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Abstract

We applied a novel framework based on network theory and a concept of modularity that esti-
mates congruence between trait-based ( = functional) co-occurrence networks, thus allowing
the inference of co-occurrence patterns and the determination of the predominant mechanism
of community assembly. The aim was to investigate the relationships between species co-
occurrence and trait similarity in flea communities at various scales (compound communities:
across regions within a biogeographic realm or across sampling sites within a geographic
region; component communities: across sampling sites within a geographic region; and infra-
communities: within a sampling site). We found that compound communities within biogeo-
graphic realms were assembled via environmental or host-associated filtering. In contrast,
functional and spatial/host-associated co-occurrence networks, at the scale of regional com-
pound communities, mostly indicated either stochastic processes or the lack of dominance
of any deterministic process. Analyses of congruence between functional and either spatial
(for component communities) or host-associated (for infracommunities) co-occurrence net-
works demonstrated that assembly rules in these communities varied among host species. In
component communities, stochastic processes prevailed, whereas environmental filtering was
indicated in 4 and limiting similarity/competition in 9 of 31 communities. Limiting similarity/
competition processes dominated in infracommunities, followed by stochastic mechanisms.
We conclude that assembly processes in parasite communities are scale-dependent, with dif-
ferent mechanisms acting at different scales.

Introduction

Species associations within a metacommunity (i.e. a set of biological communities occupying
multiple localities and potentially linked by dispersal; Wilson, 1992; Leibold and Mikkelson,
2002) may be either random or non-random (e.g. Diamond, 1975; Connor and Simberloff,
1979; Gotelli, 2000; Gotelli and McCabe, 2002; Ulrich, 2004; Gotelli and Ulrich, 2010).
Non-random species associations indicate that communities within a metacommunity are
structured, that is, variation in species composition across communities is, to a certain degree,
predictable, and communities are thus organized by certain assembly rules (e.g. Diamond,
1975; Patterson and Atmar, 1986). The non-randomness of species associations
(=co-occurrence pattern) is tested using null models (Gotelli, 2000). In particular, if the fre-
quency of co-occurrence is greater than expected by chance, then these species are positively
associated, whereas if this frequency is lower than expected by chance, then these species are
negatively associated (Gotelli, 2000; Gotelli and McCabe, 2002). Alternatively, if the frequency
of co-occurrence does not differ from that expected by chance, then the community is ran-
domly assembled.
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The pattern of species co-occurrence allows inferring the
mechanisms of community structuring. For example, predomin-
antly positive co-occurrences suggest a mechanism resembling
environmental filtering in which abiotic and/or biotic factors pre-
vent the establishment or persistence of species in a particular
location (Maire et al. 2012; Kraft et al. 2015). As a result, an envir-
onmental filter allows a community to contain only species pos-
sessing certain traits that are necessary for persistence in that
environment (e.g. Ingram and Shurin, 2009). Consequently,
co-occurring species are expected to be similar in their traits.
Predominantly negative co-occurrences may indicate interspecific
competition (Diamond, 1975) or the ‘ghost of competition past’,
both resulting in the dissimilarity of co-occurring species in their
traits (limiting similarity; MacArthur and Levins, 1967). The latter
concept states that species can coexist only if their overlap in
resource use is limited due to morphological, ecological or behav-
ioural dissimilarities. However, Ulrich and Gotelli (2013) argued
that negative co-occurrences may result from a change in species
composition (species turnover) determined by limited dispersal
and/or a gradient in habitat quality, independently of trait similar-
ity or dissimilarity. Nevertheless, the majority of the above-cited
studies suggest that studies aimed at inferring the community
assembly rules from the pattern of species co-occurrences should
incorporate information on species traits.

Although patterns of species co-occurrence have been studied in
a variety of biological communities (e.g. Gotelli and McCabe, 2002;
Jenkins, 2006; Ulrich and Zalewski, 2006; Veech, 2006; Ulrich and
Gotelli, 2007; Ulrich et al. 2017; Freilich et al. 2018; Harikrishnan
and Vasudevan, 2018), species trait information has rarely been
incorporated in these studies (Korňan et al. 2019; Legras et al.
2019; Vinarski et al. 2020). Furthermore, the absolute majority of
species co-occurrence studies considered pairwise co-occurrences.
However, not every pair of species in a community is positively
or negatively associated, but rather, a general non-random pattern
arises due to associations of a subset of species only (Sfenthourakis
et al. 2006; Veech, 2006; Gotelli and Ulrich, 2010). Therefore, con-
sideration of groupwise, rather than pairwise, co-occurrences will
likely improve pattern detection and will make inferring assembly
rules more reliable (Morueta-Holme et al. 2016; Legras et al.
2019). This can be achieved by applying a network approach to
species co-occurrence studies. Recently, Legras et al. (2019) pro-
posed a new methodological approach based on the concepts of
network theory and modularity and aimed to disentangle the deter-
ministic and stochastics drivers of species co-occurrence patterns
accounting for multiple functional traits. In brief, this approach
involves calculating modularity in (a) a site × species network
and (b) a trait × species network and then assessing the congruence
between the 2 networks by testing whether the species from a given
functional module belong to the same co-occurrence module.
Legras et al. (2019) demonstrated that this approach can accurately
detect assembly rules acting at different spatial scales.

The scale-dependence (spatial or temporal) of co-occurrence
patterns has been found in multiple taxa (Gotelli and Ellison,
2002; Sanders et al. 2007; Harms and Dinsmore, 2016; Legras
et al. 2019). However, one of the methodological difficulties in com-
munity ecology studies is to identify community boundaries, which
often cannot be unequivocally defined (Strayer et al. 2003). This is
especially true for communities at different scales. From this per-
spective, parasite communities present convenient models for eluci-
dating the patterns of species co-occurrence and underlying
processes. This is because parasite community boundaries, both in
space and time, can be identified more easily than those of free-
living species, due to the fact that parasites inhabit a set of ‘islands’
represented by their hosts, whereas the environment between these
‘islands’ is mostly unfavourable. Furthermore, parasite communities
are fragmented between host individuals (=infracommunities),

populations of conspecific hosts (=component communities), and
communities of multiple host species (=compound communities)
(Holmes and Price, 1986; Poulin, 2007).

A pioneering study of species co-occurrence in parasite commu-
nities dealt with infracommunities of ectoparasites in marine fishes
and reported an absence of any strong pattern, thus suggesting that
these communities are mostly randomly assembled (Gotelli and
Rohde, 2002), although the opposite appeared to be the case for
ectoparasites of freshwater fishes (Bellay et al. 2012). Studies of
co-occurrence patterns in ectoparasitic arthropods of terrestrial
hosts reported predominantly positive species associations in differ-
ent taxa, host species, and geographic regions (Krasnov et al. 2006a,
2010, 2011, 2019; Presley, 2007; Tello et al. 2008; Veitch et al.
2020). By comparison, to the best of our knowledge, only one
study has incorporated information on parasite traits in investigat-
ing their co-occurrence patterns (Vinarski et al. 2020). This study
compared the probability of pairwise co-occurrences and pairwise
trait dissimilarity in communities of fleas and gamasid mites, para-
sitic on small mammals. A significant, albeit weak, tendency of flea,
but not mite, communities to be composed of functionally similar
species has been found. However, using pairwise co-occurrences
and trait similarity could bias the results due to the above-
mentioned reason that a detection of non-randomness could be
associated with only a subset of the entire community species
pool (e.g. Sfenthourakis et al. 2006).

Here, we aimed to remedy this shortcoming and applied the
framework proposed by Legras et al. (2019) (see above) to investi-
gate the relationships between species co-occurrence and trait simi-
larity in flea communities at various scales (compound
communities: across regions within a biogeographic realm or across
sampling sites within a geographic region; component communi-
ties: across sampling sites within a geographic region; and infra-
communities: within a sampling site). Fleas are holometabolous
haematophagous insects, being the most diverse on small and
medium-sized burrowing mammals. In the absolute majority of
species, larvae are not parasitic and feed on all kinds of organic
matter found in the hosts’ burrows/nests where pre-imaginal devel-
opment takes place (Marshall, 1981; Krasnov, 2008). Based on the
predominantly aggregative structure of flea communities found in
earlier studies (e.g. Krasnov et al. 2006a, 2011) and the link between
pairwise co-occurrence and trait similarity, we expected to find
congruence between modules of co-occurrence and functional net-
works (see below definition of modules) at all hierarchical scales.
For compound communities, we considered flea species
co-occurrences not only among regions or sites but also among
host species. In addition, we inferred the main processes (determin-
istic ones, such as limiting similarity/competition and environmen-
tal filtering, or stochastic ones) acting on community assembly.

Materials and methods

Data on flea species distribution

Data on flea species distribution across regions and host species
within biogeographic realms (the Afrotropics, Australasia,
Indo-Malay, Nearctic, Neotropics, and Palearctic) were obtained
from various literature sources. At this scale (i.e. within a
biogeographic realm), only host species that harboured fleas
and belonged to tachyglossid Monotremata, Dasyuromorphia,
Paramelemorphia, Diprotodontia, Macropodiformes, Didelphi-
morphia, Paucituberculata, Macroscelidea, Eulipotyphla,
Rodentia and the ochotonid Lagomorpha were considered. This
study included data on the distribution of 1313 flea species
across 1153 mammal host species in 15 Afrotropical regions, 8
Australasian regions, 10 Indo-Malayan regions, 23 Nearctic
regions, 17 Neotropical regions and 36 Palearctic regions (see
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lists of regions, maps and references in Krasnov et al. 2022 and
lists of flea and host species in the respective publications).

At the scale of regional compound communities, component
communities and infracommunities, the sources of data were sur-
veys of fleas on individual small mammals carried out in
1981–1984 across 83 sampling sites in Mongolia (Kiefer et al.
1982, 1984, 1990); in 1998–2015 across 38 sampling sites in
Northwest Argentina (López Berrizbeitia, 2018; López Berrizbeitia
and Díaz, 2019); in 2006–2013 across 22 sites in Argentinian
Patagonia (Sanchez, 2012; Sanchez and Lareschi, 2013, 2019); in
1986–2000 across 13 sites in eastern Slovakia (Stanko et al. 2002);
in 1988 across 49 sites in Western Siberia [compiled from the data-
base of the Omsk Research Institute of Natural Foci Infections
(Omsk, Russian Federation) by NPK-V] (Surkova et al. 2018); in
2003–2018, across 36 sites in southwestern South Africa (Matthee
et al. 2007; van der Mescht and Matthee, 2017; Stevens et al.
2022); and in 2005–2008 across 18 sites in the Lushoto District,
Usambara Mountains, Tanzania (Laudisoit et al. 2009a, 2009b).
Lists of flea and mammal species in each region can be found in
Supplementary Material, Appendix 1, Table S1.

At the scale of component communities, 31 host species har-
bouring at least 8 flea species were selected from the regional data
(see Supplementary Material, Appendix 1, Table S2). At the scale
of infracommunities, 25 host species harbouring at least 6 flea
species at least 1 sampling site were selected from the regional
data (see Supplementary Material, Appendix 1, Table S3). The lat-
ter analyses were carried out for conspecific host individuals cap-
tured at the same sampling site at the same time.

Data on flea traits

Although a trait, by definition, is ‘any morphological, physio-
logical or phenological feature measurable at the individual
level’ (Violle et al. 2007), information on parasite traits, measur-
able at the individual level, is largely unavailable. Consequently,
we used species-specific attributes or characteristics that we fur-
ther refer to as traits for simplicity. As such, species-specific attri-
butes have been used in earlier studies of functional diversity (e.g.
feeding habit in Pavoine et al. 2016). In the current study, each
flea species was characterized by 4 ecological and 2 morphological
traits. Ecological traits included the total number of host species
exploited across a flea’s geographic range; these hosts’ phylogen-
etic diversity; the latitudinal span of geographic range; and micro-
habitat preference as the relative time spent either in the hair of
the host or in its/their nest/burrow (preference for hair or for
nest, or else no clear preference). Morphological traits included
the number and possession of sclerotized ctenidia and body
size. The rationale for selecting these traits, information sources
and calculation details can be found elsewhere (Krasnov et al.
2015, 2024). Data on the latitudinal span of geographic range
were not available for the Australasian and the Indo-Malayan
fleas, and data on microhabitat preference were not available for
the Australasian fleas.

Data analyses

As mentioned above, the main idea of Legras et al. (2019) is to
compare the functional and the co-occurrence networks when
the former is based on species traits and the latter is based on
the number of species co-occurrences. In this case, the edges
within each network represent similarity in either species traits
or species co-occurrences, respectively. In a modularly structured
network, species from some distinct groups ( = modules) are con-
nected mainly with each other, while they have much fewer con-
nections to other species belonging to other modules.
Consequently, modularity measures the density of edges inside

groups compared to edges between groups (Newman, 2006). In
the framework of Legras et al. (2019), each network’s modularity
is calculated, and the modules’ species compositions are com-
pared between the 2 networks, that is, testing whether species
from a given functional module also belong to a co-occurrence
module. If this is the case, then functionally similar species
inhabit/are found in the same sites/regions/host species. This
would strongly suggest that environmental or host-associated fac-
tors act as filters determining species composition. On the con-
trary, high dissimilarity between the 2 networks would suggest
that functionally similar species are distributed among different
sites/regions/host species, likely resulting from interspecific com-
petition that, in turn, leads to reduced similarity between
co-occurring species (i.e. limiting similarity sensu MacArthur
and Levins, 1967). However, a congruence between the module
species composition of the functional and the co-occurrence net-
works that is not especially high and not especially low would
indicate that species distribution among sites/regions/host species
does not differ from random. This situation results either from
stochastic mechanisms (e.g. dispersal limitations and/or popula-
tion dynamics; Hubbell, 2001) or from the fact that deterministic
processes (environmental filtering and competition) act simultan-
eously, affecting species co-occurrences in the opposite directions.
The latter may occur if the distribution of some species in a meta-
community is caused by environmental/host-associated filters,
whereas the distribution of other species is determined by compe-
tition. In such a case, there is no clear dominance of one of the
processes, so they cannot be disentangled.

In our study, the approach of Legras et al. (2019) was slightly
modified. Although the construction of co-occurrence networks
and identification of co-occurrence modules followed Legras
et al. (2019), the construction of functional networks and identi-
fication of functional modules (=functional groups) was carried
out using the best partitioning of the functional trait space and
followed Rubio and Swenson (2022).

A functional matrix (flea species × traits with traits in columns)
was compiled for all 1362 fleas in the dataset. Two presence/
absence co-occurrence matrices for compound communities (either
realm-specific or regional) and 1 presence/absence co-occurrence
matrix for either component communities or infracommunities
were constructed (see scheme in Supplementary Material,
Appendix 2). For each compound community at the scale of a bio-
geographic realm (i.e. within a realm), these matrices were (a) a
spatial co-occurrence matrix: flea species × regions (regions in col-
umns) and (b) a host co-occurrence matrix: flea species × host spe-
cies (host species in columns). For each compound community at
the regional scale (i.e. within a region), these matrices were (a) a
spatial co-occurrence matrix: flea species × sampling sites (sites in
columns) and (b) a host co-occurrence matrix: flea species × host
species (host species in columns). For each set of component com-
munities (i.e. within a host species within a region across sampling
sites), a spatial co-occurrence matrix was flea species × sampling
sites (sites in columns). For each set of infracommunities (e.g.
within a host species at the same sampling site across host indivi-
duals), a host co-occurrence matrix was flea species × host indivi-
duals. Although Legras et al. (2019) recommended constructing
the co-occurrence matrices using species abundances, presence/
absence data appeared to be more reliable than abundance data
for parasites (Gotelli and Rohde, 2002). This is because (a) parasites
are aggregated across host individuals, being the most abundant
only in a few host individuals, whereas the majority of host indivi-
duals harbour only a few or no parasites (Anderson and May,
1978); (c) ectoparasite counts are an unreliable measure of their
abundance (see Krasnov et al. 2006b), and (b) comparison of the
results of analyses using abundance vs presence/absence data in
studies of parasite community ecology, demonstrated similar
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performances of these analyses (Haukisalmi and Henttonen, 1993;
Krasnov et al. 2021; but see Brian and Aldridge, 2021).

Then, a similarity matrix was calculated for each above-
mentioned matrix, that is, a matrix of trait (=functional) similar-
ity between species from a functional matrix and a matrix(ces) of
co-occurrence similarity from co-occurrence matrix(ces).
Functional similarity was calculated as (1-Gower distance index)
for each species pair, using the ‘FD’ package (Laliberté, and
Legendre, 2010; Laliberté et al. 2014), implemented in the R stat-
istical environment (R Core Team, 2023). Co-occurrence similar-
ity was calculated as (1-binary version of the Bray–Curtis
dissimilarity index), using the R package ‘vegan’ (Oksanen et al.
2022). The values of these similarity matrices were then used as
weights of the edges between species (nodes) in the functional
or co-occurrence networks.

For a functional or a co-occurrence network, modules were
identified. Modules are distinct subsets of species that are mainly
connected with each other, while they have far fewer connections
to other species belonging to other modules (Girvan and
Newman, 2002). For functional network, modules were considered
to be equivalent to functional groups and identified from the func-
tional similarity matrix using the ‘Nbclust’ function (with options
distance = ‘euclidean’ and method = ‘ward.D’) in the R package
‘Nbclust’ (Charrad et al. 2014). This function calculates the best
partitioning of the functional trait space into functional groups
(=modules) comparing results when using 30 different indices.
For co-occurrence networks, identification of modules was done
via the Louvain optimization algorithm, which is recognized as
one of the best algorithms for module detection (see Legras et al.
2019), using the R package ‘modMax’ (Schelling and Hui, 2015).

Finally, the congruence between the functional and the
co-occurrence networks was assessed by an index of module diver-
sity for each functional group of Gauzens et al. (2015), modified by

Legras et al. (2019). This index was calculated for each group of
species comprising a functional module, using the R code of
Legras et al. (2019). It varies from zero to unity, being zero if all
species of a functional module tend to belong to the same
co-occurrence module and unity if all species of a functional mod-
ule tend to belong to different co-occurrence modules. The index
values of all functional modules of a network were averaged, result-
ing in the DgM index. Subsequently, the value of the DgM index for
each compound, component, or infracommunity was compared
with distribution of the DgM values from 999 null models, in
which the partition into functional modules and the number and
size of co-occurrence modules were the same as in the original
data, but species distribution among co-occurrence modules was
random. The observed DgM index was compared with the distribu-
tion of DgM indices derived from null models. A significantly lower
observed DgM value than expected by chance (<5% of the null dis-
tribution) indicates the predominance of environmental/
host-associated filtering, whereas a significantly higher value than
expected by chance (>95% of the null distributions) suggests the
effects of competition/limiting similarity (Legras et al. 2019). An
observed DgM value between 5% and 95% of the null DgM distribu-
tion suggests either the effect of stochastic mechanisms or the lack
of clear dominance of one of the deterministic processes (Legras
et al. 2019). The R code for null modelling was taken from
Legras et al. (2019). When the value of DgM was calculated for a
given community, only modules containing species from this com-
munity were retained in a functional network.

Results

The best partitioning of the functional trait space resulted in the 21
functional groups (=functional modules) with average pairwise
within-module similarity of 0.68 and between-module similarity

Table 1. Congruence between functional (F) and co-occurrence (CoR: across regions; CoH: across host species) networks of compound flea communities in 6
biogeographic realms

Realm Network M WS/BS Modules DgM p Process

Afrotropics F 0.70/0.61 13

CoR 0.57 8 0.77 0.04 EF

CoH 0.14 4 0.52 <0.01 HF

Australasia F 0.92/0.73 7

CoR 0.14 2 0.71 0.12 S

CoH 0.32 12 0.46 0.07 EF

Indo-Malay F 0.93/0.79 16

CoR 0.18 3 0.80 <0.01 EF

CoH 0.21 3 0.87 0.10 S

Nearctic F 0.81/0.65 17

CoR 0.40 2 0.90 0.04 EF

CoH 0.28 10 0.79 0.02 EF

Neotropics F 0.76/0.65 18

CoR 0.26 2 0.83 0.04 EF

CoH 0.35 3 0.81 0.04 EF

Palearctic F 0.87/0.66 17

CoR 0.46 3 0.90 <0.01 EF

CoH 0.30 4 0.66 0.01 EF

M: modularity value (for co-occurrence networks), WS/BS: average within- and between-module similarity (for functional networks), Modules: number of detected modules, DgM: index of
congruence (see text for explanation). p: proportion of DgM values from null models that are lower than the observed DgM; Process: the most likely process affecting community assembly
inferred from comparison of the observed and null DgM values (EF, environmental filtering; HF, host-associated filtering; S, stochastic process(es) or no clear dominance of a deterministic
process).
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of 0.59. Within-module functional similarity ranged from 0.70 to
0.93 (average 0.83 ± 0.04) for compound communities within bio-
geographic realms, from 0.70 to 0.82 (average 0.77 ± 0.01) for com-
pound communities within geographic regions, from 0.62 to 0.95
(average 0.75 ± 0.01) for component communities, and from 0.62
to 0.98 (average 0.74 ± 0.02) for infracommunities (Tables 1–2,
Tables S4–S5 in Supplementary Material, Appendix 1). The respect-
ive values of between-module similarity were 0.59–0.73 (average
0.65 ± 0.01), 0.60–0.65 (average 0.63 ± 0.01), 0.50–0.71 (average
0.62 ± 0.01) and 0.40–0.77 (average 0.60 ± 0.01) (Tables 1–2,
Tables S4–S5 in Supplementary Material, Appendix 1).

Modularity in spatial co-occurrence networks ranged from
0.14 to 0.57 (average 0.34 ± 0.07) for compound communities
within biogeographic realms, from 0.06 to 0.23 (average
0.16 ± 0.02) for compound communities within geographic regions,
and from 0.01 to 0.28 (average 0.31 ± 0.01) for component commu-
nities (Tables 1–2, Tables S4–S5 in Supplementary Material,
Appendix 1). Modularity values in networks of flea co-occurrences
in host species (compound communities) or individuals (infracom-
munities) ranged from 0.14 to 0.35, from 0.06 to 0.15, and from
0.01 to 0.46 for compound communities at the scale of biogeo-
graphic realms or geographic regions and infracommunities,
respectively (average 0.27 ± 0.03, 0.09 ± 0.01 and 0.20 ± 0.03,
respectively) (Tables 1–2, Tables S4–S5 in Supplementary Material,
Appendix 1).

The number of modules in functional networks ranged from 7
to 17 in realm-specific networks, from 5 to 13 in regional net-
works, from 2 to 8 in networks of component communities,
and from 2 to 6 in infracommunities (Tables 1–2, Tables S5–S6

in Supplementary Material, Appendix 1). The Louvain algorithm
detected 2–8 modules in spatial co-occurrence networks, and
2–12 modules in the networks of co-occurrence in host species/
individuals (Tables 1–2, Tables S5–S6 in Supplementary
Material, Appendix 1). In general, the number of detected mod-
ules in the co-occurrence networks was not associated with the
number of species in a network, whereas the higher number of
functional modules was detected in larger flea communities (see
illustrative examples of module distribution in Figs 1–2 for com-
pound communities and Figs. S1–S2 in Supplementary Material,
Appendix 3 for component communities and infracommunities).

Comparisons of the observed DgM values with the distribu-
tions of those obtained from null modelling demonstrated that
functional and spatial or host-associated co-occurrence networks
of fleas in compound communities within biogeographic realms
were consistently congruent, except for spatial co-occurrence in
Australasia and host-associated co-occurrence in Indo-Malay,
and suggested that these communities (both across regions
and across host species) were assembled via environmental or
host-associated filtering, respectively (Table 1). In contrast, func-
tional and spatial/host-associated co-occurrence networks, at the
scale of regional compound communities (i.e. across localities),
were mostly incongruent (except the spatial co-occurrence
network in Slovakia and Tanzania and the host-associated
co-occurrence network in Mongolia, both suggesting environ-
mental/host-associated filtering) (Table 2). The incongruence
between the networks indicated either stochastic processes or
the lack of dominance of any deterministic process. Analyses of
congruence between functional and either spatial (for component

Table 2. Congruence between functional (F) and co-occurrence (CoL: across sampling sites; CoH: across host species) networks of compound flea communities in 7
regions

Region Network M WS/BS Modules DgM p Process

Mongolia F 0.77/0.65 10

CoL 0.16 4 0.96 0.90 S

CoH 0.06 4 0.82 0.04 HF

Northwest Argentina F 0.75/0.65 8

CoL 0.22 6 0.91 0.61 S

CoH 0.11 2 0.26 0.09 S

Patagonia F 0.75/0.62 7

CoL 0.16 3 0.76 0.12 S

CoH 0.07 3 0.87 0.74 S

Western Siberia F 0.08 0.81/0.66 13

CoL 0.17 5 0.98 0.91 S

CoH 0.06 4 0.95 0.59 S

Slovakia F 0.82/0.68 6

CoL 0.06 3 0.49 <0.01 EF

CoH 0.06 3 0.81 0.46 S

South Africa F 0.70/0.60 5

CoL 0.23 4 0.44 0.18 S

CoH 0.15 3 0.65 0.88 S

Tanzania F 0.76/0.60 5

CoL 0.14 3 0.53 0.03 EF

CoH 0.12 4 0.85 0.51 S

M: modularity value, WS/BS: average within- and between-module similarity (for functional networks), Modules: number of detected modules, DgM: index of congruence (see text for
explanation). p: proportion of DgM values from null models that are lower than the observed DgM; Process: the most likely process affecting community assembly inferred from comparison of
the observed and null DgM values (EF, environmental filtering; HF, host-associated filtering; S, stochastic process(es) or no clear dominance of a deterministic process).
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communities) or host-associated (for infracommunities) co-
occurrence networks demonstrated that assembly rules in these
communities varied among the host species harbouring them.
In 18 of 31 component communities, stochastic processes in
their assembly were indicated, whereas environmental filtering
seemed to dominate in 4, and limiting similarity/competition
in 9 communities (Fig. 3, see detailed results in Table S4 in
Supplementary Material, Appendix 1). Stochastic assembly pro-
cesses dominated in infracommunities harboured by 9 of 25
host species, limiting similarity/competition in infracommunities
of 13 host species, and host-associated filtering in the infracom-
munities of 3 hosts (Microtus oeconomus, Sorex araneus and
Lophuromys kilonzoi) (Fig. 4, see detailed results in Table S5 in
Supplementary Material, Appendix 1).

Discussion

We found substantial differences in the patterns of species
co-occurrence and the processes dominating flea community

assembly at different hierarchical scales. Moreover, these patterns
and processes were consistent at some scales and contingent at
other scales. In particular, regional compound communities
within biogeographic realms were characterized by positive spe-
cies associations across both regions and host species, suggesting
the important role of environmental or host-associated filtering.
On the contrary, local compound communities within a relatively
homogeneous region demonstrated random species associations
and, thus, indicating the role of stochastic factors. In component
and infracommunities, patterns of species associations and, con-
sequently, presumed assembly rules varied greatly among com-
munities harboured by different host species. This supported
the results of some, but not other, earlier studies on co-occurrence
patterns in flea communities (Krasnov et al. 2010, 2011, 2015 vs
Krasnov et al. 2006a, 2014; Vinarski et al. 2020; Gibert et al.
2021, respectively).

The mechanism behind the aggregative pattern of flea
co-occurrences in regional compound communities within a bio-
geographic realm, coupled with the trait similarity of co-occurring

Figure 1. Modules based on trait similarity, spatial (across regions) co-occurrence similarity, and host species co-occurrence similarity for compound communities
of fleas in the Palearctic. The number inside or near the circle is the number of species in the module. In trait-associated modules, the number in parentheses is
average within-module similarity (above line) and between-module similarity (below line) between pairs of species. Edge width is proportional to average similarity
between species belonging to the modules.
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species, is associated with similar environmental and host-
associated preferences of phylogenetically close flea species pos-
sessing similar traits (Krasnov et al. 2015). The environmental
factors determining flea preferences are, first and foremost, air
temperature and relative humidity (to which fleas are highly sen-
sitive; Margalit and Shulov, 1972), as well as vegetation structure
(see review in Krasnov, 2008). These factors affect the microcli-
mate in hosts’ burrows where pre-imagoes develop, and adult
fleas spend substantial time. An additional environmental factor
is soil structure since soil particles are used by flea larvae for
cocoon construction (Marshall, 1981). Particles of different soil
types likely differ in their water-absorption abilities, while active
water vapour uptake is highly important for cocooned fleas
(Rudolph and Knulle, 1982). In Tanzania, flea abundance was
found to be affected by soil properties such as exchangeable cal-
cium and magnesium, phosphorus availability and base saturation
(Meliyo et al. 2014). Obviously, environmental differences
between regions of the same biogeographic realm are sharp,
resulting in further classification into biomes and/or ecoregions
(e.g. Olson et al. 2001). Furthermore, regions within a realm differ
not only in their abiotic environment but also in the species

composition of small mammals that fleas can utilize as their
hosts. The process of host selection by parasites is largely deter-
mined by the complementarity of co-evolving host and parasite
traits (McQuaid and Britton, 2013; dos Santos Cardoso et al.
2021; see Krasnov et al. 2016 for fleas). Host–parasite
co-evolution consists of parasite adaptation to extract resources
from their hosts, as well as to evade or overcome their defences,
and reciprocal host counter-adaptation to avoid or tolerate infec-
tion (e.g. Buckingham and Ashby, 2022). Complementarity or
matching between parasite and host traits may result in establish-
ing novel parasite–host associations when a host or a parasite
invades new areas (e.g. Schatz and Park, 2021). Complementary
parasite–host traits cause host species composition to act as a fil-
ter for assembly of a regional parasite community. The reason for
not detecting environmental or host-associated filtering processes
as assembly mechanisms, for compound flea communities in the
Australasian and Indo-Malayan realms, respectively, could be the
much poorer knowledge of either geographic distribution of fleas
or host–flea associations in these than in other realms. For
example, only 2 flea species parasitic on small mammals were
recorded in Northern Territories of Australia (Dunnet and

Figure 2. Modules based on trait similarity, spatial (across localities) co-occurrence similarity, and host species co-occurrence similarity for compound communities
of fleas in Mongolia. The number inside or near the circle is the number of species in the module. In trait-associated modules, the number in parentheses is average
within-module similarity (above line) and between-module similarity (below line) between pairs of species. Edge width is proportional to average similarity
between species belonging to the modules.
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Mardon, 1974). Completely different types of analyses, carried out
on almost the same data as in the present study, suggested the
predominance of the dispersal-based mechanism of flea com-
pound community assembly within biogeographic realms realized
via host dispersal (Gibert et al. 2021). However, these analyses did
not consider trait difference/similarity between species and were
based on a pairwise comparison of communities between contin-
ental sections/landscapes rather than between regions.

In contrast to regional compound communities within a bio-
geographic realm, functional and co-occurrence networks, at the
scale of local communities within a region, were mostly incongru-
ent. On the one hand, this could indicate stochastic birth/death
processes of community assembly, resulting in ‘neutral’ commu-
nities that are primarily shaped by population dynamics and/or
dispersal limitations (Hubbell, 2001). On the other hand, counter-
balancing of environmental filtering and limiting similarity/com-
petition may lead to a pattern ostensibly resembling neutrality
(Purves and Pacala, 2005). The latter seems to be more likely
because at least some, albeit only two, compound communities
(Slovakian and Mongolian) suggested the acting of deterministic
processes. The lack of a clear indication of any deterministic pro-
cess at this scale may also be associated with relative environmen-
tal homogeneity within a region, so that environmental
differences, as well as differences in host species composition,
were not sharp enough for environmental/host-associated filter-
ing to be detected (but see McNew et al. 2021). Another reason
for the lack of detection of deterministic processes at this scale
is that compound communities across localities within a region
are represented by the set of communities harboured by different
host species (i.e. component communities). Processes affecting
these communities’ assembly varied both between regions and
between host species. Variation in the degree of congruence
between flea functional and co-occurrence networks and flea

community assembly processes could stem from ecological and/
or physiological differences between hosts, such as mobility pat-
terns, burrow/nest structure, population density and immuno-
competence as well as from differences in relative numbers of
flea species with a certain set of traits. For example, if only a
small number of flea species possess certain traits allowing
them to overcome host defences and exploit strongly immuno-
competent hosts (Møller et al. 2005) (which the remaining fleas
from the same community cannot), then the associations between
these and the remaining fleas would be negative, leading to a pat-
tern superficially resembling the effect of limiting similarity/com-
petition. If, however, the number of flea species capable of
overcoming host defences is high, then positive associations
between these species would be found, and a process resembling
environmental filtering would be detected. Therefore, the mani-
festation of a given assembly rule in parasite component commu-
nities might be the result of interplay between parasite traits, host
traits and parasite community composition. It is well known that
the pattern of species association within a metacommunity varies
between pairs or groups of species, from positive to random to
negative (Sfenthourakis et al. 2006; D’Amen et al. 2018). The con-
clusion regarding the predominant pattern of species associations
and, consequently, the rule of community assembly would
depend on the relative number of species pairs/groups with a
given association pattern.

Functional and co-occurrence networks in flea infracommu-
nities were congruent in some, but incongruent in other, host spe-
cies. Among 16 hosts in the infracommunities in which
between-network congruence was found, a limiting similarity/
competition process was detected in 13 hosts and environmental
filtering in 3 hosts. The occurrence of competition among fleas
exploiting the same host individual contradicts studies on the pat-
terns of flea co-occurrences (Krasnov et al. 2006a, 2010) but

Figure 3. Proportions of DgM values from null models that are lower than the observed DgM calculated for assessing congruence between functional and
co-occurrence networks in component communities of fleas harboured by 31 host species. The most likely process affecting community assembly, as inferred
from the comparison of the observed and null DgM values, is shown by bar colour (black: environmental filtering, grey: limiting similarity/competition, white: sto-
chastic process(es) or no clear dominance of a deterministic process). M, Mongolia; P, Patagonia, WS, Western Siberia, Sl, Slovakia; SA, South Africa; T, Tanzania.
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supports experimental and observational studies that reported
possible interspecific competition (Day and Benton, 1980;
Krasnov et al. 2005; Surkova et al. 2018). Interestingly, evidence
for the interspecific flea competition found in experimental stud-
ies has suggested that it (a) is asymmetric and (b) occurs among
larvae rather than imago fleas. Intraspecific larval competition
may or may not be further manifested in the pattern of imago
co-occurrence. Moreover, parasite infracommunities are ephem-
eral not only from the perspective of a host individual’s lifespan
(Poulin, 2007) but, in the case of fleas, from the fact that infra-
communities’ presence and composition are temporally variable
and may change daily (Krasnov et al. 2006b). This explains the
variation in the detection of deterministic and stochastic processes
in infracommunity assembly.

In conclusion, assembly processes in parasite communities
appeared to be scale-dependent, with different mechanisms acting
at different scales (see also McNew et al. 2021). The main reason
for this is that community composition at the largest scale is pre-
dominantly affected by evolutionary, historical and biogeograph-
ical processes, whereas community composition at smaller scales
is mainly determined by ecological and demographic processes.
The approach combining species traits and patterns of groupwise,
rather than pairwise, co-occurrence improves the reliability of
detection and understanding of processes of community assem-
bly. Regarding parasites, this approach could also be helpful
from the perspective of the dynamics of vector-borne diseases
(Makundi et al. 2015).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182024000969.

Data availability statement. Raw data on flea and host species at the scale of
biogeographic realms are contained in the sources cited in Krasnov et al. (2022).
The remaining data can be obtained from the corresponding author upon request.

Acknowledgements. We thank Geut Galai for help with the R code for pro-
ducing figures. AL wishes to acknowledge the financial support from the
Belgium funds for Scientific Research (FNRS and FRIA), the University of
Antwerp (Belgium), the Sokoine University of Agriculture, Morogoro,
Tanzania, and the logistical support from the Pest Management Centre that

enabled the data collection in Tanzania. We thank 2 anonymous referees for
helpful comments on the earlier version of the manuscript.

Author contributions. BRK conceived and designed the study. All authors
collected the data. BRK performed statistical analyses and wrote the first
draft of the article. All authors finalized the article.

Financial support. This study was partly supported by the Israel Science
Foundation (grant 548/23 to BRK and ISK).

Competing interests. The authors declare there are no conflicts of interest.

Ethical standards. This study is based on published data, and therefore, eth-
ical standards are not applicable.

References

Anderson RM and May RM (1978) Regulation and stability of host-parasite
population interactions. I. Regulatory processes. Journal of Animal
Ecology 47, 219–247.

Bellay S, Takemoto RM and Oliveira EF (2012) Is the community of fish gill
parasites structured in a Neotropical floodplain? Acta Parasitologica 57,
53–60.

Brian JI and Aldridge DC (2021) Abundance data applied to a novel model
invertebrate host shed new light on parasite community assembly in nature.
Journal of Animal Ecology 90, 1096–1108.

Buckingham LJ and Ashby B (2022) Coevolutionary theory of hosts and
parasites. Journal of Evolutionary Biology 35, 205–224.

Charrad M, Ghazzali N, Boiteau V and Niknafs A (2014) Nbclust: an R
package for determining the relevant number of clusters in a data set.
Journal of Statistical Software 61, 1–36.

Connor EF and Simberloff D (1979) The assembly of species communities:
chance or competition. Ecology 60, 1132–1140.

D’Amen M, Mod HK, Gotelli NJ and Guisan A (2018) Disentangling biotic
interactions, environmental filters, and dispersal limitation as drivers of
species co-occurrence. Ecography 41, 1233–1244.

Day JF and Benton AH (1980) Population dynamics and coevolution of adult
siphonapteran parasites of the southern flying squirrel (Glaucomys volans
volans). American Midland Naturalist 103, 333–338.

Diamond JM (1975) Assembly of species communities: chance or competi-
tion. In Cody ML and Diamond JM (eds), Ecology and Evolution of
Communities. Cambridge: Harvard University Press, pp. 342–444.

Figure 4. Proportions of DgM values from null models
that are lower than the observed DgM calculated for
assessing congruence between functional and
co-occurrence networks in infracommunities of fleas
harboured by 25 host species. The most likely process
affecting community assembly as inferred from the com-
parison of the observed and null DgM values is shown by
bar colour (black: host-associated filtering, grey: limiting
similarity/competition, white: stochastic process(es) or
no clear dominance of a deterministic process). M,
Mongolia; P, Patagonia; WS, Western Siberia; Sl,
Slovakia; SA, South Africa; T; Tanzania.

Parasitology 861

https://doi.org/10.1017/S0031182024000969 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000969
https://doi.org/10.1017/S0031182024000969
https://doi.org/10.1017/S0031182024000969


dos Santos Cardoso T, de Andreazzi CS, Maldonado A Jr and Gentile R
(2021) Functional traits shape small mammal-helminth network: patterns
and processes in species interactions. Parasitology 148, 947–955.

Dunnet GM and Mardon DK (1974) A monograph of Australian fleas
(Siphonaptera). Australian Journal of Zoology, Supplemental Series, 30,
1–273.

Freilich MA, Wieters E, Broitman BR, Marquet PA and Navarrete SA
(2018) Species co-occurrence networks: can they reveal trophic and non-
trophic interactions in ecological communities? Ecology 99, 690–699.

Gauzens B, Thébault E, Lacroix G and Legendre S (2015) Trophic groups
and modules: two levels of group detection in food webs. Journal of The
Royal Society Interface 12, 20141176.

Gibert C, Shenbrot GI, Stanko M, Khokhlova IS and Krasnov BR (2021)
Dispersal-based versus niche-based processes as drivers of flea species com-
position on small mammalian hosts: inferences from species occurrences at
large and small scales. Oecologia 197, 471–484.

Girvan M and Newman MEJ (2002) Community structure in social and bio-
logical networks. Proceedings of the National Academy of Sciences of the
USA 99, 7821–7826.

Gotelli NJ (2000) Null model analysis of species co-occurrence patterns.
Ecology 81, 2606–2621.

Gotelli NJ and Ellison AM (2002) Assembly rules for New England ant
assemblages. Oikos 99, 591–599.

Gotelli NJ and McCabe DJ (2002) Species co-occurrence: a meta-analysis of
J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096.

Gotelli NJ and Rohde K (2002) Co-occurrence of ectoparasites of marine
fishes: a null model analysis. Ecology Letters 5, 86–94.

Gotelli NJ and Ulrich W (2010) The empirical Bayes approach as a tool to
identify non-random species associations. Oecologia 162, 463–477.

Harikrishnan S and Vasudevan K (2018) Niche dissociated assembly drives
insular lizard community organization. Scientific Reports 8, 11978.

Harms TM and Dinsmore SJ (2016) Spatial scale matters when modeling
avian co-occurrence. Ecosphere (Washington, D.C) 7, e01288.

Haukisalmi V and Henttonen H (1993) Coexistence in helminths of the bank
vole Clethrionomys glareolus. I. Patterns of co-occurrence. Journal of
Animal Ecology 62, 221–229.

Holmes JC and Price PW (1986) Communities of parasites. In Kittawa J and
Anderson DJ (eds), Community Ecology: Pattern and Process. Oxford:
Blackwell, pp. 187–213.

Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and
Biogeography. Princeton: Princeton University Press.

Ingram T and Shurin JB (2009) Trait-based assembly and phylogenetic struc-
ture in northeast Pacific rockfish assemblages. Ecology 90, 2444–2453.

Jenkins DG (2006) In search of quorum effects in meta-community structure:
species co-occurrence analysis. Ecology 87, 1523–1153.

Kiefer M, Klimaszewski SM and Krumpal M (1982) Zoogeographical region-
alization of Mongolia on the basis of flea fauna (Siphonaptera). Polskie
Pismo Entomologiczne 52, 13–32.

Kiefer M, Krumpal M, Cendsuren N, Lobachev VS and Khotolkhu N (1984)
Checklist, distribution and bibliography of Mongolian Siphonaptera.
Erforschung Biologischer Ressourcen der Mongolei (Halle/Saale) 4, 1–123.

Kiefer M, Goncharov AI and Lobachev VS (1990) Studies on the fauna and
ecology of Siphonaptera in the Mongolian People’s Republic. Nauchnye
Doklady Vysshei Shkoly Biologicheskie Nauki (Scientific Reports of Higher
Education. Biological Sciences) 2, 57–70 (in Russian).

Korňan M, Svitok M and Krištín A (2019) Null model analyses of temporal
patterns of bird assemblages and their foraging guilds revealed the predom-
inance of positive and random associations. Ecology and Evolution 20,
8541–8554.

Kraft N, Adler P, Godoy O, James E, Fuller S and Levine J (2015)
Community assembly, coexistence, and the environmental filtering meta-
phor. Functional Ecology 29, 592–599.

Krasnov BR (2008) Functional and Evolutionary Ecology of Fleas. A Model for
Ecological Parasitology. Cambridge: Cambridge University Press.

Krasnov BR, Burdelova NV, Khokhlova IS, Shenbrot GI and Degen A
(2005) Larval interspecific competition in two flea species parasitic on
the same rodent host. Ecological Entomology 30, 146–155.

Krasnov BR, Stanko M and Morand S (2006a) Are ectoparasite communities
structured? Species co-occurrence, temporal variation and null models.
Journal of Animal Ecology 75, 1330–1339.

Krasnov BR, Shenbrot GI, Khokhlova IS, Hawlena H and Degen AA
(2006b) Temporal variation in parasite infestation of a host individual:

does a parasite-free host remain uninfested permanently? Parasitology
Research 99, 541–545.

Krasnov BR, Matthee S, Lareschi M, Korallo-Vinarskaya NP and Vinarski
MV (2010) Co-occurrence of ectoparasites on rodent hosts; null model ana-
lyses of data from three continents. Oikos 119, 120–128.

Krasnov BR, Shenbrot GI and Khokhlova IS (2011) Aggregative structure is
the rule in communities of fleas: null model analysis. Ecography 34,
751–761.

Krasnov BR, Pilosof S, Stanko M, Morand S, Korallo-Vinarskaya NP and
Vinarski MV (2014) Co-occurrence and phylogenetic distance in commu-
nities of mammalian ectoparasites: limiting similarity versus environmental
filtering. Oikos 123, 63–70.

Krasnov BR, Shenbrot GI, Khokhlova IS, Stanko M, Morand S and
Mouillot D (2015) Assembly rules of ectoparasite communities across
scales: combining patterns of abiotic factors, host composition, geographic
space, phylogeny and traits. Ecography 38, 184–197.

Krasnov BR, Shenbrot GI, Khokhlova IS and Degen AA (2016) Trait-based
and phylogenetic associations between parasites and their hosts: a case
study with small mammals and fleas in the Palearctic. Oikos 125, 29–38.

Krasnov BR, Shenbrot GI, Korallo-Vinarskaya NP, Vinarski MV, van der
Mescht L, Warburton EM and Khokhlova IS (2019) Do the pattern and
strength of species associations in ectoparasite communities conform to
biogeographic rules? Parasitology Research 118, 1113–1125.

Krasnov BR, Spickett A, Junker K, Bugmyrin SV, Ieshko EP, Bespyatova
LA, Stanko M, Khokhlova IS and Matthee S (2021) Parasite counts or
parasite incidences? Testing differences with four analyses of infracommu-
nity modelling for seven parasite-host associations. Parasitology Research
120, 2569–2584.

Krasnov BR, Shenbrot GI and Khokhlova IS (2022) Regional flea and host
assemblages form biogeographic, but not ecological, clusters: evidence for
a dispersal-based mechanism as a driver of species composition.
Parasitology 149, 1450–1459.

Krasnov BR, Grabovsky VI, Khokhlova IS, López Berrizbeitia MF, Matthee
S, Roll U, Sanchez JP, Shenbrot GI and van der Mescht L (2024)
Latitudinal distributions of the species richness, phylogenetic diversity,
and functional diversity of fleas and their small mammalian hosts in four
geographic quadrants. Ecography 2024, e07129.

Laliberté E and Legendre P (2010) A distance-based framework for measur-
ing functional diversity from multiple traits. Ecology 91, 299–305.

Laliberté E, Legendre P and Shipley B (2014) FD: Measuring Functional
Diversity from Multiple Traits, and Other Tools for Functional Ecology.
R package version 1.0-12.3. Available at https://CRAN.R-project.org/
package=FD

Laudisoit A, Leirs H, Makundi R and Krasnov BR (2009a) Seasonal and
habitat dependence of fleas parasitic on small mammals in Tanzania.
Integrative Zoology 4, 196–212.

Laudisoit A, Neerinckx S, Makundi RH, Leirs H and Krasnov BR (2009b)
Are local plague endemicity and ecological characteristics of vectors and
reservoirs related? A case study in north-east Tanzania. Current Zoology
55, 200–211.

Legras G, Loiseau N, Gaertner JC, Poggiale JC, Ienco D, Mazouni N and
Mérigot B (2019) Assessment of congruence between co-occurrence and
functional networks: a new framework for revealing community assembly
rules. Scientific Reports 9, 19996.

Leibold MA and Mikkelson GM (2002) Coherence, species turnover and
boundary clumping: elements of meta-community structure. Oikos 97,
237–250.

López Berrizbeitia MF (2018) Sifonápteros de Micromamíferos
(Didelphimorphia, Chiroptera y Rodentia) del Noroeste Argentino:
Sistemática y Distribución (PhD thesis). Universidad Nacional de
Tucumán, San Miguel de Tucumán, Argentina.

López Berrizbeitia MF and Díaz MM (2019) Siphonaptera associated with
small mammals (Didelphimorphia, Chiroptera, and Rodentia) from north-
western Argentina. Therya 10, 279–308.

MacArthur RH and Levins R (1967) The limiting similarity, convergence and
divergence of coexisting species. American Naturalist 101, 377–385.

Maire V, Gross N, Börger L, Proulx R, Wirth C, Pontes LDS, Soussana JF
and Louault F (2012) Habitat filtering and niche differentiation jointly
explain species relative abundance within grassland communities along fer-
tility and disturbance gradients. New Phytologist 196, 497–509.

Makundi RH, Massawe AW, Borremans B, Laudisoit A and Katakweba A
(2015) We are connected: flea–host association networks in the plague

862 Boris R. Krasnov et al.

https://doi.org/10.1017/S0031182024000969 Published online by Cambridge University Press

https://CRAN.R-project.org/package=FD
https://CRAN.R-project.org/package=FD
https://CRAN.R-project.org/package=FD
https://doi.org/10.1017/S0031182024000969


outbreak focus in the Rift Valley, northern Tanzania. Wildlife Research 42,
196–206.

Margalit Y and Shulov AS (1972) Effect of temperature on development of
prepupa and pupa of the rat flea, Xenopsylla cheopis Rothschild. Journal
of Medical Entomology 9, 117–125.

Marshall AG (1981) The Ecology of Ectoparasitic Insects. London: Academic
Press.

Matthee S, Horak IG, Beaucournu J-C, Durden LA, Ueckermann EA and
McGeoch MA (2007) Epifaunistic arthropod parasites of the four-striped
mouse, Rhabdomys pumilio, in the Western Cape Province, South Africa.
Journal of Parasitology 93, 47–59.

McNew SM, Barrow LN, Williamson JL, Galen SC, Skeen HR, DuBay SG,
Gaffney AM, Johnson AB, Bautista E, Ordoñez P, Schmitt CJ, Smiley
A, Valqui T, Bates JM, Hackett SJ and Witt CC (2021) Contrasting drivers
of diversity in hosts and parasites across the tropical Andes. Proceedings of
the National Academy of Sciences of the USA 118, e2010714118.

McQuaid CF and Britton NF (2013) Host-parasite nestedness: a result of
co-evolving trait-values. Ecological Complexity 13, 53–59.

Meliyo JL, Kimaro DN, Msanya BM, Mulungu LS, Hieronimo P, Kihupi
NI, Gulinck H and Deckers JA (2014) Predicting small mammal and
flea abundance using landform and soil properties in a plague endemic
area in Lushoto District, Tanzania. Tanzania Journal of Health Research
16, 3. https://doi.org/10.4314/thrb.v16i3.3

Møller AP, Christe P and Garamszegi LZ (2005) Coevolutionary arms races:
increased host immune defense promotes specialization by avian fleas.
Journal of Evolutionary Biology 18, 46–59.

Morueta-Holme N, Blonder B, Sandel B, McGill BJ, Peet RK, Ott JO, Violle
C, Enquist BJ, Jørgensen PM and Svenning J-C (2016) A network
approach for inferring species associations from co-occurrence data.
Ecography 39, 1139–1150.

Newman ME (2006) Modularity and community structure in networks.
Proceedings of the National Academy of Sciences of the USA 103, 8577–8582.

Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P,
O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M,
Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres
RM, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B,
Hannigan G, Hill M, Lahti L, McGlinn D, Ouelette M, Ribeiro Cunha
E, Smith T, Stier A, Ter Braak C and Weedon J (2022) Vegan:
Community Ecology Package. R package version 2.6-4. Available at
https://CRAN.R-project.org/package=vegan

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN,
Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks
CI, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW,
Hedao P and Kassem KR (2001) Terrestrial ecoregions of the world: a
new map of life on Earth. Bioscience 51, 933–938.

Patterson BD and Atmar W (1986) Nested subsets and the structure of insu-
lar mammalian faunas and archipelagos. Biological Journal of the Linnean
Society 28, 65–82.

Pavoine S, Marcon E and Ricotta C (2016) “Equivalent numbers” for species,
phylogenetic or functional diversity in a nested hierarchy of multiple scales.
Methods in Ecology and Evolution 7, 1152–1163.

Poulin R (2007) Evolutionary Ecology of Parasites: From Individuals to
Communities, 2nd Edn. Princeton: Princeton University Press.

Presley SJ (2007) Streblid bat fly assemblage structure on Paraguayan Noctilio
leporinus (Chiroptera: Noctilionidae): nestedness and species
co-occurrence. Journal of Tropical Ecology 23, 409–417.

Purves DW and Pacala SW (2005) Ecological drift in niche-structured com-
munities: neutral pattern does not imply neutral process. In Burslem D,
Pinard M and Hartley S (eds), Biotic Interactions in the Tropics.
Cambridge: Cambridge University Press, pp. 107–138.

R Core Team (2023) R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing,
Available at https://www.R-project.org/.

Rubio VE and Swenson NG (2022) Functional groups, determinism and the
dynamics of a tropical forest. Journal of Ecology 110, 185–196.

Rudolph D and Knulle W (1982) Novel uptake systems for atmospheric water
vapor among insects. Journal of Experimental Zoology 222, 321–333.

Sanchez JP (2012) Sifonápteros Parásitos de los Roedores Sigmodontinos de la
Patagonia Norte de la Argentina: Estudios Sistemáticos y Ecológicos (PhD
thesis). Universidad Nacional de La Plata, La Plata, Argentina.

Sanchez JP and Lareschi M (2013) The fleas (Insecta: Siphonaptera) parasites
of sigmodontine rodents (Cricetidae) from Northern Patagonia, Argentina.
Comparative Parasitology 80, 110–117.

Sanchez JP and Lareschi M (2019) Diversity, distribution and parasitism rates
of fleas (Insecta: Siphonaptera) on sigmodontine rodents (Cricetidae) from
Argentinian Patagonia. Bulletin of Entomological Research 109, 72–83.

Sanders NJ, Gotelli NJ, Wittman SE, Ratchford JS, Ellison AM and Jules ES
(2007) Assembly rules of ground-foraging ant assemblages are contingent
on disturbance, habitat and spatial scale. Journal of Biogeography 34,
1632–1641.

Schatz AM and Park AW (2021) Host and parasite traits predict cross-species
parasite acquisition by introduced mammals. Proceedings of the Royal
Society of London B 288, 20210341.

Schelling M and Hui C (2015). modMax: Community Structure
Detection via Modularity Maximization. R package version 1.1. Available
at https://CRAN.R-project.org/package=modMax

Sfenthourakis S, Tzanatos E and Giokas S (2006) Species co-occurrence: the
case of congeneric species and a causal approach to patterns of species asso-
ciation. Global Ecology and Biogeography 15, 39–49.

Stanko M, Miklisová D, Gouy de Bellocq J and Morand S (2002) Mammal
density and patterns of ectoparasite species richness and abundance.
Oecologia 131, 289–295.

Stevens L, Stekolnikov AA, Ueckermann EA, Horak IG and Matthee S
(2022) Diversity and distribution of ectoparasite taxa associated with
Micaelamys namaquensis (Rodentia: Muridae), an opportunistic com-
mensal rodent species in South Africa. Parasitology 149, 1229–1248.

Strayer DL, Power ME, Fagan WF, Pickett STA and Belnap J (2003) A clas-
sification of ecological boundaries. Bioscience 53, 723–729.

Surkova EN, Korallo-Vinarskaya NP, Vinarski MV, van der Mescht L,
Warburton EM, Khokhlova IS and Krasnov BR (2018) Body size distribu-
tion in flea communities harboured by Siberian small mammals as affected
by host species, host sex and scale: scale matters the most. Evolutionary
Ecology 32, 643–662.

Tello SJ, Stevens RD and Dick CW (2008) Patterns of species co-occurrence
and density compensation: a test for interspecific competition in bat ecto-
parasite infracommunities. Oikos 117, 693–702.

Ulrich W (2004) Species co-occurrences and neutral models: reassessing
J. M. Diamond’s assembly rules. Oikos 107, 603–609.

Ulrich W and Gotelli NJ (2007) Disentangling community patterns of nested-
ness and species co-occurrence. Oikos 116, 2053–2061.

Ulrich W and Gotelli NJ (2013) Pattern detection in null model analysis.
Oikos 122, 2–18.

Ulrich W and Zalewski M (2006) Abundance and co-occurrence patterns of
core and satellite species of ground beetles on small lake islands. Oikos 114,
338–348.

Ulrich W, Jabot F and Gotelli NJ (2017) Competitive interactions change the
pattern of species co-occurrences under neutral dispersal. Oikos 126, 91–100.

van der Mescht L and Matthee S (2017) Host range and distribution of small
mammal fleas in South Africa, with a focus on species of medical and vet-
erinary importance. Medical and Veterinary Entomology 31, 402–413.

Veech JA (2006) A probability-based analysis of temporal and spatial
co-occurrence in grassland birds. Journal of Biogeography 33, 2145–2153.

Veitch JSM, Bowman J and Schulte-Hostedde AI (2020) Parasite species
co-occurrence patterns on Peromyscus: joint species distribution modelling.
International Journal for Parasitology. Parasites and Wildlife 12, 199–206.

Vinarski MV, Korallo-Vinarskaya NP, Shenbrot GI, Warburton EM,
Surkova EN, Khokhlova IS and Krasnov BR (2020) Species associations
and trait dissimilarity in communities of ectoparasitic arthropods har-
boured by small mammals at three hierarchical scales. Ecological
Entomology 45, 321–332.

Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I and Garnier
E (2007) Let the concept of trait be functional!. Oikos 116, 882–892.

Wilson DS (1992) Complex interactions in metacommunities, with implica-
tions for biodiversity and higher levels of selection. Ecology 73, 1984–2000.

Parasitology 863

https://doi.org/10.1017/S0031182024000969 Published online by Cambridge University Press

https://doi.org/10.4314/thrb.v16i3.3
https://doi.org/10.4314/thrb.v16i3.3
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=modMax
https://CRAN.R-project.org/package=modMax
https://doi.org/10.1017/S0031182024000969

	Congruence between co-occurrence and trait-based networks is scale-dependent: a case study with flea parasites of small mammalian hosts
	Introduction
	Materials and methods
	Data on flea species distribution
	Data on flea traits
	Data analyses

	Results
	Discussion
	Acknowledgements
	References


