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This paper introduces a new modification to the convective Cahn–Hilliard equation and a
lattice Boltzmann framework to simulate liquid–solid phase transitions in multicomponent
systems. The model takes into account changes in properties, such as density, caused
by solidification, which leads to volume expansion or contraction. After validating the
proposed model against classical problems and experimental data, the solidification of
a sessile droplet was investigated in detail. Results of numerical simulations suggest
that the environmental conditions are as important as the surface condition in deciding
the freezing time and the final shape of the droplet. The environmental properties can
also affect the freezing time indirectly through interaction with surface wettability. It has
been demonstrated that hydrophobic surfaces may lose their advantages over hydrophilic
surfaces in terms of anti-icing performance when primary solidification is initiated
from the interface between the droplet and the environment fluid. The deformations of
droplets, either with contraction or expansion, were confirmed and compared in different
environments. This study offers a new perspective on droplet solidification by exposing the
strong influence of environmental conditions and meanwhile provides a useful numerical
method to predict the phase change process.
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1. Introduction

In the past decades, the lattice Boltzmann (LB) method has been established as an effective
alternative flow solver over the commonly used computational fluid dynamics (CFD)
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methods. The LB method translates macroscopic physics to mesoscopic interactions
between hypothetical particles, where distribution functions present the probability of
mass density in a mean field (Higuera, Succi & Benzi 1989). Since it was developed as an
improved version of the lattice gas automata method (McNamara & Zanetti 1988; Higuera
& Jiménez 1989; Higuera & Succi 1989), the LB method has been rapidly proven to be a
reliable computational tool for a wide range of physics (Benzi, Succi & Vergassola 1992;
He, Chen & Doolen 1998a; Yu et al. 2003; Tang et al. 2006; Wang, Wang & Li 2006;
Basati, Mohammadipour & Niazmand 2021), with a bright future ahead (Succi 2015).

The LB method is easy to code, can handle complex geometries and is very efficient
for parallel computing. These features make the LB method an attractive choice for
the simulation of complex flows. One of the problems that has gained the attention of
numerous researchers is multiphase flow simulation. The colour method that Rothman &
Keller (1988) introduced was among the first LB models to simulate multiphase flows.
The idea of particle interactions introduced in this model inspired much later research in
this field. Shan & Chen (1993) developed an LB scheme using interparticle potentials to
model multiphase and multicomponent fluid flows. Although this pseudo-potential model
can simulate many phase separation phenomena (Li et al. 2016; Sayyari, Kharmiani &
Esfahani 2019), it suffers from some drawbacks. As He & Doolen (2002) showed in their
work, the definition of interparticle potential in this model could lead to thermodynamic
inconsistencies. Furthermore, the interfacial tension in the original model is fixed by
choosing the strength of the interparticle potential and cannot be modified independently
(Sbragaglia et al. 2007). Swift, Osborn & Yeomans (1995) pointed out the importance
of thermodynamic consistency in multiphase LB simulations. They introduced a new
LB model named the free energy method. In contrast to interparticle potential models,
which do not have any mechanism to track the interface explicitly, the free energy
method utilized a modified Cahn–Hilliard equation (Cahn & Hilliard 1958) to capture
the interface in an explicit way. Using a new equation provides the freedom to control
the surface tension. Continuous improvements have been made to the free energy LB
model since its introduction in 1995. The original free energy model does not satisfy
the Galilean invariance. Holdych et al. (1998) solved this problem by developing an
improved free energy model. He, Chen & Zhang (1999) proposed a kinetic-theory-based
multiphase LB model to simulate multiphase flows at moderate density ratios. Inamuro
et al. (2004) and Lee & Lin (2005) extended the density ratio limitation. Zheng, Shu &
Chew (2006) improved the accuracy by exactly recovering the Cahn–Hilliard equation in
LB formulation. An additional force was introduced by Li et al. (2012) to prevent possible
inconsistencies in the momentum equation at high velocities.

Modelling thermal flows with the LB method began with Alexander, Chen & Sterling
(1993) and Qian (1993) in 1993. In the subsequent years, many thermal LB models
have been developed and adapted to different thermal problems including one-component
liquid–solid phase transitions. De Fabritiis et al. (1998) introduced an LB model to
describe flows with liquid–solid phase transition using a fictitious chemical reaction
term. Jiaung, Ho & Kuo (2001) described the liquid–solid phase transition by enthalpy
formulation and used liquid fraction to determine the phase change interfacial position. A
slightly modified version of this model was later used by Huber et al. (2008) to simulate
pure-substance melting coupled with natural convection. Chakraborty & Chatterjee (2007)
proposed a hybrid thermal LB model for studying convection–diffusion phenomena with
liquid–solid phase change. Eshraghi & Felicelli (2012) suggested treating the latent heat
source implicitly by solving a group of linear equations in the collision step. By modifying
the equilibrium distribution function for the temperature, Huang, Wu & Cheng (2013)
developed a new approach to treat the latent heat source term.
978 A10-2
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Volume change in liquid–solid phase transition simulation

The liquid–solid transformation is also adapted in multicomponent simulations. The LB
developed by Parmigiani et al. (2011) combines the multicomponent Shan–Chen method
with the thermal LB model (Huber et al. 2008) to simulate multiphase flows in porous
media with melting and solidification. An enthalpy model based on percolation theory
in porous media (Semma et al. 2008) was used by Sun, Gong & Li (2015) to simulate
the solidification of a water droplet on a cold flat plate using the Shan–Chen method. In
a cold environment with forced convection, Zhao et al. (2017) investigated the freezing
of a free-falling droplet using an enthalpy-based LB model. Xiong & Cheng studied
the impact and solidification of a droplet on a cold smooth (2018b) and rough (2018a)
substrate. The frost crystal nucleation process involved in liquid–solid phase change on a
cold surface is studied by Gong et al. (2019). Combined with the multiphase LB model
and the enthalpy thermal LB model, Zhang et al. (2020) proposed an axisymmetric LB
model to simulate the freezing process of a sessile water droplet with consideration of
droplet volume expansion. The combination of the pseudo-potential multiphase model
and a thermal single-component phase change model is used by Pérez et al. (2021) for
studying droplet impact and solidification on an airfoil.

Although multiphase flows have been investigated widely with different LB schemes,
thermal multiphase simulations of liquid–solid phase transition and possible volume
change during this transition (Gong et al. 2019; Zhang et al. 2020; Pérez et al. 2021)
are almost exclusively limited to the pseudo-potential approach. The method’s limitation
is that it relies on mesoscale interaction to separate multiple phases, making it difficult to
extend to other (e.g. CFD) methods. On the other hand, the free energy approach uses novel
mathematical physics to explain the phase separation process. This concept, referred to as
the Cahn–Hilliard equation on a macro scale, can be easily understood on a mesoscopic
level by utilizing the LB equation. Therefore, any improvements made to the free energy
method can be effortlessly applied to the mesoscopic and macroscopic CFD methods.

As far as the authors know, there is no known free energy method for dealing with
volume changes in multiphase flow. To fill this gap, this paper aims to present a new
modification to the Cahn–Hilliard equation that can simulate volume changes during
solidification. Unlike previous methods (Gong et al. 2019; Zhang et al. 2020; Pérez et al.
2021), this modification can be used for both expansion and contraction scenarios, not just
expansion. To implement this new formulation, a new LB framework has been developed
to handle property variation that can occur during solidification. To show the capability
of the introduced scheme, here we focus on a practical problem: the freezing of a sessile
droplet.

The freezing of a liquid droplet is of interest for many engineering processes such as
spray coating, laser welding, additive manufacturing, icing on aircraft surfaces and others.
Consequently, the solidification of droplets has been studied extensively over the past
few decades. Efforts have been made to understand the droplet freezing process through
theoretical models (Schultz, Worster & Anderson 2001; Schetnikov, Matiunin & Chernov
2015; Zhang et al. 2017b), experiments (Jung et al. 2012; Zhang, Wu & Min 2017a; Shi &
Duan 2022) or numerical simulations (Vu 2018; Zhang et al. 2018; Bodaghkhani & Duan
2020). As a numeric method, LB has also been used in a number of studies (Xiong &
Cheng 2018b,a; Gong et al. 2019; Zhang et al. 2020; Pérez et al. 2021). Most of these
studies are concerned with the solidification of water droplets surrounded by cold air.
Thus, the focus of the investigations was primarily on the droplet thermal conditions or
wetting properties of the surface. But effects of the environmental (e.g. air) conditions
are often ignored (Schetnikov et al. 2015; Zhang et al. 2018) or simplified to a constant
temperature boundary condition at the droplet interface (Feuillebois et al. 1995; Tabakova
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& Feuillebois 2004). While these hypotheses may be true for water droplets in the presence
of air, they cannot be applied to other applications, such as spray coating or gas shielded
welding, where other materials may be involved. Nevertheless, these hypotheses can be
challenged even with water droplets (Schultz et al. 2001; Jung et al. 2012).

This study attempts to identify the individual and interacting effects of environmental
conditions on the solidification process, which have been rarely investigated in previous
studies. Furthermore, we examine the effects of positive as well as negative volume
expansion rates on the final shape of solidified droplets. While droplet shape deformation
due to volume expansion has been previously reported, no numerical simulation of
solidification with volume contraction has been conducted before (including non-LB
studies).

This paper is organized as follows. Section 2 briefly describes the sessile droplet
solidification through macroscopic governing equations. Section 3 introduces the new LB
framework. Boundary conditions and a discussion on choosing LB parameters are also
included in this section. Next, in § 4 the introduced scheme is validated against classic
numerical and experimental results available in the literature. Section 5 is devoted to
numerical results, in which freezing time and shape deformation are investigated in detail.
Finally, a conclusion is presented in § 6 to sum up the findings.

2. Macroscopic governing equations

This study focuses on a binary system including the ‘A’ and the ‘B’ components. For
generality of our discussion, it is assumed that the A component is going to retain its initial
phase (liquid or gas) throughout the simulation. In contrast, the B component experiences
phase transitions (liquid to solid or vice versa) depending on the temperature conditions.
The primary geometry is a liquid droplet (component B) settled on a cold surface whose
temperature is kept constant at a value below the freezing temperature of the liquid.
The liquid is surrounded by the A component, whose temperature is also affected by
the wall temperature. Since the droplet is static during solidification, inertia force is not
important in the freezing process. In this regard, the density ratio was kept constant at a
moderate range, e.g. ρB/ρA = 7. Other parameters to consider are the substrate, droplet
and environmental properties.

The cold wall temperature (Twall) and the contact angle (ψwall) represent the substrate
condition. Our analysis considered three thermal properties of the droplet, including
its initial temperature (Tini(B)) and its thermal diffusivity in solid (αB(S)) and liquid
(αB(L)) states. Gravity (g) is also included in this study as an independent variable. For
environmental conditions, there are two important factors: initial temperature (Tini(A))
and thermal diffusivity (αA). It should be pointed out that in this definition of the
problem, the droplet can be but is not necessarily water, and the surrounding fluid not
necessarily air. They can be any two immiscible fluids whose conditions are determined
by the aforementioned properties. Therefore, the results are applicable for a wide
range of applications, such as welding with shielding gas, plasma-sprayed coatings and
three-dimensional (3-D) metal printing. Figure 1 presents a schematic of the droplet and
all parameters mentioned above.

In the free energy approach, two components are described by a numerical parameter –
the component index φ. This index generally varies between two specific values, e.g. +φ0
and −φ0 representing two bulk components. The variation of the component index
between these two limiting values occurs through a diffuse interface that occupies a limited
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Figure 1. Geometry, boundary condition (BC) and simulation parameters used for sessile droplet
solidification.

number of grid points. Here, we have

Composition =
⎧⎨
⎩

A, φ = −φ0,
interface, −φ0 < φ < +φ0,
B, φ = +φ0.

(2.1)

The flow field of multicomponent Newtonian fluids with constant properties are
governed by the continuity and momentum (the Navier–Stokes) equations

∂tρ + ∂α (ρuα) = 0, (2.2)

ρ
(
∂tuα + uβ∂βuα

) = −∂αp + μ∂β
(
∂βuα + ∂αuβ

)+ Fα, (2.3)

where F = F s + F g is the total body force including gravitational body force F g and the
interfacial force F s. Note that in all equations through this paper, the Einstein summation
convention is considered for spatial coordinates, e.g. α, β. For a binary system far from
a solid surface, the equilibrium properties can be described by a Landau free energy
functional of the form (Zheng et al. 2006)

Ψ =
∫ (

ψ (φ)+ k (∂αφ∂αφ)+ ρ0 ln ρ0

3

)
dV. (2.4)

The first term shows the bulk free energy ψ(φ) = A(φ2 − φ2
0)

2; the second term is
responsible for the interaction between two fluids at the interface and the third term is the
ideal gas free energy. The average density is denoted ρ0 = (ρA + ρB)/2. The term ‘A’ in
the definition of free bulk energy and the term ‘k’ used in the interaction term are two
numerical parameters that control the surface tension σ and width of the interface χ ,

σ = 4
3

√
2kAφ3

0, (2.5)

χ = 1
φ0

√
2k
A . (2.6)

The chemical potential is defined as the derivative of functional equation (2.4) with
respect to phase index,

μφ = 4A(φ3 − φ2
0φ)− k∂α∂αφ. (2.7)
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The φ0 value is a positive non-zero value that logically can be chosen freely. Far
from the interface where the second term in (2.7) is negligible, the chemical potential
is equal for both components, i.e. μφ(A) = μφ(B) = 0. Inside the interface the non-zero
value of the first term balances the second term leading to again a zero chemical potential
μφ(interface) = 0. Any imbalance of chemical potential should lead to mass transfer to
obtain a uniform distribution. That is why the interfacial body force in the Navier–Stokes
equations (2.3) is defined as

Fs,α = −φ∂αμφ. (2.8)

For the component index, we use a modified version of the convective Cahn–Hilliard
equation,

∂tφ + ∂α (φuα) = M∂β∂βμφ + S, (2.9)

where ‘M’ is the mobility. In the classical Cahn–Hilliard equation (Cahn & Hilliard 1958),
interfacial diffusion fluxes are assumed to be proportional to chemical potential gradients.
The equation is later extended to incorporate convective effects (Badalassi, Ceniceros
& Banerjee 2003). The term (S) is a fictional source term that we introduced to control
volume variations during solidification. More details about this source term are provided
in § 3.

Binary systems consist of two components, ‘A’ and ‘B’, which are tracked by the
component index. It is assumed that the A component will not experience any phase
change during the simulation. Component B, however, is going to solidify so it can be
solid or liquid depending on its temperature. The solid phase can be described with two
dimensionless numbers: the liquid fraction that shows what fraction of component B is
liquid ( fL = VB(L)/VB), and the solid fraction that indicates the amount of solid in the total
volume ( fS = VB(S)/V). These two fractions are related through the component index,

fS = (1 − fL)
φ + φ0

2φ0
. (2.10)

In this study, it is assumed that the thermodynamic properties of the B component vary
during the solidification. In this regard, we use ‘B(S)’ and ‘B(L)’ to distinguish the B
component properties in solid and liquid phases, respectively.

The temperature distribution is governed by the energy equation

dtH = ∂β(k∂βT). (2.11)

The enthalpy ‘H’ can be calculated as

H = HA + φ + φ0

2φ0
(HB − HA) = (ρc)eff T + φ + φ0

2φ0
ρB(L)fLLh, (2.12)

where Lh is the latent heat and (ρc)eff is the effective volumetric heat capacity defined as

(ρc)eff = φ0 − φ

2φ0
(ρc)A + φ0 + φ

2φ0
(ρc)B(L)fL + (ρc)B(S)fS. (2.13)

In a similar manner, the effective conductivity can be defined as a linear combination of
component conductivities,
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keff = φ0 − φ

2φ0
kA + φ0 + φ

2φ0
kB(L)fL + kB(S)fS. (2.14)

Substituting (2.12), (2.13) and (2.14) into (2.11) leads to

dtT − keff

(ρc)eff
∂β∂βT + φ + φ0

2φ0

ρB(L)Lh

(ρc)eff
dtfL = ∂βT∂βkeff

(ρc)eff
− fLρB(L)Lh

2φ0(ρc)eff
dtφ − Tdt(ρc)eff .

(2.15)

The right-hand side of (2.15) is zero in every single-phase region (the A component and
the B component in liquid and solid states) but non-zero at the interfaces. When the
interface thickness is small compared with the characteristic length and the grid resolution
is adequate, these terms can be ignored relative to the left-hand side of the equation. Thus,
(2.15) will be simplified to

∂tT + ∂α (Tuα) = keff

(ρc)eff
∂β∂βT − φ + φ0

2φ0

ρB(L)Lh

(ρc)eff
∂tfL. (2.16)

All governing equations ((2.2), (2.3), (2.9) and (2.16)) are solved using different LB
schemes described in the next section.

3. Lattice Boltzmann method

In the LB method the physics of the problem is tracked through the evolution of fictitious
particles named distribution functions, e.g. mi(x, t). At time t for a grid point located at
x, a series of distributions are defined corresponding to a set of discretized mesoscopic
velocities indicated as a subscript index ‘i’ (e.g. m1, m2). The lattice evolution equation for
distribution functions is given below,

mi(x + eiδt, t + δt) = mi(x, t)+Ωi,m + Si,m, (3.1)

whereΩi,m is the collision term and Si,m represents the source term or external body force
effect if there was any. In the single relaxation time model the collision term is defined as
follows:

Ωi,m = − 1
τm

(
mi(x, t)− meq

i (x, t)
)
. (3.2)

In this equation, τm is the dimensionless relaxation time and meq
i is the equilibrium

distribution. Generally, equilibrium distribution is defined as a function of macroscopic
properties, mesoscopic velocities and a weighting factor.

There is a multi-scale analysis named Chapman–Enskog analysis that shows which
macroscopic equation can be solved using the LB evolution equation. Note that the LB
equation introduced in this paper is not just a flow solver, but a numerical tool to solve
all governing equations ((2.2), (2.3), (2.9) and (2.16)). The solution of each governing
equation requires at least three definitions: distribution functions, equilibrium distributions
and dimensionless relaxation time.

In the following subsections, three sets of definitions are introduced to reproduce the
governing equations mentioned in § 2. The LB equations introduced in this paper can be
used (without any modifications) for two-dimensional (2-D) and 3-D simulations using
D2Q9, D3Q19 or D3Q27 lattices. Table 1 provides a list of the mesoscopic velocities and
weighting factors for these lattices.
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Lattice Velocity index Velocity set Weighting
(i) (ei) factor

0 (0, 0) 4/9
D2Q9 1,2,3,4 c(±1, 0), c(0,±1) 1/9

5,6,7,8 c(±1,±1) 1/36

0 (0, 0, 0) 1/3
D3Q19 1, 2, . . . , 6 c(0, 0,±1), c(0,±1, 0), c(±1, 0, 0) 1/18

7, 8, . . . , 18 c(0,±1,±1), c(±1,±1, 0), c(±1,±1, 0) 1/36

0 (0, 0, 0) 8/27
D3Q27 1, 2, . . . , 6 c(0, 0,±1), c(0,±1, 0), c(±1, 0, 0) 2/27

7, 8, . . . , 18 c(0,±1,±1), c(±1,±1, 0), c(±1,±1, 0) 1/54
19, 20, . . . , 26 c(±1,±1,±1) 1/216

Table 1. Mesoscopic velocities and weighting factors for 2-D and 3-D lattices.

3.1. Multiphase flows
For simulating a binary system here, we used a modified version of what was proposed by
Shao et al. (2014). According to this model, which is a recasting of He et al.’s approach
(1999), the evolution equation for the density distribution is given by

fi(x + eiδt, t + δt) = fi(x, t)− 1
τf

(
fi(x, t)− f eq

i (x, t)
)+ Gi + Fi, (3.3)

where Gi represents the body force effects, including multiphase force (−φ∂αμφ) and
gravitational body forces (ρgα), and Fi shows the pressure effects due to different densities
(Shao et al. 2014). These two terms are defined as follows:

Gi =
(

1 − 1
2τf

)
δtwi

(
1 + eiβuβ

c2
s

+ eiβeiγ uβuγ
2c4

s
− uβuβ

2c2
s

)(
eiα − uα

c2
s

)
(ρgα − φ∂αμφ),

(3.4)

Fi =
(

1 − 1
2τf

)
δtwi

(
eiβuβ

c2
s

+ eiβeiγ uβuγ
2c4

s
− uβuβ

2c2
s

)(
eiα − uα

c2
s

)(
c2

s∂αρ
)
. (3.5)

The force term formulation in (3.4) and (3.5) is based on a discrete Boltzmann equation
proposed by He, Shan & Doolen (1998b). Guo, Zheng & Shi (2002) explained how this
formulation may not be consistent with the hydrodynamic equations, particularly where
the body force changes both in time and space. Inspired by the idea used in Guo et al.
(2002), we redesigned the forcing terms to apply body force and pressure difference effects
more accurately and efficiently, i.e.

Gnew
i =

(
1 − 1

2τf

)
δtwi

(
eiα − uα

c2
s

+ eiβuβeiα

c4
s

)
(ρgα − φ∂αμφ), (3.6)

Fnew
i =

(
1 − 1

2τf

)
δtwi

(
eiβuβeiα

c4
s

)(
c2

s∂αρ
)
. (3.7)

Equilibrium distribution in (3.3) is expressed as

f eq
i (x, t) = wiρ

(
ρ0

ρ
+ eiβuβ

c2
s

+ eiβeiγ uβuγ
2c4

s
− uβuβ

2c2
s

)
. (3.8)

978 A10-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.981


Volume change in liquid–solid phase transition simulation

The macroscopic properties can be calculated as

ρ = ρA + φ + φ0

2φ0
(ρB − ρA), (3.9)

ρ0 =
∑

i

fi + 1
2
δt (uα∂αρ), (3.10)

ρuα =
∑

i

fieiα + 1
2
δt(ρgα − φ∂αμφ). (3.11)

The dimensionless relaxation time is related to the dynamic viscosity through μ =
ρc2

s δt(τf − 0.5). Far from the interface, this equation can be used for each fluid where
each of them has its own dimensionless relaxation time, i.e.

μA = ρAc2
s δt(τf (A) − 0.5), (3.12)

μB = ρBc2
s δt(τf (B) − 0.5). (3.13)

For the interface, it is common to use a linear approximation based on the component
index value μ(φ) = μA + (μB − μA)(φ + φ0)/2φ0 (Kuzmin et al. 2011). Using this
equation, the dimensionless relaxation time can be obtained as

τf = μ (φ)

ρc2
s δt

+ 1
2
, (3.14)

where ρ is the local density obtained from (3.9). Like all other schemes designed
using He et al.’s approach (1999), the model is restricted to moderate density ratios.
In static cases or situations with negligible inertia effects, a moderate density ratio
or even a density-matched model can be safely used (Kuzmin et al. 2011). When
simulating multiphase flows with high-density ratios is inevitable, an alternative, more
computationally expensive model (Inamuro et al. 2004; Lee & Lin 2005) can be used to
replace (3.3).

The dynamics of the fluid interface is governed by the modified convective
Cahn–Hilliard equation (2.9). This equation can be solved numerically using the following
LB equation:

hi(x + eiδt, t + δt) = hi(x, t)− 1
τh

(
hi(x, t)− heq

i (x, t)
)+ Si,h. (3.15)

The equilibrium distribution and the dimensionless relaxation time are defined as

heq
i (x, t) =

⎧⎪⎨
⎪⎩

wi

(
Γ μφ

c2
s

+ φ
eiβuβ

c2
s

+ φ
eiβeiγ uβuγ

2c4
s

− φ
uβuβ
2c2

s

)
, i > 0,

φ −∑
i /= 0 heq

i , i = 0,
(3.16)

τh = M
Γ δt

+ 1
2
, (3.17)

where Γ is a numerical parameter. The component index value can be calculated through

φ =
∑

i

hi. (3.18)
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In the LB scheme a source term Si,h can be implemented using the following equation
(Shi & Guo 2009):

Si,h = wiS
(

1 +
(

1 − 1
2τh

)
eiαuα

c2
s

)
. (3.19)

The source value ‘S’ in the above equation is the new source term we introduced in
(2.9) to control volume changes during solidification. As mentioned earlier, components
are tracked using the component index. As a result, any change in the volume of a
component must be represented by a change in its index value. Here the idea is to
manipulate the component index value to simulate the volume change of a component. By
modifying the component index value, the system deviates from its equilibrium condition,
resulting in a non-zero chemical potential value. Consequently, the diffusion mechanism
will be activated, balancing the chemical distribution through expansion and compression
(corresponding to positive and negative volume expansion values). The density values are
then modified in the energy equation (2.16) to conserve the total mass. The key question is
to what extent the value of the index should change for a given volume expansion rate.

The share of one component (here the B component) from a typical volume of the
computational domain can be described as VB = V(φ + φ0)/(2φ0). By differentiating this
equation, it is possible to find the φ modification required for a given volume expansion,
i.e.

δVB = δφ

2φ0
V = δφ

2φ0

(
2φ0

φ + φ0
VB

)
= δφ

φ + φ0
VB. (3.20)

During the solidification, the volume of the B component will change, i.e.

δVB = (
VB(L) + fS

(
VB(S) − VB(L)

))− VB(L). (3.21)

Using (3.20) and (3.21), it can be concluded that, for a given expansion rate such as
λ = (VB(S) − VB(L))/VB(L), the necessary change of the index value would be

δφ = λ (φ + φ0) δfS. (3.22)

It is important to note that solidification is not an instantaneous process, and (3.22) is
going to apply step by step during the time-marching solution of the governing equations.
This means that for a constant λ value, the final volume will be obtained using a geometric
progression

Vfinal =
∞∑

k=0

Vinitialλ
k = Vinitial

1 − λ∞
1 − λ = Vinitial

1 − λ . (3.23)

Considering this point in the calculations, we introduce the new sourcing term for the
Cahn–Hilliard equation as

S = (φ + φ0)
λ

1 + λ∂tfS. (3.24)

By this definition, a complete solidification theoretically should lead to Vinitial(1 + λ) as
the final volume. But in practice, the complexity of multiphase flows may deviate the final
volume from what is expected. More discussion about this deviation is provided in § 3.5.
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3.2. Thermal simulation
The LB evolution equation for the temperature field is given by

li(x + eiδt, t + δt) = li(x, t)− 1
τl

(
li(x, t)− leq

i (x, t)
)+ Si,l, (3.25)

where the equilibrium distribution and the source term are defined as

leq
i (x, t) = wiT

(
1 + eiβuβ

c2
s

+ eiβeiγ uβuγ
2c4

s
− uβuβ

2c2
s

)
, (3.26)

Si,l = −wi

(
1 +

(
1 − 1

2τl

)
eiαuα

c2
s

)(
φ + φ0

2φ0

ρB(L)Lh

(ρc)eff
∂tfL

)
. (3.27)

The temperature value at each grid location is obtained as

T =
∑

i

li. (3.28)

The dimensionless relaxation time is defined based on local effective properties
provided in (2.13), (2.14),

τl = keff

(ρc)eff

1
c2

s δt
+ 1

2
. (3.29)

3.3. Solid domain consideration
During the simulations some part of the computational domain may solidify. For these
parts, the distributions must remain in the solid domain. This can be applied by changing
the lattice evolution equation (3.1) into

mi(x + eiδt, t + δt) = mi(x, t)+ (1 − Bm)(Ωi,m + Si,m)+ BmΩ
solid
i,m . (3.30)

In this equation, Bm is a numerical parameter whose value varies between 0 to 1
depending on the fluid fraction value. The new term Ωsolid

i,m is responsible to keep
information in the solid domain. For the density distribution functions, the approach
provided in Huang et al. (2013) is used as follows:

Bf = τf − 0.5
τf − 0.5 + fL

(1 − fL), (3.31)

Ωsolid
i,f = f eq(solid)

i + fopp(i)(x, t)− f eq
opp(i) − fi(x, t). (3.32)

In this equation, opp(i) shows the direction opposite to the i direction. The term
f eq(solid)
i is the solid equilibrium distribution and can be calculated using (3.8), but in this

calculation the velocity should be set equal to the solid phase velocity that in this case is
zero.

For component index distributions, we introduce the following definitions:

Bh = 1 − fL, (3.33)

Ωsolid
i,h = hopp(i)(x, t)− hi(x, t). (3.34)

Note that the volume change during solidification depends on the partial differential
of the liquid fraction with respect to time. When the liquid fraction is lower than unity
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and going to increase in the following simulation steps, the solid collision may trap the
produced phase index value inside the solid domain. To avoid this situation, the solid
collision (3.34) must be applied only for nodes with constant liquid fractions (∂tfL = 0).

The temperature LB evolution equation does not need to use a solid collision function
because the no-slip velocity in the solid domain is actually applied using (3.32).

3.4. Boundary conditions
Three boundary condition schemes are used to handle wall physics. In the flow field
one of the most common methods to apply a no-slip boundary condition is a so-called
‘bounce-back rule’. Despite its simplicity and ease of implementation, it may lead
to an undesirable slip velocity depending on the viscosity value (He et al. 1997;
Mohammadipoor, Niazmand & Mirbozorgi 2014). The problem is addressed before by
introducing a general boundary treatment (Mohammadipour, Niazmand & Succi 2017).
The wettability of the solid surface is modelled using (Briant & Yeomans 2004). The
boundary condition in the Cahn–Hilliard equation is not limited to the wettability
condition. The preservation of mass in the computational domain requires us to apply
zero normal gradients for chemical potential (∂nμ|wall = 0) at the boundaries (Li et al.
2016). This equation must be considered in the collision step for boundary nodes where
the interfacial force is calculated using (2.8).

For the energy equation, the desired boundary temperature can be applied to the
boundary nodes using the following equation (Mohammadipour, Succi & Niazmand 2018):

li(unknown)(xwall, t) = wi∑
unknown wi

(
Twall −

∑
known

li(xwall, t)

)
. (3.35)

3.5. Selecting LB parameters
According to the similarity concept, the LB results have similitude with the real
application as long as the two models share similar geometries and equal effective
dimensionless numbers. For multiphase solidification simulated in this paper, the
important dimensionless parameters are the Stefan number, the Atwood number and the
Bond number, defined respectively as

Ste = c (Tm − Twall)

Lh
, (3.36)

Atw = ρB − ρA

ρB + ρA
, (3.37)

Bo =
(ρB − ρA) gl2ref

σ
. (3.38)

There are also some numerical parameters such as φ0, Γ , A,. . . that do not have a
clear counterpart of thermodynamics properties. While there is no solid rule for how these
parameters should be set, it is important to note that they are strongly correlated with
simulation accuracy and stability. Here we propose a step-by-step process for establishing
simulation parameters.
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Volume change in liquid–solid phase transition simulation

First, the density distribution is initialized using the Atwood number and the volume
expansion coefficient λ,

ρ =
⎧⎨
⎩

1 + Atw, B component in liquid phase,
(1 + Atw)/(1 + λ), B component in solid phase,
1 − Atw, A component.

(3.39)

It is very common to define the φ0 parameter as φ0 = (ρB − ρA)/2 (Shao et al. 2014),
but since φ0 cannot be zero, the usability of this definition is limited to components with
different densities. As a remedy, here we define φ0 in a new way, i.e.

φ0 = 2ρA

ρA + ρB
. (3.40)

The surface tension is considered as an input parameter and the interface thickness is
set to χ = 4 ∼ 5 as is suggested in Zheng et al. (2006). Here ‘A’ and ‘k’ parameters in
the chemical potential definition are set as

A = 3
4
σ

φ4
0χ
, (3.41)

k = 1
2Aχ2φ2

0 . (3.42)

The dimensionless relaxation time for the Cahn–Hilliard equation is set to be τh = 1
to minimize unphysical spurious velocities that may appear close to interfaces (Pooley,
Kusumaatmaja & Yeomans 2008), whereas other dimensionless parameters are chosen by
thermodynamic properties of the A and B components. The heat capacity (c), the latent
heat (Lh), the melting temperature (Tm) and the wall temperature (Twall) are determined
by the Stefan number definition (3.36).

For a chosen τh, the Γ value controls the mobility factor ‘M’ in the Cahn–Hilliard
equation. It should be set high enough to ensure that the interface has enough time to relax
to local equilibrium but not too high that residual diffusion becomes significant (Kendon
et al. 2001). Here however there is another concern. The partial time derivative of the solid
factor fS used in the source definition (3.24) is determined from the energy equation. This
relation couples the energy equation to the Cahn–Hilliard equation and makes the volume
change simulation a transient approach. For LB simulations where the time step for all
equations is set to be one in the lattice unit system, the reference or the characteristic time
becomes important. In the energy equation, a simple scale analysis between the diffusion
and source terms shows that the time scale is

tref |T =
l2ref

αTSte
, (3.43)

where αT is thermal diffusivity. The characteristic time reference for the Cahn–Hilliard
equation can be obtained by balancing the transient and diffusion terms,

tref |φ =
l3refφ

2
0

σM
. (3.44)

A new dimensionless number can be defined as the ratio of these two time scales,

Rt =
tref |φ
tref |T

= lrefφ
2
0αTSte

Mσ
. (3.45)
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By choosing the interface thickness as the reference length, Rt will be used to determine
the mobility factor

M = χφ2
0αTSte
Rtσ

. (3.46)

Numerical simulation shows that a balance between accuracy and computational cost
can be achieved by keeping Rt close to unity.

4. Validations

In this section the accuracy and stability of the developed framework are evaluated
by simulating some classical multiphase problems including the Laplace test, the
Rayleigh–Taylor instability, expansion and contraction of a droplet when it solidifies inside
a stationary flow and freezing of a sessile water droplet on a cold surface.

4.1. The Laplace test
The Laplace test is about the equilibrium condition of a liquid drop or a gas bubble when it
is surrounded by another fluid. In this condition the pressure difference between the inside
and outside of the drop or the bubble is related to the surface tension and curvature of the
interface. In a 2-D situation where the radius of the drop is R, the Laplace equation reads
as �p = σ/R, where σ is the surface tension.

To simulate this test case, a square domain with the size of 6R × 6R is considered where
a circular drop is located at the centre of the computational domain. There is no gravity,
all boundaries are periodic and the drop is modelled using R = 20, 30 and 40 lattice grids.
In the free energy approach the pressure tensor is obtained as (Kusumaatmaja & Yeomans
2010)

Pαβ =
(
A
[
3φ4 − 2φ2

0φ
2 − φ4

0

]
− kφ∂γ ∂γ φ − k

2
∂γ φ∂γ φ + ρ0

3

)
δαβ + k∂α∂βφ. (4.1)

The static pressure difference used in the Laplace equation is determined by calculating
the scalar portion of the pressure tensor in the centre of the drop (for internal pressure)
and at domain boundaries far from the drop (for external pressure). Figure 2 shows the
variation of pressure difference as a function of the curvature (1/R). As is shown for
increased grid resolution (reduced curvature value), the pressure difference obtained from
the numerical simulations coincides with what is predicted by the Laplace equation.

4.2. The Rayleigh–Taylor instability
The Rayleigh–Taylor instability problem tracks the interface of two immiscible liquids
with different densities where the lighter one is placed beneath the heavier one. A small
perturbation at the interface will intensify by gravity leading to rising bubbles of lighter
liquid and spikes of the heavier one falling. The flow is characterized by two dimensionless
numbers: the Atwood number and the Reynolds number. The former is introduced before
in § 3, and the latter is defined as

Re =
√

LgL
υ

, (4.2)

where L denotes the domain’s width, g is the gravity and
√

Lg represents the characteristic
velocity. To simulate this test case, a rectangular domain with the size of L × 4L is used.
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1/R

�p

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

5.0 × 10–5

1.0 × 10–4

1.5 × 10–4

Analytical σ = 2.0 × 10–3

Numerical σ = 2.0 × 10–3

Analytical σ = 1.0 × 10–3

Numerical σ = 1.0 × 10–3

Figure 2. Variation of pressure difference as a function of the curvature (1/R) for two different values of
surface tension.

The Atwood number is set to be Atw = 0.5, while the gravity is chosen in such a way that
the Reynolds number is 256. The simulation was conducted using two grid resolutions of
L = 100 and 200. Initially, half of the domain is filled with light liquid with a density of
ρA = 1 − Atw = 0.5 and the upper half is set to have ρB = 1 + Atw = 1.5. To simulate a
perturbation, the interface is set to follow the equation

y = 0.1L cos
(

2πx
L

)
. (4.3)

Figure 3(a) shows the vertical position of the interface for the bubble and the spike during
the time evolution of simulation and compares it with what is reported in He et al. (1999).
The time in this simulation is normalized as t∗ = t/

√
L/g. The flow configurations in three

dimensionless times of t∗ = 1, 3 and 5 are depicted in figure 3(b). The results obtained in
this study appears to compare well with those in He et al. (1999).

4.3. Volume change during solidification
This subsection evaluates how the new scheme can simulate the volume change when
the volume expansion coefficient is positive or negative. The test case designed for this
purpose is a drop of the B component surrounded by the A component inside a square
domain (figure 4a). The drop and surrounding fluid are initially at a temperature higher
than the melting temperature. The lower boundary is a cold wall with a temperature
lower than the melting temperature, and its value is set by the Stefan number. The left
and right boundaries are periodic, and a zero gradient of temperature is applied to the
upper boundary. There is no gravity, so the drop remains stationary at its initial location.
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Figure 3. (a) The vertical position of the interface for the bubble and the spike versus time: results of current
study (open diamonds, and filled circles) and those of He et al. (1999) (the solid line). (b) The evolution of fluid
interface in the Rayleigh–Taylor instability at Re = 256 where the grid resolution is L = 200.
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Figure 4. (a) Simulation configuration for testing the volume change during solidification. (b) Volume change
obtained from simulations versus nominal expansion rate values for three sets of simulations: Atw = 0.75,
D = 40, Ste = 0.1 (�), Atw = 0.5, D = 50, Ste = 0.125 (�), and Atw = 0.0, D = 60, Ste = 0.15 (�).

The drop volume is calculated before and after solidification using the following equation:

V =
∑

all nodes

φ(x, y)+ φ0

2φ0
. (4.4)

For three density ratios (Atw = 0, 0.5 and 0.75), three droplet sizes (D = 40, 50 and 60)
and three Stefan numbers (Ste = 0.1, 0.125 and 0.15), the change in volume obtained from
the simulation (λnumerical) is shown in figure 4(b) with respect to the nominal expansion
rate value (λ) used in (3.24). The numerical results indicate that the introduced method can
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Density Heat capacity Thermal diffusivity
(kg m−3) (J kg−1K−1) (m2 s−1)

Water 1000 4187 1.43 × 10−7

Ice 920 2031 1.23 × 10−6

Table 2. Thermal properties of ice and water.

successfully simulate the volume change during a solidification. Figure 4(b) shows some
deviation from expectations when the magnitude of volume change is high (|λ| > 10 %).
This is related to the complexity and transient behaviour of the volume change that was
addressed before in § 3.5. Note that this deviation can be corrected by adjusting the input
λ value in (3.24) using the shooting method.

4.4. Water droplet freezing
Like any other substance, water has a specific freezing temperature for a given
environmental pressure. Below this melting temperature, the stable form of water is
solid. However, experimental results indicate that water can experience liquid form even
at a temperature range lower than the melting temperature. This supercooled water is
metastable and needs a minor perturbation or temperature fluctuation to initiate the
nucleation process. The next step is the recalescence stage when heterogeneous or
homogeneous nucleation converts the liquid water into a uniform mixture of ice and water.
The temperature in this stage rises back to freezing temperature. Since the recalescence
stage is very fast (it takes only a few milliseconds), the solidification in this stage is
limited to a small portion of the droplet. After recalescence, the water–ice mixture, which
has almost a uniform temperature, starts to solidify. The solidification process occurs at
a constant temperature (melting temperature) and is accompanied by changes in water
properties. Table 2 lists the thermal properties of ice and water.

Here, we ignore the recalescence stage and use it only to initialize our numerical set-up.
The simulation utilizes a 3-D domain with 19 discrete velocities at each grid point (D3Q19
lattice). The B component acts as a water drop, and its thermal properties are obtained
from the water–ice mixture. The liquid mass fraction of water in the mixture can be
approximated as (Blake et al. 2014)

ξ = 1 − cwater

cice
Ste. (4.5)

Having the water mass fraction, any thermal property, e.g. Mmix of the mixture, can be
determined, i.e.

Mmix = Mwaterξ + Mice (1 − ξ). (4.6)

The experimental results used as the validation reference come from Shi & Duan (2022),
where they examined the anti-icing performance of stainless-steel-based surfaces. The data
we received from the authors is related to the freezing process of a water droplet with a
volume of 14.76 mm3 on a cold surface with a static contact angle of ψwall = 106.86◦.
The wall temperature in this experiment was kept constant at −14.6 ◦C. The dimensionless
numbers used to conduct the simulation are listed in table 3.

According to the experimental data, the solidification process took tfreezing = 29.68 s.
Using this value as a reference time, the dimensionless time can be defined as t∗ =
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Dimensionless number Experiment LB simulation

Ste 0.125 0.125
Boa 0.03 0.03
(ρ − ρice)/ρice 0.09 0.10
cliquid/csolid(= cmix/cice) 1.78 1.78
αliquid/αsolid(= αmix/αice) 0.233 0.25

Table 3. Essential dimensionless parameters associated with water droplet freezing.
a The characteristic length in the Bond number definition is chosen to be l0 = V/A.

(b)(a)

(c) (d )

Figure 5. Experimental and numerical droplet shape at (a) t∗ = 0, (b) t∗ = 0.25, (c) t∗ = 0.5 and
(d) t∗ = 1.0.

t/tfreezing. Figure 5 compares the numerical results obtained from the LB simulation with
those from the experiment at four different times t∗ = 0, 0.25, 0.5 and 1 (images printed
with authors’ permission). As is shown in figure 5, the numerical results compare well
with the experimental data in contact angle (figure 5a), the shape and the evolution of
the water–ice interface during the solidification (figure 5b,c). When water solidifies, its
density decreases, and the increase in volume may lead to a conical pointy tip at the top
of the ice. Figure 5(d) shows that the current LB scheme can successfully capture this
phenomenon. The tip angle obtained from the simulation (127◦) is in good agreement with
the experimental data and what is reported in the literature (Marín et al. 2014; Schetnikov
et al. 2015).

5. Results and discussions

To make a droplet solidify, thermal energy must be extracted from the liquid. The heat
transfer in this study is limited to conduction and the cold reservoir is simulated as a
substrate with a constant temperature below the melting point of the liquid. The rate of
heat transfer depends on the substrate and droplet properties introduced in § 2. The freezing
process of the droplet can be influenced by two additional heat transfer mechanisms: heat
transfer between the environment and the substrate and that between the droplet and the
environment. These two are determined by the properties of the environment, including
its thermal diffusivity and initial temperature. After validating the introduced LB scheme,
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Physical parameter Dimensionless parameter Lower limit Upper limit

Substrate properties ψwall ψwall(rad) π/3 2π/3

Droplet properties Tini(B) θini(B) = Tini(B) − Tm

Tm − Twall
0 1

αB(L), αB(S) αB(S/L) = αB(S)

αB(L)
1 4

g Bo =
(ρB − ρA)gl2ref

σ
0 0.1

Environmental condition Tini(A) θini(A) = Tini(A) − Tm

Tm − Twall
−1 0

αA αB(S)/A = αB(S)

αA
0.25 4

Table 4. Simulation parameters and their ranges.

here we examine how these parameters can affect the solidification process of a sessile
droplet. We focus on two main aspects of the solidification process: the freezing time
and the shape deformation of the droplet. For simulations within this section, the Stefan
number is set to a constant value of Ste = 0.1. Other parameters (shown in figure 1) are
controlled through six dimensionless numbers. The parameters and corresponding ranges
used in this investigation are given in table 4.

5.1. Freezing time
The freezing time is measured as the time t required to fully solidify the droplet. The time
is tracked through the following dimensionless time:

Fo = αt

l2ref
. (5.1)

To determine which parameters from table 4 have the greatest impact on the total
freezing time and how they may interact with each other, we utilize the design of
experiments approach in two stages: screening and characterization. The screening step
seeks to discover the most important simulation parameters while the characterization step
captures the interaction effects. In the screening phase, a resolution IV standard two-level
fractional-factorial design is used for six simulation parameters (listed in table 4), which
consist of 16 simulations. The final shape of a solidified droplet is significantly affected by
its expansion rate, but freezing time is not affected in the same way. For now, λ is assumed
to be zero in assessing the freezing time, and the investigation of expansion rate effects is
deferred to the next section.

The statistical analysis of results are summarized in a Pareto chart in figure 6(a).
The chart displays and ranks parameter effects on the freezing time. Positive effects
increase the freezing time while negative effects decrease it. According to figure 6(a),
the solidification time is primarily influenced by the thermal diffusivity ratio between
components B and A (αB(S)/A), the contact angle (ψwall) and the initial temperature of
the surrounding fluid (θini(A)). Other parameters fall below the t-value limit and can
be considered insignificant. Although the Pareto chart includes interaction effects, the
resolution for this screening phase is not high enough to clearly detect which factors are
involved in these interactions.
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Figure 6. (a) Pareto chart showing screening of simulation parameters’ effects on the freezing time. (b) Pareto
chart showing characterization of four factors and their interactions to assess their effects on the freezing time.

After throwing out the unimportant factors by holding them fixed at Bo = 0, αB(S) =
αB(L) = αB and θini(B) = 0, the study carried on with three significant parameters of αB/A,
θini(A) and ψwall to the characterization phase. The parameter study is conducted by a
two-level full factorial design with one central point of factors (23 + 1 = 9 runs) to detect
the two-factor interactions. The simulation design and corresponding freezing time are
listed in the Appendix. The results displayed in figure 6(b) reveal that the only interaction
that significantly affects the freezing time is between contact angle and thermal diffusivity
ratio (αB/A − ψwall).

In the simulation the substrate has the lowest temperature in the computational domain.
A significant portion of thermal energy of the droplet is extracted by the substrate
(leading to the primary solidification). The temperature of the surrounding fluid (i.e. the
environment) also changes through heat transfer with the substrate and the droplet.
When the temperature of the environment drops below the melting point, a secondary
solidification takes place at the interface between the droplet and the environment. The
following subsections will describe how parameters selected in figure 6(b) can influence
the primary and the secondary solidification and, thus, the freezing time of the droplet.

5.1.1. The thermal diffusivity ratio
When a semi-infinite liquid is placed next to a cold substrate with a constant temperature
below the melting point, the thickness of the solid layer follows this equation for
one-dimensional (1-D) solidification (Watanabe et al. 1992):

z∗ = z
lref

=
√

2SteFo. (5.2)

The 1-D solution can still provide a good approximation for the droplet solidification when
the heat exchange between droplet and environment is negligible. However, it must be
noted that the environment will also be cooled down at a rate that can be different from the
droplet cooling rate. This means that the surrounding fluid can reach the wall temperature
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Figure 7. Temperature distribution and solid shape of the droplet for αB/A = 4.0 and αB/A = 0.25 at
(a) Fo = 1.0 and (b) Fo = 1.4. Other simulation parameters are set as θini(A) = 0 and ψwall = 2π/3.

much quicker than the droplet. In such situations, the freezing process is accelerated by
the secondary solidification at the interface between the liquid and the environment. In
this section, two different environments are used to track the solidification of a droplet.
Both environments are initiated by a temperature equal to the melting point of the droplet
(θini(A) = 0), but they are different in thermal diffusivity ratio (αB/A = 4.0, 0.25).

The solidification of this droplet in two environments, αB/A = 4.0 and αB/A = 0.25, is
compared in figure 7. When the thermal diffusivity of the environment is low (αB/A =
4.0), the surrounding fluid reacts slowly to the cold temperature. According to figure 7(a),
for Fo = 1, the temperature remained near the melting point in most of the domain,
resulting in minimal secondary solidification. The solid layer has developed parallel to
the substrate and is in agreement with the 1-D analytical solution. In contrast, when the
rate of heat transfer inside the environment is high (αB/A = 0.25), the surrounding fluid
cools down quickly, making secondary solidification significant. The solid interface curves
upward at the edge while remaining flat at the centre of the droplet. Eventually, the concave
shape of the solid layer becomes deeper until it almost forms a solid shell all over the drop
at Fo = 1.4 (figure 7b). At this time more than 65 % of the droplet is solidified while
in the other environment (αB/A = 4.0), the solid layer still has kept its flat form and the
solidified percentage is about 40 %. This indicates the high dependence of freezing time on
the thermal diffusivity of the environment. Higher thermal diffusivity ratio (lower thermal
diffusivity in the environment) results in weaker secondary solidification and a longer
freezing process (a positive effect shown in figure 6b).

5.1.2. The contact angle
In this study droplets lose energy through two interfaces: one with the substrate and the
other with the surrounding fluid. For ease of reference, we will refer to these two as the
‘lower’ and ‘upper’ surfaces of the droplet, respectively. Considering the droplet as a
spherical cap it is easy to show that, for a given volume of the droplet, the differences
in the upper surface caused by different contact angles are insignificant compared with
those in the lower surface (the maximum variations of the upper and lower surface for
the contact angle range of π/3 to 2π/3 are 8 % and 104 %, respectively). In the same
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Figure 8. Freezing time variation under different contact angles for θini(A) = 0, when the thermal diffusivity
ratio is set to αB/A = 4.0 (solid line) and αB/A = 0.25 (dashed line).

environment, when the contact angle value is higher, the lower contact surface is reduced,
resulting in a higher freezing time (a positive effect in the Pareto chart).

Figure 8 shows the variation of the freezing time as a function of contact angle for
two environments with thermal diffusivity ratios of αB/A = 4.0 and αB/A = 0.25. In both
environments the freezing time increases with higher contact angle. For this reason,
hydrophobic surfaces are generally preferred as a means of delaying ice formation. But
the main point is how the environment can affect the anti-ice performance of hydrophobic
surfaces. When the environmental thermal diffusivity is low (αB/A = 4.0), changing the
contact angle from π/3 to 2π/3 increases the freezing time by 155 %. However, the contact
angle variation from its minimum to its maximum level only changes the freezing time
by 43 % when the thermal diffusivity of the environment is high (αB/A = 0.25 shown
as a dashed line in figure 8). This shows a strong interaction between the effects of the
thermal diffusivity ratio and the contact angle (αB/A − ψwall) on the freezing time, which
is highlighted before in the Pareto chart (figure 6b) as the fourth-ranked factor.

Figure 9 compares droplet solidification on hydrophobic and hydrophilic surfaces in two
environments with a similar initial temperature but different thermal diffusivity. When
the environment fluid’s thermal diffusivity is low (αB/A = 4.0 shown on the left side of
figure 9), the secondary solidification is weak, and the solidified layer has a flat surface
at the top for both hydrophobic and hydrophilic substrates. The difference arises when
an environment fluid with a high thermal diffusivity surrounds the droplet (αB/A = 0.25
shown on the right side of figure 9). The secondary solidification in this case leads to a
concave shape of the solidified portion of the droplet. From figure 9, it is clear that the
solid interface transformation on a hydrophobic surface (upper row) is more noticeable
than on a hydrophilic surface (lower row). This can be attributed to the difference in the
relative strength of secondary solidification for these two droplets.

When a droplet is placed on a hydrophilic surface, it tends to spread over the surface
horizontally keeping a significant portion of the liquid in direct contact with the cold
substrate. As a result, primary solidification dominates, even when the environment has
high thermal diffusivity. In this condition, secondary solidification only has a minor impact
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αB/A = 4.0 αB/A = 0.25

Figure 9. Temperature distribution and solid shape of two droplets on hydrophobic (a) and hydrophilic
(b) surfaces for αB/A = 4.0 (left) and αB/A = 0.25 (right) when the initial temperature is set to θini(A) = 0
and the dimensionless time is Fo = 1.

on the liquid–solid interface near the droplet’s edge. On the other hand, hydrophobic
surfaces reduce primary solidification by decreasing the contact area between the liquid
and the cold substrate. This exposes the droplet to a thicker layer of the environment
liquid, providing more opportunities for secondary solidification to influence the freezing
time. This means that using hydrophobic surfaces results in a higher sensitivity to
secondary solidification. Now the question is to what extent the thermal diffusivity ratio
and secondary solidification can affect the performance of hydrophobic surfaces over
hydrophilic ones.

Figure 10 shows the ratio of freezing time between droplets with contact angles of 2π/3
and π/3, as a function of thermal diffusivity ratio. By increasing the thermal diffusivity
of the surrounding fluid (decreasing the αB/A value), the hydrophobic surface’s advantage
over the hydrophilic ones decreases until it becomes almost constant above unity. It
means a higher thermal diffusivity of the environment can diminish the privilege of a
hydrophobic surface, but it cannot completely remove it. Because in this set-up where
the substrate has the lowest temperature, the secondary solidification is always weaker
than what is caused by the cold wall. When the solidification from the lower surface is
dominant, a higher contact angle will always result in a longer freezing time.

5.1.3. The initial temperature of the environment
When the environment temperature is lower than the melting point, secondary
solidification speeds up the freezing process. Conversely, in an environment with high
temperatures, freezing time will be longer (a positive effect shown in the Pareto chart,
figure 6b). The relative strength of secondary solidification determines the importance
of the initial temperature of the environment in freezing time. In the current set-up,
solidification primarily occurs at the bottom of the droplet. Therefore, the initial
temperature of the environment is not expected to be ranked in the top tier of the Pareto
chart. Conditions can change in a different set-up.

When the temperature difference between the droplet and its surroundings is significant
enough to disregard solidification from the substrate, the primary factor affecting the
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Figure 10. Variation of the freezing time ratio between droplets with contact angles of 2π/3 and π/3 as a
function of the thermal diffusivity ratio when the initial temperature is θini(A) = 0.

freezing time is the environment. The upper surface of the droplet is where this influence
is felt the most. In order to simulate such a condition, the substrate is assumed to be
thermally isolated. The environment is initiated at θini(A) = −1, the temperature at the
upper boundary of the domain is kept constant at θ = −1, and three droplets with
wall contact angles of π/3, π/2 and 2π/3 are rested at the substrate to freeze by the
environment. The solid shape of the three droplets at times Fo = 2 and Fo = 4 can be
seen in figure 11. Because the substrate is treated as an adiabatic boundary, the inner
surface of the solid layer of the droplet is perpendicular to the lower surface (substrate).
The figure shows that the solidification process occurs at equal rates in all droplets.
That is because the variation of the upper surface due to different contact angles is not
significant. Finally, three droplets solidify at Fofreezing(π/3) = 4.81, Fofreezing(π/2) = 4.48
and Fofreezing(2π/3) = 4.28. It means that when solidification occurs primarily on the upper
surface, higher contact angles lose effectiveness in anti-icing and can even decrease the
freezing time. In this simulation, the condition is achieved by isolating the substrate.
However, other phenomena, such as surface evaporation or wind, can make solidification
at the upper surface dominant and lead to the same results.

5.2. Shape deformation
During solidification, the volume of a droplet changes if its expansion rate is not zero.
The final shape of the solidified droplet is determined by the evolution of the solid–liquid
interface. At the early stage of solidification, a flat layer of solid grows next to the wall.
In this stage, the heat transfer is limited to the cold substrate and the interface stays fairly
flat. As the solid layer grows, the shape of the liquid–solid interface becomes sensitive
to edge conditions where the heat transfer is conducted through a tri-junction between
the solid, liquid and surrounding fluid (figure 12). Here we track the solid front through
variation of two heights: the solid thickness at the centre of the droplet (hc) and the height
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(a)

(b)

Figure 11. The evolution of solid layers for three droplets with contact angles of π/3, π/2 and 2π/3 when
the solidification initiated from the upper surface. Results are shown for (a) Fo = 2.0. (b) Fo = 4.0.

H

Solid

Liquid

Surrounding

fluid

Tri-junction

hc
he

Figure 12. Schematic of a sessile droplet during its solidification.

of the solid front at the tri-junction (he), both are shown in figure 12. The two heights can
be made dimensionless by dividing them by the initial height of the droplet, denoted as H.

Section 5.1 showed how the properties of the environment affect the secondary
solidification at the tri-junction. Thermal diffusivity was found to be the most significant
factor in the solidification process. Here, our discussion focuses on how the thermal
diffusivity ratio (in the range of 0.5–20) can affect the final shape of a solidified droplet.
For this part, the initial temperature of the environment is set to θini(A) = 0, and the
expansion rate is fixed at λ = 10 %.

Figure 13(a) shows the evolution of hc, and he as functions of the freezing time fraction
(τ = Fo/Fofreezing) for αB/A = 20. Also included in this figure are the component index
distribution and droplet shapes before and after solidification. This figure indicates that
the solid layer remains flat until τ = 0.3. After that, he tends to be slightly higher than
hc, but stays close to hc for much of the solidifying process. Finally, the solidification is
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Figure 13. Evolution of the solid layer as a function of freezing time fraction, and the component index
distribution in the solidified droplet for (a) αB/A = 20 and (b) αB/A = 11.5 when the expansion rate is
λ = +10 %.

finished with 10 % extra volume. There is no sharp tip above the droplet, but concentration
of expanded volumes on the central part of the droplet leads to a conical shape at the top.
The final shape of the droplet is influenced by the gradual expansion of volume. For a
period of time, the solid layer grows in a flat shape, allowing the extra volume induced by
solidification to expand horizontally. This ensures smooth shape variation without severe
shape deformation at the top of the droplet. The ice–liquid interface deformation from
a flat to a concave shape can occur sooner by increasing the thermal diffusivity of the
environment. At αB/A = 11.5, the solid layer stays flat for just 21 % of the solidification
time. The concave shape of the solid interface holds the extra volume in the central part
and ultimately leads to a sharper tip above the droplet.

5.2.1. Solid shell formation and residual thermal stress
As the thermal diffusivity of the environment increases, the edge of the droplet experiences
faster solid growth. Eventually, a solid shell develops and prevents any further deformation
during solidification. Figure 14(a) shows such a condition where the thermal diffusivity
ratio is set to αB/A = 1. According to this figure, the solid shell is formed at τ = 0.8,
while the central height is hc = 0.69H. In this stage, shape deformation stops, and the
core liquid’s tendency to change volume may lead to two outcomes. The solid shell may be
strong enough to prohibit the core liquid from further volume change, leading to residual
stress inside the droplet. This is the case in our simulation in figure 14(a). At τ = 1 when
the solidification completes, the drop has a sharp tip but its volume is only 8 % larger
than its initial shape. Forming a solid shell has another possibility for the final shape.
Solidification of liquid inside the shell may induce cracks in the outer solid layers. Some
liquid can pass through the cracks to solidify on the surface. The final shape will be slightly
warped, probably with a tip at the top. This kind of deformation cannot be modelled using
the present scheme, because the solid shell in simulations is rigid and unbreakable.

When the solid outer shell is strong enough to prevent any further volume change,
there is a chance of residual stresses after solidification. This is a very common situation
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Figure 14. Evolution of the solid layer as a function of freezing time fraction, and the component index
distribution in the solidified droplet for (a) αB/A = 1 and (b) αB/A = 0.5 when the expansion rate is λ =
+10 %.

that can happen in manufacturing processes. The cooling rate of a casting product is
not uniform. Usually, the temperature of surface layers decreases more rapidly than the
core temperature. When the expansion coefficient of the molten material is not zero, any
expansion or contraction of the core part during the solidification will be prevented by
the solid outer layers resulting in localized residual compressive or tensile stress. The
calculation of the value and location of these stresses are rather complex depending on
the geometry, temperature condition and mechanical properties of the component. Full
analysis of these stresses can be achieved by experimental data and elastoplastic analysis,
which is outside the scope of this study. However, the introduced LB model has a specific
feature that can be used to predict these residual thermal stresses.

Section 2 introduces a new source term for the convective Cahn–Hilliard equation that
simulates volume change by manipulating the component index around its equilibrium
value. The increased or decreased component index will then be balanced by moving
components into or out of the solidification interface. If the deviated component index
value is surrounded by a solidified domain, the solid treatment introduced in § 3.3 prevents
any further component movement. This means that the deviated component index value
remains trapped inside the solid domain during the simulation. Emphasizing that residual
thermal stress is caused by blockage of volume change of a core part by an outer solid
layer, we can use residually unbalanced component index distribution as a sign of possible
residual thermal stresses. Note that in the case of severe contraction, the method must be
used with caution. Because the unbalanced component index inside a solid shell may fall
below the zero value that is not physically valid.

In figures 13 and 14 the final shape of the droplets is also represented by the distribution
of the component index. For a thermal diffusivity ratio of αB/A = 1, the solid shell forms
at τ = 0.8. The shape deformation stops and the solidification of the remaining liquid
inside the droplet results in high index values (depicted as red regions) that resembles the
residual compressive stresses. Note that there are no such red regions in figure 13.

Despite full solidification, the droplet can still maintain its spherical cap shape if
the thermal diffusivity ratio is sufficiently low. Figure 14(b) illustrates the process of
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Figure 15. Evolution of the solid layer as a function of freezing time fraction, and the component index
distribution in the solidified droplet for αB/A = 8 when the expansion rate is λ = −10 %.
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Figure 16. Evolution of the solid layer as a function of freezing time fraction, and the component index
distribution in the solidified droplet for αB/A = 0.5 when the expansion rate is λ = −10 %.

solidifying a droplet when the thermal diffusivity ratio is αB/A = 0.5. The solid shell
forms at τ = 0.65 when the volume is expanded by only 6 %. The drop completes its
solidification with this percentage and a shape that has retained its cap shape. This
condition has a larger red zone than figure 14(a), which suggests a greater chance of
residual thermal stresses.

5.2.2. Sign of volume change
So far, we have described three possible shape deformations for a droplet that expands
during solidification. A ‘uniform’ expansion occurs when the environment has a low
thermal diffusivity (figure 13a). A ‘sharp’ deformation happens when the solid–liquid
interface forms a concave shape and maintains this shape for most of the freezing process
(figures 13b and 14a). An ‘incomplete’ deformation is caused by the creation of a solid
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shell in the presence of a high environmental thermal diffusivity (figure 14b). A droplet
that contracts during solidification can experience any of these possible deformations.
However, with the present scheme, only uniform and sharp deformations can be modelled.
As previously mentioned, an incomplete deformation may result in physically invalid
results when there is severe contraction.

Figure 15 illustrates the solid layer’s evolution during a uniform deformation while a
droplet with a λ = −10 % is surrounded by an environment with a thermal diffusivity
ratio of αB/A = 8. A flat solid layer grows until τ = 0.18. The interface maintains its flat
shape even after the solid edge starts to grow faster (τ = 0.4). At the end, the volume
of solidified droplet is reduced by 10 %, but in a uniform manner. A sharp deformation
can be achieved with a higher thermal diffusivity of the environment. Such a condition
is shown in figure 16 where the thermal diffusivity ratio is αB/A = 0.5. As shown in this
figure, the liquid at the edges solidifies faster than the central region during the early
stages of solidification. At τ = 0.4, the interface takes on a concave shape, as opposed to
the semi-flat interface seen in figure 15. Finally, when the solidification is completed, a
dimple forms at the top of the droplet.

6. Conclusion

In this paper we introduced a new LB model to simulate solidification processes in a
binary multicomponent system. Based on the free energy approach, the model uses a
modified version of the convective Cahn–Hilliard equation to capture the density variation
as well as changes in other properties during solidification. The model was validated
against analytical, numerical and experimental results available in the literature. The
results demonstrated that the new LB framework is capable of simulating liquid–solid
phase transitions with volume expansion or contraction due to changes in density.

Using the new model, the solidification of a sessile droplet was investigated in detail. Six
different parameters are examined to see how they – individually or combined – can affect
the freezing time of the droplet. The results showed that the environmental conditions
and solid surface properties have the most dominant influence on the freezing time. By
analysing the interaction effects of these parameters, we found that the effects of surface
hydrophobicity can be partially diminished or intensified by the thermal diffusivity of
the environment. It is also shown that the freezing times are not significantly different
on hydrophobic and hydrophilic surfaces when solidification primarily occurs at the
droplet–environment interface.

The variation of droplet shape was also simulated using the new model. In the case of
volume expansion, numerical results indicated that the droplet tends to develop a cone
on the upper surface. Conversely, volume contraction can lead to a dimple at the top
of the solidified droplet. The new LB model also provides a new mechanism to assess
the possibility of thermal residual stresses that may occur during solidification. The
importance of environmental conditions was emphasized once again in the simulation
of droplet solidification, taking into account both volume expansion and contraction.
The results obtained from this work may be of great significance to better understand
the solidification mechanisms when the liquid–solid phase transition occurs among a
surrounding fluid.
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Run θB αB(S/L) Bo θA αB(S)/A ψwall Fofreezing

1 0 1 0 −1 0.25 π/3 1.5
2 1 1 0 −1 4 π/3 2.5
3 0 4 0 −1 4 2π/3 5
4 1 4 0 −1 0.25 2π/3 2.5
5 0 1 0.1 −1 4 2π/3 3.5
6 1 1 0.1 −1 0.25 2π/3 2
7 0 4 0.1 −1 0.25 π/3 1.5
8 1 4 0.1 −1 4 π/3 2.5
9 0 1 0 0 0.25 2π/3 3
10 1 1 0 0 4 2π/3 8
11 0 4 0 0 4 π/3 3.5
12 1 4 0 0 0.25 π/3 2.5
13 0 1 0.1 0 4 π/3 2.5
14 1 1 0.1 0 0.25 π/3 2
15 0 4 0.1 0 0.25 2π/3 3
16 1 4 0.1 0 4 2π/3 6.5

Table 5. Simulation design and freezing time obtained from simulations in the screening phase.

Run αB/A θini(A) ψwall Fofreezing

1 0.25 −1 π/3 1.45
2 4 −1 π/3 2.35
3 0.25 0 π/3 2.05
4 4 0 π/3 3.1
5 0.25 −1 2π/3 2.2
6 4 −1 2π/3 4.45
7 0.25 0 2π/3 2.95
8 4 0 2π/3 7.9
9 2.125 −0.5 π/2 3.55

Table 6. Freezing time obtained from simulations for the characterization phase.
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Appendix. Simulation designs and results obtained from simulations

This appendix lists simulation designs and results obtained from simulations.
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