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Abstract

An integer partition of a positive integer n is called t-core if none of its hook lengths is divisible by t.
Gireesh et al. [‘A new analogue of t-core partitions’, Acta Arith. 199 (2021), 33–53] introduced an analogue
at(n) of the t-core partition function. They obtained multiplicative formulae and arithmetic identities for
at(n) where t ∈ {3, 4, 5, 8} and studied the arithmetic density of at(n) modulo p j

i where t = pa1
1 · · · p

am
m

and pi ≥ 5 are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core
partition function’, J. Integer Seq. 27 (2024), Article no. 24.4.5] proved new arithmetic identities satisfied
by a5(n). We study the arithmetic densities of at(n) modulo arbitrary powers of 2 and 3 for t = 3αm where
gcd(m, 6)=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms
and their applications to arithmetic functions’, Int. J. Number Theory 1 (2005), 75–101] on the nilpotency
of Hecke operators, we prove an infinite family of congruences for a3(n) modulo arbitrary powers of 2.

2020 Mathematics subject classification: primary 11P83; secondary 05A17, 11F11.

Keywords and phrases: t-core partition, analogue of t-core partition, theta function, modular form,
arithmetic density.

1. Introduction and statement of results

A partition π = {π1, π2, . . . , πk} of a positive integer n is a nonincreasing sequence of
natural numbers such that

∑k
i=1 πi = n. The number of partitions of n is denoted by

p(n). The Ferrers–Young diagram of π is an array of nodes with πi nodes in the ith row.
The (i, j) hook is the set of nodes directly to the right of the (i, j) node, together with the
set of nodes directly below it, as well as the (i, j) node itself. The hook number, H(i, j),
is the total number of nodes on the (i, j) hook. For a positive integer t ≥ 2, a partition
of n is called t-core if none of the hook numbers are divisible by t. We illustrate the
Ferrers–Young diagram of the partition 4 + 3 + 1 of 8 with hook numbers:

•6 •4 •3 •1

•4 •2 •1

•1

It is clear that the partition 4 + 3 + 1 of 8 is a t-core partition for t ≥ 7.
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2 P. Talukdar [2]

If ct(n) counts the t-core partitions of n, the generating function of ct(n) is given by

∞∑
n=0

ct(n)qn =
(qt; qt)t

∞
(q; q)∞

=
f t
t

f1

(see [6, (2.1)]). Here and throughout the paper, for |q| < 1, we define (a; q)∞ :=∏∞
k=0(1 − aqk) and for convenience, we set fk := (qk; qk)∞ for integers k ≥ 1. Granville

and Ono [8] proved that if t ≥ 4, then ct(n) > 0 for every nonnegative integer n. A
survey of t-core partitions can be found in [4].

For an integral power series F(q) =
∑∞

n=0 a(n)qn and 0 ≤ r < M, we define the
arithmetic density δr(F, M; X) by

δr(F, M; X) :=
#{0 ≤ n ≤ X : a(n) ≡ r (mod M)}

X
.

An integral power series F is called lacunary modulo M if

lim
X→∞
δ0(F, M; X) = 1,

that is, almost all of the coefficients of F are divisible by M. Arithmetic densities of
ct(n) modulo arbitrary powers of 2, 3 and for primes greater than or equal to 5 are
studied by Jindal and Meher [10].

For |ab| < 1, Ramanujan’s general theta function f (a, b) is given by

f (a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2.

In Ramanujan’s notation, the Jacobi triple product identity [3, page 35, entry 19] takes
the shape

f (a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Ramanujan introduced two special cases of f (a, b):

ϕ(−q) := f (−q,−q) =
∞∑

n=−∞
(−1)nqn2

=
f 2
1

f2
,

f (−q) := f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = f1.

In this notation, the generating function of ct(n) may be rewritten as

∞∑
n=0

ct(n)qn =
f t(−qt)
f (−q)

. (1.1)
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[3] An analogue of t-core partitions 3

Recently, Gireesh et al. [7] considered a new function at(n) by substituting ϕ(−q)
for f (−q) in the generating function of ct(n) (in (1.1)), namely

∞∑
n=0

at(n)qn =
ϕt(−qt)
ϕ(−q)

=
f2 f 2t

t

f 2
1 f t

2t

. (1.2)

They proved several multiplicative formulae and arithmetic identities for at(n) for
t = 2, 3, 4 and 8 using Ramanujan’s theta functions and q-series techniques. Using
the theory of modular forms, they studied the divisibility of at(n) modulo arbitrary
powers of primes greater than 5. More precisely, they proved the following theorem.

THEOREM 1.1. Let t = pa1
1 · · · p

am
m where the pi are prime numbers greater than or

equal to 5. Then for every positive integer j,

lim
X→∞

#{0 ≤ n ≤ X : at(n) ≡ 0 (mod p j
i )}

X
= 1.

They also deduced a Ramanujan type congruence for a5(n) modulo 5 by using an
algorithm developed by Radu and Sellers [14]. Bandyopadhyay and Baruah [2] proved
some new identities connecting a5(n) and c5(n). They also found a recurrence relation
for a5(n).

Recently, Cotron et al. [5, Theorem 1.1] proved a strong result regarding lacunarity
of eta-quotients modulo arbitrary powers of primes under certain conditions. We
observe that the eta-quotients associated with at(n) do not satisfy these conditions,
which makes the problem of studying lacunarity of at(n) more interesting. In this
article, we study the arithmetic densities of at(n) modulo arbitrary powers of 2 and
3 where t = 3αm. To be specific, we prove the following theorems.

THEOREM 1.2. Let k ≥ 1, α ≥ 0 and m ≥ 1 be integers with gcd(m, 6) = 1. Then the
set {n ∈ N : a3αm(n) ≡ 0 (mod 2k)} has arithmetic density 1.

THEOREM 1.3. Let k ≥ 1, α ≥ 0 and m ≥ 1 be integers with gcd(m, 6) = 1. Then the
set {n ∈ N : a3αm(n) ≡ 0 (mod 3k)} has arithmetic density 1.

The fact that the action of Hecke algebras on spaces of modular forms of level
1 modulo 2 is locally nilpotent was first observed by Serre and proved by Tate (see
[15–17]). Later, this result was generalised to higher levels by Ono and Taguchi [13].
We observe that the eta-quotient associated to a3(n) is a modular form whose level is in
the list of Ono and Taguchi. We use a result of Ono and Taguchi to prove the following
congruences for a3(n).

THEOREM 1.4. Let n be a nonnegative integer. Then there exists an integer c ≥ 0 such
that for every d ≥ 1 and distinct primes p1, . . . , pc+d coprime to 6,

a3

( p1 · · · pc+d · n
24

)
≡ 0 (mod 2d)

whenever n is coprime to p1, . . . , pc+d.
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The paper is organised as follows. In Section 2, we state some preliminaries from
the theory of modular forms. Then we prove Theorems 1.2–1.4 using the properties of
modular forms in Sections 3–5, respectively. We mention some directions for future
study in the concluding section.

2. Preliminaries

In this section, we recall some basic facts and definitions for modular forms (for
more details, see [11, 12]).

First, we define the matrix groups

SL2(Z) :=
{ [a b

c d

]
: a, b, c, d ∈ Z, ad − bc = 1

}
,

Γ0(N) :=
{ [a b

c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=
{ [a b

c d

]
∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}
,

and

Γ(N) :=
{ [a b

c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N)

}
,

where N is a positive integer. A subgroup Γ of SL2(Z) is called a congruence subgroup
if Γ(N) ⊆ Γ for some N, and the smallest N with this property is called the level of Γ.
For instance, Γ0(N) and Γ1(N) are congruence subgroups of level N.

Let H denote the upper half of the complex plane. The group

GL+2 (R) :=
{ [a b

c d

]
∈ SL2(Z) : a, b, c, d ∈ R and ad − bc > 0

}

acts on H by [
a b
c d

]
z =

az + b
cz + d

.

We identify∞ with 1/0 and define[
a b
c d

]
r
s
=

ar + bs
cr + ds

,

where r/s ∈ Q ∪ {∞}. This gives an action of GL+2 (R) on the extended upper half plane
H∗ = H ∪ Q ∪ {∞}. Suppose that Γ is a congruence subgroup of SL2(Z). A cusp of Γ
is an equivalence class in P1 = Q ∪ {∞} under the action of Γ.

The group GL+2 (R) also acts on functions f : H→ C. In particular, if γ = [ a b
c d ] ∈

GL+2 (R), f (z) is a meromorphic function on H and � is an integer, we define the slash
operator |� by

( f |�γ)(z) := (det(γ))�/2(cz + d)−� f (γz).
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[5] An analogue of t-core partitions 5

DEFINITION 2.1. Let Γ be a congruence subgroup of level N. A holomorphic function
f : H→ C is called a modular form with integer weight � on Γ if the following hold:

(1) for all z ∈ H and all [ a b
c d ] ∈ Γ,

f
(az + b
cz + d

)
= (cz + d)� f (z);

(2) if γ ∈ SL2(Z), then ( f |�γ)(z) has a Fourier expansion of the form

( f |�γ)(z) =
∑
n≥0

aγ(n)qn
N ,

where qN := e2πiz/N .

For a positive integer �, the complex vector space of modular forms of weight � with
respect to a congruence subgroup Γ is denoted by M�(Γ).

DEFINITION 2.2 [12, Definition 1.15]. If χ is a Dirichlet character modulo N, then we
say that a modular form f ∈ M�(Γ1(N)) has Nebentypus character χ if

f
(az + b
cz + d

)
= χ(d)(cz + d)� f (z)

for all z ∈ H and all [ a b
c d ] ∈ Γ0(N). The space of such modular forms is denoted by

M�(Γ0(N), χ).

The relevant modular forms for the results of this paper arise from eta-quotients.
The Dedekind eta-function η(z) is defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏

n=1

(1 − qn),

where q := e2πiz and z ∈ H. A function f (z) is called an eta-quotient if it is of the form

f (z) =
∏
δ|N
η(δz)rδ ,

where N is a positive integer and rδ is an integer. Now, we recall two important
theorems from [12, page 18] that will be used later.

THEOREM 2.3 [12, Theorem 1.64]. If f (z) =
∏
δ|N η(δz)rδ is an eta-quotient such that

� = 1/2
∑
δ|N rδ ∈ Z,

∑
δ|N δrδ ≡ 0 (mod 24) and

∑
δ|N(N/δ)rδ ≡ 0 (mod 24), then f (z)

satisfies

f
(az + b
cz + d

)
= χ(d)(cz + d)� f (z)

for every [ a b
c d ] ∈ Γ0(N). Here the character χ is defined by

χ(d) :=
( (−1)�s

d

)
, where s :=

∏
δ|N
δrδ .

https://doi.org/10.1017/S000497272400042X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272400042X


6 P. Talukdar [6]

Let f be an eta-quotient that satisfies the conditions of Theorem 2.3 and suppose
that the associated weight � is a positive integer. If f (z) is holomorphic at all the cusps
of Γ0(N), then f (z) ∈ M�(Γ0(N), χ). The necessary criterion for determining orders of
an eta-quotient at cusps is given by the following theorem.

THEOREM 2.4 [12, Theorem 1.64]. Let c, d and N be positive integers with d | N and
gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of Theorem 2.3 for N, then
the order of vanishing of f (z) at the cusp c/d is

N
24

∑
δ|N

gcd(d, δ)2rδ
gcd(d, N/d)dδ

.

We now recall a deep theorem of Serre [see 12, page 43] that will be used in proving
Theorems 1.2 and 1.3.

THEOREM 2.5 [12, page 43]. Let g(z) ∈ Mk(Γ0(N), χ) have Fourier expansion

g(z) =
∞∑

n=0

b(n)qn ∈ Z[[q]].

Then for a positive integer r, there is a constant α > 0 such that

#{0 < n ≤ X : b(n) � 0 (mod r)} = O
( X
(log X)α

)
.

Equivalently,

lim
X→∞

#{0 < n ≤ X : b(n) � 0 (mod r)}
X

= 0.

Finally, we recall the definition of Hecke operators. Let m be a positive integer and
f (z) =

∑∞
n=0 a(n)qn ∈ M�(Γ0(N), χ). Then the action of the Hecke operator Tm on f (z)

is defined by

f (z)|Tm :=
∞∑

n=0

( ∑
d|gcd(n,m)

χ(d)d�−1a
(nm

d2

))
qn.

In particular, if m = p is prime, then

f (z)|Tp :=
∞∑

n=0

(
a(pn) + χ(p)p�−1a

( n
p

))
qn. (2.1)

We note that a(n) = 0 unless n is a nonnegative integer.

3. Proof of Theorem 1.2

Putting t = 3αm in (1.2),
∞∑

n=0

a3αm(n)qn =
f2 f 2·3αm

3αm

f 2
1 f 3αm

2·3αm

. (3.1)
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We define

Aα,m(z) :=
η2 (233α+1mz)
η (243α+1mz)

.

For any prime p and positive integer j, (q; q)pj

∞ ≡ (qp; qp)pj−1

∞ (mod pj). Hence, for any
integer k ≥ 1,

A2k

α,m(z) =
η2k+1

(233α+1mz)
η2k (243α+1mz)

≡ 1 (mod 2k+1). (3.2)

Next we define

Bα,m,k(z) :=
η (48z)η2·3αm(233α+1mz)
η2(24z)η3αm(243α+1mz)

A2k

α,m(z) =
η (48z)η2·3αm+2k+1

(233α+1mz)
η2(24z)η3αm+2k (243α+1mz)

.

In view of (3.1) and (3.2),

Bα,m,k(z) ≡ η (48z)η2·3αm(233α+1mz)
η2(24z)η3αm(243α+1mz)

≡
f48 f 2·3αm

233α+1m

f 2
24 f 3αm

24·3α+1m

≡
∞∑

n=0

a3αm(n)q24n (mod 2k+1).

(3.3)

Next, we will show that Bα,m,k(z) is a modular form. Applying Theorem 2.3, we find
that the level of Bα,m,k(z) is N = 243α+1mM, where M is the smallest positive integer
such that

243α+1mM
(−2

24
+

1
48
+

2 · 3αm + 2k+1

233α+1m
+
−3αm − 2k

243α+1m

)
≡ 0 (mod 24),

which implies

3 · 2kM ≡ 0 (mod 24).

Therefore, M = 4 and the level of Bα,m,k(z) is N = 263α+1m.
The representatives for the cusps of Γ0(263α+1m) are given by fractions c/d where

d | 263α+1m and gcd(c, 263α+1m) = 1 (see [5, Proposition 2.1]). By Theorem 2.4,
Bα,m,k(z) is holomorphic at a cusp c/d if and only if

−2
gcd(d, 24)2

24
+

gcd(d, 48)2

48

+ (3αm + 2k)
(
2

gcd(d, 233α+1m)2

233α+1m
− gcd(d, 243α+1m)2

243α+1m

)
≥ 0.

Equivalently, Bα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3αm(−4G1 + G2 + 4G3 − 1) + 2k(4G3 − 1) ≥ 0,

where

G1 =
gcd(d, 24)2

gcd(d, 243α+1m)2 , G2 =
gcd(d, 48)2

gcd(d, 243α+1m)2 , G3 =
gcd(d, 233α+1m)2

gcd(d, 243α+1m)2 .
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Let d be a divisor of 263α+1m. We can write d = 2r1 3r2 t where 0 ≤ r1 ≤ 6, 0 ≤ r2 ≤
α + 1 and t | m. We now consider two cases depending on r1.

Case 1: 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 = G2, 1/32αt2 ≤ G1 ≤ 1 and G3 = 1.
Therefore, L = 3α+1m(1 − G1) + 3 · 2k ≥ 3 · 2k.

Case 2: 4 ≤ r1 ≤ 6, 0 ≤ r2 ≤ α + 1. Then G2 = 4G1, 1/4 · 32αt2 ≤ G1 ≤ 1/4 and
G3 = 1/4, which implies L = 0.

Hence, Bα,m,k(z) is holomorphic at every cusp c/d. The weight of Bα,m,k(z) is
� = 1/2(3αm + 2k − 1) which is a positive integer and the associated character is
given by

χ1(•) =
( (−1)�3(α+1)(3αm+2k)−1m3αm+2k

•

)
.

Thus, Bα,m,k(z) ∈ M�(Γ0(N), χ) where �, N and χ are as above. By Theorem 2.5, the
Fourier coefficients of Bα,m,k(z) are almost all divisible by r = 2k. From (3.3), this holds
for a3αm(n) also. This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

We proceed along the same lines as in the proof of Theorem 1.2. Here we define

Cα,m(z) :=
η3(243α+1mz)
η(243α+2mz)

.

By the binomial theorem, for any integer k ≥ 1,

C3k

α,m(z) =
η3k+1

(243α+1mz)
η3k (243α+2mz)

≡ 1 (mod 3k+1). (4.1)

Next we define

Dα,m,k(z) :=
η (48z)η2·3αm(233α+1mz)
η2(24z)η3αm(243α+1mz)

C3k

α,m(z)

=
η (48z)η2·3αm(233α+1mz)η3k+1−3αm(243α+1mz)

η2(24z)η3k (243α+2mz)
.

From (3.1) and (4.1),

Dα,m,k(z) ≡ η (48z)η2·3αm(233α+1mz)
η2(24z)η3αm(243α+1mz)

≡
f48 f 2·3αm

233α+1m

f 2
24 f 3αm

24·3α+1m

≡
∞∑

n=0

a3αm(n)q24n (mod 3k+1).

(4.2)

We now prove that Dα,m,k(z) is a modular form. Applying Theorem 2.3, we find that
the level of Dα,m,k(z) is N = 243α+2mM, where M is the smallest positive integer such
that

243α+2mM
(−2

24
+

1
48
+

2 · 3αm
233α+1m

+
3k+1 − 3αm

243α+1m
+
−3k

243α+2m

)
≡ 0 (mod 24),
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which gives 8 · 3kM ≡ 0 (mod 24). Therefore, M = 1 and the level of Dα,m,k(z) is
N = 243α+2m.

The representatives for the cusps of Γ0(243α+2m) are given by fractions c/d where
d | 243α+2m and gcd(c, 243α+2m) = 1. From Theorem 2.4, Dα,m,k(z) is holomorphic at
a cusp c/d if and only if

−2
gcd(d, 24)2

24
+

gcd(d, 48)2

48
+ 2 · 3αmgcd(d, 233α+1m)2

233α+1m

+ (3k+1 − 3αm)
gcd(d, 243α+1m)2

243α+1m
− 3k gcd(d, 243α+2m)2

243α+2m
≥ 0.

Equivalently, Dα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3α+1m(−4G1 + G2 + 4G3 − G4) + 3k(9G4 − 1) ≥ 0,

where

G1 =
gcd(d, 24)2

gcd(d, 243α+2m)2 , G2 =
gcd(d, 48)2

gcd(d, 243α+2m)2 ,

G3 =
gcd(d, 233α+1m)2

gcd(d, 243α+2m)2 , G4 =
gcd(d, 243α+1m)2

gcd(d, 243α+2m)2 .

Let d be a divisor of 243α+2m. We write d = 2r1 3r2 t where 0 ≤ r1 ≤ 4, 0 ≤ r2 ≤
α + 2 and t | m. We now consider four cases depending on the values of r1 and r2.

Case 1: 0≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 =G2, 1/32αt2 ≤ G1 ≤ 1 and G3 = G4 = 1.
Hence, we have L = 3α+2m(1 − G1) + 8 · 3k ≥ 8 · 3k.

Case 2: 0 ≤ r1 ≤ 3, r2 = α + 2. Then G1 = G2, 1/32(α+1)t2 ≤ G1 ≤ 1/32(α+1) and
G3 = G4 = 1/9. Therefore, L = 3α+2m(1/9 − G1) ≥ 0.

Case 3: Let r1 = 4, 0 ≤ r2 ≤ α + 1. Then G2 = 4G1, 1/4 · 3(α+1)t2 ≤ G1 ≤ 1/4,
G4 = 4G3 and G3 = 1/4. Hence, we have L = 8 · 3k.

Case 4: Let r1 = 4, r2 = α + 2. Then G2 = 4G1, 1/4 · 3(α+1)t2 ≤ G1 ≤ 1/4 · 32(α+1),
G4 = 4G3 and G3 = 1/36. Therefore, L = 0.

Therefore, Dα,m,k(z) is holomorphic at every cusp c/d. The weight of Dα,m,k(z) is
� = 1/2(3αm − 1) + 3k which is a positive integer and the associated character is
given by

χ2(•) =
( (−1)�32α3k+3ααm+3αm+3k−1m3αm+2·3k

•

)
.

Thus, Dα,m,k(z) ∈ M�(Γ0(N), χ) where �, N and χ are as above. By Theorem 2.5,
the Fourier coefficients of Dα,m,k(z) are almost all divisible by r = 3k. From (4.2), this
holds for a3αm(n) also. This completes the proof of Theorem 1.3.
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5. Proof of Theorem 1.4

First we recall the following result of Ono and Taguchi [13] on the nilpotency of
Hecke operators.

THEOREM 5.1 [13, Theorem 1.3(3)]. Let n be a nonnegative integer and k be a positive
integer. Let χ be a quadratic Dirichlet character of conductor 9 · 2a. Then there is an
integer c ≥ 0 such that for every f (z) ∈ Mk(Γ0(9 · 2a), χ) ∩ Z[[q]] and every t ≥ 1,

f (z)|Tp1 |Tp2 | · · · |Tpc+t ≡ 0 (mod 2t)

whenever the primes p1, . . . , pc+t are coprime to 6.

We apply this theorem to the modular form B1,1,k(z) to prove Theorem 1.4. Putting
α = 1 and m = 1 in (3.3), we find that

B1,1,k(z) ≡
∞∑

n=0

a3(n)q24n (mod 2k+1),

which yields

B1,1,k(z) :=
∞∑

n=0

Fk(n)qn ≡
∞∑

n=0

a3

( n
24

)
qn (mod 2k+1). (5.1)

Now, B1,1,k(z) ∈ M2k−1+1(Γ0(9 · 26), χ3) for k ≥ 1 where χ3 is the associated character
(which is χ1 evaluated at α = 1 and m = 1). In view of Theorem 5.1, there is an integer
c ≥ 0 such that for any d ≥ 1,

B1,1,k(z) | Tp1 | Tp2 | · · · | Tpc+d ≡ 0 (mod 2d)

whenever p1, . . . , pc+d are coprime to 6. It follows from the definition of Hecke
operators that if p1, . . . , pc+d are distinct primes and if n is coprime to p1 · · · pc+d,
then

Fk(p1 · · · pc+d · n) ≡ 0 (mod 2d). (5.2)

Combining (5.1) and (5.2) completes the proof of the theorem.

6. Concluding remarks

Theorems 1.2 and 1.3 of this paper and [7, Theorem 1.8] give the arithmetic
densities of at(n) for odd t, but similar techniques cannot be used to obtain the
arithmetic density of at(n) when t is even. It would be interesting to study the arithmetic
density of at(n) for even values of t.

Computational evidence suggests that there are Ramanujan type congruences for
at(n) modulo powers of 2, 3 and other primes ≥ 5 for various t that are not covered by
the results of [2, 7]. It would be of interest to find new congruences for at(n).
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Asymptotic formulae for partition functions and other related functions have been
widely studied in the literature. For instance, the asymptotic formulae for p(n) and
ct(n) were obtained by Hardy and Ramanujan [9] and Anderson [1], respectively. It
will be desirable to find an asymptotic formula for at(n).

Some relations connecting at(n) and ct(n) have been discussed in [2]. A combina-
torial treatment for at(n) might reveal more interesting partition theoretic connections.
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