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Abstract

Glacial environments exhibit temporally variable microseismicity. To investigate how microseis-
micity influences event detection, we implement two noise-adaptive digital power detectors to
process seismic data from Taylor Glacier, Antarctica. We add scaled icequake waveforms to
the original data stream, run detectors on the hybrid data stream to estimate reliable detection
magnitudes and compare analytical magnitudes predicted from an ice crack source model. We
find that detection capability is influenced by environmental microseismicity for seismic events
with source size comparable to thermal penetration depths. When event counts and minimum
detectable event sizes change in the same direction (i.e. increase in event counts and minimum
detectable event size), we interpret measured seismicity changes as ‘true’ seismicity changes
rather than as changes in detection. Generally, one detector (two degree of freedom (2dof)) out-
performs the other: it identifies more events, a more prominent summertime diurnal signal and
maintains a higher detection capability. We conclude that real physical processes are responsible
for the summertime diurnal inter-detector difference. One detector (3dof) identifies this process
as environmental microseismicity; the other detector (2dof) identifies it as elevated waveform
activity. Our analysis provides an example for minimizing detection biases and estimating source
sizes when interpreting temporal seismicity patterns to better infer glacial seismogenic processes.

Introduction

The release of elastic (seismic) energy within a glacier or ice sheet indicates a response to
dynamic forcing or transient change in motion (see reviews by Podolskiy and Walter, 2016;
Aster and Winberry, 2017). Glaciological processes such as brittle fracture (e.g. Neave and
Savage, 1970; Mikesell and others, 2012), hydraulic resonance in moulins (e.g. Roeoesli and
others, 2016) and changes in the basal hydraulic system (e.g. Walter and others, 2013; Vore
and others, 2019) produce signals that can be detected in seismic records. Furthermore,
changes in seismic characteristics over time can indicate temporally gradual changes in a gla-
cial system that are not as readily apparent through other observations.

Seismic sources located on and near glaciers and ice sheets often show diurnal or seasonal
patterns in activity (e.g. MacAyeal and others, 2018; Podolskiy and others, 2018; Zhang and
others, 2019). This activity, referred to as seismicity, comprises a superposition of discrete,
transient seismic events over a background of persistent, low-amplitude microseismic energy
that evolves with time. The variability of such seismicity tends to match the variability of envir-
onmental processes that include summertime melting and runoff at the glacier surface (Hart
and others, 2019); englacial and subglacial water flow (R66sli and others, 2014); snow redis-
tribution (Allstadt and Malone, 2014; Chaput and others, 2018); fluctuations in air tempera-
ture (Podolskiy and others, 2018); and thermal bending and fracture of ice during melt/freeze
cycles on supraglacial ponds (MacAyeal and others, 2018), sea ice (Bazant, 1992) and lake ice
(Ghofrani and Atkinson, 2018; Kavanaugh and others, 2019). In this paper, we use the term
‘environmental microseismicity’ to refer to the background component of periglacial and gla-
cial seismicity (i.e. low-amplitude, temporally variable microseismicity described above), dis-
tinct from the discrete, transient seismic events.

Many passive glacial seismology experiments focus on transient seismic waveforms gener-
ated by discrete, glaciogenic events. We emphasize herein that the geophysical ‘interest’ of a
seismic signal (transient or environmental) depends on the particular problem under study.
This reflects the philosophy that ‘one person’s signal is another’s noise’ (e.g. Stein and
Wysession, 2003, p. 141). Cryoseismology analogously requires analysis methods that identify
signals both in pursuit of or in spite of temporally variable environmental microseismicity.
Researchers therefore remain challenged to understand how environmental microseismicity
(including glaciogenic microseismicity) interacts with other glaciogenic signals.

Environmental microseismicity presents a particular challenge to seismic waveform detec-
tion: patterns in both environmental microseismicity and discrete icequakes can vary over
matching timescales (e.g. diurnal or seasonal). The signal-to-noise ratio (SNR) for a seismic
waveform (‘signal’) with a given amplitude will change depending on temporally variable
background levels of microseismic energy (‘noise’). A digital signal detection algorithm may
or may not identify a waveform of a given amplitude depending on the noise conditions
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(as described in glacial environments by Walter and others, 2008;
Dalban Canassy and others, 2012). This implies that choosing one
detection method over another during a seismic experiment can
influence an observer’s interpretation of temporal patterns of seis-
mic activity.

Locally-deployed passive seismic networks provide a monitor-
ing technology that can capture small-magnitude seismic sources.
For example, MacAyeal and others (2018) used local records to
show that event frequency of diurnally variable and thermally acti-
vated fracture sources on an ice-shelf are well described by a
Gutenberg-Richter type law. This law predicts that the number
of small-magnitude icequakes is orders of magnitude greater
than the number of large-magnitude icequakes. However, sensors
can only record these small sources above noise at local distances.
To better interpret such geophysically interesting, small-magnitude
seismic sources, researchers should first assess how their observa-
tion is biased by temporally variable environmental microseismi-
city and detector design choices.

In this paper, we compare the detection capability of two auto-
matic seismic event detectors (named 2dof and ‘3dof) under
varying environmental microseismicity conditions. The two degree
of freedom (2dof) detector implements the same algorithm as the
noise-adaptive detector of Carmichael and others (2015). The three
degree of freedom (3dof) is another noise-adaptive detector; it
implements different parameter estimators and includes a third
degree of freedom to account for correlation in the environmental
microseismicity. This modification is inspired by an infrasound
event detector developed by Arrowsmith and others (2015); their
detector included a third degree of freedom so as to ‘reduce false
detections associated with coherent continuous-wave sources
such as microbaroms or wind farms’ (p. 1412).

We observe temporally variable inter-detector differences in
event counts and ability to detect small events. We attribute
these detection differences to differences in how the detectors
interpret environmental microseismicity. To directly test the ability
of both detectors to identify waveforms over a range of magnitudes,
we perform a waveform infusion experiment and describe how
these results can inform our interpretations of measured seismicity.
We further relate our detector’s capabilities to physical dimensions
of glaciogenic seismic sources (i.e. surface crack dimensions).

Our study uses data from Taylor Glacier, Antarctica; however,
the detection methods we discuss are applicable to all glacier set-
tings. Geophysical interpretation of Taylor Glacier’s seismic
response to forcings (including brine release, meltwater gener-
ation and katabatic winds) is beyond the scope of this paper.
Therefore, we do not locate sources of discrete icequakes or com-
pare our measurements of seismicity against energy balance or
thermal bending models as done elsewhere (e.g. Carmichael and
others, 2012; MacAyeal and others, 2018). Throughout the
paper, we use the term ‘icequake’ if the likely source is on the gla-
cier or the more general terms ‘events’ and ‘waveforms’ if no spe-
cific glacial source is implied.

Analyzing seismic data collected from glaciers

Waveform detection operations that process large sets of seismic
data (e.g. this study, 14 months of data from three stations with
sample rates of 200 s™!) require automated processing techniques.
The most general digital waveform detection method (requiring
the least prior knowledge of waveform shape) is the short-term
average to long-term average (STA/LTA) detector (Earle and
Shearer, 1994; Withers and others, 1998; Song and others,
2014). Algorithms implementing these detectors operate from a
binary hypotheses test on the recorded data: either a seismogram
contains just noise or it contains a signal contaminated with
noise. To evaluate which hypothesis is true, the STA/LTA
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algorithm compares an STA estimate of data energy (variance)
to an LTA estimate of data energy. When this ratio exceeds a pre-
scribed threshold value, the STA/LTA algorithm triggers, or
declares a waveform detection.

For any detector, the false-alarm rate quantitatively estimates
how often the detector triggers on background noise when no
waveform is present. Similarly, the detection capability qualita-
tively describes how well the detector successfully identifies
events. For two detectors with the same false-alarm rate, the
detector that identifies waveforms with a smaller SNR more
often has a higher detection capability. Furthermore, the same
waveform detector can have variable detection capability under
variable noise conditions.

Most STA/LTA detectors used to process seismic data collected
from glacial environments compare the STA/LTA statistic against
a constant threshold value that thus defines the lowest energy sig-
nal the detector can register (e.g. Walter and others, 2008;
Carmichael and others, 2012; Dalban Canassy and others, 2012;
Ro6sli and others, 2014). The STA/LTA statistic is a proxy for a
waveform’s SNR. Thus, a constant threshold value precludes
detection of small amplitude waveforms during high-noise condi-
tions that would otherwise be detected under low-noise condi-
tions, resulting in a temporal variability in detector capability.
For instance, Walter and others (2008) attribute variability in
their STA/LTA detector capability to a diurnal surface melt
cycle. Dalban Canassy and others (2012) similarly describe a cor-
relation between STA/LTA detection capability and modeled gla-
cier runoff over day- to week-periods. Therefore, temporal
variability in waveform detection capability has the potential to
bias an observer’s interpretation of the temporal variability in ice-
quake activity (R66sli and others, 2014; Carmichael, 2019).

One particular strategy developed to account for temporally
variable detection capability implements a two-stage process.
First, a constant threshold value determines a set of events.
Second, a time series of these identified events is analyzed with
respect to event size. If the time series reveals a temporally variable
absence of small events, a secondary threshold is established above
these smallest event sizes. A second pass retains only events that are
sufficiently energetic to exceed the secondary detection floor
(Walter and others, 2008, Fig. 5). Above this detection floor,
detector capability is considered to be temporally constant
(Walter and others, 2008; Dalban Canassy and others, 2012;
Roosli and others, 2014). That is, researchers assume that events
above the secondary threshold are correctly identified regardless
of variable background noise. The drawback to this approach is
that the small events detected during low-noise conditions are dis-
carded during the secondary thresholding step, thereby complicat-
ing the study of processes that generate these low-energy signals.

Another version of the STA/LTA event detector is the noise-
adaptive STA/LTA detector. Using this event detection strategy,
the detector sets a temporally variable threshold that adapts to
the current noise conditions (Carmichael and others, 2015).
This method effectively adjusts the threshold value by monitoring
changes in the statistical distribution of the STA/LTA time series.
These detectors maintain a constant (estimated) false-alarm rate
by setting variable thresholds; in contrast, constant threshold
STA/LTA detectors have a variable false-alarm rate.

In this paper, we evaluate two distinct, noise-adaptive STA/
LTA seismic event detectors using data collected from Taylor
Glacier. Both detectors impose a constant false-alarm rate and cal-
culate noise-adaptive thresholds over 15-min time windows.

Study site and observation network

Taylor Glacier flows from Taylor Dome on the East Antarctic ice
sheet and terminates in Taylor Valley 100 km downstream. Near
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the terminus, deformation is characterized by plug-like flow of
clean cold ice over a layer of more rapidly deforming debris-rich
basal ice (Pettit and others, 2014). Ice cliffs (20-30 m high) form
the margin of the glacier in the terminus region. The central por-
tion of the glacier terminates into the ice-covered west lobe of
Lake Bonney, while the remainder of the glacier terminates onto
land. Near the terminus, deep seasonally-occupied supraglacial
meltwater channels (Johnston and others, 2005) generate substan-
tial across-flow changes in ice thickness (Badgeley and others,
2017). Subglacially-sourced, iron-rich, hypersaline brine flows
episodically via a surface crevasse near the terminus; the resulting
feature is called Blood Falls (Mikucki and others, 2004).

In a prior seismic experiment implementing a constant-
threshold STA/LTA detector for Taylor Glacier data, Carmichael
and others (2012) observe diurnal patterns in seismicity during
periods when there is no surface melt predicted by a calibrated
surface energy balance model (model is described in Hoffman
and others, 2008). By locating these microseismic events,
Carmichael and others (2012) find sources in both the lake ice
and glacier ice. In contrast, during periods of surface melt, the
diurnal seismicity signal is suppressed. Instead, larger repeating
icequakes consistent with volumetric source mechanisms (crack
opening) dominate the seismic record.

The glacial and periglacial environments of and around Taylor
Glacier host many processes that we expect to generate larger seis-
mic events as well as variable levels of environmental microseis-
micity. These include: ice-cliff calving and collapse, seasonal
melt and associated runoff in supraglacial channels, episodic
release of subglacial brine through a crevasse (Blood Falls release),
thermally-driven fracture of lake or glacier ice, meltwater-driven
fracture, avalanching at nearby glaciers and crevassing within
the glacier ice.

To monitor such sources of seismicity at Taylor Glacier, we
deployed a sub-network of three seismometers (Sercel L-22 geo-
phones) that operated from December 2013 through January
2015. We installed one geophone (JESS) on the glacier near an
ice cliff and two into the frozen sediment to the north (KRIS)
and south (CECE) of the terminus (Fig. 1). Quanterra Q330 digi-
tizers sampled our geophone data at 200 s™!. The seismic data
described in this study are available for public access through
the IRIS Data Management Center (Pettit, 2013).

Despite the high latitude of the field area, which is typically
associated with 24-h daylight in the summer, the steep topog-
raphy bounding the glacial valley imposes a diurnal pattern on
solar insolation with the sun dropping below the mountains in
the evenings. We therefore use solar noon as a reference local
time, in addition to UTC time, when presenting our results. For
this location, solar noon is closest to UTC + 11 (note that this is
not the same as the local McMurdo time zone). During the win-
ter, the sun remains below the horizon, however we maintain the
same ‘Tocal solar noon time’ offset of UTC + 11 for consistency.

Methods

We organize this section as follows: we introduce the statistical
distribution (F-distribution) of the STA/LTA detection statistic
under a hypothesis testing framework, describe the two seismic
event detectors, conduct a semi-empirical experiment to evaluate
detector performance and compute empirical performance
curves, and relate detection capability to source size. Table 1 pro-
vides a complete list of abbreviations and mathematical symbols.

F-distributions, null and alternative hypotheses

We implement two distinct STA/LTA seismic energy detectors
that use noise-adaptive thresholds to identify waveforms. Both
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the 2dof and 3dof detectors calculate the STA/LTA statistic
from two, quasi-independent estimates of sample variance at
each time index in a seismogram data stream where such ratios
are well defined, and use this statistic to measure signal strength.
The STA/LTA statistic follows a so-called F-distribution when the
samples drawn from the seismogram data are themselves
described by Gaussian statistics (Kay, 1998). Each detector fits
probability density function (PDF) curves to the histogram of
the F-distributed STA/LTA statistic by estimating PDF parameters
that best fit these data. The parameter set estimate that best fits
the STA/LTA statistic (‘fit parameters’) describe the shape of the-
oretical predicted F-PDF curves. When the detector processes a
data stream of zero-mean, partially white noise, probability theory
predicts that these fit parameters describe an STA/LTA statistic
with a density that has a central F-PDF curve shape. In contrast,
when data include nonzero-mean signals that superimpose with
this noise, theory predicts that the fit parameters describe an
STA/LTA statistic with a non-central F-PDF curve shape (Kay,
1998). We assume that the data are dominated by noise (the sig-
nal sparsity assumption) so we fit the STA/LTA statistic computed
from our seismic data with central F-PDF curves. Under this
assumption, the middle 95% of a histogram formed from an
STA/LTA statistic is well-described by a central F-distribution;
we do not fit the smallest or largest 2.5% of the STA/LTA statistic.

The two detectors we compare differ in the number of degrees
of freedom used to parameterize the F-PDF curves. The 3dof
detector estimates three parameters which determine the shape
of the F-PDF, while the 2dof detector estimates only two
parameters.

We use the STA/LTA statistic to evaluate two hypotheses,
namely, that a short-term sample of the data represents only
noise (zero mean) or that the short-term sample contains noise
plus discrete event (e.g. icequake) signals (nonzero mean).
Thus, we can state our hypotheses as H,: the STA/LTA statistic
follows a central F-distribution if there is no signal, vs H;: the
STA/LTA statistic follows a non-central F-distribution if a signal
is present (Blandford, 1974). We assume the central distribution
(Hy) when we determine the threshold that is based on the mid-
dle 95% of the histogram. Our algorithm tests the STA/LTA values
(not just the middle 95%) against this threshold to detect wave-
forms. If any STA/LTA values are declared as ‘events’ above the
threshold, theory predicts that the resulting F-PDF distribution
containing all STA/LTA values should instead form a non-central
F-PDF distribution (7{;). To the extent that the null hypothesis
provides a good data model, our prescribed, predicted false-alarm
rate approximately confines the actual false-detection rate (i.e. the
rate of false-positive event declarations). We discuss the predicted
false-alarm probability in subsection ‘Invert F-CDF to find
threshold value’.

Detector descriptions

The general workflow for processing 15-min subsets of data pro-
ceeds in six stages for both detectors. We (1) prepare (preprocess)
the data, (2) calculate the STA/LTA statistic time series, (3) search
for best fit parameter sets using multiple parameter estimators
and initializations to minimize the fit error between the data (nor-
malized STA/LTA histograms) and the theoretical F-PDF curve,
(4) select the theoretical F-PDF with the lowest fit error among
the best parameter sets returned by the previous step, (5) invert
the associated central F-cumulative distribution function (CDF)
to find the threshold value associated with a desired false-
detection probability Prif and (6) identify events from short-term
windows with STA/LTA values above this threshold. The two dif-
ferent detectors implement distinct parameter estimators; one
detector allows for a third degree of freedom parameter to account


https://doi.org/10.1017/jog.2020.48

Journal of Glaciology

793

Fig. 1. Study location at the terminus of Taylor Glacier with land-based seismometers CECE and KRIS and on-ice seismometer JESS. Base image: Google, Maxar

Technologies, image date: 5 December 2008. Antarctica outline from Quantarctica.

for data correlation between the short- and long-term windows
and the other does not. We describe individual processing steps
below.

Preprocess data

We first subtract any linear trend from each time series with the
MATLAB function detrend.m that implements least-squares
regression. We then remove spectral content outside the fre-
quency range [2.5,35] Hz with a 4th-order minimum phase
Butterworth filter designed to retain signal causality and mitigate
distortion of the original waveform. We use a minimum phase fil-
ter because we plan to use this dataset in the future to identify
source locations and we want to preserve arrival times. We choose
this frequency range based on visual inspection of spectrograms
in which we observe broadband events with apparent diurnal
(summertime) and multi-day (wintertime) trends in activity. In
the subsequent empirical performance quantification, we
detrended, tapered, zero-padded and then filtered the waveform
data.

Calculate STA/LTA statistic

The STA/LTA statistic z;(x) at time sample i of digitized, multi-
channel seismogram data x is the ratio of two statistically inde-
pendent estimates of data variance 67. An STA/LTA algorithm
computes the numerator (STA) from N; consecutive samples
starting with sample i and the denominator (LTA) from N, con-
secutive samples preceding sample i:

1 i+N;—1
ol(tzty) = > x (STA)
k=i

(6]

1 i—1
Fit<t)=— Y x (LTA),
Nzk:i—Nz

where time ¢ = f5 corresponds to index i that separates the neigh-
boring short-term sample from the long-term sample, and
X¢ = Xpupx + Xiunk + Xiuzx is sample energy of x at sample k,
measured in counts. We notationally distinguish parameters
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that we estimate from data like sample variance with hats
(e.g. &) to distinguish them from their true values (6?).
The STA/LTA algorithms calculate ratios z;(x):

&2 (t>ts)

o2 (t < tg) 2

zi(x)

for each sample i such that N, + 2 < i < Ng5) — Ny, where N5 is
the number of data samples in the 15-min subset of the data
record. We calculate the data histogram comprising z;(x) using
the centered 95% quantile Hist(z)|5;> that counts data over evenly
spaced bins equal in number to the square root of the sample
count within each 95% quantile. In other words, we use the mid-
dle 95% of the STA/LTA ratios calculated from Eqn (2) over the
15min (N(s5)) subset of the data stream to generate the data
histogram.

Search for multiple parameter set estimates using different
parameter estimators/initializations

We fit F-PDF curves to the normalized histograms of the STA/
LTA statistic output by each detector by selecting PDF parameters
that minimize mismatch between the data histogram and theoret-
ical PDF curve. Specifically, these curve-fitting strategies minimize
the L2 norm of the difference between the normalized data histo-
gram Hist(z)|3%’> and the theoretical PDF, fz(z; H,). Manual
experiments indicated that using the middle 95% provided a
good compromise between including sufficient data and exclud-
ing outliers. Both detector algorithms implement the MATLAB
function fminsearch.m to find parameters that minimize these
norms. When fitting the F-PDF curves, we assume the null
hypothesis, which posits that the 15-min data window does not
contain a seismic signal - that is, Hist(z)|5%> follows a density
described by a central F-PDF.

The 3dof detector estimates three parameters which determine
the shape of the F-PDF. Two of the three parameters, Ng; and
Np,, define the effective number of statistically independent sam-
ples within the short- and long-term windows. For instance,
within each window, we generally expect that samples that are
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Table 1. Symbols and descriptions

Symbol Description

o p-wave velocity in ice [m s77]

yij s-wave velocity in ice [m s7]

Y Vertical p-wave slowness in ice [m™s]

7 Detector threshold value estimate

Ai Non-centrality parameter estimate at sample i

v Vertical s-wave slowness in ice [m™s]

g, & Receiver and source position vectors [m]

p Ice density [kg m?]

o7 Estimated data variance at sample /

o) Azimuthal angle between source and receiver locations [rad]

) Angular frequency [rad s7%]

A Ice crack surface area [m?]

Ao, Aj Reference and scaled icequake waveform amplitude

B Bandwidth [Hz]

c Dof parameter, measure of dependence between short- and
long-term windows

¢ An estimate of ¢

Cr Rayleigh wave speed in ice [m s7%]

Cp, Cr Integer number of detected events, total number of infused
waveforms

d Linear ice crack scale [m]

€3dof,P3 Fit error, e.g. 3dof detector with Parameter Estimator 3 best

fit parameter set
Er Average Rayleigh wave energy [J]

f2(z; Ho) PDF corresponding to z under H,

Fz(z; Ho) CDF corresponding to z under H,

Fgl(Pr; Ho) Inverse CDF of z under H,, evaluated at probability Pr
g(&, o) Reduced seismic displacement vector [m J™!]

Ho, Hi Null hypothesis (no signal present), alternative hypothesis

(signal present)

Hist(2)3%° Data histogram for centered 95% quantile

I Rayleigh wave first energy integral [J]

k Wave number projected in the radial direction [ m™Y]
mo, m; Reference and scaled icequake magnitude

M Seismic source moment tensor (3 x 3 matrix) [N m=J]
Ny, N, Number of samples in short- and long-term windows
Ns) Number of samples in 15-min data subset

Ne1, Nes Effective number of statistically independent samples in

short- and long-term windows

Dof parameters, estimates of Ng;, Ney

Best-fit parameter estimates from 2dof detector initializations
Best-fit parameter estimates from 3dof detector Parameter
Estimators 1 and 2

Ney, N o
[I/\\’El) IyEZ] EEEE R
[Ne1, Nea, Elp1po

prbre Theoretical/predicted probability of detecting a waveform

ngs(mj) Time-averaged true waveform detection probability, synthetic
source magnitude m;

Prie Predicted false-alarm probability

Q Surface wave quality factor

r1(0), r,(0) Rayleigh wave displacement eigenvectors at ice surface [m]

R(¢) Radiation pattern, varies with azimuth ¢ between source and
receiver

s(w) Fourier transform of the source-time function of crack that
opens at time t, [m]

t=ts Time at sample index separating short- and long-term
windows [s]

Ts, Ty Duration of short- and long-term windows [s]

u(g, o) Multichannel, frequency-dependent seismic displacement at
position & [m]

[u(&)1 Mean ice crack opening displacement at source position &
[m]

X Digitized multichannel seismogram data, i.e. Xgpe, Xenn, Xenz
[counts]

2(x) STA/LTA statistic, i.e. observed particular values z;(x)

z; A scaled version of z(x), specifically z; = (Ny/N,)z

Units given where applicable in square brackets; physical variables refer to the cylindrical
coordinate system. In this table and elsewhere, we adopt the following conventions:
mathematical symbols (except for probabilities) are italicized while abbreviations are not;
vectors, matrices and tensors are in boldface and symbols with hats designate estimated
values.

close in time to each other will be more correlated than samples
that are farther apart. The third parameter is ¢, which represents
the statistical dependence of the estimated data variability between
the short- and long-term windows. Two of the parameter
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estimators in the 3dof detector allow the third degree of freedom
parameter c to vary freely, while the other two estimators impose
constraints on c¢. Appendix A contains complete descriptions of
the four parameter estimators.

The 2dof detector is only parameterized by Ng; and Ng,. The
2dof detector constrains the parameter ¢ =1 such that the algo-
rithm assumes that the short- and long-term data variance are
effectively independent. Appendix A provides complete descrip-
tions of the three initializations implemented by the 2dof
detector.

We emphasize that Ng;, Ng, and ¢ are unknown; therefore, our
detector algorithms estimate these scalars from the data. The 3dof
detector implements four different F-PDF parameter estimators,
agd returns four sets pf best estimates: [NAEI, N, Niy /NEl] Pl
[NE1s NE2, Upas [NE1, NEa, Clps and  [Ngi, Nga, €]ps. The 2dof
detector initializes one F-PDF parameter estimator with three separ-
ate initial parameterizations, and returns three sets of best estimates:
[Ne1, Neal's [Ngi, Nga]” and [Ngg, Ng2]”. Subscripts (eg. p1)
notationally designate parameter set estimates resulting from differ-
ent parameter estimators and primes (', ”, ") designate parameter
set estimates resulting from different initializations of the same par-
ameter estimator.

Select theoretical F-PDF with the lowest fit error from results of
all parameter estimators/initializations

We next calculate the fit error associated with the best parameter
set estimates returned by each fit estimator (3dof case: four sets of
estimates) or initialization (2dof case: three sets of estimates). As
an example, we calculate the fit error for the third parameter set
estimate for the 3dof detector by substituting [NE1, N, €]ps into
the norm functional:

esaotp3 = |[Hist(z1) 35" — ofz(czi; Ho)l (81 R 21 | s (3)

where the form of the equation is similar to that of Eqn (A5) and
z1 = (N1/N,) z. We calculate es40f, p1> €3dof, p2> and €340f, p4 analo-
gously. We select the smallest of the four fit errors and return the
associated parameter triplet as the best parameter set estimate for
the 3 dof detector.

Our process is similar for the 2dof detector. For example, we
substitute the parameter output sets from the three initializations
into the error equation corresponding to Eqn (Al) to estimate
€adof S

ehrdor = |[Hist(2)I3%° — f2(z Hodl g, 5y @)

The 2dof algorithm selects the parameter set associated with the
minimum fit error among all initialization schemes.

Invert F-CDF to find threshold value

We parameterize the inverse F-CDF with the best estimates from
the previous step to determine a threshold value consistent with
the desired predicted false-alarm probability. If the 3dof best par-
ameter set corresponded to p; or ps, the scaled version of the STA/
LTA statistic z; replaces z (Eqns A3 and A5). We scale the STA/
LTA statistic for the 3dof detector by the third degree of freedom ¢
in all cases.

To establish event detection thresholds, we use a fixed, pre-
dicted false-alarm probability Prbi¢ of 1077 false alarms per win-
dow (short-term plus long-term window duration =3.28s) that
equates to ~1 predicted false alarm per year (Slinkard and others,
2014, p. 2774). We note that increasing the predicted false-alarm
probability will increase the number of detected events. However,
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our goal is not to detect the maximum number of events but
rather to investigate how incorporating temporal correlation
into our degrees of freedom (2dof vs 3dof) impacts event detec-
tion within the same false-alarm rate bounds. Our choice of
1077 false alarms per window is typical of other waveform detec-
tion applications (e.g. Slinkard and others, 2014). We then imple-
ment MATLAB function finv.m to compute a detector threshold
n as estimate ) that is consistent with the desired Prb (Kay,
1998). Using the 2dof detector case as an example, the 7) value
that establishes this Prg{,e under H, is:

00

prire — J J2(z5 Ho)l iy, 8,192
71

— 1= Fyis o) (or): ©)

f) = F;'(1 — Prit&s Ho),

where Fz(z; H,) is the CDF corresponding to PDF f;(z; H,), and
F;'(Pr; Ho) is the inverse CDF evaluated at Pr. We emphasize
that 7 is estimable as 7 from Eqn (5) and imperfectly known,
as with Ng;, Ng, and & We then assign our resultant ) values
to compute the predicted probability Pri® that the detector cor-
rectly identifies a seismic signal buried in the noise under #;:

Pre
Prp

j fz(z Hi)dZ
gl (6)

1 — Fz(7; Hi)s

where the CDF Fz(z, H) is a non-central F-distribution func-
tion with parameters Ng; and Ng, degrees of freedom, and non-
centrality parameter A. This scalar A implicitly parameterizes
Eqn (6) and is directly proportional to the SNR of a waveform
that is included in the shorter window of the STA/LTA detector
(Eqn B2). Graphically, 4 quantifies the separation between the
‘Ho and #; PDF curves. A larger A value (relative to zero) indi-
cates a greater separation between these curves; it therefore indi-
cates more confidence in H;. A smaller A value indicates less
confidence (weaker SNR and less probable waveform detections).
When A =0 no separation between the H, and H; PDF curves
exists. Because A depends on both waveform and microseismicity
characteristics, we cannot predict it in advance of data collection.
We relate A to physical dimensions of glaciogenic seismic sources
in a subsequent section. Appendix B more completely describes
the A estimator.

Identify events from short-term windows above threshold

The final step in event identification is to search through the
data stream and identify short-term windows with STA/LTA
values above the threshold %) determined in the previous step.
Our STA/LTA detector algorithms require processing para-
meters to uniquely assign detection times and statistics to iso-
lated waveforms. For instance, when our detectors process a
particular icequake waveform, they often produce STA/LTA sta-
tistics that exceed the threshold estimate 4) over the entire dur-
ation of that icequake’s waveform. To avoid redundant
detection at multiple sample points on this waveform, our
detectors define the peak value within any collection of con-
secutive samples exceeding the threshold as the detection statis-
tic for the underlying signal, and the associated time as the
event time. Both detectors output a file for each day which
includes detection results, fit parameters and other file attri-
butes. The net result is a time series of identified events; we
show an example time series in Figure 2.
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Semi-empirical performance comparison

We run a semi-empirical experiment to quantify how well the
3dof and 2dof detectors count icequakes under real noise condi-
tions. Our original data streams contain unknown numbers of
‘real’ events. We therefore create a hybrid data stream comprising
the original geophone data and a known number of infused,
amplitude-scaled icequake waveforms. We emphasize that this
infusion routine is distinct from the convolution routines used
to generate synthetic seismograms. Our infusion routine linearly
adds the amplitude-scaled icequake waveforms to the original,
unscaled data stream in the time domain (see Carmichael and
Nemzek, 2019 for further details).

We run both detectors on the hybrid data stream and count
the number of infused waveforms that our detectors find over a
range of scaled amplitudes that we relate to pseudo-magnitude,
after Carmichael and Nemzek (2019). The template icequake
waveform that we scale for our infusion process (Fig. 2a, promin-
ent waveform near 90 s) has amplitude A, and corresponds to an
unknown reference magnitude m,. We premultiply this template
waveform by a scalar A; related to icequake magnitude:
Aj =10"""™Ay where m; is the relative magnitude (‘pseudo-
magnitude’) of the hypothetical icequake source that excites a
scaled waveform of amplitude A;. We index magnitude and amp-
litude by j to indicate that we sample relative magnitude over a
uniform 200 point grid, and limit its domain to: —2.5<m; —
mo<0 because this range yielded meaningful empirical perform-
ance curves (see ‘Results’ section). We create this hybrid data
stream using 900-s (15-min) windows, and infuse 28 identical
copies of the scaled waveform evenly over time within each
window.

After we infuse the scaled events, both detectors scan the entire
15-min window for events. We then check the detection results at
the known infusion times to determine if the detector correctly
identified the added events. Our algorithms define such detec-
tions as ‘true’ if they declare an event within N; samples (corre-
sponding to 0.625s) of the manual waveform infusion time. We
repeat this detection operation for every 15-min window of the
selected days and for all j scaling factors in our test domain. As
we are interested in temporal differences in detection capability
at diurnal and seasonal scales, we select three consecutive typical
summer days and three consecutive typical winter day as test per-
iods for the empirical performance comparison. We select these
‘typical days’ from a visual inspection of the pattern of event
counts throughout the day (gray boxes highlight these days in
Fig. S1). This manual review showed that these three winter and
summer days represented the average (mean) pattern for their
associated season well.

Empirical performance curves

We estimate the mean observed (empirical) probability ﬁgbs that
our STA/LTA detectors identify scaled, infused waveforms by aver-
aging the number of these same waveforms that we detect within
our hybrid data produced by a hypothetical source of magnitude

m; — mo. We compute uncertainty weighted estimates as:

Yo e Colmss k)
k=9 _
Cry=i €' (7)

ﬁgbs(mj) _

__ weighted detection counts

" infused waveform counts ’

where the term Cp, is the integer number of detected events (Cp €
[0, 28]), Cr is the total number of infused waveforms (C;=28)
and e is the window-specific fit error, for instance esqo¢ (Eqn 3)
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Fig. 2. Example summary output of the 3dof detector that processed data recorded by JESS on 21 May 2014 10.02.35 UTC. (a) Seismograms of pre-processed three
channel data (EHE, EHN and EHZ). (b) Time series of STA/LTA statistic (see Eqns 1 and 2) superimposed with a threshold for event detection consistent with a
Prite = 1077 false-alarm rate; red circles mark when this statistic exceeds the threshold (dashed horizontal line). Shaded vertical regions indicate waveforms;
the central waveform with the largest detection statistic corresponds to the template implemented in infusion experiments. (c) Normalized data histogram
(bars) of the STA/LTA statistic superimposed with the best-fit central F-PDF (curve); the dashed vertical threshold line corresponds to the dashed horizontal thresh-
old shown in the STA/LTA plot at left. The norm of the difference between the histogram and PDF curve at right (the bars and solid curve) defines our estimate of
e340f (initialization subscript suppressed). We show 3 min of data for visual clarity in preference to the 15 min data windows that we use in all processing routines

described elsewhere in this paper.

or exgor (Eqn 4). In detail, the term ﬁgbs(mj; k) refers to the
count-normalized number of infused waveforms that an STA/
LTA detector identifies in a 900 s window that contains a total
of 28 infused waveforms, and k indexes the number of infusion
routines that we apply to a 24 h dataset (1<k<96 reflects one infu-
sion routine per 900 s).

The term ﬁgbs(mj; k) therefore measures the average empirical
probability that an STA/LTA detector identifies a waveform pro-
duced by a hypothetical icequake source of magnitude m; — miy.
Each subsequent down-scaling (different #1;) reduces the SNR of
the infused waveforms and the probability that either detector
could distinguish these waveforms in the pulse train from noise.
We use analogous equations for all other error-weighted results
reported in this paper and omit writing the error-weighted version
of each equation. Additional quantitative details of the error
weighting scheme are well documented in Carmichael and
Nemzek (2019).

The resultant locus of all points described by Eqn (7) (all j)
compares STA/LTA detection rates against relative source size
over our limited magnitude grid —2.5<m; — m<0. We calculate
weighted and unweighted versions and plot these in the
‘Results’ section. Equation (7) with ey =1 for all k defines the
unweighted, mean empirical probability. To compare the spread
of detection probability at different relative magnitudes, we calcu-
late and plot the quantiles of Cp/Cr.

Relationship between detection capability and source size

While our semi-empirical analysis compares icequake detection
rates against a measure of source size (magnitude), this analysis
does not relate these magnitudes to any observable of a typical
glaciogenic source. We therefore transform our magnitude grid
m;—mg to a representative, seismogenic ice crack model to
improve our understanding of the physical limits that bound

our ability to detect transient icequakes in real noise. This
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comparison will allow us to report detection values against the
spatial scale of an equivalent surface crack, even when we detect
waveforms that originate from sources that are not surface cracks.
We do not include complicating effects of firn or depth-
dependent density changes that would complicate our model.
Our objective is to bound the behavior of source effects on the
non-centrality parameter A rather than model the wavefield.
Furthermore, both the source and receiver in our model are
located on-ice in the ablation zone (no firn present).

We first compute the theoretical, azimuthal-integrated
Rayleigh wave seismogram energy that we measure from a hypo-
thetical, opening crack in the ice. We then compare this model
against observed, integrated seismogram energy that relates to
non-centrality parameter A and measures our predicted detection
probability Prlpje(m — myp) (magnitude grid index k omitted).

To construct the seismogram model, we assume that a source
consists of an opening tensile crack with a crack plane perpen-
dicular to the ice surface. We consider small cracks that radiate
high frequency Rayleigh waves near the limit of our reliable detec-
tion ability, so that their wavelengths do not sample the ice
(or bed) at depth well and we can therefore model the glacier
ice as a half space. Under these assumptions, the frequency
domain displacement at receiver location & created by the displace-
ment at shallow crack source with location &, has a particularly
simple form: u =R(¢)g(& w), where R(¢) is the radiation pattern
that varies with azimuth ¢ between the source and receiver, and
where g(&€, ) is a vector independent of ¢ (Aki and Richards,
2002, p. 328). This vector g(§, ®) depends on components of
the source moment tensor M (Eqn C2), which represents the
body-force equivalent of the crack face opening displacement as
a weighted set of force couples, localized at source point &y. The
analytical expressions for both R(¢) and g(§, w) appear in
Appendix C where we compute the energy explicitly; we simply
summarize those results here. First, we square and average this dis-
placement ||u(&, )||* over azimuth to obtain the average Rayleigh
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The integrated, squared radiation pattern is a function of fre-
quency, elastic constants, crack area A, and the crack face-opening
distance [[u(&o, to)]]. Our notation means that the crack is located
at point & and opens a distance [[u]] at time #,. We emphasize that
the energy integral refers to ice displacement in the frequency
domain (Hz) and factor the crack’s spatial dependence and fre-
quency dependence into the product [[u(&,, ty)]] = [u(&)]s(w),
where s(w) is the Fourier transform of the displacement source-
time function of the crack that opens at time t; Appendix C docu-
ments our choice for s(w). We then explicitly write the dependence
of the integrated Rayleigh wave energy in terms of energy created
in opening the crack:

Er(£ w)o< (A [u(&)1pB) (0.T.), ©)

units: energy

where p is the ice density, 3 is the s-wave velocity in ice and the
term O.T. stands for ‘other terms’ that are functions of frequency
o, density, body wave speeds and Rayleigh wave speeds. We fur-
ther include physical effects of anelasticity that dispersively attenu-
ate waveforms as they propagate from source point &, to receiver
point & (Carmichael and others, 2015, Fig. 4a). To quantify such
attenuation, we multiply the right-hand side of Eqn (9) by

exp (%), where Q is the surface wave quality factor and cz

is the Rayleigh wave speed; we note that the phase function of
the attenuation is zero in the energy function. We integrate
(smooth) the result over the range of our bandpass-filtered fre-
quencies, Wmin t0 Wmax:

wmax

(0.T.)dw
@min (10)

= (A [[u(go)]] pBZ)I(wmim wmax)s

j " E(& w)do = (ATWE) 9B j

Omin

where we have lumped the attenuation factor with ‘other terms’
that we integrate to define I(@min ®may). Importantly, Eqn (10)
illustrates that azimuthally averaged Rayleigh wave energy is pro-
portional to a transient increase in crack volume.

We relate the non-centrality term A of the STA/LTA detector
statistic to the integrated Rayleigh wave energy through Parseval’s
theorem. In plain words, this theorem states that the time domain
energy of a signal equates to the frequency domain energy of that
same signal (Stein and Wysession, 2003, p. 375). The ratio of this
integrated signal energy to noise variance defines A:

11

2
= A[[u(i(_)z)]]pﬁ I(wmim wmax)-
Equation (11) is combined with Eqn (6) to quantify the predicted
probability Prir® that the STA/LTA detector will trigger on a wave-
form radiated by a crack of area A that opens a distance [[u(&;)]]

We note that the newly created crack volume A[[u(&,)]] relates to a
length scale d as d(A [[u(§0)]])1/ 3. This relationship is useful to
compare detectable crack dimensions to other characteristic glacio-
logical length scales, like thermal penetration depth of diurnal heat
input. We restrict the analysis to an on-ice source and receiver. For
a more complex analysis to model a receiver on a different
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Fig. 3. Seismic events per 15 min during 2014 at land-based station CECE as identi-
fied by the 2dof (thicker red line) and 3dof (thinner blue line) detectors. Data are
smoothed with a 9-point, 2-h moving window with uniform weighting (e.g. the
value for events per 15min at 02.00 is smoothed using event counts per 15min
from the nine points: 01.00, 01.15,..., 02.45, 03.00).

substrate, the right-hand side of Eqn (11) would effectively be
multiplied by a transmission coefficient.

Results

To explore the capabilities of these detectors and understand their
differences, we focus first on an overview of the seasonally-variable
seismicity characteristics as measured by the two detectors. Then we
conduct a more detailed assessment of detector capabilities using
results from the infusion experiment. This assessment uses data
from 3-d time periods in summer and winter and relates the detec-
tion capabilities to equivalent surface crack source sizes.

Measured seismicity time series during 2014

The 2dof and 3dof detectors both measure time series that show
substantial seasonal differences in seismicity (we define seismicity
quantitatively as discrete seismic events per time period; here we
use 15 min). Figure 3 shows seismicity for CECE, one of the land-
based stations. Diurnal variability in seismicity dominates during
summer months (i.e. November-January, Fig. 3, see also Figs Sla,
¢); in contrast, multi-day increases and decreases dominate during
the winter months (i.e. April-July, Fig. 3). Furthermore, the
wintertime shows consistently higher average event counts at
the land-based stations.

The 2dof and 3dof detector results are more similar in the win-
ter and diverge in the summer, when the 2dof detector identifies
more events. Results from the other two stations show similar
summertime diurnal and wintertime multi-day patterns; except
that the on-ice station JESS shows a smaller inter-detector differ-
ence (Fig. S2).

Based on this initial observation of seasonally-contrasting seis-
micity patterns, we split our results into summer and winter cases
in the following sections, using data from December 2013-
January 2014 for summer cases and May 2014 for winter cases.

Measured seismicity characteristics during summer and winter

The difference between detectors with respect to the seasonal pat-
tern in seismicity is shown in more detail in Figure 4. Here we
plot the following time-averaged results from one summer
month and one winter month: event counts for each detector
(Figs 4a-d), inter-detector difference in event counts (Figs 4e, f)
and 3dof detector ¢ values (Figs 4g, h).

We observe distinct diurnal patterns during the summer in
measured seismicity at all three stations. Seismicity gradually
increases throughout the local evening (after ~06.00 UTC),
peaks in local early morning (~16.00 UTC) and declines rapidly
thereafter (Figs 4a, c). In contrast, there is no persistent diurnal
seismicity pattern during the wintertime (Figs 4b, d). Seismicity
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Fig. 4. (a, b) Error-weighted mean number of detected events per 15 min using the 2dof detector and (c, d) 3dof detector; (e, f) point-wise difference in error-
weighted mean events between 3dof and 2dof detectors (negative numbers indicate fewer 3dof event counts relative to 2dof counts) and (g, h) error-weighted
3dof ¢ (note: the 2dof detector has no analogous ¢ value). The left column is one summer month, December 2013; the right column is one winter month, May
2014. Event counts and ¢ values are error-weighted and time-averaged similar to Eqn (7) and binned by 15-min windows. Local solar noon time is labeled in

all plots, with UTC time (bold) labeled in (g, h) only.

measurements from on-ice station JESS show both the highest
mean seismicity over the summer and the highest variability
when compared to the seismicity measured on land-based sta-
tions CECE and KRIS, regardless of detector (Figs 4a, c). The
inter-detector difference in measured seismicity is generally larger
(more negative) in the summer at the land-based stations than at
on-ice station JESS (Fig. 4e); in the winter the inter-detector dif-
ference is more similar between the stations (Fig. 4f).

The inter-detector difference is also characterized by a diurnal
cycle in the summer (Fig. 4e) that is absent in the winter (Fig. 4f).
The 2dof detector identifies more events per 15 min than the 3dof
detector, but the inter-detector difference is largest during the
high-seismicity, local morning (UTC afternoon) in the summer.
The largest difference in measured seismicity also coincides
with the largest values of the error-weighted third degree of free-
dom parameter ¢ (Fig. 4g) that qualitatively measures higher tem-
poral correlation in the seismic data (higher inter-sample
correlation). The 3dof estimates of ¢ generally agree during the
wintertime across the stations and over time of day (Fig. 4h).

Infusion experiment: empirical performance curves

Our waveform infusion experiment was designed to measure
detector capability over a range of magnitudes. Figure 5 shows
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the seasonal, sub-daily and inter-station differences in event
counts as a function of infused event magnitude. In the subse-
quent discussion, we use the phrase ‘reliably detect’ to indicate
Pr °>0.8, which is equivalent to the zone above the horizontal
dashed line in each panel of Figure 5. We define the mean 80%
detection magnitude as the minimum magnitude within our
search g%%d at which we achieve an 80% or greater detection
rate (Pr >0.8, Table 2). Throughout the remainder of the
paper, we use the terminology ‘detection magnitude’ and ‘detec-
tion capability’ somewhat interchangeably. In detail, the 80%
detection magnitude is a quantitative measure based on waveform
detection rates, and detector capability is a qualitative description.
Smaller (more negative) 80% detection magnitudes correspond to
better/stronger detection capability and larger (less negative or
closer to zero) 80% detection magnitudes indicate worse/weaker
detection capability.

The sub-daily temporal variability in detection rates across the
tested magnitude range differs greatly between the summertime
and wintertime records. At the land-based stations (CECE and
KRIS), both the spread and the mean 80% detection magnitude
are larger in the summer than the winter. At the on-ice station
(JESS), the opposite is true; the spread and mean are larger in
the winter (Table 2, Fig. 5). Stated differently, at the land-based
stations we detect fewer discrete waveforms of low magnitude in
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Fig. 5. Empirical performance curves for stations CECE (left block of four panels), KRIS (central block) and JESS (right block): number of detections of infused
waveforms (maximum count=28) per 15min over the experimental range of relative magnitudes. (a-f) 2dof detector unweighted mean (bold red curves) and
uncertainty-weighted mean (dotted lines). (g-1) 3dof detector unweighted mean (bold blue curves) and uncertainty-weighted mean (dotted lines). The unweighted
means are the time-averaged number of events detected at each relative source size, where we average over the 3-d period. The uncertainty-weighted means
account for uncertainty in the null (H,) PDF as in Eqn (7). Within each four-panel station block, the left column shows results from three summer days (21-23
January 2014) and the right column shows results from three winter days (20-22 May 2014). In each panel, the thicker, red or blue line corresponds to the labeled
detector (a-f: 2dof, g-1: 3dof) and the thinner black line is the unweighted mean from the opposite detector for comparison (a-f: 3dof, g-I: 2dof). The darker gray
shading encloses the 25-75% quantile of number of detections, and the lighter shading encloses the 5-95% quantile. The horizontal dashed line in each panel is

80% of total number of infused events.

the summer than in the winter, and their detection rates depend
more on time of day.

For instance, at station CECE the 2dof detector can only reli-
ably detect a waveform 1.15 pseudo-magnitude units below that of
the template icequake waveform in the summer noise and envir-
onmental microseismicity conditions. In the winter, the same
2dof detector can reliably detect this icequake waveform 1.6
pseudo-magnitude units below that of the template waveform
(Figs 5a, b, Table 2). The uncertainty in the summer detection
rate estimate is also highly asymmetric (red curve not centered
in the shaded quantile region). That is, the 2dof detector triggers
on discrete icequakes that are a full 2.0 pseudo-magnitude units
below that of the template waveform about as often as the detector
triggers on events that are 1.0 pseudo-magnitude units below that
of the template waveform magnitude.

The summer 3dof results from CECE and summer 2dof and
3dof results from KRIS are similarly skewed with the mean 80%
detection magnitude located far to the right (larger relative mag-
nitude) within the shaded quantile region along the 80% detection
line. In other words, during some parts of the day at the land-
based stations, the smallest reliably detected events are an order
of magnitude smaller than the overall mean daily value for reliable
detection. In contrast, icequake detection rates during the winter
have comparatively low variability, lower 80% threshold mean
values, and the means are more centered within the 80% detection
magnitude range at the land-based stations.

Both detectors at on-ice station JESS reach 80% detection for
smaller relative magnitude waveforms during the summer than
in the winter (Table 2). That is, smaller icequakes are detected
more frequently, and with more consistency throughout the
day, in the summer at JESS than in the winter. Qualitatively,
the summer curves for station JESS resemble the winter curves
for the land-based stations. The mean 80% detection magnitude
during the summer at JESS is smaller than at the land-based sta-
tions, but during the winter, the mean 80% detection magnitude
at JESS is larger than at the land-based stations (Table 2).

Uncertainty-weighting the mean has the largest impact at the
land-based stations in the summertime, particularly for the 3dof
detector (thick blue vs dashed lines, Figs 5g, i). We observe the
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largest inter-detector differences during the summer at the land-
based stations and in the winter at the on-ice station (thin black
lines vs thick blue or red lines on the same subplot, Fig. 5). The
range of threshold magnitudes tends to be larger for the 3dof
results than for the 2dof results for a given station/season pair.
This indicates greater sub-daily variability in the 3dof detector
capability than in the 2dof detector capability. At the lowest detec-
tion rates (corresponding to detection pseudo-magnitudes ~—2
for station CECE and —1.5 for station KRIS in the summer for
instance), the curves for the two detectors converge.

We note that for all curves, with the exception of the KRIS
summer curves, plateaus in event counts at the upper and lower
limits of the tested pseudo-magnitude range indicate that the
range spans the transition from few, if any, event detections
until event size is large enough that all events are detected. In
the case of the KRIS summer curves, larger (positive) pseudo-
magnitudes could be tested to reveal the upper plateau in detected
event counts, but we do not extend the analysis further at this
time.

Infusion experiment threshold magnitudes and measured
seismicity

We compare the infusion experiment magnitude thresholds (dur-
ing which we controlled the number of possible ‘true’ detections
and their pseudo-magnitudes) to the event counts from the seis-
mic data record (number of ‘true’ events and magnitudes
unknown) in Figure 6. Based on the 3-d record of threshold mag-
nitudes generated by the infusion experiment, we observe that
magnitude thresholds and event counts do not consistently
increase or decrease together.

We highlight four different relationships between detection
thresholds and event counts in Figures 6¢, e; both subplots are
results from the summertime. In the first case, event counts
increase as 80% magnitude thresholds increase (‘1’ in Fig. 6¢).
In the second case, event counts decrease as 80% magnitude
thresholds decrease (2 in Fig. 6¢). In the third case, event counts
increase while 80% threshold magnitude thresholds decrease
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Table 2. Mean 80% detection magnitudes in pseudo-magnitude units, averaged
over the 3-d test periods in summer and winter

Station Detector Summer Winter
CECE 2dof —1.1500 —1.6000
3dof —0.8125 —1.5375
KRIS 2dof —0.0875 —1.2500
3dof —0.0125 —1.2000
JESS 2dof —1.8375 —0.9125
3dof —1.8000 —0.7625

This is the first grid value at which a 0.8 detection rate is exceeded.

(3’ in Fig. 6¢). In the fourth case, event counts decrease while 80%
magnitude thresholds increase (‘4" in Fig. 6e).

During the 3-d time period in winter in which we performed
the icequake infusion experiment, we observe a station-wide drop
in detector capability from 03.30-13.30 UTC on 22 May 2014
(broad peak in 80% detection thresholds labeled **** in Figs 6b,
d, f). This contrasts with some of the drops in detection capability
observed in the summer, which do not always correlate network-
wide. For instance, the highest peak in 80% threshold magnitude
at station JESS coincides with a trough in 80% detection magni-
tude at station CECE (single *’ labels in Figs 6a, e).

The 80% detection magnitude is generally larger and more
variable during the summer than the winter at the land-based sta-
tions (Figs 6a, c vs Figs 6b, d). At station KRIS in particular, dur-
ing the 3-d testing period in the summer there are 75, 15-min
windows for the 2dof detector and 70, 15-min windows for the
3dof detector during which the detector does not achieve 80%
detection at any magnitude in our test range. We note that
while we do not know the 80% detection magnitude during
these time frames, we do have a minimum bound which is the
magnitude of the infused event. At station CECE, there is one
15-min window during which the 3dof detector did not achieve
reliable detection. During the summer at KRIS, 80% detection
magnitudes for the 2dof and 3dof detectors are similar
(Fig. 6¢). However, at CECE, the 2dof and 3dof curves separate
when the 80% detection magnitudes are higher and converge at
the lower magnitudes (Fig. 6a).

On-ice station JESS has much better detection capability
(lower 80% detection magnitudes) during the summer than the
land-based stations, though there are some multi-hour drops in
capability (peaks in Fig. 6e). During one of these drops in
detector capability, the 3dof detector shows worse detector cap-
ability compared to the 2dof detector (highlighted by vertical
lines and ‘4’ in Fig. 6e). Wintertime 80% detection magnitudes
at JESS are higher than that in the summer, and there is qualita-
tively more variability between the 2dof and 3dof detectors. There
are three 15-min windows in the 3-d winter testing period during
which the 3dof detector does not achieve 80% detection at any of
the tested magnitudes. These windows occur during the coherent,
network-wide increase in 80% detection magnitude between 03.30
and 13.30 UTC on 22 May 2014 (*** on the right column of
Fig. 6). This drop in detection capability is more pronounced at
stations JESS and KRIS than at CECE.

Infusion experiment: size estimates of cracks at the detection
threshold

Finally, to bound the size of Rayleigh-wave-triggering icequake
sources that we can reliably detect, we calculate equivalent fracture
scales from our analytical source model. We use Eqns (6 and 11)
with our infusion experiment results to plot the number of events
detected by the 3dof detector in the waveform infusion experi-
ment as a function of source size. The 3dof detector generally
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shows a lower (worse) detection capability compared to the
2dof detector, so we chose the 3dof results for this analysis.
Thus Figure 7 provides a lower bound on crack size estimates.
Figure 7 indicates that on all three summer days, we could reliably
detect icequakes of source dimension scale >0.33-0.45 m. During
the winter days, we could only reliably detect icequakes of source
dimension scale >0.6 m, and on one day the source scale needed
to be >1 m for the 3dof detector to reliably detect the events.

Discussion

The number of event detections, variability in event detections, and
size of the smallest icequake we can detect all vary depending on
time of day, season of year, station location and detector (2dof or
3dof). We organize our discussion into five sections to describe and
interpret (1) relationships between environmental seismicity and
event detection, (2) detection thresholds and event counts, (3) inter-
detector differences, (4) crack size detection limits and (5) potential
differences between on-ice and land-based seismometer sites.

Impact of environmental microseismicity on event detection

During the infusion experiment, we control the magnitude and
timing of the icequakes that the detectors attempt to identify.
We know exactly when the events are infused; thus we can directly
test if the detectors successfully find the events or not. We per-
form the same infusion operation (infuse the same scaled wave-
form) for each 15-min window during the 3-d test period. We
therefore conclude that the temporal variability in detector cap-
ability (as quantified by 80% threshold magnitudes) during our
infusion experiment reflects temporal variability in environmental
microseismicity.

We select three consecutive summer and three consecutive
winter days for the infusion experiment. A longer time series of
threshold magnitudes could better reveal potential environmental
drivers of detection capability variability, but generating a longer
time series requires a computationally prohibitive amount of time
that falls outside the scope of this paper. Nonetheless, the short
record of 80% detection rate threshold magnitude estimates pro-
vide a useful measure to quantify how icequake detectability var-
ies on sub-daily and seasonal time frames.

We consider station CECE: during a typical summertime per-
iod, icequakes 2 pseudo-magnitude units below the template mag-
nitude trigger our detector with a 0.8 probability. However, <4 h
later, icequakes must be a full magnitude larger to trigger that
same detector at the same 0.8 probability (see the feature indi-
cated by ** in Fig. 6a). This suggests that small icequakes close
to CECE are effectively undetectable at one time of day, but are
well-detected only several hours before or after that time of day.

During the infusion experiment, we note some decreases in
detection capability are localized to one or two stations (e.g. **’
in Figs 6a, e) while other decreases in detection capability are
observed network-wide (“*** in Figs 6b, d, f). The coherency of
this latter decrease in detection capability points to a forcing
mechanism operating on the scale of at least the local seismic net-
work. During this multi-hour period of elevated threshold magni-
tudes, we also observe higher sustained wind speeds (Fig. S3).
However, during the rest of the 3-d winter period, more rapid
wind speed fluctuations do not seem to affect detection magni-
tude. We therefore cannot clearly link changes in detection mag-
nitude to wind speed alone.

We suspect a connection may exist between temporal variabil-
ity of threshold magnitudes and local meteorological conditions.
However, a qualitative comparison between magnitude thresholds
and either air temperature or wind speed recorded at the Taylor
Glacier meteorological station does not indicate a simple direct
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Fig. 6. Relative magnitude of infused events with 80% detection (red and blue curves, left vertical axes) and measured event counts (gray and black curves, right
vertical axes) during three summer (21-23 January 2014) and three winter days (20-22 May 2014) for land-based stations CECE (a, b) and KRIS (c, d) and on-ice
station JESS (e, f). The thicker red curves are the 2dof detector 80% detection magnitudes, the thinner blue curves are the 3dof detector 80% detection magni-
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On the left vertical axes, larger negative numbers (further from zero) correspond to smaller magnitudes, associated with better detection capability. The gray
(2dof) and black (3dof) curves are event counts from the seismicity time series obtained by processing the original data stream (not the infusion experiment).
Notations 1-4 and * to *** are explained in the text. Local solar noon time is labeled in all plots, with UTC time (bold) labeled in (e, f) only. The left vertical
axes are expanded for plotting purposes, note the tested range for the 80% detection magnitude is [-2.5, 0] pseudo-magnitude units.

relationship. We note that other studies suggest a more complex
relationship might exist between seismicity and surficial thermo-
elastic changes (e.g. MacAyeal and others, 2018; Podolskiy and
others, 2018), but a similar analysis is beyond the scope of this
paper. We provide plots of magnitude thresholds with wind
speeds and air temperature using data from the Taylor Glacier
meteorological station operated by the McMurdo Dry Valleys
Long Term Ecological Research (LTER) Project in the
Supplementary material (see Figs S3, S4).

Detection thresholds - when do changes in event counts
represent ‘true’ seismicity changes?

We interpret four relationships between detection threshold and

event counts. Each of these cases is labeled in Figure 6.

(1) When event counts increase as 80% magnitude thresholds
increase, we can unambiguously interpret the increase in event
counts as an increase in ‘true’ seismicity as we no longer reliably
detect small events that were previously detectable. Furthermore,
if we assume a Gutenberg-Richter type scaling of event size
similar to that described by MacAyeal and others (2018), we
can interpret these increases in event counts as reflecting not
only more ‘true’ events, but also as including larger events.

(2) Similarly, when event counts decrease as 80% magnitude
thresholds decrease, we can unambiguously interpret the
decrease in event counts as a decrease in ‘true’ seismicity fol-
lowing parallel reasoning as in the first case. Again, if we
assume a Gutenberg-Richter type scaling, and if our detectors
are triggering on smaller events during this time while simul-
taneously triggering less often, there must be fewer ‘true’ events
in total, and they are smaller in magnitude.
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(3) When event counts increase while 80% magnitude thresholds
decrease, we cannot interpret the increase in measured events
in the same way. The increase in detected events may simply
result from the increased detector capability, i.e. during this
time frame, smaller events trigger the detectors.

(4) When event counts decrease while 80% magnitude thresholds
increase, we similarly must consider that the decrease in
counts may simply reflect a reduced ability to detect very
small events during this time.

We can therefore interpret the features labeled ‘1, 2’ in
Figure 6¢ as a true increase followed by a true decrease in seismi-
city. In contrast, we must take care not to over interpret features
such as those labeled 3’ and ‘4’ in Figs 6c, e as changes in true
seismicity. More simply, if event counts and threshold magnitudes
change with the same directionality (both increasing or both
decreasing), we can interpret these as changes in true seismicity
as well as sizes of those events, while if the direction of change
does not match, we cannot make similar interpretations.

Differences between the detectors

The 3dof detector underperforms relative to the 2dof detector.
Specifically, the 3dof detector triggers on fewer events than the
2dof detector under the same noise conditions (Figs 4e, f), and
has larger 80% detection magnitudes during the infusion experi-
ment (Fig. 6, Table 2) for each station/season pair. We note that
when the 3dof detector identifies fewer events in the main (non-
infused) dataset, this often coincides with times when the 3dof
detector requires larger threshold magnitudes to reliably detect
events in the infusion experiment (see area marked ‘4’ in
Fig. 6e). Following similar reasoning as in the previous section,
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we interpret that the 3dof detector is failing to identify small
events that the 2dof detector successfully identifies.

We therefore propose that variability in the inter-detector dif-
ference in measured seismicity reflects temporal variability in
environmental microseismicity. The 2dof detector interprets
some waveforms as small-magnitude events while the 3dof
detector classifies the same elevated energy as non-event back-
ground microseismicity.

Furthermore, the detector that evaluates elevated energy as
environmental microseismicity is the 3dof detector, which incor-
porates the additional degree of freedom to accommodate correl-
ation between the short- and long-term windows. We also observe
that, at least during the summertime, larger inter-detector differ-
ences coincide with peaks in the value of ¢, which relates to the
inter-sample dependency between the short- and long-term win-
dows (Figs 4e, g). We propose that as correlation increases
between the short- and long-term samples (i.e. coherency of
‘background noise’ increases), the 3dof detector fits the data
using scaling factors to accommodate the correlation, as in Eqns
(A3, A5 and A6). This dilation moves the threshold to higher
STA/LTA values, and thus reduces the number of identified
events. The change in the scaling factors thereby reflects one or
more physical, glaciologic processes that we empirically observe,
though we refrain from any specific process attribution. The deci-
sion whether or not to, in effect, filter out this process from the
seismicity time series by selecting one detector over the other
depends on whether we are interested in this process or want to
consider it as background noise.

What crack sizes are detectable under different environmental
microseismicity conditions?

Figure 7 shows event counts as a function of source dimension
scale, with a hypothetical source located 500 m from station
JESS. We note that these results are from the 3dof detector, and
thus represent a lower bound estimate of the source sizes we
can reliably detect due to the poorer detection capability of the
3dof detector.

The smallest crack sizes we can reliably detect are similar in
linear scale to processes that have been associated with diurnal
microseismicity on other glaciers, as well as the modeled depth
of penetration of solar radiation in the summer at Taylor
Glacier (0-50 cm, Hoffman and others, 2008). In the winter,
even with the lowest detection capability (furthest right set of cir-
cles in Fig. 7), we consistently detect cracks of linear source scale
>1m. Under summer conditions, we are able to reliably detect
cracks of linear source scale >1/3 m. These length scales are com-
parable to depth scales of thermal bending moments associated
with freezing superimposed ice over a subsurface slush layer
(0-150 cm, MacAvyeal and others, 2018, Fig. 11), and diurnally vari-
able thermal stresses (depths’40-60 cm, Zhang and others, 2019).

We suspect that icequakes/seismic events with a magnitude
that makes them unlikely to be detected (for instance, Prp <
0.5) likely make up the environmental microseismicity we indir-
ectly observe through its impact on threshold magnitudes. We
further speculate that, at least in the summertime, these events
may be linked to thermally-driven processes based on the diur-
nally variable seismicity and inter-detector difference in
seismicity.

Does seismometer deployment site matter?

We observe the following differences between the two land-based
stations and the on-ice station. During the summer, the two land-
based stations show both a poorer, time-averaged detection cap-
ability and a greater variability in this detection capability (larger
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Fig. 7. Waveform detection counts recorded at station JESS plotted against the size
of an equivalent surface crack on Taylor Glacier that opens in tension impulsively and
radiates an attenuated seismic waveform, where the distance between the crack and
station JESS is 500 m. Circles mark seismic waveforms infused during three winter
days (20-22 May 2014) that trigger the 3dof detector; squares mark seismic wave-
forms infused during three summer days (21-23 January 2014) that trigger the
same 3dof detector. The solid vertical line indicates a 10m x 10m crack that opens
1cm; the dashed vertical line indicates a 2 m x2 m crack that opens the same 1 cm.
The shaded region indicates the predicted detection rate range 0.8 < Prp < 0.99.
For each day in the testing period, the results are time-averaged such that each circle
or square indicates the mean number of counts over all 15-min windows during that
day; within each day there are 200 circle or square markers corresponding to the 200
subdivisions of our pseudo-magnitude grid (— 2.5<m; — mp<0). The source dimension
scale d relates to source crack volume through d = (A[[u(§0)]])1/3. Inset: Schematic (not
to scale) of crack opening with crack area A and opening distance [u(&,)]; orange
triangle represents a seismometer.

spread in 80% detection magnitudes) when compared to on-ice
station JESS (Fig. 5, Table 2). We emphasize that this variability
in capability that occurs during our detection experiment can
inform interpretation of variability in measured event counts.
For instance, on-ice station JESS shows the greatest summertime
diurnal variability in seismic event counts among the three sta-
tions (Fig. 4a), but the lowest range in observed detection prob-
ability while maintaining smaller threshold magnitudes during
the infusion experiment (Fig. 6e). If we assume that threshold
magnitudes remain smaller at JESS throughout the summer, we
can infer that the higher event counts at station JESS likely include
smaller events than those counted from data recorded at the
land-based stations. Cumulatively, the results show that measured
seismicity at on-ice station JESS: (1) shows greater summertime
diurnal variability, (2) is more independent of detector choice
and (3) likely includes more small events than the seismicity
measured at the land-based stations.

We speculate that our land-based stations recorded elevated
seismo-acoustic noise and microseismicity that originated from
ice cover of nearby Lake Bonney. Three of the authors have con-
ducted fieldwork at Taylor Glacier over the course of multiple
field seasons. Loud cracking noises were observed in all field sea-
sons; the observers’ sense was that the sound originated from the
lake. If these acoustic waves couple to the ground, we might
expect that the land-based stations record the energy more
strongly due to their lake-proximal location. We further speculate
that different seismo-acoustic impedance contrasts of the materi-
als used to bury the sensors (approximately sand to cobble-sized
sediment for the land-based stations, and ice chips which subse-
quently sinter for the on-ice station) affect seismo-acoustic energy
transmission and ground coupling resulting in differential record-
ing of acoustic energy. Thus we posit that the burial of station
JESS in ice better shielded that sensor from the same noise sources
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as present near the land-based stations. Other factors likely influ-
ence the relative microseismic energy recorded at land-based vs
on-ice stations, including travel path effects (through lake ice, gla-
cial ice, frozen/thawed sediment and saturated/dry sediment), but
an analysis of these factors is beyond the scope of this paper.
Wintertime detector capability for the land-based stations is bet-
ter than for the on-ice station, though the discrepancy between
stations is not as large as during the summertime and we offer
no explanation for this observation.

When planning seismometer sites for a passive glacial seismol-
ogy experiment where land and ice deployment sites are possible,
we recommend that researchers consider this potential influence
of seismic station location on measured seismicity. We suggest
that on-ice stations may be preferable for summertime seismic
investigations of glaciers in the Dry Valleys of Antarctica. These
Dry Valley glaciers are characterized by low ablation rates and
limited surface meltwater; therefore, on-ice stations are more
likely to remain buried, unflooded and well-coupled to the ice
than in other glacial settings. Land-based stations remain useful
in cases where on-ice sensor coupling is lost and results in com-
promised data (Carmichael, 2019) and when they can create a
favorable network geometry to study specific source locations of
interest. For wintertime seismic investigations, land-based stations
may be preferable to on-ice installations if our study is represen-
tative of other sites. We concede that these interpretations are
based on a small network with only one on-ice sensor and two
land-based sensors.

Conclusions and recommendations

We processed seismic data from Taylor Glacier, Antarctica using
two noise-adaptive STA/LTA detectors to measure the influence
of environmental microseismicity on our capability to detect
discrete seismic events in a glacial/periglacial setting. Both detec-
tors adapt their detection thresholds to current noise conditions
in order to maintain an approximately constant predicted
false-alarm rate. Although both detectors fit PDFs to the observed
data, the 3dof detector uses three degrees of freedom to describe
the PDF shape while the 2dof only uses two degrees of freedom.
The third degree of freedom implemented by the 3dof detector is
designed to adapt to temporally correlated background noise. We
qualitatively compare the temporal variability in event counts
across seasons and between the two detectors, experimentally
determine threshold detection magnitudes for a 3-d summer
and a 3-d winter time frame, and relate these threshold magni-
tudes to an equivalent surface crack source size. We make the fol-
lowing five conclusions:

(1) Environmental microseismicity present in the glacial and peri-
glacial environments of Taylor Glacier’s terminus regulates
detector capability to reliably detect small seismic events.
During the summertime, microseismicity has a significant
diurnal pattern as reflected in the diurnal pattern of the inter-
detector difference in measured events counts. Environmental
microseismicity is less temporally variable during the winter-
time. At the land-based stations in particular, summertime
background microseismicity varies enough over sub-daily
timescales such that detection magnitude thresholds can
vary by a full magnitude unit over times scales as short as a
few hours. This means that given two otherwise identical ice-
quakes, one icequake will need to be a full seismic magnitude
larger in order to be detected at a different time during the
same day.

(2) By prescribing constant false-detection rates, measured seismi-
city changes may be unambiguously interpreted as representa-
tive of ‘true’ seismicity changes rather than as changes in our
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ability to detect events. When both threshold detection mag-
nitudes and event counts increase, this indicates an increase
in seismicity. When threshold detection magnitudes and
events counts decrease, this indicates a decrease in seismicity.
However, in other cases, we cannot conclusively attribute
changes in measured seismicity to true seismicity changes.
A decrease in event counts coincident with an increase in
threshold detection magnitudes may simply reflect a decrease
in our ability to identify small events rather than a true
decrease in seismicity. We recommend that other seismic
investigations invoke a similar rationale to form a responsible
interpretation of seismicity. That is, researchers should con-
sider variability in reliable detection magnitudes when inter-
preting event count variability.

(3) The 2dof detector generally outperforms the 3dof detector for
this dataset. Namely, the 2dof detector finds more events,
operates with less variability and outputs smaller threshold
magnitudes while maintaining the same predicted false-alarm
rate. The difference in detection capability between detectors
points to one or more real-world phenomena. While we can-
not conclusively identify the seismogenic physical processes,
we make the following observations about their impact on
measured seismicity. The 2dof identifies waveforms that the
3dof classifies as correlated environmental microseismicity.
This difference in measured seismicity is more pronounced
in the summer when such seismicity is diurnally variable,
and we measure the largest inter-detector difference in the
local early morning. The relative depression in 3dof-identified
events is more pronounced at the land-based stations. Our
observations suggest that this inter-detector discrepancy is
driven by a seasonally active source that is tied to the daily
solar cycle and localized off-glacier.

(4) Seismic energy detectors can reliably sample waveforms with
source dimensions equivalent to a linear scale depth of 1 m
or larger at 500 m deployment distances in environmental con-
ditions similar to that of Taylor Glacier’s terminus region.
During our experiment, the 3dof detector reliably triggered
(probability >0.8) on icequake waveforms with sources
equivalent in size to a fracture volume 0.04 m> (or linear
scale ~1/3 m) under the most favorable detection conditions
(lowest magnitude thresholds) and triggered with sources
representing a fracture volume 1m® (or linear scale 1m)
under the least favorable noise conditions (largest magnitude
threshold). These cumulative results suggest that fractures
smaller than this size, which diurnally respond to environ-
mental forcing in local summer months, comprise a compo-
nent of the environmental microseismicity that we observe
only indirectly.

(5) We observed opposite seasonal patterns in detection capability
and variability in detection capability between the two land-
based and one on-ice station. At the on-ice station, we observe
higher detection capability (lower threshold magnitudes) and
less variability in detection capability in the summertime. At
the land-based stations, we observe higher detection capabil-
ity with less variability in detection capability during the
wintertime. We suggest that if similar deployment site-related
contrasts in seasonal detection capability exist in other glacial
settings, researchers could consider strategic location of
seismometers to exploit these contrasts.

In summary, we highlight several ways to assess temporal vari-
ability in detection capability. This assessment is critical: interpre-
tations of seismicity patterns rely on understanding temporal
patterns in event detection biases. Constraining the limitations
of our detection capability will allow us to better interpret the
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rich seismic dataset from Taylor Glacier as well as inform seismic
investigations in other glacial/periglacial environments.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/jog.2020.48

Data and resources. The seismic data described in this study are available for
public access through the IRIS Data Management Center (Pettit, 2013, http:/
www.fdsn.org/networks/detail/ YW_2013). Data from the Taylor Glacier
meteorological station operated by the McMurdo Dry Valleys Long Term
Ecological Research (LTER) Project are available for public access through the
LTER website (Doran and Fountain, 2019, mcm.Iternet.edu/content/high-fre-
quency-measurements-taylor-glacier-meteorological-station-tarm-taylor-valley).
We have provided a tutorial MATLAB script in the Supplementary material that
describes the main elements of our detectors; additional MATLAB tools are
available upon request from joshuac@lanl.gov.
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Appendix A: Detector parameter estimators and
initializations

The 2dof and 3dof detectors use estimation strategies to obtain the two or
three parameters to best fit an F-distribution to the data histogram (STA/
LTA statistic). The F-PDF parameter estimators return parameter estimate
sets that describe central F-distributions, corresponding to the null hypothesis.
The specific F-distribution parameter estimators and parameter initializations
are outlined below.

Two degree of freedom (2dof) detector

The best-fit parameters for the 2dof detector are estimated by finding the
values of Ng; and N, that minimize the L2 norm of the difference between
the data histogram and discretized PDF:

Ng1, Ngp = argminl| Hist(Z)@i—;S — fz(z; Ho)ll,
Ne1,Ng2

(AD)

where f7(z; Ho) is the theoretical F-distribution of the STA/LTA statistic
implemented using fpdf.m with 2dof (Ng;, Ng,) under the null hypothesis
for the values defined by the Hist(z)|5%> bins. We implement three initializa-
tions for Ng; and Ng,:

N'g1, N'gy = 2BT
N'gi, N'pp =2, % (A2)

11 i
N7g1, N7pp = N1, Ny,

where B is the bandwidth ([2.5 Hz, 35 Hz] =32.5Hz) and T=[T,, Tj] is the
duration in s of the short- and long-term windows. N; and N, are the actual
number of samples in the short- and long-term windows, respectively. The
2dof detector implements fminsearch.m to solve Eqn (A1) with multiple
initialization values for Ng; and Ng, (Eqn A2). The detector imposes the con-
straints that Nz <N and Ng, <Nj; the estimated number of independent sam-
ples in the short- and long-term windows cannot exceed the actual number of
samples in the windows. We designate the best-fit parameter sets resulting
from the three initializations as [Ng;, Ng.]', [N, Ng2l”, and [Ngy, Nga]”.

Three degree of freedom (3dof) detector

Similar to the 2dof detector, the 3dof detector operates by finding the best-fit
F-distribution parameters that minimize the difference between the data histo-
gram and the F-PDF. However, in contrast to the 2dof detector, multiple par-
ameter estimators are considered. The first two parameter estimators impose
constraints on the third degree of freedom (c), and the second two parameter
estimators allow ¢ to vary freely. In effect, the first two estimators include only
two degrees of freedom while the remaining two estimators use three degrees
of freedom. We nonetheless name this detector the ‘3dof because the detector
algorithm always considers a set of parameter estimators that includes the full
three degrees of freedom. The first parameter estimator introduces a scaling
factor. The data histogram is pre-scaled by the ratio of the actual number of
samples in the short- and long-term windows (N;/N,). The F-PDF is scaled
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by the ratio of the estimated number of independent samples in the long-
and short-term windows (Np»/Npy), ie. ¢ = (Ng /N51)~ The resulting fit para-
meters values minimize the difference:

N1, Np; = argmin
NEg1,Ng2

. N, N,
Hist(z; )|g755 N—Ezfz (N—EZ 215 7‘[0)
E1 El

| (A3)

(Parameter Estimator 1),

where z; = (N,/N,)z, a scaled version of the STA/LTA statistic.

The next parameter estimator (Parameter Estimator 2) assumes a scaling
parameter of 1 and is therefore identical to that shown in Eqn (Al).

We implement fminsearch.m to find the best fit parameters for Parameter
Estimators 1 and 2 (Eqn A3) using initialization parameters:

N}y, N}, = 2BT. (A4)

Following Arrowsmith and others (2015), we add a third degree of freedom to
the F-distribution for the third and fourth parameter estimators. The third
degree of freedom accommodates temporally correlated environmental noise
that has temporal correlation widths comparable to the short- and long-term
window lengths. Parameter Estimator 3 (Eqn A5) uses the same pre-scaled
STA/LTA statistic (z;) as in Parameter Estimator 1; Parameter Estimator 4
(Eqn A6) uses the unscaled STA/LTA statistic as in Parameter Estimator 2:

N1, Np, ¢ = argmin |[Hist(z1)[5%° — ofz(czi; Ho)ll

Ne1,Ng2,¢ (A5)

(Parameter Estimator 3),

Ngp, Np, & = argmin HHist(z)Igi;5 — ¢fz(cz; Ho)ll
NE1,Ng2,¢ (A6)

(Parameter Estimator 4).

The initialization parameters for Parameter Estimator 3 (Eqn A5) are:

4 4 / N,
Ny, Niy, ¢ = 2BT, 2.

(A7)
The initialization parameters for Parameter Estimator 4 (Eqn A6) are the
same, except for the initialization value for ¢’ is the best-fit estimate resulting
from Parameter Estimator 3 (Eqn A5) for &

Ny, Njy, ¢ = 2BT, &3, (A8)
where subscripts like p; denote parameters or parameter sets resulting from the
specified parameter estimator. The detector imposes the constraint that
1 < N1 <Nj, and Ng; < Nz < N, to ensure that the norm-minimizing esti-
mates are sensible, similar to the constraints imposed by the 2dof detector.

The best-fit parameter set estimates resulting from the four parameter
estimators as [Ngi, Ng2, Ng2/Neilprs [Ne1 Ne2, 1pp, [NE1, NE2s €lps and
[NE1, Ng2, &]py-

Appendix B: Estimation of non-centrality parameter 4

Both detectors provide post-detection estimates of certain waveform para-
meters that characterize the alternative PDF. In particular, our algorithm esti-
mates the non-centrality parameter that shapes our empirical performance
curves, which is related to the SNR. Either parameter equivalently measures
the energy of a waveform relative to concurrent noise that superimposes
with environmental background seismicity. The algorithm’s estimator calcu-
lates A as A (Kubokawa and others, 1993, Eqn 3.1):

N N,
A =z(x) (N—2> (Ng2 — 2) — N, -

where z(x) > 7,

and where SNR = A/N,. Therefore, parameter A is an estimate for a scalar A
that is proportional to an icequake waveform SNR, when that waveform is
localized to the Nj-sample duration of the STA/LTA detector’s short-term
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processing window. We estimate SNR with SNR as:

A

SNR =
NN — 1)

, where N; > 1, (B2)

where the denominator reduces bias relative to the alternative estimator
SNR/ = A/N; when Nj is small (<10). Such bias originates when the STA/
LTA detector trigger time precedes ts (Eqn 2) by several samples, and the ice-
quake waveform only partially localizes in the short-term window.

Appendix C: The equivalent crack source and detection
rates

We estimate physical source properties of a cryogenic source from recorded
Rayleigh wave data with a surficial crack model (see subsection ‘Relationship
between detection capability and source size’). The far-field displacement u
at & that is triggered by a very shallow seismic source (like a surface crack)
is a product of an azimuthally independent vector g(§, ®) and the source radi-
ation pattern R (Aki and Richards, 2002, p. 328)

where radiation pattern R(¢) depends on trigonometric functions of the azi-
muthal angle ¢ subtended between the source and receiver position that are
weighted by moment tensor components. The moment tensor for a vertically
oriented surface crack of area A that is located at &, and that opens in tension a
distance [[up&yq]l in the radial direction at time f, is

©-20 0
M=pAlu&IB[ 0 % 0 |s) (€2)
0 0 gé -2

where s(w) is the Fourier transform of the source-time function that describes
the history of the crack-face displacement, the crack face is oriented perpen-
dicular to the radial direction, and body wave speeds parameterize the elastic
constants. The form of s(w) that we use here represents the frequency domain
description of discontinuity in displacement across a 1-D interface and is
derived elsewhere (Denny and Johnson, 1991, Eqns 8 and 13). The Rayleigh
wave radiation pattern is then (Aki and Richards, 2002, p. 328):

R(@) = Uy + U, cos2¢ + Us sin 2¢, (C3)

where the radiation pattern coefficients are

1 B
Up =2 M+ M)+ |25 —1|Ms3

2 o

1 (C4)
U, = E(MH My)
U; = M, =0.

Equation (C1) is combined with Eqns (C2-C4) so that displacement u is (alge-

bra omitted):
2 _ 2
u(€ w) = pAllu(&)1 8 (M)
—_—— o

units: energy

2 2 (C5)
x (1 - ;;%:g;) (& ©) - s(o).
—_——

crack radiation pattern

The azimuthally independent vector g(&, w) is generally complicated in layered
media. Glacial ice in ablation zones that lack a firn layer (e.g. Taylor Glacier)
are approximately homogeneous half spaces in the range of frequencies we
consider in this work. These frequencies are too high to substantially sample
the deeper ice and subglacial bed, and too low to be scattered by any ~1 m
scale heterogeneities in the ice. When the near-surface ice of Taylor Glacier
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is considered an effectively homogeneous half-space at Rayleigh wave frequen-
cies, then g(&, w) takes a simple, non-dispersive form: (algebra omitted):

(& o) — 1O 2
g ’ - 8‘%([1 7Tk”§— §0|| (C6)

X(r (002, + jra(0)2.) expj(ké, + 7).

where é, and e, are the orthogonal unit vectors in the radial and vertical direc-
tions in the cylindrical coordinate system with origin at the ice surface and j is
/=1, not to be confused with index j used in the relative magnitude descrip-
tion in the main text. The new symbols in Eqn (C6) are:

R = %, the Rayleigh phase speed for wavenumber k;

rn(0)=1-— the radial eigenvectorat z = 0;

vy
1241’

2
7(0) =y 1 — ——— |, thevertical eigenvectoratz = 0;
2(0) v( v2+1> g

p(1+Y 4y 2y . (C7)
I = * < 2y vl + o) the first energy integral;
[1——, the p — wave vertical slowness and
[1 — =, thes — wave vertical slowness.
We now compute the frequency domain displacement energy E} (£, w) = u"u

(the signal-energy) from Eqn (C5) and Eqn (C7). We distinguish E} here from
the instrument and bandpass filter corrected version of energy Eg. The result
for Ej is (algebra omitted):

132)2

2 2 2
x|1-— & COS2e (P2 -s(w)
30?2 — 4B

X(kr1(0)>2 2
821 ) wk||€— &l

x pA[lu(€)1B*(r2(0) + 12(0)),

EA(& o) —pATu(&)] B (

(C8)

where we explicitly factored the physically interpretable energy gained by
opening a crack (pA[[u(£&)]8%) in Eqn (C8) into two terms and group the
remaining expression as ‘other terms’, or O.T, to remain consistent with
Eqn (9).

We now describe how we compute attenuation, instrument response, and
data pre-processing effects to compute Eg. First, we model the anelastic attenu-
ation of our seismic waveforms with a Futterman filter to include the physical
effects of dispersive energy dissipation on signal amplitude, and multiply the

right-hand side of Eqn (C8) by exp( wllé— §°”) where Q is the surface wave

quality factor and cg is the Rayleigh wave speed. Second, we compute the
instrument response for an L-22 and Q330 digitizer, multiply the predicted
displacement by —jo to differentiate displacement to velocity, and multiply
the cumulative data acquisition system response by the result. Next, we multi-
ply the resultant velocity that now has units of counts by the response function
of our bandpass filter. We then average this predicted velocity over azimuth ¢.
These cumulative effects are equivalent to multiplying E; by the amplitude
response of three spectral factors (the attenuation response, the instrument
response and the bandpass filter), then integrating over azimuth. The cumula-
tive effect of these factors implicitly defines I(®pin, @may) but maintains the
proportionality of the energy to the constant A[[u(&,)]]pB8>. We finally com-
pute Eg by then integrating the frequency domain energy over frequency,
and correct for sample interval. We thereby obtain Eqn (10) and an analytical
model for A.
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