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Abstract
Collisionless shocks are complex non-linear structures that are not yet fully understood. In par-
ticular, the interaction between these shocks and the particles they accelerate remains elusive.
Based on an instability analysis that relates the shock width to the spectrum of the accelerated
particle and the shock density ratio, we find that the acceleration process could come to an end
when the fraction of accelerated upstream particles reaches about 30%. Only unmagnetized
shocks are considered.

Introduction

Shock waves are fundamental phenomena in fluids and plasmas. And collisionless shock waves
represent a special kind of shock wave. Whereas in a shock wave in a fluid, the mean free
path is very small compared to the dimensions of the system, in a collisionless shock wave, the
mean free path is very large. For example, in situ measurements showed the width of the Earth
bow shock in the solar wind is about 100 km, while the proton mean free path at this loca-
tion is about the Sun–Earth distance (Refs 3, 28). This type of shock waves can only exist in a
plasma, since they aremediated by collective electromagnetic effects instead of binary collisions
(Refs 4, 26).

In a collisional medium, any excess energy given to one particle is quickly shared with the
others through collisions, on a time scale of the collision frequency. In a collisionless plasma, on
the other hand, it is possible to give energy to one particle without it being immediately shared
with the others.

It was thus realized in the late 70s that collisionless shocks can accelerate particles with a
non-thermal spectrum of the kind p−a, where p is the momentum of the accelerated particles
and a is the power index (Refs 2, 5–7).

Since the spectrum of cosmic rays detected on Earth from space obeys a power law (Ref. 14),
or more precisely a succession of power laws, collisionless shocks in astrophysical media, such
as those found in supernova remnant (Ref. 15), are excellent candidates for explaining the origin
of cosmic rays. As such, they have been the subject of theoretical, numerical and experimental
studies for decades (see (Ref. 24) and references therein).

Producing this kind of shocks in the laboratory, and observing accelerated particles, cur-
rently requires installations like the National Ignition Facility (Ref. 19). Numerical studies, on
the other hand, can only probe a short part of the shock’s life after its formation (Refs 21, 22). It
is therefore important to pursue theoretical studies which, while they can only address simpli-
fied models of the real process, allow to explore scenarios that are currently beyond the reach
of experiments or simulations.

While cosmic rays acceleration in collisionless shocks has been explored since Fermi’s times
(Ref. 18), the total amount of energy that goes into cosmic rays is still unclear. An open question
of interest to both theoreticians and observers who search for cosmic rays from various objects.

The aim of this paper is to propose, on a theoretical basis, a mechanism that could stop the
acceleration process within a collisionless shock and set a limit to the maximum fraction of
particles promoted to cosmic rays.

Sections 2 and 3 introduce the mechanism under scrutiny, which relies on an instability
analysis. Section 4 then derives the dispersion equation of the instability. It is solved in Section 5,
with the consequences discussed in Section 6 and following.

The ingredients of a collisionless shock and their connections

In order to introduce the mechanism we are proposing, we now present the various ingredients
of a collisionless shock. They are schematically pictured on Figure 1.
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Figure 1. The various ingredients of a collisionless shock and their connections.
The red arrows represent the new connections proposed here. The snowflakes
picture the connections we froze in the present work, namely, that we did not
consider (see ‘Dispersion equation’ section).

1. The density jump r represents the ratio between the upstream
and downstream densities. It is 4 in a strong sonic shock.

2. The velocity profile represents the way the plasma velocity
evolves spatially from the upstream to the downstream.

3. The width of the shock front 𝜆 represents the distance over
which this transition takes place.

4. Finally, cosmic rays represent the particles accelerated by the
shock, mainly characterized by their power index a.

As it happens, these four ingredients are interconnected. The
power index a depends on the density jump r (Ref. 7). But it also
depends on the width of the shock front 𝜆 (Ref. 16). For exam-
ple, the greater the width of the shock front, the greater the power
index. Furthermore, as we have just seen, a change in the power
index a is equivalent to a change in r, but the very presence of cos-
mic rays can also change r, when the energy they carry becomes
substantial (Refs 10, 17). Finally, there is a bidirectional relation-
ship between a and the velocity profile, since the latter can change
the value of a (Ref. 27), while cosmic rays, when their pressure
becomes significant, in turn affect the velocity profile (Ref. 8).

We propose here some as yet unexplored links between these
four ingredients, which could provide a mechanism to terminate
the acceleration process. It is a causal relationship between the den-
sity jump r, the cosmic ray power index a and thewidth of the shock
front 𝜆. These new connections are pictured by the red arrows
on Figure 1.

The origin of the new link proposed

The theoretical study of the density profile of a shock is a diffi-
cult subject. In 1951, Harold Mott-Smith proposed an ansatz for

studying such a profile within the framework of kinetic theory
(Ref. 25). He hypothesized that the particle distribution function
along the shock profile is a linear combination of the upstream
and downstream Maxwellians. Indeed this hypothesis has been
validated by particle-in-cell (PIC) simulations (Ref. 32).

In the Mott-Smith picture, see Figure 2, the parameters of the
upstream Maxwellian (density, drift speed, temperature) consti-
tute the problem inputs; those of the downstream Maxwellian are
given by the Rankine–Hugoniot relations, and only the respec-
tive weights of these two Maxwellians depend on the position z
along the shock profile. The weight of the upstream Maxwellian
vanishes as one progresses into the shock, while the weight of the
downstream one grows.

In 1967, Derek Tidman usedMott-Smith’s model to study a col-
lisionless shock (Ref. 34). Among other results, he concluded that
the thickness of the shock front can be given by an instability anal-
ysis at a location where the two Maxwellians have approximately
the same weight. Since the upstream Maxwellian is centred around
the upstream flow velocity U1, while the downstream one is cen-
tred around the downstream flow velocityU2 = U1/r, this velocity
shift results in an unstable system. Tidman analysed the instability
of this system in terms of the most unstable wavelength, not the
most unstable frequency, and related this wavelength to the thick-
ness of the front, since it corresponds to the length over which the
upstream flow is disrupted.

Now, Tidman’s analysis did not account for the presence of
cosmic rays, that is, the particles accelerated by the shock. It
only accounted for the unstable interaction between the two
Maxwellians.

Here, we shall revisit Tidman’s analysis including the population
of cosmic rays accelerated by the shock. As we shall see, beyond
a critical amount of upstream particles promoted to cosmic rays,
the instability analysis provides a radically different answer to the
question of thewidth of the front. In turn, such a change in the front
width can radically change the power index of the cosmic rays.

Since Tidman’s analysis was conducted for an unmagnetized
shock, we only consider here the same kind of shocks, propagating
without an external magnetic field.

Dispersion equation

Figure 1 makes it clear that it is not possible to elaborate a the-
oretical model accounting for all the connections involved in the
problem. We therefore chose to ‘freeze’ those signalled by the
snowflakes on Figure 1. Hence, we set the density ratio r to 4 in
the sequel, ignoring the back reaction of the cosmic rays on the

Upstream, U1, N1
Downstream, U2, N2 Flow

z

Figure 2. The Mott-Smith ansatz. The particle distribution function along the shock profile is a linear combination of the upstream and downstream Maxwellians. The
weight of the former vanishes as one progresses into the shock, while the weight of the latter grows. The far upstream and downstream flows have velocities and density
U1,2 and N1,2 respectively.
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same ratio. We also considered a linear velocity profile between
the upstream and the downstream, ignoring the back reaction of
the cosmic rays on the same profile.

We therefore analyse the unstable system composed of the
upstream and downstream Maxwellians, plus a population of cos-
mic rays. We implement a 1D model where location along the
shock profile is identified by the z coordinate. In order to simplify
the phase space of parameters, we neglect temperature effects. The
distribution function under scrutiny is, therefore,

f (p) = n1(z)𝛿(p − miU1) + n2(z)𝛿(p − miU2) + ncrfcr(p), (1)

where mi is the ion mass, 𝛿 the Dirac delta function and U1,2 the
upstream and downstream flow speeds respectively. The first term
refers to the upstream flow, the second one to the downstream
flow and the third one to the cosmic rays. They obey a power law
spectrum of the form,

fcr(p) = 𝜅p−a, p ∈ [Pmin, +∞], (2)

where

𝜅 = a − 1
P1−a
min

(3)

is a normalization constant and Pmin the injection momentum.
We shall conduct the instability analysis at a location z where

n1 ∼ n2 = N1/2. Yet, we shall consider a fraction 𝜖 of the upstream
flow has been ‘promoted’ to cosmic rays so that we set n2 =
N1/2 − 𝜖 and ncr = 𝜖N1.

The derivation of the dispersion equation is standard (Ref. 23)
and yields

4𝜋N1

2
q2

mi

1
(𝜔 − kU1)2

+
4𝜋(1 − 𝜖)N1

2
q2

mi

1
(𝜔 − kU2)2

+
4𝜋𝜖N1q2

mi
𝜅 ∫

ap−1−a

𝜔 − kp/mi
dp = 1, (4)

where q is the elementary charge. We now introduce,

𝜔p1 =
4𝜋N1q2

mi
, (5)

x = 𝜔
𝜔p1

, (6)

Z = kU1
𝜔p1

. (7)

Considering Pmin ∼ 2miU1 (Refs 12, 13) and noting that U2 =
U1/r, where r is the compression ratio of the shock1, Eq. (4)
eventually reads,

1/2
(x − Z)2 +

(1 − 𝜖)/2
(x − Z/r)2 − 𝜖

a(a − 1)
2xZ 𝜑 (a, 2Z

x ) = 1, (8)

where

𝜑(𝛼, 𝛽) = 2 ∫
+∞

1

t−𝛼−1

t2𝛽2 − 1dt. (9)

1r will be set to 4 in Section 5, when solving the equation.

We now solve Eq. (8) for (Z, x) ∈ ℂ × ℝ, since we are interested in
the most unstable wavelength.

Resolution of the dispersion equation

Setting r = 4, the numerical resolution of the dispersion equation
reveals the presence of one unstable mode when cosmic rays are
turned off, and two when they are turned on, as explained on
Figure 3.

In the absence of cosmic rays, namely for 𝜖 = 0 (red curves
on Figure 3), there is only one unstable mode, arising from the
interaction of the two flows. Its maximum spatial growth rate has
Im(Z) ∼ 1 and also Re(Z) ∼ 1 (not shown). The corresponding
most unstable wavelength has, therefore,

Re(Z) ∼ 1 ⇒ 1
Re(k) ∼ U1

𝜔p1
. (10)

Within Tidman’s analysis, the width of the shock 𝜆 is proportional
to this quantity, up to a factorA, the ‘Tidman’s constant’, of order 10.
We thus recover Tidman’s result, established without cosmic rays,
namely,

𝜆 ∼ A
U1
𝜔p1

, A = 𝒪(10). (11)

Suppose that instead of Re(Z) ∼ 1, we have Re(Z) ∼ l. Then,

𝜆 ∼ A
U1
𝜔p1

1
l , (12)

which will be relevant shortly.
When cosmic rays are turned on, this two-flows unstable mode

gets modified. It is pictured by the black circles on Figure 3. But
now, another unstable mode appears (green circles), fully triggered
by the presence of the cosmic rays. For small values of 𝜖, this new
unstable mode grows slower than the two-flows one, and the width
of the shock is not modified. But for higher values of 𝜖, like 𝜖 = 0.5
on Figure 3-right, this new unstable mode grows faster. It is, there-
fore, the real part of this most unstable Z which now defines the
width of the shock front.

We scanned the parameters phase space (𝜖, a) ∈ [0, 1] × [4, 15].
For each couple (𝜖, a), we computed the most unstable Z and
plotted its real part on Figure 4.

One can navigate this plot following the time evolution of a
strong collisionless shock. As it starts to propagate, 𝜖 ≪ 1 and
a ∼ 4, that is, the power index of a strong shock. The amount of
accelerated particles then increases with time, but Re(Z) does not,
as evidenced by the plateau at low 𝜖.

Yet, once 𝜖 reaches ∼ 0.3, an abrupt transition occurs.Themost
unstable mode switches from the two-flows one to the cosmic rays
triggered one, and Re(Z) suddenly falls from 1.65 to 0.2, almost
10 times smaller. As a result, and according to Eqs. (10,11,12), the
front width 𝜆 increases almost 10 folds.

Consequences on the power index a

Back in Section 2, we referred to the connection between the front
width and the power index. In (Ref. 7), the front was considered a
discontinuity.Within this approximation, it was found that a shock
could accelerate particles with a power index a given by
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Figure 3. Imaginary part of Z solution of Eq. (8). Dashed red curve: two-flows unstable mode, that is, solution without cosmic rays, namely for 𝜖 = 0. Black circles: two-flows
unstable mode, modified by the cosmic rays. Green circles: new unstable mode, triggered by the presence of the cosmic rays.

Figure 4. Real part of the most unstable Z solution of the
dispersion equation (8). For small values of 𝜖, the most unstable mode
remains the one triggered by the interaction of the upstream and
downstream flows. But for 𝜖> 0.3, the most unstable modes arises
from the presence of cosmic rays, with a Re(Z) significantly smaller
than before. The red arrows picture the temporal evolution of the
system (see discussion in Section 7).

a = 3r
r − 1 , (13)

where r is the density ratio. For a strong sonic shock with r = 4,
this gives a= 4. It was then found in (Refs 16, 27) that consider-
ing a finite width 𝜆 ≠ 0 for the front implies a larger value of a,
because it is then more difficult for particles to go back and forth
around the front and undergo Fermi cycles. Considering a sim-
ple linear transition over a distance 𝜆 for the velocity field and
r = 4, the numerical result derived in (Ref. 27) can be expressed as
(Ref. 11),

a ∼ 4 + 1
6

𝜆
D/U1

, (14)

where D is the diffusion coefficient of the cosmic rays. Strictly
speaking, this quantity depends on the location along the shock
profile and of the momentum of the particles. Here, like in
(Refs 1, 27), we consider an average value of D.

The dimensionless quantity 𝜆U1/D is the shock Péclet number.
Equation (14) is accurate up to 𝜆U1/D ∼ 15, beyond which the
exact value keeps growing, though slower than the linear trend
(Ref. 11).
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Discussion

We can now draw the conclusion of these calculations following
the temporal evolution of the shock on Figure 4.

At the beginning of its history, the density jump is r = 4, with
a power index a= 4. Then, as it propagates, 𝜖 grows, as the shock
accelerates more and more particles. It then follows the trajectory
indicated by the red arrow on the upper plateau.

When the fraction of accelerated particles reaches about 30%,
the most unstable mode becomes the one triggered by the cos-
mic rays, and the system falls onto the lower plateau, following the
vertical red arrow downwards.

At this point, and according to Eqs. (10,11,12), the width of the
front increases. In turn, according to Eq. (14), the power index
increases. Suppose the front width 𝜆 was such that before the tran-
sition we had 𝜆U1/6D = 1 in Eq. (14), hence a= 5. After the
transition, with 𝜆 increased 10 fold, 𝜆U1/6D jumps from 1 to 10,
and a from 5 to 14. Such a high power index means acceleration
stops, as the extension of the shock front becomes so large that it
forbids Fermi cycles.

To our knowledge, the maximum fraction of upstream parti-
cles promoted to cosmic rays is an open question, mainly studied
through PIC simulations. Some long ran simulations show values
of 𝜖 reaching about 5% (Refs 12, 20, 30). Yet, the longest simula-
tions to date only capture a short fraction of the shock lifetime (Refs
21, 22). Since the fraction 𝜖 grows with time (Refs 13, 22, 31), it
could reach the threshold commented here in real settings.

Strictly speaking, Eq. (14), which relates the power index a to
the front width 𝜆, assumes 𝜖 ≪ 1 since it is derived ignoring the
back-reaction of the cosmic rays on the velocity profile2. Values of
𝜖 ∼ 0.3 invalidate this assumption. Therefore, as specified from
Figure 1 and in Section 4, we ignored, ‘froze’, such back-reaction in
order to obtain an analytically tractable model. Yet, we think the
mechanism presented here could be robust enough to withstand a
more realistic scenario.

Noteworthily, Tidman’s initial analysis was performed for an
electrostatic shock whereas electromagnetic shocks mediated by
the Weibel instability have a different structure (Ref. 33). However,
as far as the shock width is concerned, the key ingredient here
is the instability of the two, namely upstream and downstream,
shifted Maxwellians. This coexistence of the two Maxwellians has
also been observed in PIC simulations of electromagnetic shocks
(Ref. 32). We, therefore, think we can apply it for this kind of
shocks.

Besides, the acceleration mechanism considered in our work is
the Fermi process contemplated in (Refs 7, 16, 27) and for which
Eq. (14) stands. It differs from laser shock acceleration where the
upstream ions gain energy from only one interaction with the
shock (Refs 9, 29, 33).

In summary, we have revisited Tidman’s analysis of the width of
a collisionless shock. While Tidman did not account for the shock
accelerated cosmic rays, we did include them in our instability
analysis. The result is that the most unstable wavelength is dramat-
ically increased when the faction of accelerated particles reaches
𝜖 ∼ 30%. Hence, we have uncovered an unexplored mechanism
that could put an end to particle acceleration in a collisionless
shock. In this picture, the width of the shock front is given by an
instability analysis between the upstream and downstream flows.
When this analysis takes into account the cosmic rays accelerated

2In (Ref. 27) for example, up to five different velocity profiles were considered, without
accounting for the back-reaction of the cosmic ray on them.

by the shock, the most unstable wavelength is radically altered
when the fraction of accelerated particles exceeds around 30%.This
result is a potentially abrupt increase of the index of accelerated
particles, which could simply mean the end of the acceleration
process. Very long-term PIC simulations could help validate our
scheme.
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