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Non-continuum effects on the sound of a
heated line source: from a monopole to
non-isotropic radiation
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We study the effect of continuum breakdown on the two-dimensional thermoacoustic
radiation of a thin plate set in a perfect monatomic gas. The plate is heated harmonically
in time and the acoustic field is investigated in the entire range of gas rarefaction
rates. Analytical approximations are obtained in the limits of high (free-molecular)
and low (continuum limit) gas rarefaction, accompanied by direct simulation Monte
Carlo calculations at intermediate flow conditions. While the source acoustic field is
of a monopole type in the continuum regime, it turns non-isotropic at non-continuum
conditions, exhibiting dipole directivity and exponential decay rate in the collisionless
limit. The combined effects of source heating frequency and gas Knudsen number on the
far-field acoustic radiation are illustrated and rationalized.

Key words: rarefied gas flow

1. Introduction

Thermoacoustic sound generation by unsteady heating of a structure has been commonly
addressed as a canonical problem in continuum acoustics (Howe 1998; Pierce 2019).
Serving as a benchmark test case for examining the production and propagation of
sound waves in fluids, thermoacoustic sound radiation has been additionally suggested
in several applications, including biomedical thermoacoustic imaging (Oraevsky et al.
1994) and heat-driven flow animation (Yariv & Brenner 2004). In an effort to develop
efficient means for ultrasonic sound emission, thermoacoustic sound has also been
applied in the development of the thermophone (Arnold & Crandall 1917; Wente 1922;
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Shinoda et al. 1999), which was later considered as a useful apparatus for the cancellation
of vibroacoustic noise (Julius et al. 2018; Leizeronok et al. 2023).

The propagation of thermoacoustic sound at non-continuum conditions in gaseous
media has been investigated in a sequence of works. These become relevant wherever
the characteristic length scale, or time scale, of the set-up involved become of the
order of the molecular mean free path, or time, respectively. Focusing on an infinite
planar heated surface (see Sone (1965), Wadsworth, Erwin & Muntz (1993), Manela &
Hadjiconstantinou (2007, 2010), Nassios, Yap & Sader (2016) and papers cited therein),
existing studies have analysed the attenuating effect of gas rarefaction, resulting in
decay rates greater than at continuum conditions. Later works have demonstrated that
thermoacoustic sound, caused by boundary heat-flux excitations, may be applied to
monitor the noise of a vibrating planar object (Manela & Pogorelyuk 2014, 2015). The
planar-wall investigations have been followed by works on non-planar (yet unidirectional)
source geometries, including cylindrical (Kalempa & Sharipov 2014; Ben Ami & Manela
2017) and spherical (Ben Ami & Manela 2019) body configurations.

Almost invariably, existing investigations on non-continuum thermoacoustic sound
radiation have considered one-dimensional problems, where signal propagation was
permitted only in the direction normal to the source boundaries. While such an assumption
significantly simplifies the analysis, it is evidently desirable to extend the current
knowledge and investigate the effect of system two-dimensionality on thermoacoustic
sound propagation. Until recently, only a few works have considered two-dimensional
sound propagation in rarefied gases, focusing on vibroacoustic set-ups. To this end, Wu
(2016) has examined the propagation of acoustic waves in a rarefied gas confined in
a two-dimensional cavity, generated by mechanical oscillations of one of the bounding
surfaces. In a different work, Yap & Sader (2016) have studied the acoustic field of an
oscillating rigid sphere, applying the Bhatnagar–Gross–Krook model of the Boltzmann
equation for the analysis. Lately, the two-dimensional sound radiation by a non-uniformly
vibrating plane in semi-infinite (Manela & Ben-Ami 2021) and straight channel (Manela
& Ben-Ami 2022) configurations has been examined, demonstrating the qualitative impact
of continuum breakdown on the vibroacoustic field amplitude and directivity.

In view of the above, the objective of the present contribution is to analyse the effect
of gas rarefaction on the two-dimensional acoustic radiation of a time-periodically and
uniformly heated body. While it is known that such sources are of a monopole type
in the continuum limit (Howe 1998; Pierce 2019), the combined impacts of surface
non-isotropicity and deviation from continuum on their thermoacoustic radiation have not
been considered hitherto. For geometrical simplicity, we consider the case of a planar
finite thin plate. The problem is investigated over the entire range of gas rarefaction
rates. Analytical approximations are presented in the limits of high (free-molecular) and
low (continuum limit) rarefaction rates, accompanied by direct simulation Monte Carlo
(DSMC) calculations at intermediate conditions.

In the next section, the two-dimensional heated plate problem is stated. The analytical
treatments in the free-molecular and near-continuum regimes are described in §§ 3 and 4,
respectively, followed by an outline of the numerical DSMC scheme in § 5. Our results are
illustrated in § 6, followed by our conclusions in § 7. Technical details are relegated to the
appendices.

2. Statement of the problem

Consider a two-dimensional set-up consisting of an infinitely thin stationary plate of length
L∗ surrounded by an infinite expanse of a perfect monatomic gas of uniform density
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Non-continuum effects on the sound of a heated line source

ρ∗
0 and temperature T∗

0 (hereafter asterisks denote dimensional quantities). The plate is
aligned with the x∗

1-axis and placed between −L∗/2 ≤ x∗
1 ≤ L∗/2, whereas the x∗

2-axis is
perpendicular to the plate in the (x∗

1, x∗
2) plane. The axes’ origin is located at the midchord

of the plate. The gas is initially set at rest and in thermodynamic equilibrium with the
plate. At time t∗ ≥ 0, the plate temperature T∗

w is uniformly perturbed via

T∗
w
(
t∗
) = T∗

0 [1 + εTper(t∗)], (2.1)

where Tper(t∗) is prescribed and ε � 1, so that the system description may be linearized
about its initial equilibrium. In the following we analyse the effect of gas rarefaction on
the propagation of thermoacoustic sound generated by the heated plate. While the analysis
is partly carried out for arbitrary small-amplitude actuations (see § 3), our results focus on
harmonic wall excitations,

T∗
per(t

∗) = sin(ω∗t∗), (2.2)

where ω∗ denotes the surface heating frequency. We focus on studying the final
time-periodic state of the system.

To render the problem dimensionless, we identify the problem characteristic length and
velocity scales with the plate length L∗ and molecular mean thermal speed U∗

th = √2R∗T∗
0

(where R∗ marks the specific gas constant), respectively. The non-dimensional problem is
then governed by the gas mean Knudsen number and scaled frequency,

Kn = l∗/L∗ and ω = ω∗L∗/U∗
th, (2.3a,b)

respectively, where l∗ marks the molecular mean free path. Considering a hard-sphere gas
l∗ = m∗/(

√
2πρ∗

0 d∗2), where m∗ and d∗ are the molecular mass and diameter, respectively
(Kogan 1969). The choice of a hard-sphere gas model of interaction is made due to
its relative simplicity for deriving analytical results, and the effect of using a different
(Maxwell) type of molecular interaction is illustrated in § 6. Application of more realistic
models of interaction, such as the ab initio potential suggested recently by Sharipov in
different contexts (Sharipov 2017; Sharipov & Dias 2018), may be carried out, yet would
hinder the analysis and is therefore not followed here. In terms of the governing parameters,
free molecular conditions are expected to prevail where Kn � 1 or ωKn = ω∗l∗/U∗

th � 1,
for which either the length scale or time scale is short compared with the mean free path
or mean free time, respectively. Inversely, continuum-limit conditions require that both
Kn � 1 and ωKn � 1.

The problem in the free-molecular limit is analysed in § 3. Continuum-limit conditions
are discussed in § 4, based on continuum acoustics theory. Details on the applied numerical
DSMC scheme are given in § 5.

3. Free-molecular limit

Free-molecular conditions should prevail wherever Kn � 1 or ωKn � 1, for which either
the system length scale or time scale is short compared with the mean free path or
mean free time, respectively. For the two-dimensional set-up considered, the gas state
is governed by the probability density function f = f (t, x, ξ) of finding a gas molecule
with position and velocity about x = (x1, x2) and ξ = (ξ1, ξ2, ξ3), respectively, at time
t. While the hydrodynamic (macroscopic) gas motion is confined to the (x1, x2) plane,
molecular gas movements are distributed in all spatial directions. Expanding f (t, x, ξ)
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about its nominal non-dimensional Maxwellian distribution F = π−3/2 exp[−ξ2], we put

f (t, x, ξ) = F[1 + εφ(t, x, ξ)], (3.1)

where φ(t, x, ξ) denotes the unknown perturbation function due to plate heating.
At free-molecular conditions, φ(t, x, ξ) satisfies the collisionless two-dimensional
(x-dependent) Boltzmann equation (Kogan 1969),

∂φ

∂t
+ ξ1

∂φ

∂x1
+ ξ2

∂φ

∂x2
= 0. (3.2)

The equation is supplemented by the initial condition

φ(t = 0−, x, ξ) = 0, (3.3)

together with a linearized form of the diffuse boundary condition at the plate’s top (x2 =
0+) and bottom (x2 = 0−) surfaces,

φ(t, −1/2 ≤ x1 ≤ 1/2, x2 = 0±, ξ · x̂2 ≷ 0) = ρper (t) + (ξ2 − 3/2)Tper (t) , (3.4)

applied to the reflected ξ2 ≷ 0 molecules at x2 = 0±, respectively. Here, x̂2 denotes a unit
vector in the positive x2-direction and ρper(t) is treated unknown. The latter is a function of
the time only (thus independent of the location along the plate), in line with the uniformity
of the heating signal in (2.1) and the problem symmetry between the top and bottom solid
surfaces. Yet, the following scheme could also be applied, with some modifications, to
cases where non-uniform heating is imposed at the body. The diffuse condition applied in
(3.4) may be viewed as a limit case of the Maxwell condition with a unity accommodation
coefficient. Focusing on the effect of wall heating on sound transmission, a fully diffuse
wall is considered, as the specular part of reflection (appearing for an accommodation
coefficient lower than unity) does not communicate the plate disturbance to the gas. Due
to problem linearity, the results for any accommodation coefficient lower than unity may
easily be obtained through simple manipulation of our data.

The Maxwell fully diffuse model of gas–solid interaction has been chosen due to its
simplicity and the ability to derive analytical solutions from it. The condition should be
treated as a kinetic means by which the wall-heating signal is transferred to the gas. It
is clear that, by using a different wall condition, the gas temperature at the wall would
differ from the one imposed by the present model, and the results should be quantitatively
affected. This should be the case when imposing, for example, the Cercignani–Lampis
boundary interaction kernel, as suggested in recent works by Graur et al. on set-ups
containing temperature gradients (Brancher et al. 2021; Johansson et al. 2023). In the
following, we prefer model simplicity over a more involved treatment of the boundary
interaction, that should only quantitatively affect the results but obviate analysis.

The problem in (3.2)–(3.4) combined with a decay condition at |x| → ∞ is amenable
to the closed-form solution

φ (t, x1, x2 ≷ 0, ξ) =
{

ρper (tr) + Tper (tr)
(
ξ2 − 3/2

)
, ξ2 ≷ 0 ∧ 0 ≤ x1r ≤ 1

0, otherwise,
(3.5)

where
tr = t − x2/ξ2 and x1r = x1 − x2ξ1/ξ2 (3.6a,b)

mark the retarded time and x1-position of the particle at the instant of reflection from the
plate boundary. To determine ρper(t), the macroscopic condition of impermeability,∫ ∞

−∞
ξ2φ(t, −1/2 ≤ x1 ≤ 1/2, x2 = 0±, ξ) dξ = 0, (3.7)
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Non-continuum effects on the sound of a heated line source

is imposed at the surface, yielding

ρper (t) = −Tper (t) /2. (3.8)

Substituting (3.8) into (3.5) and then into (3.1), the hydrodynamic perturbations may be
computed via velocity-space quadratures over the probability density function (Kogan
1969). In the present linearized regime, these yield in the upper half-plane (x2 > 0)

ρ (t, x1, x2 > 0)

= π−3/2
∫ ∞

−∞
φe−ξ2

dξ

= 1
2
√

π

∫ ∞

0
Tper(tr)e−ξ2

2

{
(ξ2

2 − 1)

[
erfc

(
x1 − 1/2

x2
ξ2

)
− erfc

(
x1 + 1/2

x2
ξ2

)]

+ ξ2

x2
√

π

(
(x1 − 1/2) exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

− (x1 − 1/2) exp

[
−
(

x1 + 1/2
x2

ξ2

)2
])}

dξ2, (3.9)

u1 (t, x1, x2 > 0)

= π−3/2
∫ ∞

−∞
ξ1φe−ξ2

dξ = 1
2π

∫ ∞

0
Tper(tr)e−ξ2

2

×
{(

ξ2
2 − 1

2

)(
exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

− exp

[
−
(

x1 + 1/2
x2

ξ2

)2
])

+
(

x1 − 1/2
x2

ξ2

)2

exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

−
(

x1 + 1/2
x2

ξ2

)2

exp

[
−
(

x1 + 1/2
x2

ξ2

)2
]}

dξ2, (3.10)

u2 (t, x1, x2 > 0)

= π−3/2
∫ ∞

−∞
ξ2φe−ξ2

dξ

= 1
2
√

π

∫ ∞

0
Tper(tr)ξ2e−ξ2

2

{
(ξ2

2 − 1)

[
erfc

(
x1 − 1/2

x2
ξ2

)
− erfc

(
x1 + 1/2

x2
ξ2

)]

+ ξ2

x2
√

π

(
(x1 − 1/2) exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

− (x1 − 1/2) exp

[
−
(

x1 + 1/2
x2

ξ2

)2
])}

dξ2, (3.11)
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P11 (t, x1, x2 > 0)

= π−3/2
∫ ∞

−∞
ξ2

1 φe−ξ2
dξ

= 1
2π

∫ ∞

0
Tper(tr)e−ξ2

2

{
ξ3

2
x1 − 1/2

x2

[
1 +

(
x1 − 1/2

x2

)2
]

exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

−ξ3
2

x1 + 1/2
x2

[
1 +

(
x1 + 1/2

x2

)2
]

exp

[
−
(

x1 + 1/2
x2

ξ2

)2
]

+
√

π

2
ξ2

2

[
erfc

(
x1 − 1/2

x2
ξ2

)
− erfc

(
x1 + 1/2

x2
ξ2

)]}
dξ2, (3.12)

P22 (t, x1, x2 > 0)

= π−3/2
∫ ∞

−∞
ξ2

2 φe−ξ2
dξ

= 1
2
√

π

∫ ∞

0
Tper(tr)ξ2

2 e−ξ2
2

{
(ξ2

2 − 1)

[
erfc

(
x1 − 1/2

x2
ξ2

)
− erfc

(
x1 + 1/2

x2
ξ2

)]

+ ξ2

x2
√

π

(
(x1 − 1/2) exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

− (x1 − 1/2) exp

[
−
(

x1 + 1/2
x2

ξ2

)2
])}

dξ2 (3.13)

and

P33 (t, x1, x2 > 0)

= π−3/2
∫ ∞

−∞
ξ2

3 φe−ξ2
dξ

= 1
4
√

π

∫ ∞

0
Tper(tr)e−ξ2

2

{
ξ2

2

[
erfc

(
x1 − 1/2

x2
ξ2

)
− erfc

(
x1 + 1/2

x2
ξ2

)]

+ x1 − 1/2
2x2

ξ2 exp

[
−
(

x1 − 1/2
x2

ξ2

)2
]

−x1 + 1/2
2x2

ξ2 exp

[
−
(

x1 + 1/2
x2

ξ2

)2
]}

dξ2, (3.14)

for the density perturbation, x1-velocity, x2-velocity and normal stress deviation
components (P11, P22 and P33), respectively. In (3.9)–(3.14), erfc(s) = (2/

√
π)
∫∞

s e−s2
ds

denotes the complementary error function. The counterpart expressions in the lower
half-plane (x2 < 0) follow by symmetry. The acoustic pressure and temperature deviation
from equilibrium are given by

p (t, x) = 2
3 [P11 (t, x) + P22 (t, x) + P33 (t, x)] and T (t, x) = p (t, x) − ρ (t, x) .

(3.15a,b)
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Non-continuum effects on the sound of a heated line source

For later reference it is noted that all hydrodynamic perturbations vanish along the lines of
symmetry x1 ≷ ±1/2 with x2 = 0, as no gas particles may be emitted from the wall along
its planar direction in the collisionless limit. This observation is, in fact, the very reason
for the qualitative difference between the acoustic field directivities in the free-molecular
and continuum limits, to be discussed later on (see § 6).

Different from the analysis in the continuum limit (see § 4), the solution in
the free-molecular regime, involving the numerical evaluation of the quadratures in
(3.9)–(3.14), is valid for arbitrary small-amplitude Tper(t) input signals. Focusing on the
case of harmonic excitations specified in (2.2), explicit far-field approximations for the
hydrodynamic fields may be obtained for x2 � 1 with ωx2 � 1 (i.e. with ω � x−1

2 ) while
keeping x1 ∼ O(1). The approximation, presented in Appendix A, applies the method
of steepest descent (Abramowitz 1953) to evaluate the ξ2-integrals. This yields, for the
far-field acoustic pressure

p (t, x1 ∼ O(1), x2 � 1;ωx2 � 1)

≈ iω

2
√

3π
exp [iωt − z]

[(
iωx2

2

)2/3

+ 53
36

+ O(x−2/3
2 )

]
, (3.16)

where

z = 3
(

iωx2

2

)2/3

= 3
2

(ωx2

2

)2/3 [
1 + i

√
3
]
. (3.17)

The above evaluation should be valid at distances x2 � 1 from the heated plate where
ωx2 � 1. Since the signal at free-molecular conditions vanishes at short distances from
the source, this requires that the actuation frequency is not small. Comparison between our
asymptotic and full numerical solutions indicates that the present estimate holds already
at ωx2 � 3. At the level of approximation presented in (3.16), the far acoustic pressure
is independent of x1, as long as x1 ∼ O(1), i.e. the observer is located in the relative
proximity to the x2-axis.

4. Continuum-limit conditions

Complete analysis of the continuum-limit problem in the present two-dimensional
time-periodic set-up requires numerical computation of the entire flow field. To avoid
application of heavy-load numerical solvers and gain analytical insight, we focus on the
investigation of the system acoustic far-field, contributed by the net rate of heat flux
radiated by the plate source to the gas. In the common framework of acoustic analogies,
we make use of the dimensional expression for the far-field pressure generated by a heated
body (Howe 1998),

p∗(t∗, x̄∗) ≈ − 1
c∗

pT∗
0

∂

∂t∗

∮
s∗

q∗
n(τ, ȳ∗)G∗(t∗ − τ ∗, x̄∗, ȳ∗) d3ȳ∗ dτ ∗, (4.1)

valid at distances |x̄∗| = (x∗2
1 + x∗2

2 + x∗2
3 )1/2 � L∗ from a three-dimensional source

placed in a fluid at rest. Here, x̄∗ = (x∗
1, x∗

2, x∗
3) is the three-dimensional space vector, c∗

p
is the gas specific heat capacity at a constant pressure and s∗ marks the external surface
of the body interacting with the gas. In addition, q∗

n is the time- and position-varying
normal heat-flux along the source surface and G∗ is the Green’s function satisfying the
counterpart acoustic problem of a point source placed in the proximity of the body. The
scalar τ and three-dimensional vector ȳ∗ = ( y∗

1, y∗
2, y∗

3) denote the source coordinates of
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time and space, respectively. We consider an acoustically compact configuration, where
the source size L∗ is small compared with the radiated acoustic wavelength λ∗, namely

L∗

λ∗
= ω∗L∗

2πc∗
0

� 1. (4.2)

Here, c∗
0 = (γR∗T∗

0 )1/2 denotes the continuum-limit mean speed of sound in the gas and γ

is the ratio of specific heats. For the monatomic hard-sphere gas considered hereafter, γ =
5/3. In terms of the scaling introduced in § 2, the compact-body assumption is equivalent
to considering the non-large non-dimensional frequencies

ω � π
√

2γ ≈ 5.74. (4.3)

This is in line with the continuum-limit conditions, requiring that ωKn � 1, given that
Kn � 1. For an acoustically compact system (Howe 1998),

G∗(t∗ − τ ∗, x̄∗, ȳ∗) = 1

4π|X̄ ∗ − Ȳ
∗|

δ

(
t∗ − τ ∗ − |X̄ ∗ − Ȳ

∗|
c∗

0

)
, (4.4)

where δ(·) denotes the Dirac delta function. Additionally, X̄
∗
(x̄∗) and Ȳ

∗
( ȳ∗) mark the

Kirchhoff vectors for the considered set-up, in which each j component is equal to the
incompressible velocity potential of the flow past the plate with a unit speed in the j
direction at large distances from the object (Howe 2003). In the current problem, it is
sufficient to approximate

X̄
∗
(x̄∗) ≈ x̄∗ and Ȳ

∗
( ȳ∗) ≈ ȳ∗, (4.5a,b)

equivalent to the flow potential of free-space unity flow in each direction, to obtain the
leading-order far-field system behaviour. In what follows we apply (4.1) together with (4.4)
and (4.5a,b) for the estimation of the present two-dimensional far acoustic field.

To start with, we carry the y∗
3-integration over (−∞, ∞) in (4.1). Since q∗

n(τ, y∗)
is independent of y∗

3, it remains to evaluate the y∗
3-quadrature over G∗, as detailed in

Appendix B. This yields

∫ ∞

−∞
G∗(t∗ − τ ∗, x̄∗, ȳ∗) dy∗

3 ≈
√

c∗
0

2π
√

2|x∗|
H(t∗ − τ ∗ − |x∗|/c∗

0)√
t∗ − τ ∗ − |x∗|/c∗

0
= G∗

2D(t∗ − τ ∗, x∗),

(4.6)

where H(·) denotes the Heaviside function. We substitute (4.6) together with the
continuum-based Fourier law,

q∗
n = −k∗

0
∂T∗

∂y∗
n
, (4.7)

into (4.1), where k∗
0 denotes the coefficient of gas thermal conductivity at equilibrium

conditions. Applying the problem symmetry for carrying the y∗
2-quadrature along the thin
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plate surface, we obtain

p∗(t∗, x∗) ≈ k∗
0
√

c∗
0

πc∗
pT∗

0
√

2|x∗|
∂

∂t∗

∫ [t∗]

0

∫ L∗/2

−L∗/2

(
∂T∗

∂y∗
2

)
y∗

2=0+

dy∗
1 dτ ∗

√
[t]∗ − τ ∗ , (4.8)

where [t∗] = t∗ − |x∗|/c∗
0 marks the dimensional acoustic retarded time. Adopting the

scaling in § 2, we arrive at the non-dimensional expression

p(t, x) ≈ (2γ )1/4

π

μ0 Kn
Pr

1√|x|
∂

∂t

∫ [t]

0

∫ 1/2

−1/2

(
∂T
∂y2

)
y2=0+

dy1 dτ√
[t] − τ

, (4.9)

where [t] = t − |x|√2/γ . In (4.9), Pr and μ0 denote the Prandtl number and scaled
viscosity,

Pr = k∗
0

μ∗
0c∗

p
and μ0 = μ∗

0
ρ∗

0 U∗
thl∗

, (4.10a,b)

respectively, where μ∗
0 marks the dimensional mean dynamic viscosity. For the currently

considered monatomic hard-sphere gas, Pr = 2/3 and μ0 = 5
√

π/16 (Kogan 1969).
Inspecting (4.9), it is observed that the leading-order far acoustic field is of a monopole

type, propagating isotropically in all directions. This is qualitatively different from the
acoustic directivity at free-molecular conditions, studied in § 3, where sound propagates
primarily around the x2-axis normal to the plate, and no signal is detected along the x1-axis
(see (3.15a,b) et seq.). As typical to continuum two-dimensional set-ups, the far-field
pressure decays with the inverse square root of the distance from the source, |x|−1/2,
which retains a finite far-field acoustic power (Howe 1998). In the inviscid Kn → 0 limit,
the monopole acoustic far-field vanishes, as heat (and subsequent pressure fluctuations)
cannot be communicated to the fluid in the absence of gas thermal conductivity.

To proceed with the evaluation of (4.9), the temperature gradient ∂T/∂y2 at the
plate surface ( y1 ∈ [−1/2, 1/2], y2 = 0±) should be determined. While this requires a
numerical computation of the near flow field, it is reasonable to assume that when
the acoustic wavelength (= 2πc∗

0/ω
∗) is much larger than the heat diffusion scale

(= (k∗
0/(ρ

∗
0 c∗

pω
∗))1/2), a condition satisfied by the current acoustically compact and low

Kn set-up (see (4.2) et seq.), the precise behaviour of the normal temperature gradient near
the plate end points is unimportant. Thus, it is appropriate to assume to a leading order
that ∂T/∂y2 is uniform along the surface and the same as for an infinite plate. Following
previous one-dimensional continuum-limit analyses of the thermoacoustic disturbance
generated by a time-periodic heated infinite wall (e.g. Manela & Hadjiconstantinou 2010;
Leizeronok et al. 2023), the temperature field has been computed and is tabulated in
Appendix C for completeness. The temperature gradient at the wall surface s at time τ

is subsequently given by (
∂T
∂y2

)
(τ,s)

= (D1r1 + D2r2) eiωτ , (4.11)

where r1,2(ω, Kn) are given by (C7a–c) and D1,2(ω, Kn) are specified in (C9a,b).
Substituting (4.11) into (4.9), the long-time ([t] � 1) τ -integral may be evaluated as∫ [t]

0

exp(iωτ)√
[t] − τ

dτ =
√

π

ω
exp(i (ω[t] − π/4)), (4.12)
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and the approximate expression for the far-field pressure is given by

p(t, x) ≈ (2γ )1/4μ0 Kn
√

ω (D1r1 + D2r2)

Pr
√

π|x| exp(i (ω[t] + π/4)). (4.13)

As in (4.9), the far-field pressure decays with the inverse square root of the distance
from the origin and vanishes in the inviscid Kn → 0 limit. In line with the imposed
heating periodicity and problem linearity, the signal is ω-harmonic. The Knudsen and
frequency dependencies of the pressure amplitude (included in both the Kn

√
ω term and

in D1,2(ω, Kn) and r1,2(ω, Kn) appearing in (4.13)) will be discussed in § 6.

5. Numerical scheme: DSMC method

The DSMC method is widely regarded as the most effective approach for the numerical
analysis of rarefied gas flows (Bird 1994). Originally developed as a direct numerical
modelling of dilute gas dynamics (Bird 1963), DSMC was later shown to yield results that
converge to the solution of the Boltzmann equation in an appropriate limit (Wagner 1992).
Within the DSMC framework, the velocity distribution function of the gas molecules is
represented by computational particles. The computational domain is divided into cells
with sizes smaller than the molecular mean free path l∗. Particle motions and interactions
are decoupled over a time step shorter than the local mean free time between collisions. At
each time step, the particles are first translated as if they do not interact with each other.
They are then sorted into cells and collisions are performed stochastically, preserving the
collision momentum and energy invariants. Finally, the macroscopic fields in each cell are
evaluated by taking weighted averages of the particle properties.

The present work applied the DSMC scheme to simulate the hard-sphere gas
response over a wide range of gas rarefaction rates, varying between early transition to
free-molecular conditions. A two-dimensional rectangular simulation box was considered,
taken large enough to mitigate the spurious reflections resulting from the artificial ‘top’
and ‘side’ bounding walls. Based on the free-molecular analysis in § 3, the acoustic field
at ballistic flow conditions vanishes at few plate length scales away from the source. As
this distance increases with decreasing rarefaction, numerical experiments have indicated
that setting the simulation box size to 15L∗ × 15L∗ was sufficient to capture the unbounded
flow behaviour for Kn � 0.1 and ωKn � 0.1. The simulation box was divided into cells of
equal size, with dimensions in the range �s∗ = [0.005, 0.025]l∗. The time step was taken
as �t∗ = �s∗/(5

√R∗T∗
0 ).

Each simulation started with a gas in equilibrium surrounding the plate. At each time
step, computational particles were inserted from the outer boundaries of the simulation
box, randomly sampled from the equilibrium Maxwellian distribution. Particles crossing
the boundaries from the inside of the domain were removed. In line with problem
formulation, scattering at the plate surface followed fully diffuse reflections, with the
prescribed boundary temperature varying harmonically in time. The simulations were run
for ≈ 200 periods, where the results during each period were recorded at specific times.
Once a final periodic state has been reached (typically after ≈ 20 periods), the results were
averaged between remaining periods. A value of ε = 0.15 for the heating amplitude (see
(2.1)) has proved sufficiently small to neglect nonlinear effects. A typical simulation on a
single-processor Intel CoreTM i7-8700 machine (12M cache, up to 4.60 GHz) using the
above computational parameters lasted up to a week.

Notably, the application of the DSMC scheme in the present problem faces a significant
challenge due to the combination of the weak signal induced by the source and set-up
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two-dimensionality. These lead to an inevitable non-large signal-to-statistical-noise ratio,
hindering the capturing of the low-Mach flow field involved (Hadjiconstantinou et al.
2003). Possible remedies may have included the usage of low-variance DSMC schemes
(Homolle & Hadjiconstantinou 2007), weighted particles or deterministic methods such
as discrete velocity techniques (Aristov 2001; Ghiroldi & Gibelli 2014). However, these
alternatives are less accessible to implement than standard DSMC and are not in the
focus of the present contribution. In applying the DSMC method, we have maintained the
signal-to-noise ratio sufficiently large by increasing the average number of computational
particles per cell to ≈ 1200. Additionally, the statistical noise was reduced by enforcing
the problem symmetry, allowing for the averaging of the simulation results between the
domain four quadrants.

6. Results and discussion

Figure 1 presents the free-molecular solution derived in § 3, focusing on the case of
ω = 1. Figure 1(a) shows a two-dimensional pressure amplitude colourmap, where the
plate location is marked by the black solid line. In line with the exponential decay
found in (3.16), the acoustic field is confined to only a few length scales away from the
plate, and sound is radiated mainly in the direction normal to the surface. The analytical
results are compared with DSMC predictions at Kn = 10 in figure 1(b). In support of
the closed-form solution, pressure time snapshots at quarter-period (t = T/4 = (2πω)−1)
along x1 = 0 and x2 = 0.02 are found in close agreement with DSMC data. Figure 1(b)
further illustrates the non-isotropic character of sound radiation at high rarefaction rates,
where the sound along x2 = 0.02 is restricted to the −0.5 ≤ x1 ≤ 0.5 interval above the
plate, in marked difference from the midchord x1 = 0 signal, which spreads over a much
wider x2-interval.

Figure 1(c) shows the far-field pressure amplitude directivity, |p|/|pmax|, computed at
a fixed distance |x| � 1 from the origin and varying direction. The figure compares
between the free-molecular (blue line) and monopole continuum-limit (black circle)
results, manifesting the qualitative effect of continuum breakdown on radiation directivity.
Markedly, the free-molecular curve is found identical with the directivity of a dipole source
at continuum conditions (Howe 1998; Pierce 2019), |p|/|pmax| = sin θ , as denoted by the
dashed black line. The present free-molecular field may nevertheless not be referred to as
a dipole, as it does not obey to the continuum wave equation and exhibits an exponential
decay rate that is far stronger than its continuum counterpart. In practice, in the continuum
limit problem, a dipole-type field would have occurred if the upper and lower surfaces
of the plate were heated at opposite phases. Our present discussion is limited to the case
of uniform excitation only. As stated after (3.16), the far-field free-molecular estimate for
the acoustic pressure, strictly valid at distances x2 � 1 from the source (with ωx2 � 1),
coincides with the exact ballistic result already at x2 ≈ 3 for ω = 1. Specifically, the
ballistic-field directivity presented in figure 1(c) for ω = 1 is based on the calculation
of the full free-molecular solution at |x| = 4. At such distances, the continuum-limit
monopole directivity of the acoustic pressure is similarly effective (see figure 3f ), and
the comparison presented between the two ‘far fields’ is in place.

Figure 1(d) presents the instantaneous flow field generated by the source at
quarter-period, showing a colourmap of the velocity amplitude and a sequence of
streamlines originating in the vicinity of the plate surface. Low speed flow is generated
by the thermoacoustic source, reaching a maximum of |u| ≈ 0.047 at approximately one
length scale away at each side of the plate. In accordance with the non-isotropic pressure
field, no flow is observed along the x2 = 0 section. The streamlines that originate close to
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Figure 1. The free-molecular (Kn → ∞) acoustic field at ω = 1: (a) pressure amplitude colourmap;
(b) quarter-period (t = T/4) time snapshots of the x2-variation of the acoustic pressure along x1 = 0 (black
line) and x1-variation along x2 = 0.02 (blue curve), compared with respective DSMC results at Kn = 10
(symbols); (c) far-field pressure amplitude directivity map, |p|/|pmax|, at collisionless (blue line) and continuum
(black curve) conditions, compared with the directivity of a dipole (|p|/|pmax| = sin θ , dashed black line);
(d) velocity amplitude colourmap and streamlines at quarter-period time, t = T/4. The black lines in
figures 1(a) and 1(d) mark the plate location.

the plate follow straight lines that reach a stagnation at |x| ≈ π, half a wavelength away
from the plate midchord, which is a node location at the presented time.

The breakdown of the free-molecular description is examined in figures 2 and 3. To
this end, figure 2 compares the ω = 1 collisionless acoustic pressure at quarter-period
along x2 = 0.02 (identical to the solid blue line in figure 1b) with the counterpart
DSMC predictions at decreasing values of Kn. At the largest Kn = 10 shown, the
DSMC-calculated signal matches well with the free-molecular result. Yet, this agreement
breaks down with descending Kn, where the DSMC-computed pressure is no longer
confined to the −0.5 ≤ x1 ≤ 0.5 interval above the body, but extends to a larger distance
in the platewise direction. This marks the transition from the ballistic non-isotropic to the
continuum-limit monopole-type field, enabled by the mechanism of molecular collisions.

A two-dimensional illustration of the conversion between the ballistic and continuum
limit regimes is presented in figure 3, where acoustic pressure colourmaps at
quarter-period for ω = 1 are shown at various Knudsen numbers. While the collisionless
(figure 3a) and Kn = 10 (figure 3b) fields appear identical, some deviations from the
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Figure 2. Breakdown of the free-molecular description: x1-variations of the acoustic pressure at quarter-period
time (t = T/4) along x2 = 0.02 for ω = 1 and the indicated values of Kn. The solid line marks the analytical
free-molecular solution (Kn → ∞) and the crosses, blue circles and red triangles present DSMC data at the
indicated values of Kn = 10, 2 and 0.5, respectively.
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Figure 3. Effect of gas rarefaction on the acoustic pressure at quarter-period time, t = T/4: pressure
perturbation colourmaps for ω = 1 and (a) Kn → ∞, (b) Kn = 10, (c) Kn = 2, (d) Kn = 0.5, (e) Kn = 0.2
and ( f ) Kn = 0.1. The black lines in each figure mark the plate location.

ballistic result may be observed in figure 3(c) for Kn = 2, where a slight ‘monopole ring’
(marked by the dark blue zone at an |x| ≈ π distance from the origin) is seen. This trend
intensifies with decreasing rarefaction, as depicted by figure 3(d–f ). Showing a larger
portion of the (x1, x2) flow plane for better visualization, the formation of a far monopole
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Figure 4. The acoustic pressure in the continuum-limit (Kn � 1): (a) colourmap of the acoustic pressure for
ω = 1 and Kn = 0.1 at time t = T/4 based on (4.13); (b) comparison of x2 pressure variations along x1 = 0
between the analytical ((4.13), black solid line) and DSMC (crosses) results for ω = 1 and Kn = 0.1 at time
t = T/4; (c) frequency variations of the far-field scaled pressure amplitude, |x|1/2||p|, according to (4.13), at
the indicated values of Kn. The black line in figure 3(a) marks the plate location. The dashed blue curve in
figure 4(b) shows the analytical result for the case of Maxwell molecules.

field is clearly manifested, and becomes most coherent at the lowest Kn = 0.1 presented
in figure 3( f ).

Figure 4 examines the continuum-limit solution discussed in § 4. Maintaining ω = 1,
figure 4(a) shows a colourmap of the monopole acoustic pressure for Kn = 0.1 at
quarter-period, based on (4.13). The relatively large value of Kn (for a continuum-limit
solution) was chosen equal to the smallest value of Kn simulated (cf. figure 3f ), since
DSMC calculations at lower Knudsen numbers were too excessive to follow. Remarkably,
the quantitative comparison in figure 4(b) of the x1 = 0 section results between the two
methods shows a plausible agreement, supporting the continuum-limit analysis. While
the deviations between the schemes’ predictions may be associated with the relatively
large value of the Knudsen number considered, the general trends of signal decay rate
(∝ |x|−1/2|) and wavelength (∼2π/ω) appear in satisfactory agreement. The figure also
presents the corresponding analytical result in the case of Maxwell molecules, affecting
the values of μ0 and the temperature jump coefficient ζ in the solution (Sone 2007). The
comparison between the dashed blue and solid black curves indicates that the effect of
the model of molecular interaction is only quantitative, and the general trends of signal

974 A28-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.819


Non-continuum effects on the sound of a heated line source

–10

–5

0

5

10

–10

–5

0

5

10

–0.04

0

0.04

0.08

0.12

–10 –5 0

x2

–10

–5

0

5

10

–10

–5

0

5

10

x2

5 10 –10 –5 0 5 10

–10 –5 0

x1

5 10 –10 –5 0

x1

5 10

–0.12

–0.08

–0.04

0

0.04

–0.16

–0.12

–0.08

–0.04

0

0.04

–0.12

–0.08

–0.04

0

(b)(a)

(d)(c)

Figure 5. Effect of plate heating frequency on the acoustic pressure at period time, t = T: DSMC-calculated
pressure perturbation colourmaps for Kn = 0.1 with (a) ω = 1, (b) ω = 2, (c) ω = 5 and (d) ω = 10. The black
line in each figure marks the plate location.

decay rate and wavelength are not affected. To inspect the solution at lower rarefaction
rates, figure 4(c) shows the frequency variations of the far-field scaled pressure amplitude,
|x|1/2||p|, according to (4.13), at the indicated values of Kn. The continuum-limit scaled
amplitude reduces monotonically with both ω and Kn. The decrease with ω reflects the
increase in period time and the vanishing of the excitation signal as ω → 0 (see (2.2)).
The decline with Kn occurs since compact body monopole sound may not be emitted in
the absence of gas heat conduction (see (4.13) et seq.). The results in figure 4(c) should
strictly hold for ω � 5.74, in accordance with the compact body assumption made in § 4
(see (4.3)), yet may be qualitatively effective also at somewhat higher frequencies (Howe
1998).

Finally, the impact of the source heating frequency on the acoustic field is examined
in figure 5. Considering a relatively low value of Kn = 0.1, the figure presents acoustic
pressure colourmaps at period time, t = T = 2π/ω, at increasing values of ω. Recalling
the discussion in § 2 (see (2.3a,b) et seq.), the gas flow regime is determined, apart from
the Knudsen number, by the ratio between the surface heating frequency and the frequency
of molecular collisions, being ∼ O(ωKn). Deviations from continuum conditions may
therefore occur even at small values of Kn, given that ω � Kn−1. Indeed, the vanishing
of the monopole rings between figure 5(a) (for ω = 1) and 5(b) (for ω = 2), together with
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the shortening of the acoustic wavenumber, are clearly seen. At ω = 5 (figure 5c, where
ωKn = 0.5) and ω = 10 (figure 5d, for which ωKn = 1), the acoustic perturbations are
confined to the very proximity of the source, and the non-isotropic ballistic-limit pattern
is approached.

7. Conclusion

We investigated the effect of continuum breakdown on the two-dimensional
thermoacoustic radiation of a thin plate set in a perfect monatomic gas. Considering a
heated plate set-up, the problem was studied in the entire range of gas rarefaction rates.
Analytical approximations were obtained in the limits of high (free-molecular) and low
(continuum limit) gas rarefaction, accompanied by DSMC calculations at intermediate
flow conditions. While the source acoustic field is of a monopole type in the continuum
regime, it was found non-isotropic at non-continuum conditions, reaching a dipole
directivity and an exponential decay rate in the free-molecular limit. The fundamental
effects of source heating frequency and gas Knudsen number on the far-field radiation
were illustrated and rationalized on the basis of system kinematics.

In the absence of molecular collisions, wall-induced disturbances may only occur
due to particles arriving directly from the boundary at a given point. This results
in the exponential decay of the acoustic field expressed in (3.16), far stronger than
the characteristic inverse-square-root decay obtained at continuum limit conditions (cf.
(4.13)). Moreover, since no gas particles may be emitted from the heated wall along
its plane, the acoustic field in the plate direction vanishes in the collisionless regime,
leading to non-isotropic sound directivity at high rarefaction rates. This, again, changes
qualitatively at continuum-limit conditions, where the mitigating impact of molecular
collisions, transferring momentum and energy between particles, results in a far-field
monopole-type radiation. In the present time-harmonic set-up, the gas flow regime is
determined, in addition to the Knudsen number, by the ratio between the surface heating
frequency and the frequency of molecular collisions, which is O(ωKn). The reported
deviation from continuum conditions, occurring at ωKn � 0.1, should therefore become
significant in the analysis of more complex non-isotropic bodies at non-small rarefaction
rates.

In view of the recent work made on two-dimensional vibroacoustic sound propagation
at non-continuum conditions (Manela & Ben-Ami 2021), a comparison between the two
studies is in place. While both investigations examine two-dimensional sound radiation,
they differ in both geometrical set-up and source type. In terms of problem configuration,
a half-plane bounded by an infinite wall is studied in Manela & Ben-Ami (2021), whereas
a more realistic finite plate configuration is examined in the present. From the point of
view of analysis, this complicates the calculation considerably, as a fully two-dimensional
problem must be addressed, with no Fourier transform allowed along the plate direction.
Additionally, the thermoacoustic source type studied in the current work is physically
different from the vibroacoustic actuation considered in Manela & Ben-Ami (2021). Due
to the above differences, the limit-case analyses in the two works vary significantly.
This includes both the free-molecular solution (cf. (3.5) and (3.3) in the current and
previous works, respectively, and consequent expressions for the hydrodynamic fields)
and continuum-limit calculation (cf. § 4 in both works). At continuum-limit conditions,
the present problem complexity allows for only an approximate solution for the far-field
pressure (see (4.13)) based on the compact Green’s function theory. This approximation
has not been applied in Manela & Ben-Ami (2021), where a closed-form solution could be
obtained.
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Non-continuum effects on the sound of a heated line source

Having noted the above, there are partial analogies between the results of the two works.
In the free-molecular solution, these include the x2-distribution of the far-field pressure
along x1 = 0 (cf. (3.16) and (39) in the current and previous works, respectively). At near
continuum conditions, an inverse-square-root decay of the signal is found in both cases,
typical of two-dimensional sources in continuum acoustics. Yet, while the free-molecular
signal directivity in the present work is identical with a continuum dipole (illustrated by
the dashed and blue lines figure 1c), it deviates from it in Manela & Ben-Ami (2021) (see
figure 3 therein). Additionally, the Knudsen dependence of the far-field continuum-limit
solution in the present work (included in both Kn multiply and in the D1,2(Kn) and
r1,2(Kn) dependencies appearing in (4.13)) is different from the vibroacoustic solution,
since compact body monopole thermoacoustic sound may not be emitted in the absence of
gas heat conduction. These features are direct consequences of the differences in problems
geometry and source type.

As stated towards the end of § 5, there exist more efficient numerical schemes that may
be applied to analyse the transition regime of intermediate rarefaction rates in the present
problem. These include the low-variance DSMC method (Homolle & Hadjiconstantinou
2007) and direct numerical analyses of the Boltzmann equation (Aristov 2001; Ghiroldi
& Gibelli 2014). Their main advantage over the present calculation is in reducing the
stochastic noise, present in standard DSMC calculations, which considerably lowers the
signal-to-noise ratio in linearized low-Mach problem set-ups. We nevertheless applied
the DSMC algorithm in the present work, as the above alternatives are less accessible
to implement and are not in the focus of our study. Notably, we were able to maintain the
signal-to-noise ratio sufficiently large by using relatively strong computational resources
through an increase in the average number of computational particles per cell to ≈ 1200.

Acknowledging the above limitation, a rigorous quantitative estimate of the signal decay
rate and acoustic pattern at intermediate rarefaction conditions is not given in the current
contribution. Yet, lacking the ability to derive closed-form estimates at arbitrary Kn and
ωKn numbers, we speculate that the above-mentioned more efficient numerical strategies,
while providing smoother data, may not yield such information as well, but lead to clearer
empirical approximations for the transition. In this sense, we consider the significance
of the current work in quantitatively providing the limit-cases system behaviour. Based
on our comparisons with DSMC computations in figures 1, 2 and 4, we find that the
free-molecular analysis captures the system behaviour in cases where Kn � 1 or ωKn � 1,
whereas the continuum-limit solution describes the acoustic field well where both Kn �
0.1 and ωKn � 0.1.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
A. Manela https://orcid.org/0000-0002-3657-4837;
L. Gibelli https://orcid.org/0000-0002-0104-828X.

Appendix A. Evaluation of the far-field free-molecular solution

Substituting (2.2) in its scaled form into (3.9)–(3.14) and expanding about x2 � 1, all
expressions contain quadratures of the form

Fn =
∫ ∞

0
ξn

2 exp[−ξ2
2 − iωx2/ξ2] dξ2, n = 1, 2, . . . . (A1)
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Assuming ωx2 � 1, the method of steepest descent may be applied to estimate the
ξ2-integral in (A1) (Abramowitz 1953), yielding

Fn ≈
√

π

3
Im{3−n/2zn/2e−z[1 + a1(n)/z + O(z−2)]}, (A2)

where

z = 3
[
ωx2/2

]2/3 exp
[
iπ/3

]
and a1(n) = (3n2 + 3n − 1)/12. (A3a,b)

Keeping the leading- and first-order correction terms, the specific expressions for the
far-field (x2, ωx2 � 1 and x1 ∼ O(1)) acoustic disturbances are given by the imaginary
parts of

ρ ≈ eiωt−z

2
√

3π

[
iω − 19

18

(
iω
2

)1/3

x−2/3
2 + O(x−4/3

2 )

]
, (A4)

u1 ≈ x1
eiωt−z

2
√

3π

[(
iω
2

)4/3

x−2/3
2 + 5

36

(
iω
2

)2/3

x−4/3
2 + O(x−2

2 )

]
, (A5)

u2 ≈ eiωt−z

2
√

3π

[
(iω)4/3

21/3 x1/3
2 + 5

18

(
iω
2

)2/3

x−1/3
2 + O(x−1

2 )

]
, (A6)

P11 ≈ eiωt−z

2
√

3π

(
3x2

1 + 1/4
)[2

3

(
iω
2

)5/3

x−4/3
2 + 35iω

108
x−2

2 + O(x−8/3
2 )

]
, (A7)

P22 ≈ eiωt−z

2
√

3π

[
(iω)5/3

22/3 x2/3
2 + 35iω

36
+ O(x−2/3

2 )

]
(A8)

and

P33 ≈ eiωt−z

4
√

3

[
iω√
π

+ (iω)1/3
(

35·22/3

36
√

π
− 1

24/3

)
x−2/3

2 + O(x−4/3
2 )

]
. (A9)

The far-field acoustic pressure in (3.16) then follows by substituting (A7)–(A9) into
(3.15a,b) and keeping the leading-order and first correction terms. The leading order is
contributed by the leading term in (A8) for P22, whereas the correction is contributed by
the correction term in (A8) and the leading order in (A9) for P33.

Appendix B. Calculation of G∗
2D(t∗ − τ∗, x∗)

Substituting (4.4) together with (4.5a,b) into the left-hand side of (4.6), focusing on the
two-dimensional |x∗| � |y∗| far field and using the integrand symmetry, we obtain

G∗
2D(t∗ − τ ∗, x∗) = 1

2π

∫ ∞

0
δ

(
t∗ − τ ∗ −

(|x∗|2 + ζ ∗2)1/2

c∗
0

)
dζ ∗

(|x∗|2 + ζ ∗2)1/2 . (B1)

Applying the Delta-function identity (Lighthill 1958)

δ
(

f (ζ ∗)
) =

∞∑
n=1

δ(ζ ∗ − ζ ∗
n )

|df /dζ ∗|ζ ∗
n

, (B2)
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where ζ ∗
n are the roots of f (ζ ∗) = t∗ − τ ∗ − (|x∗|2 + ζ ∗2)1/2/c∗

0 = 0, we find

δ( f (ζ ∗)) = δ(ζ ∗ − (c∗2
0 (t∗ − τ ∗)2 − |x∗|2)1/2)

(c∗2
0 (t∗ − τ ∗)2 − |x∗|2)1/2

c∗2
0 (t∗ − τ ∗). (B3)

Substituting (B3) into (B1) and integrating yields

G∗
2D(t∗ − τ ∗, x∗) = c∗

0

2π(c∗2
0 (t∗ − τ ∗)2 − |x∗|2)1/2

H(t∗ − τ ∗ − |x∗|/c∗
0), (B4)

where H(·) denotes the Heaviside function. Expanding (B4) about the acoustic wavefront
location, |x∗| = (t∗ − τ ∗)c∗

0, by approximating

(c∗2
0 (t∗ − τ ∗)2 − |x∗|2)1/2 ≈ (2|x∗|)1/2(c∗

0(t
∗ − τ ∗) − |x∗|)1/2 (B5)

and substituting into (B4), we derive the leading-order expression for G∗
2D(t∗ − τ ∗, x)

given in (4.6).

Appendix C. The continuum-limit field: application of the one-dimensional solution

For completeness, we summarize the one-dimensional solution for the acoustic field
of a time-periodically heated infinite wall, and apply it to the present problem
by assuming the length scale L∗ marking the plate finite size. We make use of
a ‘slip-flow’ model, consisting of the one-dimensional (in the normal x2-direction)
linearized Navier–Stokes–Fourier equations, complemented by impermeability and
first-order temperature jump conditions, and a far-field decay constraint. Adopting the
scaling introduced in § 2 and linearizing about system equilibrium, we obtain the O(ε)

one-dimensional unsteady balances of mass, momentum and energy,

∂ρ

∂t
+ ∂u2

∂x2
= 0,

∂u2

∂t
= −1

2

(
∂ρ

∂x2
+ ∂T

∂x2

)
+ 4K̃n

3
∂2u2

∂x2
2

and
∂T
∂t

= γ K̃n
Pr

∂2T

∂x2
2

− (γ − 1)
∂u2

∂x2
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (C1a–c)

respectively, for the density ρ, normal velocity u2 and temperature T perturbations. The
acoustic pressure is given by the linearized form of the equation of state, p = ρ + T . In
(C1a–c),

K̃n = μ∗
0

ρ∗
0 U∗

thL∗ = μ0Kn (C2)

is the viscosity-based Knudsen number (cf. (4.10a,b)). The system of equations is
supplemented by the wall impermeability and temperature jump conditions,

u2(x2 = 0) = 0 and T(x2 = 0) = sin(ωt) + ζ
∂T
∂x2

∣∣∣∣
x2=0

, (C3a,b)

respectively, together with far-field decay conditions for all perturbations. In (C3a,b),
ζ ≈ 2.1269Kn is the coefficient of temperature jump for a hard-sphere gas (Sone 2007).
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Assuming harmonic time dependence of all hydrodynamic fields,

F(t, x2) = F̄(x2) exp[iωt], (C4)

and substituting into (C1a–c), the system of equations may be recast in the form of a single
ordinary equation for T̄(x2), namely

a2T̄ ′′′′ + a1T̄ ′′ + a0T̄ = 0, (C5)

where

a2 = γ K̃n
ω Pr

(
1

2ω
+ 4iK̃n

3

)
, a1 = − iγ

2ω
+ K̃n

(
4
3

+ γ

Pr

)
and a0 = −iω.

(C6a–c)

The biquadratic characteristic equation corresponding to (C5) has four distinct roots, out of
which only two have negative real parts that satisfy the far-field decay condition. Denoting

r1 =
⎡⎣−a1 −

√
a2

1 − 4a2a0

2a2

⎤⎦1/2

and r2 =
⎡⎣−a1 +

√
a2

1 − 4a2a0

2a2

⎤⎦1/2

, (C7a,b)

the general attenuating solution for T̄(x2) is

T̄(x2) = D1 exp [r1x2] + D2 exp [r2x2] . (C8)

The coefficients D1 and D2 are obtained using the wall impermeability and temperature
conditions (C3a,b), yielding

D1 = (1 + c3 − ζ r1 − ζc3r2)
−1 and D2 = c3D1, (C9a,b)

where

c3 = −r1(c2 + c1r2
1)

r2(c2 + c1r2
2)

. (C10)

REFERENCES

ABRAMOWITZ, M. 1953 Evaluation of the integral
∫∞

0 e−u2−x/u du. J. Math. Phys. 32, 188–192.
ARISTOV, V.V. 2001 Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows,

vol. 60. Springer Science & Business Media.
ARNOLD, H.D. & CRANDALL, I.B. 1917 The thermophone as a precision source of sound. Phys. Rev. 10, 22.
BEN AMI, Y. & MANELA, A. 2017 Acoustic field of a pulsating cylinder in a rarefied gas: thermoviscous and

curvature effects. Phys. Rev. Fluids. 2, 093401.
BEN AMI, Y. & MANELA, A. 2019 The sound of a pulsating sphere in a rarefied gas: continuum breakdown

at short length and time scales. J. Fluid Mech. 871, 668–693.
BIRD, G.A. 1963 Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids 6, 1518–1519.
BIRD, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon.
BRANCHER, R., JOHANSSON, M.V., PERRIER, P. & GRAUR, I. 2021 Measurements of pressure gradient and

temperature gradient driven flows in a rectangular channel. J. Fluid Mech. 923, A35.
GHIROLDI, G.P. & GIBELLI, L. 2014 A direct method for the Boltzmann equation based on a pseudo-spectral

velocity space discretization. J. Comput. Phys. 258, 568–584.
HADJICONSTANTINOU, N.G., GARCIA, A.L., BAZANT, M.Z. & HE, G. 2003 Statistical error in particle

simulations of hydrodynamic phenomena. J. Comput. Phys. 187, 274–297.
HOMOLLE, T.M.M. & HADJICONSTANTINOU, N.G. 2007 A low-variance deviational simulation Monte

Carlo for the Boltzmann equation. J. Comput. Phys. 226, 2341–2358.
HOWE, M.S. 1998 Acoustics of Fluid-Structure Interactions. Cambridge University Press.

974 A28-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.819


Non-continuum effects on the sound of a heated line source

HOWE, M.S. 2003 Theory of Vortex Sound. Cambridge University Press.
JOHANSSON, M.V., YAMAGUCHI, H., PERRIER, P. & GRAUR, I. 2023 Some properties of a gas flow

submitted to a temperature gradient. Intl J. Heat Mass Transfer 214, 124372.
JULIUS, S., GOLD, R., KLEIMAN, A., LEIZERONOK, B. & CUKUREL, B. 2018 Modeling and experimental

demonstration of heat flux driven noise cancellation on source boundary. J. Sound Vib. 434, 442–455.
KALEMPA, D. & SHARIPOV, F. 2014 Numerical modelling of thermoacoustic waves in a rarefied gas confined

between coaxial cylinders. Vacuum 109, 326–332.
KOGAN, M.N. 1969 Rarefied Gas Dynamics. Plenum.
LEIZERONOK, B., KLEIMAN, A., JULIUS, S., MANELA, A. & CUKUREL, B. 2023 Experimental

demonstration of thermophones in vibro-acoustic noise cancellation scenario for varying gaseous media.
J. Sound Vib. 545, 117431.

LIGHTHILL, M.J. 1958 An Introduction to Fourier Analysis and Generalised Functions. Cambridge University
Press.

MANELA, A. & BEN-AMI, Y. 2021 Propagation of two-dimensional vibroacoustic disturbances in a rarefied
gas. Phys. Rev. Fluids 5, 093401.

MANELA, A. & BEN-AMI, Y. 2022 Non-continuum effects on a squeezed gas film in a two-dimensional
acoustic resonator. J. Fluid Mech. 946, A38.

MANELA, A. & HADJICONSTANTINOU, N.G. 2007 On the motion induced in a gas confined in a small-scale
gap due to instantaneous boundary heating. J. Fluid Mech. 593, 453–462.

MANELA, A. & HADJICONSTANTINOU, N.G. 2010 Gas-flow animation by unsteady heating in a
microchannel. Phys. Fluids 22, 062001.

MANELA, A. & POGORELYUK, L. 2014 Cloaking via heating: approach to acoustic cloaking of an actuated
boundary in a rarefied gas. Phys. Fluids 26, 062003.

MANELA, A. & POGORELYUK, L. 2015 Active noise control of a vibrating surface: continuum and
non-continuum investigations on vibroacoustic sound reduction by a secondary heat-flux source. J. Sound
Vib. 358, 20–34.

NASSIOS, J., YAP, Y.W. & SADER, J.E. 2016 Flow generated by oscillatory uniform heating of a rarefied gas
in a channel. J. Fluid Mech. 800, 433–483.

ORAEVSKY, A.A., JACQUE, S.L., ESENALIEV, R.O. & TITTEL, F.K. 1994 Laser-based optoacoustic
imaging in biological tissues. In Proceedings of SPIE 2134A, Laser-Tissue Interaction V (ed. D.H. Sliney,
S.L. Jacques & M. Belkin), pp. 122–128. SPIE.

PIERCE, A.D. 2019 Acoustics. Springer.
SHARIPOV, F. 2017 Ab initio simulation of gaseous mixture flow through an orifice. Vacuum 143, 106–118.
SHARIPOV, F. & DIAS, F.C. 2018 Structure of planar shock waves in gaseous mixtures based on ab initio

direct simulation. Eur. J. Mech. (B/Fluids) 72, 251–263.
SHINODA, H., NAKAJIMA, T., UENO, K. & KOSHIDA, N. 1999 Thermally induced ultrasonic emission from

porous silicon. Nature 400, 853.
SONE, Y. 1965 Effect of sudden change of wall temperature in rarefied gas. J. Phys. Soc. Japan 20, 222–229.
SONE, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser.
WADSWORTH, D.C., ERWIN, D.A. & MUNTZ, E.P. 1993 Transient motion of a confined rarefied gas due to

wall heating or cooling. J. Fluid Mech. 20, 219–235.
WAGNER, W. 1992 A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann

equation. J. Stat. Phys. 66, 1011–1044.
WENTE, E. 1922 The thermophone. Phys. Rev. 19, 333.
WU, L. 2016 Sound propagation through a rarefied gas in rectangular channels. Phys. Rev. E 94, 053110.
YAP, Y.W. & SADER, E. 2016 Sphere oscillating in a rarefied gas. J. Fluid Mech. 794, 109–153.
YARIV, E. & BRENNER, H. 2004 Flow animation by unsteady temperature fields. Phys. Fluids 16, L95–L98.

974 A28-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.819

	1 Introduction
	2 Statement of the problem
	3 Free-molecular limit
	4 Continuum-limit conditions
	5 Numerical scheme: DSMC method
	6 Results and discussion
	7 Conclusion
	Appendix A. Evaluation of the far-field free-molecular solution
	Appendix B. Calculation of G*2D(t*-*,x*)
	Appendix C. The continuum-limit field: application of the one-dimensional solution
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


