
CONSTANTS OF DERIVATIONS ON FREE ASSOCIATIVE
ALGEBRAS

VITOR DE OLIVEIRA FERREIRA*
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Abstract. It is proved that the subalgebra of constants of a derivation on a free
associative algebra in prime characteristic is free provided that some constraining
conditions are satisfied. As a particular case, it follows that the constants of the
partial derivatives on a free algebra form a free subalgebra. The main result is also
applied in order to provide a simplified proof of a previous result by the author on
extensions of tensor rings.

2000 Mathematics Subject Classification. 16S10, 16W25.

0. Introduction. It is a known fact that the subalgebra of constants of any Lie
algebra of homogeneous derivations on a free associative algebra is free (see [5,6]).
G. Bergman gave the following example of a derivation on a free algebra whose
subalgebra of constants is not free. Consider the free associative algebra of rank 3
over a field k, R ¼ khx; y; zi, and let d be the k-derivation on R given by

dðxÞ ¼ xyxþ x; dðyÞ ¼ �yxy� y; dðzÞ ¼ �x:

In [7, 6.1.12], V. Kharchenko indicates how to show that kerðd Þ is not a free sub-
algebra. It is also noted that if the characteristic of k is positive, then the restricted
Lie algebra generated by d is infinite dimensional. In view of these facts, Kharch-
enko formulates the following question: ‘‘Will an algebra of constants of a finite-
dimensional restricted Lie algebra of derivations of a free algebra over a field of
positive characteristic be free?’’ ([7, 6.1.14]).

In this paper we deal with derivations which are not homogeneous, but satisfy
the condition that the subalgebras of lower rank are invariant under them. We give
sufficient conditions on a nilpotent derivation on a free algebra (over a field of
positive characteristic) for the subalgebra of constants to be free (Theorem 5).

By a result of Lam and Leroy (Theorem 1), certain Ore extension quotients
defined by derivations satisfying the hypotheses of Theorem 5 give rise to complete
pn � pn matrix rings over the constants. In the proof of Theorem 5 we use the given
derivation in order to construct an Ore extension and then use Theorem 1 in order
to characterize the ring of constants as the base ring of a matrix ring. On the other
hand, using a result on extensions of matrix rings (Lemma 4), we find an
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isomorphism which preserves matrix units between the matrix ring over the con-
stants and a matrix ring over a free algebra.

A direct application of the main theorem is the fact that the constants of the
partial derivatives on a free algebra form a free subalgebra (Corollary 6).

In [3, Theorem 3.2] the author showed that, given a field k of positive char-
acteristic p and a simple purely inseparable extension F of k of degree p, the exten-
sion of the free Fk-ring by F over k was not a p� p matrix ring over a free ideal ring,
but that there existed a finite localization of it with this property. In the original
article, this result was proved using methods of recognition of matrix units and
actual computation of the centralizer of the matrix units. Here we use Corollary 7 of
Theorem 5 to provide a simpler proof of this result (Theorem 8).

Throughout this paper all rings are associative, but not necessarily commu-
tative, and have an identity element which is inherited by subrings and preserved by
homomorphisms. We use the convention that fields are not necessarily commutative.
The set of all non-negative integers will be denoted by N.

1. Preliminaries. Given a ring R, by a derivation on R one understands an
additive map � : R�!R which satisfies �ðabÞ ¼ �ðaÞbþ a�ðbÞ for a; b 2 R. If R is an
algebra over a field k, then by a k-derivation on R it will be understood a derivation
which is k-linear. If � is a derivation on R, then kerð�Þ ¼ fa 2 R : �ðaÞ ¼ 0g is a
subring of R, which is called the subring of constants of R under �.

We shall be looking at derivations on free associative algebras. It is known that
in order to define a k-derivation � on a free associative algebra khXi it is enough to
describe the image of � on the free generators x 2 X.

Given a ring R and a derivation � on R, the Ore extension R½t; �� is defined to be
the ring generated by t over R with defining relations

ta ¼ atþ �ðaÞ ð1Þ

for all a 2 R. So the elements of R½t; �� have a normal form given by the polynomialsPn
i¼0 ait

i, where n 2 N and ai 2 R, and multiplication is induced by (1).
Our purpose here is to investigate subalgebras of constants of derivations

on free associative algebras. We shall make use of the following result by Lam
and Leroy which captures subrings of constants of derivations satisfying some
conditions.

Theorem 1 ([8, Theorem 3.1]). Let R be a ring of prime characteristic p, and let �
be a derivation on R such that �p

n

¼ 0 and 1 2 �p
n�1

ðRÞ, where n is a fixed positive
integer. Consider the Ore extension R½t; ��, and let T ¼ R½t; ��=htp

n

i. Then
T ffi Mpn ðR�Þ, where R� is the subring of constants of R under the derivation �. &

In [8, Example 3.4] the authors use Theorem 1 to show that, for a field k of
positive characteristic p, there is an isomorphism between the ‘‘truncated’’ first Weyl
algebra k½x�½t; d

dx�=ht
pi and the full p� p matrix ring over a polynomial ring k½x� in

one indeterminate. In fact, Theorem 1 can be used to prove that k½x�½t; ��=htp
n

i ffi

Mpnðk½x�Þ, for any derivation � such that �p
n

¼ 0 and 1 2 �p
n�1

ðk½x�Þ. Indeed, if � is a
nonzero derivation on k½x�, then, for every f 2 k½x�, we have �ð f Þ ¼ df

dx � �ðxÞ. So
�ð f Þ ¼ 0 if and only if f 2 k½xp� ffi k½x�.
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Remark 2. The proof of Theorem 1 is based on the proof of [1, Theorem 3.1]
which, in turn, uses the fact that under these hypotheses there exist a; b 2 T such
that af p

n�1 þ fb ¼ 1, where f is the image of t in T. It is this equation and the fact
that f p

n

¼ 0 that are used with [1, Theorem 1.1] to characterize T as a pn � pn matrix
ring. Following the proof of this result, [1, Note 1.2] shows that the matrix corre-
sponding to f, in this context, is given by e21 þ e32 þ . . .þ epn;pn�1, where eij are the
matrix units which being present in T make it isomorphic to a full pn � pn matrix
ring. Hence f corresponds to a pn � pn matrix ½ f � with entries in the ground field k
and which is such that ½ f �p

n

¼ 0, but ½ f �p
n�1

6¼ 0. This fact will be widely used in
what follows.

We shall make use of the following generalization of a result by Frobenius. (The
original formulation can be found in [3, Lemma 3.4].)

Lemma 3. Let k be a field, let R be a k-algebra, let S be a subalgebra of R, and let
n be a positive integer. Let A 2 MnðkÞ be such that An ¼ 0, but An�1 6¼ 0. Suppose that
B 2 MnðRÞ is such that AB� BA 2 MnðS Þ. Then there exist r1; . . . ; rn 2 R such that
B�

Pn
i¼1 riA

i�1 2 MnðS Þ.

Proof. Since An ¼ 0, but An�1 6¼ 0, there exists a vector v 2 kn such that
fv;Av; . . . ;An�1vg is a basis for kn over k and therefore a basis for Rn over R. So
there exist r1; . . . ; rn 2 R such that Bv ¼

Pn
i¼1 riA

i�1v, or, in a form that will be more
useful later,

�
B�

Xn
i¼1

riA
i�1

�
v ¼ 0: ð2Þ

Let C ¼ AB� BA and fCj : j � 1g be the family of matrices over S defined recur-
sively by C1 ¼ C and Cj ¼ Aj�1Cþ Cj�1A for j > 1. It can be easily proved by
induction on j that BAj ¼ AjB� Cj. For each j ¼ 1; . . . ; n� 1, we have

�
B�

Xn
i¼1

riA
i�1

�
Ajv ¼

�
BAj � Aj

Xn
i¼1

riA
i�1

�
v

¼ Aj
�
B�

Xn
i¼1

riA
i�1

�
v� Cjv:

The first equality follows from the fact that, since A has entries in k, the ri commute
with A. By (2), it follows that

�
B�

Xn
i¼1

riA
i�1

�
Ajv ¼ �Cjv; ð3Þ

for j ¼ 1; . . . ; n� 1. Let fe1; . . . ; eng be the canonical basis of kn over k and denote
by P the invertible matrix over k defined by Pej ¼ Aj�1v, for j ¼ 1; . . . ; n. So, setting
�j ¼ �CjP, we can rewrite (3) as

�
B�

Xn
i¼1

riA
i�1

�
Pejþ1 ¼ �je1: ð4Þ
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Let �0
j be the first column of �j and denote by � the matrix whose first column is 0

and the other columns are the �0
j , that is,

� ¼ 0 �0
1 �0

2 � � � �0
n�1

� �
:

Since, by hypothesis, C 2 MnðS Þ, and both A and P have entries in k, it follows that
� 2 MnðS Þ. Equations (2) and (4) amount to

�
B�

Pn
i¼1 riA

i�1
�
P ¼ �. Thus

B�
Xn
i¼1

riA
i�1 ¼ �P�1 2 MnðS Þ:

And this proves the lemma. &

2. Main result. Given a field k and k-algebras R and S, we denote by R �k S the
coproduct of R and S in the category of k-algebras. Briefly, R �k S is the k-algebra
whose generators are the generators of R and of S, and whose defining relations are
those holding in R, in S, and those that identify element-wise the copy of k in R with
the copy of k in S. For example, k½x� �k k½y� ffi khx; yi.

We are ready to state and prove a lemma which will lead us to the main result of
the paper.

Lemma 4. Let k be a field, let T be a k-algebra, and let n be a positive integer. Let
� 2 MnðkÞ be such that �n ¼ 0, but �n�1 6¼ 0, and let r 2 MnðT Þ be an arbitrary matrix.
Then, there is a matrix-units-preserving isomorphism

MnðT Þ �k k½x�

h�x� x� � ri
ffi MnðT �k khz1; . . . ; zniÞ;

where T ¼ T=I and I is the kernel of the canonical homomorphism

T�!MnðT Þ�!MnðT Þ �k k½x��!
MnðT Þ �k k½x�

h�x� x� � ri
;

which depends on the choice of r.

Proof. Let S ¼ ðMnðT Þ �k k½x�Þ=h�x� x� � ri. The image of the matrix units of
MnðT Þ in S form a complete set of n� n matrix units for S; so S is isomorphic to a
full n� n matrix ring over some k-algebra A containing T. Given an element
s 2 MnðT Þ �k k½x�, let �ss denote its image in S ffi MnðAÞ. With this notation, given an
element a 2 MnðT Þ, �aa coincides, via the identification of S with MnðAÞ, with the ele-
ment of MnðTÞ obtained from a by projecting its entries onto T. Thus, in MnðAÞ, the
following identity holds:

� �xx� �xx� ¼ �rr 2 MnðTÞ:

By Lemma 3, there exist a1; . . . ; an 2 A and D 2 MnðTÞ such that

�xx ¼
Xn
i¼1

ai�
i�1 þD:
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Since ai 2 A, it commutes with � and so �D�D� ¼ �rr. The maps T,!A and
khz1; . . . ; zni�!A, sending zi to ai, induce an MnðT Þk-ring homomorphism

’ : MnðT �k khz1; . . . ; zniÞ�!MnðAÞ ffi S:

On the other hand, there is a unique MnðT Þk-ring homomorphism  ̂ from the free
MnðT Þk-ring MnðT Þ �k k½x� into MnðT �k khz1; . . . ; zniÞ sending x to

Pn
i¼1 zi�

i�1 þD.
This induces a homomorphism

 : S�!MnðT �k khz1; . . . ; zniÞ;

for

 ̂ ð�x� x� � rÞ ¼ � ̂ ðxÞ �  ̂ ðxÞ� � �rr

¼ �
�X

i

zi�
i�1 þD

�
�

�X
i

zi�
i�1 þD

�
� � �rr

¼ �D�D� � �rr

¼ 0:

We now show that  is the inverse of ’. Indeed, on the one hand,P
i zi�

i�1 þD ¼  ðxÞ ¼  ð
P

i ai�
i�1 þDÞ ¼

P
i  ðaiÞ�

i�1 þD. So
P

i zi�
i�1 ¼P

i  ðaiÞ�
i�1. Multiplying this last equation by �n�1 yields z1�

n�1 ¼  ða1Þ�
n�1. Since

�n�1 6¼ 0 and its entries lie in k, it follows that z1 ¼  ða1Þ. Analogously, one shows
that zi ¼  ðaiÞ for i ¼ 2; . . . ; n. Therefore, ’ ðxÞ ¼ ’ð

P
i zi�

i�1 þDÞ ¼P
i ’ðziÞ�

i�1 þD ¼
P

i ai�
i�1 þD ¼ x. On the other hand, it is clear that  ’ðziÞ ¼ zi,

for all i ¼ 1; . . . ; n. Thus ’ is an isomorphism. &

If in Lemma 4 the canonical map MnðT Þ�!S is injective, then there exists an
isomorphism between S and MnðT �k khz1; . . . ; zniÞ. This will be the case of interest
to us in what follows.

Theorem 5. Let k be a field of positive characteristic p, let m; n be positive inte-
gers and let � be a k-derivation on the free associative algebra of rank m,
R ¼ khx1; . . . ; xmi. Suppose that

(1) �p
n

¼ 0,
(2) �ðx1Þ 2 k½x1� and �ðxiÞ 2 khx1; . . . ; xi�1i for i ¼ 2; . . . ;m, and
(3) 1 2 �p

n�1

ðk½x1�Þ.
Then the subalgebra of constants kerð�Þ of R under the derivation � is free of rank
ðm� 1Þpn þ 1.

Proof. We shall proceed by induction on m. We know the result is true for
m ¼ 1, for any derivation on k½x1� is a multiple of d

dx1
. Suppose the result holds for

m > 1 and let us show that it holds for mþ 1. Let Km ¼ khx1; . . . ; xmi and �m ¼ �jKm
.

By hypothesis (2), �m is a derivation on Km. Consider the ring Rm ¼ ðKm½t; �m�Þ=ht
pni.

By Theorem 1, Rm ffi Mpn ðkerð�mÞÞ. Let Rmþ1 ¼ ðKmþ1½t; ��Þ=ht
pni, where Kmþ1 ¼

khx1; . . . ; xmþ1i. It is immediate to see that

Rmþ1 ffi
Rm �k k½xmþ1�

h�xmþ1 � xmþ1� � �ðxmþ1Þi
;
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where � denotes the image of t in Rm. Since Rm � Rmþ1 and Rm ffi Mpnðkerð�mÞÞ, it
follows that kerð�mÞ � Rmþ1. By Remark 2, the matrix corresponding to � in Rm is
nilpotent of index pn over k. Therefore, by Lemma 4, Rmþ1 ffi Mpn ðkerð�mÞ�k
khz1; . . . ; zpniÞ. On the other hand, by Theorem 1, Rmþ1 ffi Mpn ðkerð�ÞÞ and by the
induction hypothesis kerð�mÞ is isomorphic to khy1; . . . ; yðm�1Þpnþ1i. Thus,

Mpnðkhy1; . . . ; yðm�1Þpnþ1; z1; . . . ; zpniÞ ffi Rmþ1 ffi Mpnðkerð�ÞÞ:

Since the above isomorphism preserves matrix units, kerð�Þ is isomorphic to the free
associative algebra of rank ðm� 1Þpn þ 1þ pn ¼ mpn þ 1 over k. This proves the
theorem. &

3. Applications. We present two immediate applications of Theorem 5. The
second of these (Corollary 7) allows us to give a simplified proof of [3, Theorem 3.2].

By the partial derivative with respect to xi of khx1; . . . ; xmi, one understands the
k-derivation @i on khx1; . . . ; xmi given by @iðxjÞ ¼ �ij. We start by noting that the
partial derivatives of a free associative algebra in prime characteristic satisfy the
hypothesis of Theorem 5 (after a suitable rearrangement of the xi). So we have the
following result.

Corollary 6. The subalgebra of constants of each partial derivative of the free
associative algebra of rank m over a field of positive characteristic p is free of rank
ðm� 1Þpþ 1. &

In fact, Corollary 6 is well-known (see, [5,4]). Using ideas from [4], one can
prove that, in characteristic 0, the subalgebra of constants of the partial derivative of
khXi with respect to some x 2 X is freely generated by the set fðad xÞiz :
i 2 N; z 2 X n fxgg, where ðad xÞ is the inner derivation of khXi determined by x, that
is, ðad xÞf ¼ xf� fx for all f 2 khXi. It is not difficult to see that in characteristic
p > 0 a free generating set is given by fxp; ðad xÞiz : i ¼ 0; . . . ; p� 1; z 2 X n fxgg.

Next, note that the k-derivation � on khx1; . . . ; xp�1i given by �ðxiÞ ¼ xi�1, for
i ¼ 2; . . . ; p� 1, and �ðx1Þ ¼ 1 also satisfies the hypothesis of Theorem 5. So the
following is also true.

Corollary 7. Let k be a field of positive characteristic p and let � be the deriva-
tion on khx1; . . . ; xp�1i defined by �ðxiÞ ¼ xi�1 for i ¼ 2; . . . ; p� 1, and �ðx1Þ ¼ 1.
Then the subalgebra of constants of � is free of rank p2 � 2pþ 1. &

Incidentally, Corollary 7 is exactly what is needed to prove our next result.
First, recall that, given a field F (commutative or not) and a subfield k, the free Fk-ring
on a set X is defined to be the ring FkhXi generated by X over F with defining relations
x� ¼ �x, for x 2 X and � 2 k. It follows that FkhXi ffi F �k khXi. Because FkhXi is a
fir ([2, Theorem 2.6.2]), it has a universal field of fractions ([2, Corollary 7.5.11]).

Theorem 8 ([3, Theorem 3.2]). Let k be a field of positive characteristic p and let
F ¼ kð�Þ, where �p 2 k, but � 62 k. Let R ¼ Fkhxi and denote by U its universal field of
fractions. Then there exists a subring S of U, obtained from R by adjoining the inverse
of a single element, such that S�k F is isomorphic to MpðAÞ, where
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A ¼ Fhz1; . . . ; zp2�pi �F F ½w;w�1�:

Proof. We use the notation SF ¼ S�k F. As in [3], we adjoin to R the inverse of
dp�1
� ðxÞ, where d� denotes the inner derivation of R determined by �, that is,

d�ðrÞ ¼ �r� r� for all r 2 R. We can, then, write

SF ffi Fh�; x; y j � p ¼ 0; dp�1ðxÞy ¼ ydp�1ðxÞ ¼ 1i;

where d is the inner derivation of Fh�; x; yi determined by �. It is easy to see that the
map sending x to up�1v induces an isomorphism from SF onto the ring

T ¼ Fh�; u1; . . . ;up�1; v; y j � p ¼ 0; �u1 � u1� ¼ 1;

�ui � ui� ¼ ui�1 ði � 2Þ; �v ¼ v�; vy ¼ yv ¼ 1i;

whose inverse is induced by the map ui 7! dp�i�1ðxÞy; v 7! dp�1ðxÞ. Now we can
write T ffi ðT1 �F F½y�Þ=hvy� 1; yv� 1i, where T1 ¼ ðT2 �F F½v�Þ=h�v� v�i,

T2 ¼
Fhu1; . . . ; up�1i½�; ��

h� pi

and � is the k-derivation given by �ðuiÞ ¼ ui�1 ði ¼ 2; . . . ; p� 1Þ and �ðu1Þ ¼ 1. By
Theorem 1 and Corollary 7, it follows that T2 ffi MpðKÞ, where K ¼ Fhy1; . . . ;
yp2�2pþ1i. Applying Theorem 5 to T1, we obtain T1 ffi MpðK �F Fhz1; . . . ; zpiÞ. Since v
commutes with �, by Lemma 3, the matrix V corresponding to v in T1 is of the formPp

i¼1 zi�
i�1, where � ¼

Pp�1
i¼1 eiþ1;i is the matrix corresponding to �. So V is a lower

triangular matrix with z1 on the entries of the main diagonal. The ring T is obtained
from T1 by freely adjoining to it an inverse of v. But freely adjoining an inverse of v
to T1 is equivalent to freely adjoining an inverse of z1 to K �F Fhz1; . . . ; zpi. There-
fore, T ffi MpðK �F Fhz2; . . . ; zpi �F F ½z1; z

�1
1 �Þ. And this proves the theorem. &
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