausdorff, amenable, and étale, where X̃ is
the cover of X in the sense of Definition 3.19. They are also principal since all such X̃
have no periodic point, as is shown in Section 4.

The Cuntz–Pimsner C∗-algebra OX of a one-sided shift space X is defined to be
the (full) groupoid C∗-algebra C∗(GX̃). The diagonal subalgebra DX is defined to be
C(X̃) ⊂ OX .

Finally, we recall the definition of dynamic asymptotic dimension for étale
groupoids.
Definition 2.4 (Cf. [12, Definition 5.1]) Let G be an étale groupoid. Then G has
dynamic asymptotic dimension d ∈ N if d is the smallest number with the following
property: for every open relatively compact subset K of G, there are open subsets
U0 , U1 , . . . , Ud of G0 that covers s(K) ∪ r(K) such that for each i, the set {g ∈ K ∶
s(g), r(g) ∈ U i} is contained in a relatively compact subgroupoid of G.

It is known that for a minimal Z-action on a compact space, the associated
groupoid has dynamic asymptotic dimension 1 (see Theorem 3.1 in [12]).

3 Definitions and preparations

From now on, to avoid invalidity or triviality, we only consider infinite one-sided shift
space X with σ(X) = X. We use X to denote the associated two-sided shift space.

3.1 Left special elements and past equivalence

Definition 3.1 (Cf. [8, subsection 2.2, the first paragraph]) Let X be a one-sided shift
space and z ∈ X. We say that z is left special if there exists z′ ∈ X such that z−1 ≠ z′−1
and z[0,∞) = z′[0,∞). If z ∈ X is left special, we also say x = z[0,∞) is left special in X.
We use Spl(X) and Spl(X) to denote the collections of left special elements in X and
X, respectively.

We say x ∈ X has a unique past if #(σ k)−1({x}) = 1 for all k ≥ 1. Moreover, we say
x ∈ X has a totally unique past if σ n(x) has a unique past for all n ≥ 1.

It is clear from the definition that for any one-sided shift space X with
σ(X) = X, a point x ∈ X is left special precisely when x has at least two preimages
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under σ , that is, #σ−1({x}) ≥ 2. Therefore, for any such one-sided shift on an infinite
space, left special element always exists, or σ will be injective, which implies that X is
finite. It is also immediate that x has a totally unique past if and only if x ∉ Orbσ(ω)
for any ω ∈ Spl(X).

Proposition 3.2 Suppose that Spl(X) contains no periodic point of X. Then
#Spl(X) < ∞ if and only if #Spl(X) < ∞.

Proof The map π+ ∶ z ↦ z[0,∞) induces a surjective map from Spl(X) to Spl(X).
Therefore, if Spl(X) is finite, so is Spl(X).

Now assume that Sp(X) is infinite. If Sp(X) is finite, then we can take x ∈ Spl(X)
with infinitely many preimages in Spl(X) under π+. Denote this infinite preimage by
F. Since A is finite, the Pigeonhole principle ensures the existence of an infinite subset
F1 ⊂ F such that for every x ≠ y ∈ F1, x[−1,∞) = y[−1,∞). Then we choose n1 ≤ −1 such
that there exists x 1 , y1 ∈ F1 with

(x 1)n1−1 ≠ (y1)n1−1 but x[n1∞) = y[n1 ,∞) for all x , y ∈ F1 .

This means that there is some z1 ∈ F1 such that (z1)[n1 ,∞) ∈ Spl(X). Similarly, choose
an infinite subset F2 ⊂ F1, an integer n2 ≤ n1 − 1 with the same property as the first step,
and a point z2 ∈ F2 such that (z2)[n2 ,∞) ∈ Spl(X). Repeating this procedure, we have
a strictly decreasing sequence of negative integers {nk}k≥1 and an infinite sequence
{zk}k≥1 ⊂ Spl(X) with the following property:

(zk)[nk ,∞) ∈ Spl(X) and (zk)[nk ,∞) = (zk+1)[nk ,∞) (k = 1, 2, . . .).

Note that it follows from the latter condition that (zk)[nk ,∞) all lie on a single
orbit in X. Since Spl(X) is finite, it has to contain a periodic point, which is a
contradiction. ∎

Notation. Let S ⊂ X be a set, and let l ∈ N. We define S[0, l] to be the set whose
elements are the prefixes of x ∈ S of length l + 1.

Definition 3.3 (Cf. [8, subsection 2.4, the first paragraph]) Let X be a one-sided shift
space, and let l ≥ 1. For x ∈ X, set

Pl(x) = {μ ∈ L(X) ∶ ∣μ∣ = l , μx ∈ X} = (σ l)−1({x})[0, l−1] .

For x , y ∈ X, we say x and y are l-past equivalent and write x ∼l y, if Pl(x) = Pl(y). In
particular, x and y are said to be past equivalent if x ∼l y for some l ≥ 1.

We call x isolated in past equivalent if there exists l ≥ 1 such that x ∼l y implies
x = y.

If x ∼l+1 y, then x ∼k y for all 1 ≤ k ≤ l . Consequently, if x is isolated in l-past
equivalent, then x is isolated in k-past equivalent for every k ≥ l .

Lemma 3.4 Suppose that x ∈ X has a unique past. Then, for every l ≥ 1, there exists
N ∈ N such that, whenever y ∈ X with y[0,N] = x[0,N], #Pl(y) = 1.

Proof Assume that there exists l0 ≥ 1 such that for every n ∈ N, we can always find
some yn ∈ X with yn

[0,n] = x[0,n], but #Pl0(yn) ≥ 2. We are then given a sequence
{yn}n≥0 which is easily seen to converge to x as n →∞.
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Note that the alphabet A is finite, we now claim that there exist two distinct words
μ, ν in L(X) of length l0 such that two sequences of natural numbers {nk}k≥0 and
{mk}k≥0 can be chosen, satisfying

μynk ∈ X and νymk ∈ X .

In fact, from the Pigeonhole principle, there is at least one word μ with ∣μ∣ = l0 such
that μ can be a prefix of infinitely many yn , say, ynk for k ≥ 1. However, if μ is the
unique word with such property, then all others in L(X) with length l0 can only be
prefixes of finitely many of yn , and which means that for some natural number N, yn

will only have the unique prefix μ whenever n ≥ N . This is then a contradiction.
Finally, note that since yn → x as n →∞, every finite word occurring in μx and νx

is an element of L(X). This proves μx , νx ∈ X, and hence x does not have a unique
past. ∎

3.2 Right tail equivalence and j-maximal elements

Definition 3.5 (Cf. [8, subsection 2.2, the last paragraph] [a slightly different version)]
Let x , x′ ∈ X. The notation x ∼rte x′ is used to mean that x and x′ are right tail
equivalent, in the sense that there exist M , M′ ∈ N satisfying

σ M(x) = σ M′(x′).

Set JX = Spl(X)/ ∼rte. Let j ∈ JX and ω ∈ j. We say ω is j-maximal if, for any ω′ ∈ j,
there is an m ∈ N such that σ m(ω′) = ω.

Proposition 3.6 Suppose that Spl(X) is finite and contains no periodic point of X. Then
every j ∈ JX has a unique j-maximal element. In particular, an element ω ∈ Spl(X) is
j-maximal if and only if

ω ∈ j and σ m(ω) ∉ Spl(X) for all m ∈ N/ {0}.

Proof Let η ∈ j be arbitrary. Since Spl(X) is finite and contains no periodic point,
we can take K ∈ N such that σ K(η) ∈ Spl(X), but σ k(η) ∉ Spl(X) for all k ≥ K + 1.
Denote σ K(η) by ω. We prove the proposition by showing that ω is j-maximal.

Let ω′ ∈ j/{ω}. Since ω ∼rte ω′, there are M , M′ ∈ N such that

σ M(ω) = σ M′(ω′).

Take the minimal nonnegative integer M so that there is M′ ∈ N with
σ M(ω) = σ M′(ω′). If M > 0, then ωM−1 ≠ w′M′−1, which means that ω[M ,∞) =
ω′[M′ ,∞) is left special. Note that ω[M ,∞) = σ k+M(η). However, this contradicts to
the assumption that σ k(η) ∉ Spl(X) for all k ≥ K + 1. Consequently, M = 0; in other
words, ω = σ M′−1(ω′). This proves the existence of j-maximal elements.

The uniqueness follows directly from the absence of periodic point in Spl(X).
Finally, the above argument verifies the second assertion at the same time. ∎

Definition 3.7 Let X be a one-sided shift space with finite left special elements. From
now on, for any j ∈ JX , we will always denote the unique j-maximal element by ωj.
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For every j ∈ JX , define

Uj = {ω ∈ j ∶ Orb−σ (ω) ∩ j = ∅}.

Note that for all ω ∈ Uj, αω has a unique past whenever αω ∈ X for some α ∈ A.

Lemma 3.8 Suppose Spl(X) is finite and contains no periodic point. For every ω ∈
Spl(X), there is N ∈ N such that σ n(ω) is isolated in l-past equivalence for all l > n ≥ N.

Proof Let ω ∈ Spl(X). From Proposition 3.6, let m ∈ N be such that wj = σ m(ω) is
j-maximal for some j ∈ JX . Since Spl(X) is finite, there exists N ′ ∈ Nwith the following
property:

for all y, y′ ∈ X , y, y′ ∈ Spl(X) and y[0,N ′] = y′[0,N ′] implies y = y′ .

Let N = N ′ + m. Then σ N(ω) is isolated in N ′ + 1-past equivalence, and therefore for
every l > n ≥ N , σ n(ω) is isolated in l-past equivalence as well. ∎

3.3 Properties (*) and (**)

Definition 3.9 (Cf. [8, Definition 3.1]) A one-sided shift space X has property (*) if
for every μ ∈ L(X), there exists x ∈ X such that P∣μ∣(x) = {μ}. We will also say X has
property (*) if X does so.

Proposition 3.10 Let X be a one-sided shift space. Suppose that X is
topologically transitive, namely, there is a point x0 ∈ X such that its forward
orbit is dense in X. If Spl(X) is finite and contains no periodic point in
X, then X has property (*).

Actually, the proof is basically the same as that of Example 3.6 in [8] for the minimal
case, which goes like follows. Since X is transitive, take x0 ∈ X with a dense forward
orbit, which follows that every word in L(X) occurs in x0. Therefore, it suffices to
show that, for every word μ occurring in x0, there exists y0 such that P∣μ∣(y0) = {μ}.
Now, since x0 is a transitive point, μ appears in x0 infinitely many times. Consider the
intersection

Orb+σ (x0) ∩ Spl(X).

Since Spl(X) is finite and contains no periodic point, this intersection has to be finite,
which means that there exists N ≥ 1 such that σ n(x0) ∉ Spl(X) for all n ≥ N . This
follows that for all n ≥ N , σ n(x0) has only one preimage. Upon taking L > N + ∣μ∣
with (x0)[L−∣μ∣+1,L] = μ, we conclude that σ L+1(x0) has only one preimage of length
∣μ∣, and which is exactly μ.

Definition 3.11 (Cf. [8, Definition 3.2]) Let X be a one-sided shift space with property
(*). If, in addition, Spl(X) is finite and contains no periodic point in X, then we say X
has property (**).

Proposition 3.10 together with Proposition 3.2 implies the following corollary.

Corollary 3.12 A transitive one-sided shift space X has property (**) if and only if
Spl(X) is finite and contains no periodic point. In particular, if X is minimal, then X
has property (**) exactly when Spl(X) is finite.
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Example 3.13 Every nonregular Toeplitz shifts has property (*), as is shown in [8].
We now prove that this is the case for every nonperiodic Toeplitz shift. The same

notations as in [22] will be used in the following proposition.

Proposition 3.14 Let η be a nonperiodic Toeplitz sequence. Then Xη has property (*).

Proof Let μ ∈ L(Xη). Without loss of generality, assume that η[0,m−1] = μ for
m = ∣μ∣. We show that

P∣μ∣(η[m ,∞)) = {μ}.

Suppose μ′ ∈ L(Xη) with μ′η[m ,∞) ∈ Xη . Then μ′η[m ,∞) can be approximated by a
sequence σ nk(η). Write μ = μ1 μ2 . . . μ∣μ∣. We then note that ηm−1 = μ∣μ∣.

Consider the pm−1-skeleton of η, say, η̃ ∈ (A ∪ {∞})N. Then η̃ is a periodic
sequence with period orbit {η̃, σ(η̃), . . . , σ pm−1−1(η̃)}. From the Pigeonhole princi-
ple, there is 0 ≤ l ≤ pm−1 − 1 such that there exist infinitely many nk j ( j = 1, 2, . . .)
satisfying

nk j − (m − 1) ≡ l mod pm−1

for some l ∈ {0, 1, . . . , pm−1 − 1}, which follows (σ nk j (η))n = ηm−1 for all n ∈ (l + m −
1) + pm−1N, and therefore

(μ′η)n = ηm−1

for all n ∈ (l + m − 1) + pm−1N. Due to the fact that the p-skeleton of a given Toeplitz
sequence is the “maximal” periodic part with the given period, η̃ plays the central
role. Hence, the assumption that μ′η[m ,∞) and μη[m ,∞) have a common right infinite
section yields that l = 0. We then conclude that for all n ∈ m − 1 + pm−1N,

(μ′η)n = ηm−1 = μm

and, in particular, μ′m = μm . By repeatedly applying this procedure to m − 1,
m − 2, . . . , 0, we therefore have μ′ = μ. ∎

Example 3.15 Let X be a one-sided shift. The complexity function pX is defined on
positive integers, which sends every n ≥ 1 to the number of finite words in L(X) of
length n. Namely,

pX(n) = #{μ ∈ L(X) ∶ ∣μ∣ = n}.

We say that X has a bounded complexity growth if there exists K > 0 such that

pX(n + 1) − pX(n) ≤ K ,

for all n ≥ 1. Then every minimal one-sided shift space with a bounded complexity
growth has property (**), as is shown in Proposition 3.16.

Proposition 3.16 If X is a minimal one-sided shift space with a bounded complexity
growth, then X has property (**).

Proof It suffices to show that X has only finitely many left special elements. Let K ∈ N
be a growth bound of X. We actually have #Spl(X) ≤ K.
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If not, then we take K + 1 distinct points {ω1 , . . . , ωK+1} ⊂ Spl(X) and an integer
N ∈ N such that the following K + 1 finite words

ω1
[0,N] , ω2

[0,N] , . . . , ωK+1
[0,N]

are distinct. Note that these finite words are all of length N + 1 and each of which can
be extended to the left in at least two different ways. This immediately follows that

pX(N + 2) − pX(N + 1) ≥ K + 1,

a contradiction. The proposition follows. ∎

3.4 Covers of one-sided shift spaces

Definition 3.17 We use I to denote the set {(k, l) ∈ N ×N ∶ 1 ≤ k ≤ l} and D its
diagonal {(k, k) ∈ I ∶ k ≥ 1}. The partial order ⪯ on I is defined by

(k1 , l1) ⪯ (k2 , l2) ⇔ (k1 ≤ k2) ∧ (l1 − k1 ≤ l2 − k2).

For the later use, we prove a lemma first.

Lemma 3.18 Let F ⊂ I be an infinite set. Then F has an infinite subchain, or in other
words, an infinite totally ordered subset of F.

Proof Take (k0 , l0) ∈ F satisfying

l0 − k0 = min{l − k ∶ (k, l) ∈ F}.

Set F0 = {(k, l) ∈ F ∶ k ≤ k0}. Then F0 is nonempty. If F/F0 ≠ ∅, then take
(k1 , l1) ∈ F/F0 such that

l1 − k1 = min{l − k ∶ (k, l) ∈ F/F0}
and set F1 = {(k, l) ∈ F/F0 ∶ k ≤ k1}. By repeating this step, we are given a sequence
of sets {Fn}n≥0. If each of Fn is finite, then every Fn is nonempty, and this is when
{(kn , ln)} becomes an infinite chain. Conversely, if one of Fn is infinite, say, FN , then
by a partition of FN into the following kN+1 − kN parts:

ON
k = {(k′ , l ′) ∈ FN ∶ k′ = k} (kN < k ≤ kN+1),

we see that there exists one of ON
k being infinite, which is a chain as well. ∎

As in [4], for every (k, l) ∈ I, we define an equivalence relation k , l∼ on X by

x k , l∼ x′ if x[0,k) = x′[0,k) and Pl(σ k(x)) = Pl(σ k(x′)).

We write k[x]l for the k , l∼ equivalence class of x and k X l the set of k , l∼ equivalence
classes. It is clear that k X l is finite. We then have a projective system

(k1 , l1)Q(k2 , l2) ∶ k2 X l2 ∋ k2[x]l2 ↦ k1[x]l1 ∈ k1 X l1

for all (k1 , l1) ⪯ (k2 , l2).

Definition 3.19 (Cf. [4, Definition 2.1]) Let X be a one-sided shift space with
σ(X) = X. By the cover X̃ of X, we mean the projective limit lim

←	
(k X l , (k , l)Q(k′ , l ′)).
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The shift operation σX̃ on X̃ is defined so that k σX̃(x̃)l = k[σ(k+1 x̃ l)]l where k+1 x̃ l is
a representative of a k+1, l∼ -equivalence relation class in x̃.

The following sets give a base for the topology of X̃:

U(z, k, l) = {x̃ ∈ X̃ ∶ z k , l∼ k x̃ l}
for z ∈ X and (k, l) ∈ I. It is known that σX̃ is a surjective local homeomorphism (see
[4] for details).
Definition 3.20 (Cf. [4, Definition 2.1]) Let πX ∶ X̃ → X to be the map which sends
each x̃ ∈ X̃ to a point x = π(x̃) so that x[0,k) are determined uniquely by (k x̃ l)[0,k)
for every (k, l) ∈ I. Define ıX ∶ X → X̃ by k ıX(x)l = k[x]l for every (k, l) ∈ I.

In fact, πX is a continuous surjective factor map from (X̃ , σX̃) to (X , σ) and ıX is
an injective map (not necessarily continuous) such that πX ○ ıX = idX .

Before the sequel, we recall the following lemmas.
Lemma 3.21 (Cf. [3, Lemma 4.2]) Let X be a one-sided shift space. Any isolated point
in the cover X̃ is contained in the image of ıX and each fiber π−1

X ({x}) contains at most
one isolated point. In particular, if x ∈ X is isolated in past equivalence, then ıX(x) is an
isolated point in X̃.
Lemma 3.22 (Cf. [3, Lemma 4.4]) Let X be a one-sided shift space. Suppose that x ∈ X
has a unique past, then any x̃ ∈ π−1

X ({x}) also has a unique past.
We also note the following lemmas for the later use.

Lemma 3.23 Let X be a one-sided shift space with property (**). Suppose that ω, ω′ ∈ X
are left special elements, and {(km , lm)}m≥1 is an infinite sequence in I where {km}m≥1
is an unbounded sequence with km < km+1 for all m ≥ 1. Assume that to every m ≥ 1, an
integer 0 ≤ n(km , lm) < lm is associated such that

Plm(σ n(km , lm)(ω′)) = Plm(ω[km ,km+1)σ
n(km+1 , lm+1)(ω′)),

for all m ≥ 1. Then the sequence {n(km , lm)}m≥1 is unbounded.
Proof Assume that {n(km , lm)}m≥1 is bounded. Then there exists an infinite subse-
quence {(km i , lm i )}i≥1 and an n ∈ N such that

n(kmi , lmi )
= n for all i .

By passing to the subsequence {(km i , lm i )}i≥1 and checking the equality of Plmi
, we

assume, without loss of generality, that n(km , lm) = n for some n and all m ≥ 1. Note that
0 ≤ n < lm . Now, we have

Plm(σ n(ω′)) = Plm(ω[km ,km+1)σ
n(ω′)),

for all m ≥ 1. The condition km < km+1 together with the property (**) then infers that

σ n(ω′) ≠ ω[km ,km+1)σ
n(ω′),

for all m ≥ 1. Also note that because ω is not periodic, there are infinitely many distinct
finite words ω[km ,km+1] and we just assume that ω[km ,km+1] are all distinct without loss
of generality.
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The condition 0 ≤ n < lm follows that #Plm(σ n(ω′)) ≥ 2, and therefore

#Plm(ω[km ,km+1)σ
n(ω′)) ≥ 2,

for all m ≥ 1. This immediately tells us that every ω[km ,km+1)σ n(ω′) lies on the forward
orbit of some left special element. However, since w[km ,km+1]σ n(ω′) are distinct points
lying in the backward orbit of σ n(ω′), we will then have infinitely many distinct special
left elements, which contradicts to the assumption that X has property (**). ∎

Lemma 3.24 Let X be a minimal one-sided shift with property (**), and let x ∈ X.
If x has a totally unique past, then ıX(x) ∈ X̃ is not isolated. Consequently, π−1

X ({x})
contains no isolated point for any x having a totally unique past.

Proof Let z ∈ X, and let (k, l) ∈ I be so that ıX(x) ∈ U(z, k, l). Then z k , l∼ x. Denote
Pl(σ k(x)) = {μx[0,k)} with ∣μ∣ = l − k. It suffices to find an element x̃ in X̃ such that

z k , l∼ k x̃ l but k′ x̃ l ′
k′ , l ′≁ x for some (k′ , l ′) ∈ I.

Let ωj be an arbitrary j-maximal element for some j ∈ JX . Since X is minimal, then
μx[0,k) occurs infinitely many times in the forward orbit of ωj. Take L ∈ N sufficiently
large so that

(σ L(ωj))[0,k) = μx[0,k) .

Set x̃ = ıX(σ L+l−k(ωj)). Then (σ L+l−k(ωj))[0,k) = x[0,k) and Pl(σ L+l(ωj)) =

{μx[0,k)}. This verifies k x l
k , l∼ z. However, it is clear that k′ x̃ l ′

k′ , l ′≁ x for some
sufficiently large l ′, since σ L(ωj) sits in the forward orbit of a left special element. ∎

4 The description of covers

In this section, X is always assumed to be a one-sided minimal shift space over the
alphabet A = {0, 1}, having property (**). We will, as before, still use X to denote the
corresponding two-sided shift space. Note that X is also minimal. We also remark that
similar conclusions can be drawn for an arbitrary finite alphabet A, but we instead
restrict in this paper to the binary shifts for the simplicity of formulations.

First, we point out the isolated points in X̃.

4.1 Isolated points in cover

Theorem 4.1 The set of isolated points in X̃ is dense in X̃, which is exactly

ı ( ⊔
j∈JX

Orbσ(ωj)),

where ωj’s are the unique j-maximal elements.

Proof Write I(X̃) for the set of isolated points in X̃. We know from Lemma 3.24 that
every isolated point of X̃ has the form ıX(x) for some x ∈ X, which does not have a
totally unique past. This means x ∈ Orbσ(ω) for some ω ∈ Spl(X). Assume now that
ω ∈ j0, where j0 is one of right tail equivalence classes. By the definition of j-maximal
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elements, we immediately see that x ∈ Orbσ(ωj0). This implies the inclusion

I(X̃) ⊂ ı ( ⊔
j∈JX

Orbσ(ωj)).

Conversely, according to the proof of Lemma 3.8, for every j ∈ JX , there is a point
z ∈ Orb+σ (ωj) isolated in past equivalence, which makes, from Lemma 3.21, ıX(z)
an isolated point in X̃. On the other hand, recall that as a local homeomorphism,
σX̃ preserves isolatedness and nonisolatedness, which follows that every point in
ı(Orbσ(ωj)) is isolated in X̃. Since j is arbitrary,

ı ( ⊔
j∈JX

Orbσ(ωj)) ⊂ I(X̃).

This proves the second assertion. We now show that the set of isolated points in X̃ is
dense. Let z ∈ X and (k, l) ∈ I. To show the density, it suffices to take x ∈ Orb(ωj) such
that z k , l∼ x for some j ∈ JX . We may assume z ∉ Orbσ(ωj) for all j ∈ JX . The argument
of the existence of such x is then exactly the same as that of Lemma 3.24. ∎

Corollary 4.2 There are precisely nX distinct discrete orbits in X̃ each of which forms
an open invariant subspace X̃, where nX = #JX is the number of right tail equivalence
classes in Spl(X). The union of these isolated orbits forms an open dense subset in X̃.

4.2 The surjective factor πX

Recall that for every j ∈ JX , the set Uj is defined to be

Uj = {ω ∈ j ∶ Orb−σ (ω) ∩ j = ∅}.

Remark 4.3 Elements in Uj are called adjusted and j-maximal elements ωj are called
cofinal in [8]. It is easy to see that Uj is nonempty for every j ∈ JX .

Lemma 4.4 For every j ∈ JX and ω ∈ Uj, #π−1
X ({ω}) = 3.

Proof We first show that there are at least three distinct elements in π−1
X ({ω}). The

construction below of these three preimages is similar to that of [3].
For every α ∈ {0, 1} and (k, l) ∈ I/D, let μα

(k , l) ∈ L(X) with ∣μα
(k , l)∣ = l − k − 1 be

such that μα
(k , l)αω ∈ X. Note that such finite word μα

(k , l) is unique because ω ∈ Uj.
Now, since X has property (**), we can take xα

(k , l) ∈ X satisfying

Pl(xα
(k , l)) = {μα

(k , l)αω[0,k)} (α = 0, 1).

Define k xα
l = ω[0,k)xα

(k , l). Note that for α = 0, 1, we have

ω
k , l≁ k xα

l and k x0
l

k , l≁ k x 1
l .

We now define representatives on each (k, k) ∈D. Take xα
(k ,k) ∈ X with Pk(xα

(k ,k)) =
{ω[0,k)}. Let k xα

k = ω[0,k)xα
(k ,k). Now, for α = 0, 1, set x̃α ∈ X̃ satisfying

k(x̃α)l = [k xα
l ].
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It is clear that π(x̃α) = ω and {ı(ω), x̃0 , x̃ 1} are three distinct elements. It is now
enough to show that x̃α are well defined. We will only verify the case for α = 0, since
the other one is exactly the same. For the simplicity of notations, we drop all the
superscripts and abbreviate x̃0 to x̃, for instance.

(i) Let (k1 , l1) ⪯ (k2 , l2) be indices in I/D. It is trivial that (k1[x]l1)[0,k1) = ω[0,k1) =
(k2[x]l2)[0,k1), so it remains to show that

{μ(k1 , l1)0ω[0,k1)} = Pl1(x(k1 , l1)) = Pl1(ω[k1 ,k2)x(k2 , l2)).

For every ν ∈ Pl1(ω[k1 ,k2)x(k2 , l2)), νω[k1 ,k2) ∈ Pk2−k1+l1(x(k2 , l2)), and since l1 + k2 −
k1 ≤ l2, νω[k1 ,k2) is the suffix of an element in Pl2(x(k2 , l2)), which follows
ν = ν′0ω[0,k1), where ν′ is the suffix of μ(k2 , l2) with length l1 − k1 − 1. However, as 0ω
has a unique past, ν′ = μ(k1 , l1).

(ii) Let (k1 , k1) ∈D and (k2 , l2) ∈ I/D with k1 ≤ k2. We shall confirm that

{ω[0,k1)} = Pk1(ω[k1 ,k2)x(k2 , l2)).

Since for every ν ∈ Pk1(ω[k1 ,k2)x(k2 , l2), νω[k1 ,k2) ∈ Pk2(x(k2 , l2)). The inequality k2 ≤ l2
infers that νω[k1 ,k2) is the suffix of some element in Pl2(x(k2 , l2)) = {μ(k2 , l2)0ω[0,k2)},
which has to be ω[0,k2). Therefore, ν = ω[0,k1).

(iii) The case for (k1 , k1), (k2 , k2) ∈D where k1 ≤ k2 is quite similar to the case (ii)
and hence we omit the verification.

Now, we have shown #π−1
X ({ω}) ≥ 3. We next prove that these are exactly the only

three elements on this fiber.
Take x̃ ∈ π−1

X (ω) and write k x̃ l = k[ω[0,k)x(k , l)]l for some x(k , l) ∈ X.

Claim. If there exists (k0 , l0) ∈ I such that #Pl0(x(k0 , l0)) = 1, then x̃ ∈ {x̃0 , x̃ 1}.
This is immediate. Suppose Pl0(x(k0 , l0)) = {μ0ω[0,k0)}, then every x(k′ , l ′) with

(k′ , l ′) ⪯ (k0 , l0) are determined. Also note that for all (k′ , l ′) with (k0 , l0) ⪯ (k′ , l ′)
are also unique determined because 0ω has a unique past. Then x(k , l) are all deter-
mined, because I is directed in the sense that given any two points (k′, l ′), (k′′ , l ′′) ∈ I,
we can always find (k′′′ , l ′′′) ∈ I with (k′ , l ′) ⪯ (k′′′ , l ′′′) and (k′′ , l ′′) ⪯ (k′′′ , l ′′′).

Now, assume that #Pl(x(k , l)) ≥ 2 for all (k, l) ∈ I. We then show that x̃ = ıX(ω),
which will finish the proof. Fix any (k0 , l0) ∈ I. Note that this leads to the fact that,
for every (k, l) ∈ I with (k0 , l0) ⪯ (k, l), there exists ω(k , l) ∈ Spl(X) and integers
0 ≤ n(k , l) ≤ l − 1 such that

x(k , l) = σ n(k , l)(ω(k , l)).

The finiteness of Spl(X) implies that there is ω′ ∈ Spl(X) and infinitely many
(km , lm) ∈ I satisfying (k0 , l0) ⪯ (km , lm), km < km+1 for all m ≥ 1, limm→∞ km = ∞,
and

x(km , lm) = σ n(km , lm)(ω′), for all m ≥ 1.

Upon passing to a subsequence, we may assume, according to Lemma 3.18, that
{(km , lm)}m≥1 is a chain in the sense that (km , lm) ⪯ (km′ , lm′) whenever m ≥ m′.
By the definition of cover, we then have

Plm(σ n(km , lm)(ω′)) = Plm(ω[km ,km+1)σ
n(km+1 , lm+1)(ω′)).
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Now, Lemma 3.23 applies, indicating that n(km , lm) is unbounded. Hence, we may
assume, without loss of generality, that n(km , lm) →∞ as m →∞.

On the other hand, from Lemma 3.8, we can take an N ∈ N such that σ n(ω′)
is isolated in l past equivalence whenever l > n ≥ N . Choose M ∈ N such that
n(km , lm) > N whenever m > M. This follows that

x(km , lm) = σ n(km , lm)(ω′) is l−isolated

whenever m > M , l > n(km , lm). In particular, x(km , lm) is lm-isolated because
lm > n(km , lm). Then, we know from

Plm(σ n(km , lm)(ω′)) = Plm(ω[km ,km+1)x(km+1 , lm+1))

that x(km , lm) = σ n(km , lm)(ω′) = ω[km ,km+1)x(km+1 , lm+1) for all m > M. Finally, since
k1 < k2 < ⋅⋅⋅ < km < km+1 < ⋅⋅⋅ and limm→∞ km = ∞, we conclude that for all m > M,

x(km , lm) = σ km(ω),

and therefore km x̃ lm = km [ω]lm . Recall that (km , lm) ⪰ (k0 , l0) for every m, we
then have k0 x̃ l0 = k0[ω]l0 . Finally, as the above discussion can be applied to every
(k0 , l0) ∈ I, x̃ = ıX(ω), the lemma follows. ∎

Definition 4.5 Let x ∈ X and {zm}m≤0 be a sequence in X. We say {zm}m≤0 is a
directed path terminating at x if z0 = x and σ(zm−1) = zm for all m ≤ 0. It is not hard
to see that for every one-sided shift space X with #Spl(X) < ∞ and every x ∈ X, the
number of directed paths in X terminating at x is finite. We denote this number by
d(x).

It immediately follows that for any fixed nonmaximal element ω ∈ Spl(X) and
m0 = min{m > 0 ∶ σ m(ω) ∈ Spl(X)}, we have that

d(ω) = d(σ(ω)) = ⋅⋅⋅ = d(σ m0−1(ω)) and d(ω) = ∑
ω′∈σ−1({ω})

d(ω′).

Theorem 4.6 For every x ∈ ⊔j∈JX Orbσ(ωj),

#π−1
X ({x}) = d(x) + 1.

Proof First, we verify the situation for which x has a unique past, that is, d(x) = 1.
This could happen, for example, when x lies in the backward orbit of some ω ∈ Uj.
Then it is clear that either 0x ∈ X or 1x ∈ X. In any case, the procedure of Lemma
4.4 defines a nonisolated point in π−1

X ({x}) and an exactly same argument as in
Lemma 4.4 shows that #π−1

X ({x}) = 2 = d(x) + 1.
For the case when x ∈ Spl(X), according to the definition of the integer-valued

function d, there are at most d(x) finite prefixes

μ1
(k , l) , μ2

(k , l) , . . . , μd(x)
(k , l)

with ∣μ i
(k , l)∣ = l − k for sufficiently large (k, l) ∈ I such that μ i

(k , l)x ∈ X and moreover,
for each pair of μ i

(k , l)x and μ j
(k , l)x (i ≠ j) and every n ∈ N, μ i

(k , l)x ≠ σ n(μ j
(k , l)x) and
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μ j
(k , l)x ≠ σ n(μ i

(k , l)x). Since X has property (∗∗) as assumed, we can take

x 1
(k , l) , x2

(k , l) , . . . , xd(x)
(k , l) ∈ X

satisfying Pl(x i
(k , l)) = {μ i

(k , l)x[0,k)} for i = 0, 1, . . . , d(x).
Now, an easy adaption of the procedure in Lemma 4.4 defines d(x) distinct

elements in π−1
X ({x}) such that if x̃ ∈ π−1

X ({x}) is not one of the points we constructed
above, then x̃ = ıX(x). This proves that for any left special element x in the whole orbit
of any maximal left special element ωj,

π−1
X ({x}) = d(x) + 1.

Finally, let us consider those elements x ∈ ⊔j∈JX Orbσ(ωj) which are not left
special. This divides into the following three cases:

(i) x lies in the backward orbit of some ω ∈ Spl(X) having a unique past.
(ii) x lies in the forward orbit of some maximal element ωj for j ∈ JX .

(iii) There are distinct left special elements ω, ω′ such that ω lies in the backward orbit
of x and ω′ lies in the forward orbit of x.

Note that the case (i) has already been included in the first paragraph above. For
(ii) and (iii), let ω be a left special element and

m0(ω) = min{m > 0 ∶ σ m(ω) ∈ Spl(X)}.

Without loss of generality, we may say m0(ω) = ∞ if ω is a maximal element. We now
reach (ii) and (iii) by showing that

#π−1
X ({ω}) = #π−1

X ({σ(ω)}) = ⋅⋅⋅ = #π−1
X ({σ s(ω)}) = d(ω) + 1

for any 1 ≤ s < m0(ω).
For this, write π−1

X ({ω}) = {ıX(ω), x̃ 1 , x̃2 , . . . , x̃d(ω)}, where x̃ 1 , x̃2 , . . . , x̃d(ω) are
the elements in π−1

X ({ω}) constructed above. We then have

π−1
X ({σ s(ω)}) = {σ s

X̃(ı(ω)), σ s
X̃(x̃ 1), σ s

X̃(x̃2), . . . , σ s
X̃(x̃d(ω))}.

It is clear that these d(ω) + 1 elements are distinct and in the preimage of σ s(ω).
Therefore, it suffices to show that there are no more elements in the fiber. Suppose
that ỹ ∈ π−1

X ({σ s(ω)}). Since σX̃ is surjective, there exists z̃ such that σ s
X̃(z̃) = ỹ. Take

z = πX(z̃). Since πX is a factor, σ s(z) = σ s(ω). If z ≠ ω, then there exists 1 ≤ j ≤ s <
m0(ω) such that σ j(ω) is left special, but this contradicts to the minimality of m0.
Therefore, z = ω and hence z̃ ∈ {ıX(ω), x̃ 1 , x̃2 , . . . , x̃d(ω)}. This shows that there are
no more elements in the fiber. Noting that

π−1
X ({σ s(ω)}) = d(ω) + 1 = d(σ s(ω)) + 1,

(ii) and (iii) follow as desired. ∎

For the last part of the subsection, we consider those z ∈ X having totally unique
past.

Theorem 4.7 Let z ∈ X/⊔j∈JX Orbσ(ωj). Then #π−1
X (z) = 1.
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Proof Let z̃ ∈ X̃ with πX(z̃) = z. Let us show that z̃ = ıX(z). Write k z̃ l =
k[z[0,k)z(k , l)]l . We turn to prove that

z k , l∼ z[0,k)z(k , l)

for all (k, l) ∈ I. Obviously, they have the same initial sections of length k. Therefore,
it remains to verify that

Pl(z[k ,∞)) = Pl(z(k , l)).

Write Pl(z[k ,∞)) = {μz[0,k)} where μ is the unique prefix of length l − k. We turn to
show the following claims to finish the proof.

Claim 1. μz[0,k)z(k , l) ∈ X: Since z has a unique past, so does z̃. Take the unique
z̃′ ∈ X̃ so that σX̃(z̃′) = z̃. Note that this implies

σ l−k πX(z̃′) = πX σ l−k
X̃ (z̃′) = πX(z̃) = z,

and hence πX(z̃′) = μz. Denote z̃′ = k[k z̃′l ]l . We then have (l z̃′l)[0, l) = μz[0,k). On the
other hand,

k σ l−k
X̃ (z̃′)l = k z̃ l = k[σ l−k(l z̃′l)]l ,

which tells us z[0,k)z(k , l) = k z̃ l
k , l∼ σ l−k(l z̃′l). Therefore,

μz[0,k) ∈ Pl(σ l(l z̃′l)) = Pl(z(k , l)).

Claim 2. #Pl(z(k , l)) = 1: Since z has a totally unique past, σ k(z) has a unique past.
By Lemma 3.4, we can choose N1 ∈ N with the following property:

whenever y ∈ X with y[0,N1] = σ k(z)[0,N1], #Pl(y) = 1.

Set N = N1 + k + 1. Since (N , l + N − k) ⪰ (k, l), we have

N z̃ l+N−k
k , l∼ k z̃ l ,

which follows that

Pl(σ k(N z̃ l+N−k)) = Pl(z̃(k , l)).

However, since σ k(N z̃ l+N−k) = zk zk+1⋅⋅⋅zN−1 z̃(N , l+N−k), it has a prefix of length N −
k = N1 + 1, equal to σ k(z)[0,N1]. Therefore, by how we choose N1, we conclude that

#Pl(z̃(k , l)) = #Pl(σ k(N z̃ l+N−k)) = 1.

This completes the proof. ∎

4.3 Nonisolated points in the cover

Theorem 4.8 Let

Λ̃X = X̃/ ⊔
j∈JX

OrbσX̃
(ıX(ωj))
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be the nonisolated points in the cover. Then Λ̃X ≅ X, i.e., there is a canonical conjugacy
from (Λ̃X , σX̃) to (X , σ), where X is the two-sided shift associated with X.

Proof Note that since the set of isolated points is open, Λ̃X is closed and invari-
ant. We first show that every element of Λ̃X has a unique past. For this, by
Lemma 3.22, we only need to verify that, for any fixed k > 0, ω ∈ Spl(X) and
z̃ ∈ π−1

X (σ k(ω))/{ıX(σ k(ω))}, z̃ has a unique past.
Denote z = σ k(ω). Then πX(z̃) = z. Define

mz = min{m > 0 ∶ ∃ω′ ∈ Spl(X) (σ m(ω′) = z)}.

Note that because ω is left special and z = σ k(ω), mz is well defined. Then we claim
that the sets

E i = { ỹ ∈ X̃ ∶ σ i
X̃( ỹ) = z̃}

are singletons for i = 1, 2, . . . , mz . In fact, for i = 1, if there are ỹ1 , ỹ2 ∈ E1, then

σ ○ πX( ỹ1) = πX ○ σX̃( ỹ1) = πX ○ σX̃( ỹ2) = σ ○ πX( ỹ2),

and therefore πX( ỹ1) = πX( ỹ2) ∈ σ−1({z}). This means ỹ1 , ỹ2 ∈ π−1
X (σ−1({z})) with

σX̃( ỹ1) = σX̃( ỹ2). However, according to the final paragraph of Theorem 4.6 and the
minimality of mz , the restriction of σX̃ from π−1

X (σ−1({z})) to π−1
X ({z}) is injective

and onto, which means that ỹ1 = ỹ2, and therefore E1 is a singleton. Note that by the
minimality of mz , we can clearly apply the same argument to the case i = 2, 3, . . . , mz .

For i = mz + 1, from the construction in Lemma 4.4, there is a unique element
corresponding to the prefix 0 or 1. Therefore, Emz+1 is a singleton as well. Repeating this
procedure and noting that there exists K > 0 such that x has a unique past whenever
k ≥ K and x ∈ σ−k(z), we conclude that z̃ has a unique past.

On the other hand, it is quite clear that σX̃ is a surjective map restricted on Λ̃X , and
from which we can then conclude that σX̃ is a homeomorphism from Λ̃X onto Λ̃X .

Now, we construct a map from X to Λ̃X . This is a natural construction, which is
similar to that of the Sturmian case. Specifically,
(i) If x ∈ X such that σ k(x[0,∞)) has a unique past for all k ≥ 0, we set

Φ(x) = x̃ = ıX(x[0,∞)),

where ıX(x[0,∞)) is the unique element in π−1
X (x[0,∞)) by Theorem 4.7. Explicitly,

for every x = (xn)n∈Z ∈ X, since X is an inverse limit, we regard x as a sequence
of right infinite words in X:

x = {x[−n ,∞)}n≥1 .

Then we have σX̃ ○ Φ(x) = σX̃ ○ ıX(x[0,∞)) = ıX(x[1,∞)) = Φ ○ σ(x).
(ii) If x ∈ X such that there is some k ≥ 0 making σ k(x[0,∞)) do not have a unique

past, since X has property (**), we can choose K ≥ 0 such that every element in
Orb+σ (σ K(x)) is not left special anymore. Therefore, it is enough to determine
Φ(σ K(x)). By abuse of notation, we denote σ K(x) by x. Let k be the smallest
natural number such that

x[−k ,∞) ∈ Spl(X).
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Then there is a unique element in π−1
X (x[−k ,∞)) corresponding to the prefix

x−k−1 ∈ {0, 1}. Now, by applying this argument to x[−(k+1),∞), together with the
assumption that X only has finitely many of special elements, we get a unique
element Φ(x) in Λ̃X . Similar to the case (i), it is straightforward to verify that
σX̃ ○ Φ(x) = Φ ○ σ(x) holds naturally.

Finally, to see that Φ is a homeomorphism, we first notice that since the topology
on X and Λ̃X are both generated by the cylinder sets and that Φ does not change
any finite prefix of any right infinite word in the sequence x = {x[−n ,∞)}, Φ is clearly
continuous and injective. For the surjectivity of Φ, let z̃ ∈ Λ̃X . Since z̃ has a unique
past, σ−n

X̃ (z̃) is well defined for all n ≥ 1. Then define a sequence z in X by

z = {πX ○ σ−n
X̃ (z̃)}n≥1 .

Since σ ○ πX ○ σ−n−1
X̃ (z̃) = πX ○ σX̃ ○ σ−n−1

X̃ (z̃) = πX ○ σ−n
X̃ (z̃), we see that z corre-

sponds to an element in the projective system X σ← X and defines a point in X. From
the construction above, we immediately have Φ(z) = z̃. This verifies the surjectivity
of Φ. Finally, since X is compact and Λ̃X is Hausdorff, Φ is a homeomorphism. ∎

We now close Section 4 by summarizing in the following theorem the main results
in the section.

Theorem 4.9 Let (X , σ) be a one-sided minimal shift over {0, 1} on an infinite space
X with finitely many left special elements. Let X̃ be its cover. Then we have the following.
(1) The set I(X̃) of isolated points in X̃ is a disjoint union:

I(X̃) = ⊔
j∈JX

ı(Orbσ(ωj)),

which forms a dense open subset of X̃.
(2) The subsystem (X̃/I(X̃), σX̃ ∣X̃/I(X̃)) on the set of nonisolated points is invertible and

conjugate to the canonical two-sided shift space X of X.
(3) For every x ∈ X/⊔j∈JX Orbσ(ωj),

#π−1
X (x) = 1.

Moreover, for every x ∈ ⊔j∈JX Orbσ(ωj),

#π−1
X (x) = d(x) + 1,

where d(x) is the number of directed path in X terminating at x.

Remark 4.10 Last but not least, since we only consider systems with alphabet
A = {0, 1} in order to simplify our proofs, we would also like to mention how our
results depend on the number of symbols. In fact, all but (3) in Theorem 4.9 hold for
systems over any finite alphabet A. In fact, Lemma 4.4 may fail even for A = {0, 1, 2}.
This is because for a left special element, say ω, we do not know exactly what is the
preimage of ω, for it could be any of {0ω, 1ω}, {1ω, 2ω}, {0ω, 2ω}, or {0ω, 1ω, 2ω}.
On the other hand, we see that the proofs of (1) and (2) have nothing to do with the
number of symbols.
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5 A commutative diagram and the nuclear dimension

We conclude our main result in this short section, concerning the nuclear dimension
of the Cuntz–Pimsner C∗-algebra OX associated with every minimal one-sided shift
over an infinite space X with finite special elements.
Theorem 5.1 Let X be a one-sided minimal shift space with finite special elements. Then
there is a commutative diagram

0 �� cnX
0

��

��

DX ��

��

C(X) ��

��

0

0 �� KnX ���� OX �� C(X) ⋊σ Z �� 0,

where the horizontal arrows are short exact, the vertical arrows are inclusions, and nX
is the number of right tail equivalence classes of left special elements in X. In addition,
the Cuntz–Pimsner algebra OX has nuclear dimension 1.
Proof It suffices to show the exact sequence on the second row, since cnX

0 corre-
sponds to the abelian C∗-algebra of the space of nX discrete orbits and the commuta-
tivity of the diagram is induced by πX . From the description of the cover X̃, the unit
space of its groupoid GX̃ decomposes into two parts:

G0
X̃ = Λ̃X ⊔(⊔

j∈JX

ıX(Orbσ(ωj))) .

In particular, the groupoid restricted to Λ̃X is isomorphic to X ⋊σ Z by Theo-
rem 4.8, whose C∗-algebra is ∗-isomorphic to the crossed product C(X) ⋊σ Z, and
the groupoid restricted to the open subset ⊔j∈JX ıX(Orbσ(ωj)) is the sum of full
equivalence relations restricted on each discrete orbit ıX(Orbσ(ωj)) (j ∈ JX), whose
C∗-algebra is ∗-isomorphic to the direct sum K

nX . Then the exactness of the second
row follows from Proposition 4.3.2 in [20].

For the nuclear dimension of OX , we first claim that

Claim. GX̃ has dynamic asymptotic dimension 1.

To see this, let K be an open relative compact subset of GX̃ . Denote the groupoid
restricted on Λ̃X = X byGΛ̃ . It has already been verified thatGΛ̃ is a minimal reversible
groupoid, or in other words, a groupoid of an invertible minimal action on an infinite
compact space, which follows that it has asymptotic dimension 1. Then there are open
subsets Ũ0 , Ũ1 of its unit space G0

Λ̃ that cover s(K ∩ GΛ̃) ∪ r(K ∩ GΛ̃), and the set

{g ∈ K ∩ GΛ̃ ∶ s(g), r(g) ∈ Ũ i}
is contained in a relatively compact subgroupoid of GΛ̃ for i = 0, 1. Let

U i = Ũ i ⊔ ( ⊔
j∈JX

ıX(Orbσ(ωj))) .

It is clear that U i are open and cover s(K) ∪ r(K). On the other hand, since
the rightmost one is a discrete open set and K is relatively compact, the set
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{g ∈ K/GΛ̃ ∶ s(g), r(g) ∈ U i} is a finite set for i = 0, 1. This implies that the groupoid
generated by

{g ∈ K ∶ s(g), r(g) ∈ U i}

is a relatively compact subgroupoid for i = 0, 1. This shows that GX̃ has dynamic
asymptotic dimension 1.

Now, from Theorem 8.6 of [12],

dimnuc(OX) ≤ 1.

However, by the exact sequence and Proposition 2.9 of [21],

1 = max{dimnuc(KnX), dimnuc(C(X) ⋊σ Z)}
≤ dimnuc(OX)
≤ dimnuc(KnX) + dimnuc(C(X) ⋊σ Z) + 1 = 2.

We then conclude that dimnuc(OX) = 1. This finishes the proof. ∎

Remark 5.2 An alternative argument for the last part of Theorem 5.1 would just be
that, as a C∗-algebra of a groupoid associated with a minimal system over an infinite
compact metric space, OX is not approximately finite-dimensional. This follows
immediately that dimnuc(OX) ≥ 1.
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