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LOCALLY CONVEX HYPERSURFACES
L. B. JONKER AND R. D. NORMAN

1. Introduction. Let M be an #n-dimensional connected topological mani-
fold. Let £: M — R™1! be a continuous map with the following property:
to each x € M there is an open set x € U, C M, and a convex body
K, CR* guch that £(U,) is an open subset of 9K, and such that
¢|U, : U, — 0K, is a homeomorphism onto its image. We shall call such a
mapping ¢ a locally convex immersion and, along with Van Heijenoort [8] we
shall call ¢(M) a locally convex hypersurface of R™1, Note that we do not
assume that £ is 1 — 1 or a homeomorphism onto its image or that (M) is
closed in R**!, We may define on M a metric induced by ¢ as follows: if
x,y €M

d(x,y) = inf{length (£ o v)|y a rectifiable curve between x and v}.

We assume always that M is complete in this metric.

We will summarize the assumptions made so far by saying that M is
smmersed in R**! as a complete connected locally convex hypersurface.

In this paper we prove the following analogue of the theorems of Sacksteder,
Hartman, and Nirenberg [6; 3; 2] that concern complete hypersurfaces of
non-negative sectional curvature in a Euclidean space:

THEOREM. Let M be an n-dimensional connected topological manifold immersed
in R*1 as a complete locally convex hypersurface. Then either £(M) is a hyper-
cylinder (the product of R*=! with a curve) or else it is the boundary of an open
convex subset of R*+1,

This theorem depends on and generalizes a result of Van Heijenoort [8].
We give a somewhat shorter proof of Van Heijenoort’s theorem in Propo-
sition 2.

2. Preliminary results. We must first introduce some further terminology.
If x € M and K, has a hyperplane of support at £(x) that meets K, only at
£(x), then we say that ¢ is strictly locally convex at x and that £(M) is strictly
locally convex at £(x). This condition on £(x) is also expressed in the literature
by saying that £(x) is an exposed point of K, (see [5]). We remind the reader
that a point p on a convex body K is called an extreme point of K if p does not
lie in the interior of any line segment contained in XK.

By a hyperplane of support T, at x € M we shall mean any hyperplane of
support for K, at £(x). 7(x) will denote the set of hyperplanes of support at «.
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A line in M is a subset I C M such that |/ is a homeomorphism of / onto a
line in R*+1. A line segment is defined similarly. By a flat r-space in M we shall
mean a subset L C M such that £ L is a homeomorphism of L onto a linear
r-manifold in R*1. A flat convex set in M is a connected subset C of M such
that £|C maps C homeomorphically onto a convex subset of R**1.

Without loss of generality we will always assume that the sets U, intro-
duced in the introduction are such that for some 7', € 7(x) the orthogonal
projection of £(U,) into T, is a homeomorphism onto an open ball centred at
£(x) (see Buseman [1, Theorem (1.12)]). It follows that if ¥ € U, and if =
is a plane containing £(x), £(y), and the direction normal to this preferred
hyperplane of support 75, then x and y lie in the same connected component
of £ 1(w).

Let x € M, and ¢(x) € L where L is a linear submanifold of R*+1. If for
some T, € 7(x) we have L C T, we say that M and L are tangent at x; if not,
we say that M and L are transverse at x.

ProrositioN 1. Let £ : M — R be an immersion of M as a complete locally
convex hypersurface. Let L C R™* be any linear submanifold of R"'. Let
N C M be a connected component of £1(L). Then N 1s complete, and there are
only two possibilities:

(@) M and L are transverse everywhere on N and N 1is an embedded submani-
fold of M, and E|N : N — L is a locally convex immersion.

(b) M and L are tangent everywhere on N and N is an embedded submanifold-
with-boundary of M and £(N) is a convex subset of L. In this case, if N does not
contain a flat (n — 1)-space, N has a neighbourhood U such that U — N is
connected and does not meet 1(L).

Proof. Certainly £71(L) is closed since £ is continuous.

Suppose that there is a point x € N such that L is tangent to M at x. That
is, L is contained in a hyperplane of support at x. If L meets £(U,) at another
point y, then clearly L is tangent to M at y as well. Let O C N be the subset
of all points at which M and L are tangent: we have just shown that O is
open in N (forx € NN\ U, C 0). O is also closed (even in M), for if x € O
then x € O by [1, (1.6)]. Since N is connected it follows that N = O, and N
is a closed subset of M.

Moreover, NV is locally convex in the sense that each point of N has an

N-neighbourhood which is flat convex subset of M. To see this, note that if
¥,2 € Uz M N then

£, 8() € LN E(U:) CL COK,,

whence [£(y), £(z)] C 9K,. Since £(U,) is projected homeomorphically onto
a ball in some hyperplane, [£(y), £(2)] C L M £(U,). Since v and z are arbi-
trary points in U, M N it follows that U, M N is a flat convex subset of M.
There are two consequences.
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Since N is connected, these flat convex neighbourhoods have the same
dimension throughout V. Thus N is an embedded submanifold-with-boundary
of M.

On the other hand, if a line segment lies in N then its endpoints lie in V.
This, together with the local convexity of N, allows a successful application
of an argument of Klee [4, Propositions (5.1) and (5.2)] to show that £¢(V) is a
convex subset of L.

Now suppose IV does not contain a flat (n — 1)-space. Then one of the
following three situations occurs: (1) NV has dimension < # — 2 so that
U, — N is always connected for x € N, (2) N is (# — 1)-dimensional and
bounded so that U, — N is connected for at least one x € N, (3) N is n-
dimensional and bounded so that U,’ — N is connected for all x € N if
U, C U, is a suitably chosen neighbourhood of x. In each case a simple
argument shows that if U = U,exy Uy, then U — N is connected.

The only remaining possibility is that M and L are transverse at all points
of N. It is clear that in this case IV is an embedded submanifold and that
¢§|N : N — L is a locally convex embedding.

CoROLLARY 1. The convex bodies K, for M may be chosen in such a way that
on the complement of the unions of the flat (n — 1)-spaces contained in M, if
U, N U, # @ then int K, N int K, # 0.

Proof. Let z € U, M U,. Suppose z is not contained in an n-dimensional
convex subset of M. Then clearly int K, M int K, £ @. If Vis an #n-dimensional
convex set not including a flat (# — 1)-space, then if U is as in the proof of
Proposition 1, £(U) lies entirely on one side of the hyperplane L containing
£(N). Hence the sets K,, x € 9N, all lie on one side of L. For interior points
x of N, if K, does not already lie on that side of L we can achieve this by
reflecting K, in L. The result is now obvious.

ProrositioN 2 (Van Heijenoort’s theorem). Let M be a connected topological
manifold, tmmersed by & in R*"*1 as a complete locally convex hypersurface, and
suppose M has at least one exposed point x. Then £(M) bounds an open convex
subset of R"*1,

Proof. It is easy to see that coordinates (u!, ..., «"*') may be selected on
R™1! to make T, = {#"! = 0} a support plane at x = (0,...,0). Since x is
exposed we may assume in addition that on £(U,) we have w"*! = f(u!, , u")

n —

where f is convex and f(u!,...,u") =0=ul =u* = ... =u" =
Fora € (0,0) let

R, = { (!, ..., )|u"+! = a}.
Fora € (0, 0] let
Jo = {@ ..., ) |u"+l < a}

and let P, be the connected component of £~1(J,) that contains x. Note that

https://doi.org/10.4153/CJM-1973-054-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-054-7

534 L. B. JONKER AND R. D. NORMAN

J. = R*! and that P, = M. For any ¢ € (0, 0] let K, denote the closed
convex hull of £(P,). For a € (0, ] let A (a) denote the condition:

A (a): /P, is a homeomorphism of P, onto 4K, M J,.

It is clear that A4 (a) holds for sufficiently small a. We will show that 4 (a)
is true for all a € (0,00) and then that this implies 4 (c0), which is the
conclusion of the theorem.

Let S C R, be the set {b € Ry|4 (D) is true}. Since 4 (b) clearly implies
A (a) for all @ < b it is clear that S is connected.

S is closed. For suppose 4 (a) is true for all ¢ < b. Lety € P,. Theny € P,
for some a < b. Let H, be any closed half-space containing K, such that
¢(y) € 0H,. Let z € P,. Then z € P, for some a' € (a,b). A(a') implies
that because dH, is a supporting hyperplane for a neighbourhood of £(y) € K,
it is a supporting hyperplane for K,. Thus 3 € K, C H,. Thus £(P,) C H,
and £(y) € 0K,. Therefore £(P,) C dK,. It is now easy to see that £ is a
homeomorphism of P, onto 4K, M J,.

To show that .S is also open we need to know that 9P, is connected. This is
proved in the lemma below. Assuming it for now, let ¥ € P, and suppose
M and R, are tangent at y. Let N be the connected component of {1(R,)
that contains y. By Proposition 1, IV is convex. Clearly 4P, C dN. It is clear
that N cannot contain an (z — 1)-flat, and so by Proposition 1 there is a
neighbourhood U of N such that U — N is connected and

(U= N)NEHR) = 0.

Thus U — N C P,. Hence 0P, = 0N and M = P, \JU N since M is connected.
It follows that for ¢ > b, P, = M so that 4 (c) is trivially true.

Now suppose M and R, are transverse throughout 9P;,. Then 9P, is a
connected component of £71(R;,). On the other hand, £(dP,) = ' (K, N\ R,)
where 9’ denotes the boundary taken in R,. For every y € 9P,

S(Uym 6Pb) = E(Uy) M R,

is an (# — 1)-dimensional submanifold of R,. Hence K, M R, must have an
interior in R,. Let z lie in this interior. Let C be the solid cylinder

C={(@h. ..., )|, ..., u"0) € Ky N R,}.

Then any line /, from z to £(y), y € dP,, passes through int C. For at least
one point ¥y € 4P, I, also passes through int K,. Since K, cannot contain any
flat (n — 1)-space it follows from Corollary 1 that I, passes through int K,
for all y € P,. But then y has a neighbourhood V, such that cylindrical
projection from the line ! through z parallel to the u"tl-axis maps £(V,)
homeomorphically to a neighbourhood W, of £(y) in dC. Since P, is compact
we can choose an open neighbourhood V of dP, so that £(V) is protected from /
homeomorphically onto W = dC M {b — ¢ < ™1 < b 4 ¢}. That implies in
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particular that each ray %4 (¢), 0 < ¢t < o, perpendicular to [ at
 CIN{h—e<utt <b+ €
meets £(17) precisely once, say at £(1). The set of points
O =intK,\U {h(),0 =t <1,hasabove}

then forms an open set whose boundary is locally convex in such a way that
the convex bodies K, associated with points on the boundary all intersect O.
Then by a theorem of Tietze (see [7, p. 53]), O is convex. Put O = K,,. and
we see easily that 4 (b + ¢) is true. Thus S is open.

It follows that 4 (a) is true for all @ € (0, ). It remains to prove 4 ().
If ¢(y) € K, N Ty, £(y) € K, for some a > b and so £(y) € K,N T, = K,.
Thus K, N J, = K, for all b € (0, ©). £ maps M onto 0K, for if ¢ € K
then ¢ € dK, for some a, and thus ¢ is in the image of £. [t is similarly clear
that £ is 1-1 and a local homeomorphism. Thus 4 () is true.

LemMmA. If A (b) holds, then 0P, is connected.

Proof. Suppose to the contrary, that B; and B, are non-empty disjoint
closed subsets of M covering dP,. Since M is metric, hence normal, there are
open disjoint sets Uy, Us containing By and B, respectively. Choose a sequence
{a,} of real numbers, such that a; < b, and lim @, = b. Since dP,, is connected,
we may choose y; € dP,, — (U;\J Us). Since £(P,) is compact, we may
assume that {£(y;)} is a Cauchy sequence. Let £(y;) — p; clearly p € 9(£EP,).
If we show that {y,} is Cauchy in M, with limit y € dP, — (U1 M U,), we
will have a contradiction.

Let T be a support hyperplane to K, at p such that the orthogonal projec-
tion 7 is a homeomorphism of a compact neighbourhood W of p € 9K, to a
closed ball V' C 7, centred at p. Then by Busemann [1, 1.6], we may assume
that for some 6 € (0, 7/2) the angle between the support hyperplanes 7" at
p’ € W,and T at p is always less than 6. It follows that if y, z are points of M
such that £(y), £(z) € W, then

lE@y) — £@)|| = secb||nt(y) — 7E(@)|| < sec8|[E(y) — £@)]]-

Hence if « is a path in W, length(a) < sec §length(w 0a). Now let
B =x(K,N\R,). Clearly p € B and =£(y;) ¢ B. If the affine space L
generated by B is (» — 1)-dimensional and p lies in the interior of B with
respect to L we take a subsequence 7£(y,) that lies entirely on one side of L
in T. In any case, it is now possible to find paths a;; in 7" — B that join
w£(y;) and w£(y,;) and such that length(a;;) — 0 as 7, j — 0. But then the
paths £ 17—!(a;;) are paths in P, and

d(yi, ¥;) = length(§7'77 (@) = sec 6 length(ay).

Thus {v,} is a Cauchy sequence in M with (lim y;) € 9P, — (U1 M U;) and
we have a contradiction.
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In the next proposition we prove the main theorem for the case of a surface.

ProprosITION 3. Let M be a two-dimensional connected topological manifold
immersed in R® as a complete locally convex surface. Then either £(M) is a
cylinder or else it is the boundary of an open convex subset of R3.

Proof. 1f, for some x € M, £(x) is an extreme point of K, then by
[5, Theorem 2.1], there are exposed points of K, arbitrarily near £(x). In
particular there is a point ¥ € U, at which ¢ is strictly locally convex. But
then Van Heijenoort’s theorem (Proposition 2) shows that £(M) is the
boundary of an open convex subset of R3.

Thus we may assume for the remainder of this proof that every x € M is
contained in the interior of a line segment. Let 7, € 7(x) and let N(7;) be
the connected component of §71(7",) containing x. 1f N(7°,) is one-dimensional
it must be a line for otherwise it would have an endpoint which would not lie
in the interior of a line segment. Suppose N (1) is two-dimensional. If
§(N(T,)) = T, it is easy to see that N(7,) = M and that M is immersed as
a plane. If N(7,) is a proper two-dimensional subset it must be a slab between
two lines whose images are parallel, for otherwise its boundary would contain
a point whose image is extreme. Thus if we exclude the case where £(M) is a
plane, every point x lies on a unique line /,. It remains only to show that the
images of these lines are parallel.

First we show that the map x — £(/,) that associates to x the unique line
in £ (M) through £(x) is continuous. Let {x;} — x. It follows from the compact-
ness of the projective space of lines through £(x) that there must be a subse-
quence {x,’} of {x;} such that the sequence {£(l;;")} converges to a line m
through &(x). It follows from the completeness of M that m is the image of a
line / through x. Then / = /, since [, is unique. For the same reason [£(/,;)}
cannot have cluster points other than m. Thus the sequence {£(L;;)} approaches
£(z).

Nowletx € Mandlety € U,. If x and y belong to a flat convex subset of M,
then either for some 7, € 7(x), NV(7;) must be a slab with y € N(7,) or else
y lies on /,. In either case £(/;) and £(I,) are parallel. If x and ¥ do not belong
to a flat convex set, no support plane at x is parallel to any support plane at y;
moreover, then £(U,) is not flat and thus for any z € U, and T°, € 7(3), £(U,)
is contained in precisely one of the closed half-spaces bounded by 7°,. We will
show that £(l,) is parallel to 7', and £(/,) to 7°,.. Suppose to the contrary that
£(l,) meets T, in £(z). Let L be the plane through £(x), containing the normal
direction to 7T, and also containing £(y). Because of the conditions on U,,
x and y belong to the same connected component ¢ of £ 1(L) N\ U,. ¢ is a
curve which we parametrize in such a way that ¢(0) = x and o(1) = v. We
now restrict ¢ to 0 = ¢ = 1 and we call the restricted curve v. Then no two
lines of support for this (convex) curve ¢ at points of ¥ make an angle greater
than or equal to w/2. Also I, is transverse to L for 0 < ¢ < 1, for otherwise
x and y would belong to the flat convex subset U, M I,¢, of M. Let L’ be the
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plane through £(z) parallel to L. Let ¢’ be the curve in £ 1(L’) such that
o' (t) € ly(y. Define v’ similarly. Orient R3? in such a way that £(U,) lies above
T.. Now since N (T,) is either I, or a slab containing /, but not y, we may define
t1 € [0, 1) to be the greatest ¢ such that ¢y C N(7T,). No point of /,(;; has
a flat neighbourhood; clearly then, all points of I, have neighbourhoods
whose images lie on the same side of 77, namely, above 7. Thus for some
e > 0, &Y' (t1 + ¢€) lies above T,. But the height of &/ (¢) above T, N L' is
zero when { = 0 and ¢ = 1. Hence for some ¢, € (0, 1), this height attains
a positive maximum. Then necessarily v’ has a line of support at v’ () which
is parallel to 7, M L', and £(y’) lies below this line of support. Since the lines
of support of ¢’ at points of vy’ are necessarily parallel to the lines of support
of ¢ at corresponding points of y this means that a line of support to ¢ at
v(0) = x and a line of support to ¢ at vy () make an angle of =. We already
indicated that this cannot happen, so we must conclude that £(},) does not
meet 1.

This argument may be repeated with the roles of x and y interchanged but
using the same set U, and plane L. Thus also £(/,;) does not meet T',.

Since 7, and T, are not parallel it is clear that £(/,) and £(J,) are parallel
to the line of intersection of 7', and 7', and hence to each other, if x,y € U,.
Since M is connected it now follows that £(l,) and £(l,) are parallel for all
x,y € M.

3. Proof of the theorem. Suppose that through x € M there is a line /.
Let T, € 7(x) be the preferred hyperplane of support with the property that
the orthogonal projection onto 7', maps £(U,) homeomorphically onto an
open ball. Let m be the line normal to 7. Choose y € U,. We will show that
through v there passes a line I’ such that £(I) and £(I) are parallel. If / already
passes through y there is nothing to prove. If not, £(x), £(y), £(1), and m are
contained in a unique 3-space = which is transverse to M at x and thus also
at y. By our assumptions about the sets U,, x and y lie in the same connected
component N of £1(x). N with the immersion

(N:N-—>7

satisfies the conditions of Proposition 3, and hence there is a line I’ through ¥
such that £(I') and £(I) are parallel. Since y is an arbitrary point in U, it
follows that every point in U, lies on a line parallel to /. Since M is connected
it follows that every point in M lies on a line parallel to 7.

Now suppose 7 is the largest integer such that x is contained in a flat 7-space
L,. It follows from the preceding discussion that through every y € M there
is a parallel r-space L, and that 7 is the largest dimension possible at y.

Let H be the (n + 1 — 7)-space through x orthogonal to L,. It is now clear
that P = £~1(H) is connected. It is also clear that P contains a point at which
(|P : P — H is strictly locally convex, for otherwise every point of P would
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lie on the interior of a line segment and hence on a line (see the first two
sentences in the proof of Proposition 3).

If dim P = 2, we can apply Van Heijenoort’s theorem (Proposition 2) to
show that £(P) = dK where K is an open convex set in H. It then follows
immediately that

EM) = (K X R")

so that £(M) is the boundary of an open convex subset of R**L,
If dim P = 1, P is a curve and £(M) is a hypercylinder.
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