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Abstract

In this paper we extend a method of Ehrenfeucht and Fraisse to second-order theories and
use this extension to prove the decidability of the second-order theory of an equivalence relation.

Introduction

Janiczak (1953) shows that the first-order theory of a single equivalence
relation is decidable but the first-order theory of two equivalence relations is
not. In this paper, we show that the monadic second-order theory of a single
equivalence relation is decidable. We do this using an extension of a technique
of Ehrenfeucht and Fraisse. It should be noted that it is possible to encode this
theory in the monadic second order theory of two successors for which Rabin
(1969) provides a decision procedure. Our techniques have the advantages of
being both direct and perspicuous: we show that to decide a sentence in the theory,
one must investigate its validity in only a finite number of finite models, and
we give primitive recursive bounds on both these numbers.

This paper comprises two parts: an exposition of the extension of first-order
Ehrenfeucht games to second-order, a subject of interest in its own right, followed
by an application of this technique to the second-order theory of an equivalence
relation.

Second-Order Ehrenfeucht games

We extend the technique of Ehrenfeucht and Fraisse described in Ehrenfeucht
(1961), a technique referred to as Ehrenfeucht games. A relational system,
501 = <fi,R;>i6j (with subscripts, as appropriate), of type v is a non-empty set

This paper is based on part of the author's Ph.D. thesis, completed at Cornell University
under the direction of Anil Nerode.
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fi together with relations indexed by a set / , in which Rj £ ClH'\ where
v: I —>• co and a> = {0,1,2, • • • } . A relational system of type v is finitary if the
domain of v is finite (i.e., if there are only a finite number of relations). Two
relational systems are similar if they are of the same type. Let 90? = <D, £,->,• e v

If t]j £ Cl for each j in some set J, then the relational system <S0?,>7j)ieJ =
(Q,Ri,rij}ieIjsj, which is the relational system obtained frcm SO? by adjoining
the unary relations r\} (jeJ). Similarly, if ykeQ for each k in some set K, then
<S0I, yk}k e K = <f2,R,, j ' t ) ; 6 />4 e jf, which is the relational system with certain
elements distinguished. We will abuse notation and write r\ £ SO? for n £ £2
and yeSO? for yeQ. By "integer" we always mean "non-negative integer"
where 0 = 0 and n + 1 = {n} [ J « .

Assume S0?o
 a n d 9^1 a r e similar relational systems and m,neco. The second-

order Ehrenfeucht game (Dm,J$Jlo>$Ri) *s played as follows. There are two players,
player I and player II, and each player makes m + n moves. For his first m moves,
each player selects subsets of 9J?0 and 3JiA; for the remaining n moves, he selects
elements of StR0

 a n ^ 9Ki • Specifically, at move j , for j < m, player I selects one
of the two relational systems (S0?o or SD^) and a subset of that system. Then play-
er II selects a subset of the other relational system. Denote by r\} the subset of
2R0 chosen at move j , regardless of which player chose it; similarly, 0, £ 93?! .At
move j , for m ^ j <m + n, player I selects one of the two relational systems
and an element from that system. Then player II selects an element from the other
relational system. Denote by xy_m the element of 93?O chosen at movey; similarly,

Player II wins the game ©m>n(9JJ0,SO?1) if and only if at the end of the game,
the map p: X = {xk \k < n} -> Y = {yk\k < n} defined by /i(xt) = yk for
k < n is an isomorphism with respect both to the relations ofJSl0 and SO?! (restricted
to X and Y respectively) and to the chosen subsets (also restricted to X and Y).
Of particular interest are those pairs of relational systems SOt0 and 9J?i such that
player II can always win the game ®mtn($Jto>yRi) • I n order to capture this notion,
we inductively define two sequences of equivalence relations, =„ and s m n ,
between similar relational systems with designated elements. The first is that of
Ehrenfeucht (1961).

DEFINITION 1. <S0?o,*;>,<* =o<30?i>.Vi>i<fc if and only if the map /*: X =
{xr i < k} —> Y = {yt j i < k} defined by n(xt) = yitfor i < k, is an isomorphism
With respect to the relations of3Jl0 and Wlt restricted to X and Y respectively.
Wo,Xi)i<u s.+1<«Dl1,y,>J<t if and only if for each xke<mo there is a ykeWu

and for each yk eSO?! there is an xk eS0?o such that <S0?o, x,yi<k+1 = «<9Jt1, ^>«*+i.
For < m0> x, >i<0 = n < Wu y, >,<o ^ite Mo = mmt.

DEFINITION 2. <aRo^>«<t ^oA^A\<k if ™d °^ lf <2«o,'/.><<^.
WM^i and <S0?0^>,<* S-+i..<SWi.e«>.<» lfand only [ffor™C \~™°
the saBk c SO?!, and for each 6k £ SO?! there is an nk £ SW0 «ch
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<2Ro,>7;>i<jfc+i =mn<9Ki>0i>i<*+i- As above, write 93?O = m ^ i for the case
fc = 0 .

It is easily verified that these are indeed equivalence relations. Furthermore,
it is readily apparent that player II can always win the game ©mn(S[Ro>SERi) after
the k moves no++9o,---,nk-.l<-+6k-1 if and only if <93t0, >?.,•>.,•</£ = m-k,n<Mi,0jyJ<k.

The importance of this notion derives from the following two theorems.
We omit the proofs of these theorems as they are virtually identical with the proofs
of the corresponding theorems given in Ehrenfeucht (1961). The reader wanting
more details is referred to LeTourneau (1968). The development of second-order
Ehrenfeucht games in LeTourneau's unpublished thesis (1968) was prior to (but
independent of) ours which was begun along lines suggested by Anil Nerode.
We were informed of LeTourneau's work before we had gone much beyond
the basic concepts and theorems and a few simple examples. Unlike him, we did
not demand that the moves in which sets are chosen precede the moves in which
elements are chosen, but we adopt his convention here as it yields slightly simpler
definitions and proofs.

We use the usual convention that all the free variables of the formula
<l>(l;0,--;Zm-l,v0,--;vn-.1) are found among £0, ••-,£„,_ 1(t;0, •• •,!>„_ t . In addition,
£j is understood to be a monadic second-order variable, while Vj is a first-order
variable; furthermore, Qj represents a monadic second-order quantifier, and Qj
represents a first-order quantifier. The notation 9Jll=0[f/o, •••,nm_1,x0, •••,xn_1]
means that </> holds in the relational system 931 (equivalently, that 931 is a model
for <t>) when £; is interpreted as the subset r\t c. 931, for i < m, and Vj is inter-
preted as the element Xj e93l, for j < n.

THEOREM 1. Let Wo, •••, £t-i)=G*&-"Gm-1£M-1Go»o-"Q»-i»»-i<Kfo.
.«o,—»f»-i) , where (j> is quantifier free. If<$&o,rij>j<k = m-k

Wlo Ntfr[i;o,-,»/*.-1] if and only i/SWi N

THEOREM 2. For every finitary relational system 93ZO and every set of
subsets {r\j c 93t0 | j < k}, there is a formula X(^OJ '"" .^*- I )

 su°h that for any
finitary relational system 93lj and any set of subsets {6} s W,11 j < k},
<Wo,rij>j<k =m-k.n<SOti,0j>j<k if and only i / S ^ 1= Z [ 0 o , - A - i ] .

Decidability of an equivalence relation

Assume that all relational systems mentioned below are models for the theory
of an equivalence relation ~ in which the axioms state that ~ is reflexive, sym-
metric, and transitive. Define [z] = {y | y ~ z} . The cardinality of a set p will
be denoted #(p) or simply #p.

Assume m and n are fixed. The essence of the proof is a combinatorial anal-
ysis of what information about the cardinalities of equivalence classes of a model
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2R0 is necessary to find a finite model 3Rt such that player II may always win the
second-order Ehrenfeucht game ©m n(9Ko,50ii)- To perform this analysis we
introduce several equivalence relations which, of course, should not be con-
fused with the equivalence relation ~ .

DEFINITION 3. For each integer neco, define an equivalence relation Enon
co+ 1 as follows: fco^n^i ' / and only if k0 = kt or both k0 ^ n and kx ^ n.

DEFINITION 4. For each integer neco define an equivalence relation Sn on
models as follows :9Jlo<^n9Ki if and only if for each k < n,C0(k)EnC1(k) and
[ ^>kznCo(k)]En[ £ k^nCi(k)], where Cf(k) is the number of equivalence
classes of cardinality k in <HOli(i = 0,1), and the sums are defined to be a if they
are not finite.

We wish to examine in some detail the cardinality of the intersection of an
equivalence class with each of the 2m Boolean combinations of m sets. The amount
of detail is characterized by the equivalence relation En. To do this we introduce
some notation. For a set p, p° = p and p1 = p — complement of p . Enumerate
functions from an integer k to {0,1} in such a way that ffk\n) is the digit in po-
sition n (numbering from left to right) in the k digit binary representation of i.
Write f for//10 when k is clear from context. Note that/2

(- + 1) and/j .+i* both
extend ffk). Assume that for j < m, tjj s 9K0 and Q} £ SERX. Use the functions
/,(m), for l<2m, to define the partition of cardinality 2m determined by each
of these systems of sets. Thus for I <T, set U0(l) = f]j<mrrf/U) and n t ( / ) =
PI; <m 0/'<j)- Let Seq (k, n) represent the set of sequences of length k with elements
from 0 to n .

DEFINITION 5. Given r\s s 2R0
 and Oj £ SRi >/or J < m >for eacn ' 6 Seq(2m, n)

define

7o(i) = {[*] ^aR o |V/<
and

Note thai for i,j e Seq(2m, n), if i ^ j , then yk(i) n yk(j) = 0 , for k < 2.
Using this notation we define an equivalence relation between models with

added unary relations which we then show to be sufficient to guarantee the success
of player II in the first-order Ehrenfeucht game.

DEFINITION 6. <fflo,*lj>j<m s* <SOlifij>j<mif and only if for each ie S e q ( 2 » ,
#yo(})En#y1(i).

THEOREM3. //<2R0,f?i>J.<m g'n (mu ^>,<m,then<Mo,ni>j<m = •.<9«i>6j>j<m•

PROOF. The proof consists of providing a strategy by which player II can
always win the game ©n(9K0,9K1). Essentially, at each move player II matches
(modulo £„) the cardinality of the intersection of player I's choice with each of
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the 2m Boolean combinations of the specified unary relations. That this is possible
results from the hypothesis of the lemma.

Assume k < n and x0 «-> y0, • • •, xk _ t <-» yk _ 1 have been chosen at the previous
moves to satisfy the following inductive hypothesis: for each j < k,

(a) for each i < k, xt = Xj if and only if yt = yy,
(b) for each i < k, xt ~ Xj if and only if yt ~ yy,
(c) there is a sequence i, e Seq(2m, n) such that

[*/] E 7o(ij) and [>_,.] e ^(i,-); and

(d) for I < 2m, Xj e U0(l) if and only if y}

Of course, for the basis step (fc = 0) this assumption is vacuous.
Assume player I selects xke3Jl0 (the case when player I selects yke'M1 is

similar). We show how player II selects yk e^ in such a way that the induction
hypothesis again holds. Let 1 <2m be the unique integer such that xk e no(/).

CASE 1. xk = Xj for some j < k. Set yk = y}.

CASE 2. xk e [x,-] for some j < k, but xk $ {x; | i < k} .

By part (c) of the inductive hypothesis, #([xJ]f |n0(/))£n #(b J ] f in1( / ) ) -
Thus there must be a y e ([yj~\ f] nx(/)) — {y; | i < k}. Let yk be that y, and set

CASE 3. xk<£\xj] for each j < k; hence [xt] n UjotE^j] = 0 - Let ik

be such that [xJ eyo(it). By assumption, #yo(ik)En #7i(it),so there must be a
[>] such that [>] g ri(ifc) and [y\ f| Uj<* W = 0 • L e t A e M D n ^ O . There
must be such a yk, since x* e no(Q and # ([xj fl U0(I))EB # ([y] D nx(0) •

Clearly, after all n moves, the map determined by xk i-> j t is an isomorphism
between {xk | fc < n} and {yt | k < n) with respect to the equivalence relation and
the specified unary relations, all restricted to these sets. Thus player II can always
win ©.(SRcSKi); i.e., 2R0 =n^i •

COROLLARY 1. Ifmo^n^ii then 9K0 = n 2Ri .

PROOF. This follows simply by noting that <?„' extends <fn;i.e., 2R0^n5Ki if

and only if <S0lo,tij>j<o**<Wi,6j>j<o-
As we shall point out later, it is possible to use this corollary to prove directly

that the first-order theory of an equivalence relation is decidable. Next, however,
we prove a lemma that allows us to provide a strategy for player II for the second-
order Ehrenfeucht game.

LEMMA 1. For the primitive recursive function g(m,n) = n{n + I)2™* , if

<Mo>1j>j<m*'g(m.)<20li,9j>j<m> then for each r]msWl0 there is a 9mZtmi

such that <3Bto,ti]yJ<m+lg'H<2Btu0j>j<m+i-

PROOF. Assuming that nm ^ 3Jl0 has been selected, we show how to construct
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a set 6m s <3Ri that satisfies the requirements of the lemma. The construction
consists of two phases. The first phase is to ensure that 6m and Bm are big enough;
the second, to ensure that Bm is small enough.

In phase I, we construct 5j for each j e Seq(2m+ \ n). At the end of phase I,
we consider what would be incorrect if 6m were to equal (J {5j \j e Seq(2m+ \ n)}.
In phase II we construct £, to adjust 8j to correct this error.

PHASE I. At the beginning, we may describe each equivalence class in 2R0

and yjlL as unused. During the course of the construction, various equivalence
classes will have their status changed to used. Consider in turn eachj e Seq(2m+1, n).
Let JV= N(J) = min(n, # yo(J)) • Select JV distinct unused equivalence classes from
yo(j) and call them [x 0 ] , - - - , [ x ^ - ! ] . These unused equivalence classes must
exist, since N 5£ #y0U)> and as remarked above, for i,jeSeq(2m+1,n), i # j ,
Vo(') DVoCj) = 0 ! t n u s n o other part of phase I can use any equivalence class
in yo(i). These [**]*< N are now used. For each k<N, let ik be that element
of Seq(2m, g(m, n)) satisfying [ x t ] £ y o [ i j . Pick distinct unused [y^\ ey^i^Jor
each k < N, and let Y= {[^J | k < N}. This can be done, since #yo(h)Eg(m,n)#yi(h)
by assumption, and there are at most (n + l)2m+'elements of Seq(2m + 1 ,n), and
each element can cause at most n equivalence classes to be used. The equivalence
classes in Y are now used.

For each k<N, consider the 2m partition sets {no(Q | / < 2m}. Modulo
the equivalence relation Eg(m n), the cardinality of [xk] |"| no(/) is the information
of ik(l). Now consider the result of selecting r\m. This splits entry / of ik into
entries j(2l) and j(2l + 1), where because of the enumerations assigned to
fim\ / 1 7 + 1 \ and f&\x\ these are the cardinalities (modulo £„) of [ x j n n o ( 0
f| r\m and M f i n o ( i ) n ^ respectively. The idea is now to "carve up" the
[yfc] 's in Y, putting some pieces into 6m, in the same way the [xJ ' s were carved
UP by tjm • For each [>] e 7 consider the 2m partition sets {Il^l) \ I < 2m}. Within
each of these, consider [ j>]nni(D- We carve this into two pieces a([>>],/) and
/?([y], /) with cardinalities a and b respectively. I.e., we will have

Mnn,© = a(i>],ou0(i>].o, «(i>],on/J(i>]»o = 0,
#a(|>],Q = <i

and

This will be done in such a way that aEJ(2l) and bEJ(2l + 1), for I <2m.
There are two cases:

(i) Unless j(2l) = n and j(2l + 1) < n, put j(2l) elements into a([>], Z), and
leave the remainder of [ y ] n n ! ( 0 in j3(D>],0»

(ii) Ifj(20 = n andj(2l + 1) < n, then put j(21 + 1) elements into
and leave the remainder of [y] f) tt^l) in a([y], /).
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After doing this for each [y] e Y and each 1 <2m, set Sj = U ^ ^ U|<2»
a(Lv]> 0 • This enc^s phase I.

If, in the course of phase I, all the equivalence classes of 9ft t had been used,
it would be sufficient to let 6m = U{<5,- | j eSeq(2m + 1 , « )} . However, in general
there remain unused equivalence classes; and because of these, if we were to
use the above 0m, it might happen that #yo(j) < #ViO") modulo £„, for some
jeSeq(2 m + 1 ,n) . Such a j would have to satisfy V7 < 2m(j{2l) = 0) since the
problem concerns equivalence classes which were unused and hence would be
subsets of Bm. The solution is to consider those i e Seq(2m, g(m, n)) corresponding
to the partition derived from the Boolean combinations of rj0, ••-,r\m-1 which
could give rise to this j when r\m was added. These i will be called the ancestors
of j . We then consider the set of sequences in Seq(2m+1, n) which could have
resulted from i by the addition of some r\'m to rjk, for k < m. These are called the
progeny of t. We then show that any ancestor i with unused equivalence classes
must have a j 0 among its progeny for which there are least n equivalence classes
in yo(jo); and thus, using the "carving u p " process described above, we may put
all the unused equivalence classes of i intoy^jo) and still have #y0Uo)En#yi(Jo)-
With this as an intuitive guide we describe the details below.

PHASE II. Let 0' = U {Sj | j e Seq(2m+1,«)}. For j e Seq(2m+1, n), let A(j) =

ancestors of j =

{i e Seq(2"\ g(m,«)) | VJ < 2m[((j(2/) # n &j(2l + 1) # n) -> j(2l) +j(2l + 1) =

i(l) & (U(2l) = n V j(2l + 1) = n) -> i (20 +j(2l + 1) ^ i(0)]} •

Let P(i) = progeny of i = { jeSeq(2 m + \n ) | ieA(j))}, and let y'(j), for
jeSeq(2m + 1 , n), characterize the cardinalities of equivalence classes intersected
with the Boolean combinations of 0o,—,0m_1,0'. Set S= { jeSeq(2m + 1 ,n) |
-i [#7oO')E. #7'0")]} • For each jeSeq(2m + 1 ,n) set Cj = 0 initially. Some Cj
will be modified (perhaps more than once) in carrying out the following construc-
tion. For each j e S do the following. Examine each i e ^0") . If there are no
unused [y] e ^ [ i ] , then there is nothing to do. However, for each i e A(j) which
contains equivalence classes which have not yet been used, find a j 0 e P(i) such
that # yoO'o) = " • Such a sequence must exist by the following cardinality
argument. Assume no such j 0 exists. Note that U {joUt) \ji e P(i)} — Vo(0>
and that the union is a disjoint union. Thus, £ j , eP(l) #yo(Ji) = #Vo(0-
P(i) s Seq(2m+1,n), so #P{i) S (n + l ) 2 m + 1 . Thus we have

g(m, n) = n(n + l)2m+' > I #yo(Ji) ^ #To(0 •

Since <aRo.^>y<»^i(»»)<Pi.^>i<», this implies that #yo(i) = #y1(i). By the
construction in phase I, since #yo(ji) < n for each jx eP(i), all the [x] eyo(«)
must have been used. Furthermore, just as many elements of yx(i) must have
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been used as were used from yo(i). But this implies that there were no unused
M e 7i(0 which contradicts the selection of i. Let Y = {[>>] | [y] e y1(i) and [y]
is unused}. The equivalence classes in Yare now used. Modify £Jo by carving up
the O ] e Yas in phase I. I.e., CJo: = CJo\J U M ^ UJ<2». «([>], 0 , where a([>], /)
is formed as in phase I, and the symbol := represents replacement.

It should be clear that after this has been done for each j e S, then setting
0m = 0' U U {CjGSeq(2m+1,n)} gives the required 6m.

THEOREM 4. Let g(k,n) = n(n + l ) 2 " + 1 , and let h(k,n) be the primitive
recursive function defined by h(0,n) = n and h(k + l,n) = g(k,h(k,n)). Then

rij>j<m^k.n)<Mu0jyJ<m implies that <Mo,rij>j<m =k.n<Wi,Oj>J<m.

PROOF. By induction on k.

For k = 0, the result is merely a restatement of Theorem 3.
Assume the result holds for some k, and assume that <2R0»'/y)y<m^'(t + i n)

0j>j<m-™™<Wo,tlj>j<m*l(mMk.n))<2Dli,6j>j<m- Lemma 1, the inductive
hypothesis, and the definition of k, n-equivalence suffice to show that

THEOREM 5. The monadic second-order theory of an equivalence relation
is decidable by a primitive recursive procedure.

PROOF. It follows from standard techniques of second-order logic that any
sentence is logically equivalent to one in prenex form where all the second-order
quantifiers precede all the first-order quantifiers. By Theorems 1 and 4, to check
the validity of a sentence

<A = Qoto — Qm-lZm-lQoVo " " Qn- 1 ^ - 1 <Kfo> " '- f m- 1. 0̂> - . ^ - l )

in which cp is quantifier free, it is sufficient to verify that SCR t= \\i for those 501
having at most h(m, n) equivalence classes of each cardinality less than or equal
to h(m, n) and no equivalence classes of larger cardinalities. There are at most
(h(m,n) + l)Hmn) - 1 of these models, each with at most \ h(m,n)2(h(m,n) + 1)
elements. This simple veritication can be done by a primitive recursive procedure
(cf. Nerode).

It should be noted that the decision procedure itself does not require that the
sentence being decided be converted to an equivalent normal form, only that a
bound be calculated based on the number of quantifiers the equivalent form would
contain.

COROLLARY 2. The first-order theory of a equivalence relation is decidable.

PROOF. This follows immediately from Theorem 5. However, a more direct
proof is obtained by applying the method of the proof of Theorem 5 to the bound
given in Theorem 3.
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