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Abstract. It is proved that the subalgebra of constants of a derivation on a free
associative algebra in prime characteristic is free provided that some constraining
conditions are satisfied. As a particular case, it follows that the constants of the
partial derivatives on a free algebra form a free subalgebra. The main result is also
applied in order to provide a simplified proof of a previous result by the author on
extensions of tensor rings.
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0. Introduction. It is a known fact that the subalgebra of constants of any Lie
algebra of homogeneous derivations on a free associative algebra is free (see [5,6]).
G. Bergman gave the following example of a derivation on a free algebra whose
subalgebra of constants is not free. Consider the free associative algebra of rank 3
over a field k, R = k{x, y, z), and let d be the k-derivation on R given by

d(x) = xyx + x, d(y) = —yxy —y, d(z) = —x.

In [7, 6.1.12], V. Kharchenko indicates how to show that ker(d) is not a free sub-
algebra. It is also noted that if the characteristic of k is positive, then the restricted
Lie algebra generated by d is infinite dimensional. In view of these facts, Kharch-
enko formulates the following question: “Will an algebra of constants of a finite-
dimensional restricted Lie algebra of derivations of a free algebra over a field of
positive characteristic be free?”” ([7, 6.1.14]).

In this paper we deal with derivations which are not homogeneous, but satisfy
the condition that the subalgebras of lower rank are invariant under them. We give
sufficient conditions on a nilpotent derivation on a free algebra (over a field of
positive characteristic) for the subalgebra of constants to be free (Theorem 5).

By a result of Lam and Leroy (Theorem 1), certain Ore extension quotients
defined by derivations satisfying the hypotheses of Theorem 5 give rise to complete
p" x p" matrix rings over the constants. In the proof of Theorem 5 we use the given
derivation in order to construct an Ore extension and then use Theorem 1 in order
to characterize the ring of constants as the base ring of a matrix ring. On the other
hand, using a result on extensions of matrix rings (Lemma 4), we find an
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isomorphism which preserves matrix units between the matrix ring over the con-
stants and a matrix ring over a free algebra.

A direct application of the main theorem is the fact that the constants of the
partial derivatives on a free algebra form a free subalgebra (Corollary 6).

In [3, Theorem 3.2] the author showed that, given a field k& of positive char-
acteristic p and a simple purely inseparable extension F of k of degree p, the exten-
sion of the free Fi-ring by F over k was not a p X p matrix ring over a free ideal ring,
but that there existed a finite localization of it with this property. In the original
article, this result was proved using methods of recognition of matrix units and
actual computation of the centralizer of the matrix units. Here we use Corollary 7 of
Theorem 5 to provide a simpler proof of this result (Theorem 8).

Throughout this paper all rings are associative, but not necessarily commu-
tative, and have an identity element which is inherited by subrings and preserved by
homomorphisms. We use the convention that fields are not necessarily commutative.
The set of all non-negative integers will be denoted by N.

1. Preliminaries. Given a ring R, by a derivation on R one understands an
additive map 8 : R—> R which satisfies §(ab) = 8(a)b + ad(b) for a,b € R. If R is an
algebra over a field &, then by a k-derivation on R it will be understood a derivation
which is k-linear. If § is a derivation on R, then ker(§) ={a € R:8(a) =0} is a
subring of R, which is called the subring of constants of R under é.

We shall be looking at derivations on free associative algebras. It is known that
in order to define a k-derivation § on a free associative algebra k(X) it is enough to
describe the image of § on the free generators x € X.

Given a ring R and a derivation § on R, the Ore extension R(t, 8] is defined to be
the ring generated by ¢ over R with defining relations

ta = at + 8(a) (1)

for all @ € R. So the elements of R[t, §] have a normal form given by the polynomials
Y% yait’, where n € N and a; € R, and multiplication is induced by (1).

Our purpose here is to investigate subalgebras of constants of derivations
on free associative algebras. We shall make use of the following result by Lam
and Leroy which captures subrings of constants of derivations satisfying some
conditions.

THEOREM 1 ([8, Theorem 3.1]). Let R be a ring of prime characteristic p, and let §
be a derivation on R such that 8" =0 and 1 € """ (R), where n is a fixed positive
integer. Consider the Ore extension R[t,8], and let T = R[t,8]/(t"). Then
T = M,.(Rs), where Rs is the subring of constants of R under the derivation §. O

In [8, Example 3.4] the authors use Theorem 1 to show that, for a field k& of
positive characteristic p, there is an isomorphism between the “truncated” first Weyl
algebra k[x][z, d‘—i]/(z/’) and the full p x p matrix ring over a polynomial ring k[x] in
one indeterminate. In fact, Theorem 1 can be used to prove that k[x][z, 8]/(#") =
M, (k[x]), for any derivation & such that 8" =0 and 1 € 8”"'(k[x]). Indeed, if & is a
nonzero derivation on k[x], then, for every f € k[x], we have §(f) =d—£-8(x). So

8(f) =0 if and only if f' € k[x"] = k[x].
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REMARK 2. The proof of Theorem 1 is based on the proof of [1, Theorem 3.1]
which, in turn, uses the fact that under these hypotheses there exist a, b € T such
that af”"~!' + b = 1, where f is the image of 7 in T. It is this equation and the fact
that /7" = 0 that are used with [1, Theorem 1.1] to characterize T as a p" x p” matrix
ring. Following the proof of this result, [1, Note 1.2] shows that the matrix corre-
sponding to f, in this context, is given by ey +e3 + ... + ey 1, Where ¢;; are the
matrix units which being present in 7" make it isomorphic to a full p” x p” matrix
ring. Hence f corresponds to a p” x p" matrix [f] with entries in the ground field k&
and which is such that [/} =0, but [f]”'~! # 0. This fact will be widely used in
what follows.

We shall make use of the following generalization of a result by Frobenius. (The
original formulation can be found in [3, Lemma 3.4].)

LEMMA 3. Let k be a field, let R be a k-algebra, let S be a subalgebra of R, and let
n be a positive integer. Let A € M, (k) be such that A" = 0, but A"~' # 0. Suppose that
B € M,(R) is such that AB — BA € M,,(S). Then there exist ry,...,r, € R such that
B — 2:1:1 I’[A[_l S Mn(S)

Proof. Since A" =0, but 4"! #£0, there exists a vector v € k" such that
{v, Av, ..., A" 'y} is a basis for k" over k and therefore a basis for R” over R. So
there exist rq, ..., r, € Rsuch that By =)\, r;A=1y, or, in a form that will be more
useful later,

(=3 na")r=0. @

i=1

Let C = AB — BA and {C;:j > 1} be the family of matrices over S defined recur-
sively by C; = C and C; =A4-1C+ Ci_14 for j> 1. It can be easily proved by
induction on j that B4/ = A/B— C;. Foreachj=1,...,n— 1, we have

n n
(B - Z:r[Ai’l)Ajv - (BA-" A Zr,»AH)v
= =
n
= Af<B - Zr,AH)v — Cpv.
i=1

The first equality follows from the fact that, since A has entries in k, the r; commute
with 4. By (2), it follows that

n

(B . Zr,A"—l)Afv = —Cp, 3)

i=1

forj=1,...,n—1. Let {ey, ..., e,} be the canonical basis of k" over k and denote
by P the invertible matrix over k defined by Pe; = 4/~'v, for j=1,..., n. So, setting
A; = —C;P, we can rewrite (3) as
n .
(B — Z I‘I‘AI_I)PC/‘_H = Ajé?] . (4)

i=1
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Let Aj(-) be the first column of A; and denote by A the matrix whose first column is 0
and the other columns are the A}), that is,

A=(0 A A - A ).

Since, by hypothesis, C € M,,(S), and both 4 and P have entries in k, it follows that
A € M,(S). Equations (2) and (4) amount to (B— Y7 r;A™")P = A. Thus

n
B— Z rAT = AP € M,(S).
i=1

And this proves the lemma. O

2. Main result. Given a field k and k-algebras R and S, we denote by R %, S the
coproduct of R and S in the category of k-algebras. Briefly, R %, S is the k-algebra
whose generators are the generators of R and of S, and whose defining relations are
those holding in R, in S, and those that identify element-wise the copy of k in R with
the copy of k in S. For example, k[x] x; k[y] = k(x, ).

We are ready to state and prove a lemma which will lead us to the main result of
the paper.

LEMMA 4. Let k be a field, let T be a k-algebra, and let n be a positive integer. Let
£ € M, (k) be such that &' = 0, but &"~' £ 0, and let r € M,,(T) be an arbitrary matrix.
Then, there is a matrix-units-preserving isomorphism

M, (T') s k[x]
(6x —x§—1)

where T = T/I and I is the kernel of the canonical homomorphism

> M,(T # k{zy, ..., 2,)),

M,\(T) s K[x]

T—M(T)—My(T) s kx}— 2,

which depends on the choice of r.

Proof. Let S = (M,,(T) #, k[x])/{Ex — x& — r). The image of the matrix units of
M,,(T) in S form a complete set of n x n matrix units for S; so S is isomorphic to a
full #n x n matrix ring over some k-algebra 4 containing 7. Given an element
s € M,(T) *; k[x], let 5 denote its image in S = M, (A4). With this notation, given an
element a € M,,(T), a coincides, via the identification of S with M,,(A4), with the ele-
ment of M,,(7) obtained from a by projecting its entries onto 7. Thus, in M,,(4), the
following identity holds:

£x — 56 = 7 € Mu(T).

By Lemma 3, there exist ai, ..., a, € A and D € M,,(T) such that

X=) ag' +D.
i=1
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Since a; € A, it commutes with & and so &D — D& =7. The maps T—A and
k{zy,...,z,)—> A, sending z; to a;, induce an M,,(T'),-ring homomorphism

(p . MVI(T*k k<Zlv LR} Z}?))—>MU(A) g S

On the other hand, there is a unique M,(7');-ring homomorphism g& from the free
M,(T),-ring M,,(T) # k[x] into M,(T *x k{z1, ..., z,)) sending x to Y1, &' + D.
This induces a homomorphism

Y S—M (T, kiz1, ..., z,),
for
Y(Ex — XE — 1) = EY(x) — Y(x)E — F
= s(Z € 4 D) - (Z e 4 D)s _F

—&D—DE—F
=0.

We now show that ¢ is the inverse of ¢. Indeed, on the one hand,
Y8 A D=9 = (X aE " +D) = Y Y(@)E + D So  Y,zE ! =
> ¥(a;)E". Multiplying this last equation by &' yields z;&"~! = y(a;)&"!. Since
g1 £ 0 and its entries lie in k, it follows that z; = v/(a;). Analogously, one shows
that z;=vy(a;) for i=2,...,n. Therefore, @Y(x)=¢p(> zE '+ D)=
Y 9(z)E + D =3,a&"" + D = x. On the other hand, it is clear that ¥¢(z;) = z;,
foralli=1,...,n Thus ¢ is an isomorphism. O

If in Lemma 4 the canonical map M,,(7)— S is injective, then there exists an
isomorphism between S and M, (T %, k(zy, ..., z,)). This will be the case of interest
to us in what follows.

THEOREM 5. Let k be a field of positive characteristic p, let m, n be positive inte-
gers and let § be a k-derivation on the free associative algebra of rank m,
R = k{xy, ..., xy). Suppose that

(1) & =0,

(2) 8(xy) € k[x1] and 8(x;) € k{xy,...,xi—1) fori=2,...,m, and

(3) 1€ (kx).

Then the subalgebra of constants ker(8) of R under the derivation § is free of rank
(m—1p"+ 1.

Proof. We shall proceed by induction on m. We know the result is true for
m = 1, for any derivation on k[x] is a multiple of ﬁ Suppose the result holds for
m > 1 and let us show that it holds for m + 1. Let K,,, = k(x1, ..., x;;) and §,,, = 8l .
By hypothesis (2), 8,, is a derivation on K,,. Consider the ring R,, = (K,[t, 8u])/(t"").
By Theorem 1, R,, = M,.(ker(5,)). Let R,y = (Kytilt, 8])/ (#""), where K,y =

k{xy, ..., Xmy1). It is immediate to see that

Rm Xk k[xm-H ]

R = ,
el <$xm+1 - Xm+1§ - a(xm—t-l))
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where £ denotes the image of ¢ in R,. Since R,, € R,41 and R, = My (ker(8,,)), it
follows that ker(s,,) € R,,+1. By Remark 2, the matrix corresponding to & in R, is
nilpotent of index p" over k. Therefore, by Lemma 4, R, = M, (ker(8,,)*«
k(z1,...,zp)). On the other hand, by Theorem 1, R,11 = M,.(ker()) and by the
induction hypothesis ker(é,,) is isomorphic to k(y1, ..., Ygu—1yp+1). Thus,

Mpn(k<y], coes Ym=Dpi41s Z1s -+ oy an>) = R,,1+1 = Mpn(ker(B)).

Since the above isomorphism preserves matrix units, ker(8) is isomorphic to the free
associative algebra of rank (m — 1)p" 4+ 14 p" = mp" + 1 over k. This proves the
theorem. O

3. Applications. We present two immediate applications of Theorem 5. The
second of these (Corollary 7) allows us to give a simplified proof of [3, Theorem 3.2].

By the partial derivative with respect to x; of k{xy, ..., x;,), one understands the
k-derivation 9; on k(xi,...,x,) given by 9;(x;) = §;. We start by noting that the
partial derivatives of a free associative algebra in prime characteristic satisfy the
hypothesis of Theorem 5 (after a suitable rearrangement of the x;). So we have the
following result.

COROLLARY 6. The subalgebra of constants of each partial derivative of the free
associative algebra of rank m over a field of positive characteristic p is free of rank
(m—-1p+1. ]

In fact, Corollary 6 is well-known (see, [5,4]). Using ideas from [4], one can
prove that, in characteristic 0, the subalgebra of constants of the partial derivative of
k(X) with respect to some x € X is freely generated by the set {(adx)z:
i€ N,z e X\ {x}}, where (ad x) is the inner derivation of k(X) determined by x, that
is, (ad x)f = xf — fx for all f e k{X). It is not difficult to see that in characteristic
p > 0 a free generating set is given by {x”, (ad x)'z:i=0,...,p— 1,z € X\ {x}}.

Next, note that the k-derivation § on k(xi, ..., x,—1) given by 8(x;) = x;_1, for
i=2,...,p—1, and 8(x;) = 1 also satisfies the hypothesis of Theorem 5. So the
following is also true.

COROLLARY 7. Let k be a field of positive characteristic p and let § be the deriva-
tion on k(xi,...,x,_1) defined by 8(x;) =x,—1 for i=2,...,p—1, and §(x;) = 1.
Then the subalgebra of constants of 8 is free of rank p> —2p + 1. O

Incidentally, Corollary 7 is exactly what is needed to prove our next result.
First, recall that, given a field F (commutative or not) and a subfield &, the free Fj-ring
on a set X is defined to be the ring F; (X') generated by X over F with defining relations
xA = Ax, for x € X and A € k. It follows that F; (X)) = F %, k(X). Because F;(X) is a
fir (2, Theorem 2.6.2]), it has a universal field of fractions ([2, Corollary 7.5.11]).

THEOREM 8 ([3, Theorem 3.2]). Let k be a field of positive characteristic p and let
F = k(a), where o € k, but o € k. Let R = Fy.(x) and denote by U its universal field of
fractions. Then there exists a subring S of U, obtained from R by adjoining the inverse
of a single element, such that S Qi F is isomorphic to M,(A4), where
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A=F(zi,...,z0_,) xp F[w, w .

Proof. We use the notation Sy = S ®; F. As in [3], we adjoin to R the inverse of
dlo’fl(x), where d, denotes the inner derivation of R determined by «, that is,
dy(r) = ar — ra for all r € R. We can, then, write

Spe F(E,x,p | & =0,d" ' (x)y = yd" '(x) = 1),

where d is the inner derivation of F(&, x, y) determined by &. It is easy to see that the
map sending x to u,_v induces an isomorphism from Sr onto the ring
T=F&u,.. up1,v,y]8 =0y —wé=1,
Eui—uE =ui—) (i>2),6v=vE, vy =yv=1),

whose inverse is induced by the map wu;1— d?~~!(x)y, vi— d”~'(x). Now we can
write T'= (T xp FIy])/(vy — 1, yv — 1), where Ty = (T g F[v])/(§v — v&),

F(ulv DR u[)71>[§’ 8]

T =
? (€P)

and § is the k-derivation given by 8(u;)) = u;—; (i=2,...,p—1) and 8(u;) = 1. By
Theorem 1 and Corollary 7, it follows that 7> = M,(K), where K= F(yi,...,
Vp—2p+1)- Applying Theorem 5 to T, we obtain T = M, (K *r F(z1, ..., z,)). Since v
commutes with &, by Lemma 3, the matrix V' corresponding to v in 77 is of the form
> zEL where E = ’i:ll eiy1.; 18 the matrix corresponding to &€. So V' is a lower
triangular matrix with z; on the entries of the main diagonal. The ring 7 is obtained
from T by freely adjoining to it an inverse of v. But freely adjoining an inverse of v

to T is equivalent to freely adjoining an inverse of z; to K*p F(zy, ..., z,). There-
fore, T = M, (K *r F(z2, ..., zp) *F F[zl,zfl]). And this proves the theorem. O
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