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Abstract. The dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically-
conducting fluid is examined under varying kinematic conditions. It is found that the results o f an 
earlier paper (Kraichnan and Nagarajan, 1967) can be reliably extended to a stage of evolution 
wherein the magnetic spectrum has reached local equipartition with the velocity. The transfer of the 
magnetic energy to smaller wavenumbers (larger scales) is considerable and significant. This result is 
highly pertinent to the turbulent dynamo question, which has been variously investigated recently. The 
relevance of the coupling of the rms magnetic field to the magnetic modes of all scales in deciding the 
efficiency of this transfer is discussed. 

1. Introduction and Review 

In a number of recent investigations, (Parker, 1970; Moffatt, 1970; Parker, 1969; 
Krause, 1968; Radler, 1968; Steenbeck et al, 1966; Steenbeck and Krause, 1966, 
1967; Krause and Radler, 1971; Fitremann and Frisch, 1969; Vainshtein, 1970), the 
question of regeneration of a magnetic field, by turbulent motions has been recon­
sidered, under a variety of kinematic assumptions about the turbulence. In an earlier 
paper (Kraichnan and Nagarajan, 1967), we have reviewed the previous work on this 
subject in great detail and found that simple intuitive statistical arguments like equi­
partition, or analogical and heuristic kinematic considerations like the vorticity analogy 
are highly inadequate in resolving this question. In a recent paper, Kraichnan (1970) 
has considered the analogous question of the growth and propagation of the devia­
tions between the point-to-point velocity fields in two flow systems, which are statisti­
cally identical. Here again, one finds that the ultimate evolution depends on the quan­
titative competition between the local-enhancement and sweeping-away processes 
in the wave-number domain. One needs a considerable amount of knowledge of the 
internal dynamics and characteristic times, and assertions of kinematic nature based 
on universal equilibrium hypotheses are highly inadequate. 

In our paper referred to earlier, we could not carry our calculations very much for­
ward in time, because we had no reliable information about the internal time struc­
ture of the combined fields of velocity and magnetic field, at that time. In a more 
recent paper (Nagarajan, 1971), we have investigated the internal structure of the 
steady state spectra on the basis of a detailed dynamical theory. In this, we have also 
reviewed the relevance of the ideas of Kolmogorov to the hydromagnetic case, 
keeping in mind the Galilean non-invariance of the hydromagnetic equations to a 
random constant magnetic field transformation. The cascade of energy in the hydro-
magnetic case is not strictly local in the wave number domain. A large scale rms 
magnetic field presents the possibility of Alfven wave propagation along it and thus 
provides a significant dynamical coupling between magnetic fields of large and small 
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scales. Our steady state considerations provide us with the necessary information 
about the local internal relaxation features and their relative magnitudes, so much so 
we plan to extend our earlier study of evolution of weak magnetic fields - to a stage 
in which the spectrum of the magnetic field has evolved sufficiently to a point of 
dynamical feedback to the velocity field and consequently a statistical steady-state. 

And since we are basing our calculations on a well-considered dynamical theory 
of turbulence, we will be able to throw some light on the nature of the transfer of 
energy in the magnetic spectrum: in particular, without using either oversimplifica­
tions or idealisations of the characteristic length and time scales of the magnetic field 
and turbulence as have been done by Moffatt (1970), Parker (1969), Fitremann and 
Frisch (1969) or Vainshtein (1970). 

We start with a steady turbulence with an extended inertial range. The choice of the 
kinematic parameters and the wave number range is made suitably, so that we can 
talk of an extended equilibrium range, without worrying about the sources of input of 
energy into the system from the geometric range. Further, there exists a sufficiently 
noticeable dissipative tail to the spectrum at the high wave number end. The form of 
the spectrum and parameters are chosen so as to be compatible with the asymptotic 
requirements of the direct interaction approximation of Kraichnan (1958, 1959, 1965, 
1966), with suitable modifications to reproduce Kolmogorov scaling. * 

A disturbance which is localized in the wave number range of the magnetic spectrum 
is introduced at time t =0. 

Following the notations of our earlier papers (Kraichnan, 1958; Kraichnan and 
Nagarajan, 1967; Nagarajan, 1971), we can write the equation for the secular evolu­
tion of the two spectra for times > 0 as 

2. The Dynamical Model 

(1) 

(2) 
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The spectral functions Ey(k; T) and EM(k; T) are connected to the velocity and 
magnetic fields as follows: 

W 

W 
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where U(x, t) is the fluid velocity and (Anno)112 W(x, t) is the magnetic induction 
field, Q is the fluid density, \i the magnetic susceptibility of the fluid, v and X are the 
kinematic viscosity and magnetic diffusivity respectively. 

https://doi.org/10.1017/S0074180900022968 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900022968


490 S. NAGARAJAN 

We assume the turbulence to be homogeneous and isotropic 

iWv(k; t, t') = {Ank2)'1 Ev(k; ^ t l j Rv (k; t-t'). 

±WM{k; t, t') = {Ank2)'1 EM(k; RM{k;t- t') 
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where Wv { } and Wu { } are energy functions and Rv { } and RM { } are modal 
correlation functions. 

The 6'-s which appear in Equations (1) and (2) are the effective memory times of the 
interaction between the three respective wave numbers. They are given by 

C (T) = j G f ( T - s ) Rb

m (T + s) Rc„ (T + s) ds 
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(where a, b, c = V or M) and Gv(k; T) and GM(k; T) are the averaged response 
functions of the velocity and magnetic fields for the given wave number respectively. 

In a general turbulent system in which a weak macroscopic (i.e. geometric range) 
disturbance in the magnetic spectrum is introduced at time t=0, the 0'-s will be very 
complicated functions of the correlation and response features of the turbulence 
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and initial magnetic field. But if we assume that the weak magnetic excitation is 
sufficiently localized in the inertial range, the secular time dependence of the 0'-s can 
be ignored. This point has been discussed in detail by Kraichnan (1959) in the 
hydrodynamic context. In the magnetic situation also much of the argument goes 
through unaltered. 
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We choose a form for the correlation and relaxation functions and the 0'-s from 
Nagarajan, 1971. 

*•(*;*) = exp{- i*(C(fc ) t)2} 
G°(k;T) = exp{-in(r,a(k)t)2} 
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which gives for 0 

C = [K(fc)}2 + (UP)} 2 + {Cc(<0}T1/2 • 
Our elaborate study of the various extreme considerations of Galilean-invariance 
and Kolmogorov's arguments on the one hand and Galilean non-invariant Eulerian 
solutions on the other in the steady-state case (Nagarajan, 1971) convinces us that 
in so far as energy transfer information is concerned, the details of the internal corre-
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lation times are not very important. Using the results of this study, we evolve a 
quasi-Lagrangian scheme. We take the velocity correlations and relaxations to be 
Kolmogorovian i.e. decided by the local parameters of the position in the wave 
number spectrum. The magnetic terms are modulated by energy range parameters as 
in the unmodified direct interaction approximation of Kraichnan (1959, 1965). With 
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these preliminaries one can write 

Cv(k)=lEv(k;T) fe3]"2 

nv(k)=[{Cy(k)}2 + (vk2rr2 

L(k) = (v0k) 
im(k)=mm(k)}2+(i'k2)2r2. 
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Here v0 is the rms velocity in the energy range. (It will be apparent that this energy-
range mixing was the reason why we chose the initial magnetic excitation to be lo­
calized in the inertial range. But for that the results of the hydrodynamic case or even 
the steady-state study will be inapplicable.) We choose a convenient unit of wave 
numbers and time scales such that v0 = 1. 

3. Evolution Study 

Now that all the quantities in Equations (1) and (2) are completely defined, we inte­
grate them forward in time. In time, they have the character of a set of non-linear 
coupled differential equations. But for each time value there is an integral to be per-
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formed over the contributions from various regions of wave number space. We dis-
cretise the wave number region into twenty-five logarithmic half-octave intervals. 

The details of this procedure are much the same as in an earlier paper (Nagarajan, 
1971). We perform the time integration using a fourth-order variable-step Runge-
Kutta Scheme. The details of the numerical scheme are given elsewhere (Nagarajan, 

(LOGvJ K + D 

Fig. 7. 

1970). We shall here consider only the results and their astrophysical implications. 
Figure 1 shows the initial spectral disposition in one of the runs. The dotted line 

gives the velocity spectrum, and the continuous line, the magnetic disturbance. 
\j/0 is the value of the initial ratio of the magnetic spectrum to the velocity spectrum 
at nonzero points, which is a parameter of the run. Though we are going to display 
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here only initial disturbances which have the same spectral shape as the velocity and 
are localised in wave number space in a delta-function way, we had performed a 
number of runs with a variety of initial shapes akn exp( — bkm) and initial ratio ij/0. 
There was no pathological feature arising from the initial choice either numerically 
or otherwise. 

0 

(LOGv'i K + 1 ) 

Fig. 8. 

Figures 2 and 3 give the spectra at characteristic times / = 1.0x10" 5 and 
f = 1.0x 10" 4 . These time scales are so normalised that they are unity for the largest 
wave numbers in our system. The noteworthy feature of the curves is that the energy 
has now moved both to higher and lower wave numbers. The rate of transfer to lower 
wave numbers is essentially smaller than the rate of transfer to higher wave numbers, 
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because the characteristic times of transfer are of the order of the internal times of the 
given scale. 

Figures 4 and 5 give the spectra at t = 5.0 x 10" 4 and 1.0 x 10" 3 . Already, within a 
time of the order of the local eddy-circulation time in the largest wave numbers, the 
magnetic spectrum has wrapped up sufficiently to almost equality with the velocity 

- 1 1 I 1 1 1 I i L_ 

1 6 11 16 21 2 6 

(LOGv^ K + 1) 
Fig. 9. 

spectrum at the highest wave number. Figure 5 to some extent and Figure 6, in a 
more profound way show that the magnetic spectrum has overshot significantly above 
the velocity at lowest scales. This arises because of two reasons: (1) The choice of 
kinematic parameters v and X. In this run X is very much smaller, so much so the 
magnetic spectrum has a longer dissipative tail. (2) The second reason for the over-
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shooting is the fact that the form of the spectrum is still non-equilibrium so much so 
the approach to local equipartition is in an overstable way. 

Figure 7 and more prominently Figure 8 show how the feature of equipartition is 
transferred to smaller wave numbers, much in the same way as argued by Biermann 
and Schluter (1951). By now the evolution has reached a stage in which any peculiar 

dependence on choice of initial form has been completely lost. Figures 9 and 10, 
which are for the same run for times /=0.1 and 0.25 show that by now the evolution 
has reached a stage when one can safely conclude about ultimate features. The nu­
merical integration times involved at this stage are so large that one stops the cal­
culations because no new features are likely to evolve from further evolution study. 

Figures 11, 12 and 13 feature the final and initial spectra for a few other runs which 
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start different initial ratios and kinematic parameters. These are meant for the purist 
to show that pathological features are not included in the choice of initial assumptions. 

In all these runs, at a fairly advanced evolution, the spectral shape reaches an 
approximate form A(t) A:4exp{ — B(t)k2}. Thereafter the integral features of the 
spectrum evolve more or less without change of form. 

- 0 9 L 

6 11 16 
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21 26 

4. Conclusions 

Apart from the fact that this evolution study fills many a gap in our earlier study, this 
proves more or less conclusively that there is no reason to expect, in evolving non-
equilibrium hydromagnetic turbulence, that the transfer will take place only to larger 
wave numbers. In fact, the transfer to smaller wave numbers is significant and this 
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can provide just the missing link in the turbulent dynamo problem. The regeneration of 
larger magnetic loops through a co-operative interaction of the velocity fluctuations 
of all scales and magnetic fluctuations of smaller scales is not only feasible but very 
significant. In our study, we find that this is facilitated by two dynamical requirements. 
Firstly, the non-equilibrium feature of the magnetic spectrum: the ultimate steady-

(LOGvi K + 1 ) 

Fig. 12. 

state magnetic spectrum will be in equipartition with the velocity in all scales other 
than the ones where either the inputs of energy from external sources of the train of 
energy through molecular dissipation depresses or raises either of them. Any other 
form of the spectral ratio is not an invariant form which will be left invariant by the 
non-linear interaction. The non-linear interaction will change the ratio to get into the 
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equilibrium form. Secondly, the Galilean non-invariance: The fact that a magnetic 
field cannot be gauged out makes a profound modification in the internal dynamics. 
Here probably one can stretch our comparison a bit with other recent studies. Krause 
(1968), Radler (1968), Steenbeck et al. (1966), Steenbeck and Krause (1966, 1967), 
Krause and Radler (1971) and Moifatt (1970) have considered the a-effect of regenera-

1 6 11 16 21 26 

(L0Gv£ K+1) 

Fig. 13. 

tion in great detail. A certain aspect of the a-effect is included in our Galilean non-
invariance picture, because a larger magnetic loop, when it is impressed on a system of 
smaller magnetic and velocity fluctuations, introduces a condition of reflectional non-
invariance. Beyond this point one cannot carry the analogies because their inferences 
about the values of the a-effect are based on equilibrium transfer theory, which as 
our study has clearly shown, are inapplicable. 
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Fig. 14. 
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Parker (1969) and Vainshtein (1970) have asked much the same question, as we 
have, but since they had to invoke some extreme idealisations to get their results, the 
physical validity of their conclusions is in doubt. Qualitatively, our results corroborate 
theirs. 

Robinson and Rusbridge (1971), in a study of Plasma turbulence in the Zeta plasmas, 
have found that plasma turbulence seems to resemble fluid turbulence except that the 
turbulent elements are enlarged along the mean magnetic field to form rolls and 
suggest that an appropriate comparison would have to explain the existence of 
significant transfer to large scales from small-scales, as against isotopic hydrodynamic 
theory, which will not permit this. One hopes that it will not be too presumptuous to 
believe that the effect, they find is contained in our procedure. Further the importance 
of this to heat transfer in the presence of magnetic turbulence is also very tempting. 
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Discussion 

Nakagawa: What is your assumption concerning the initial velocity and magnetic field spectra? 
Nagarajan: The initial velocity is in quasi-equilibrium with an extended inertial range. The magnetic 

spectrum is localized in the middle of the inertial range in all but one of the runs, with a level of 
excitation very much lower than the velocity. 

Weiss: After equipartition has been achieved for intermediate wave numbers, is your steady 
energy spectrum maintained over periods comparable with the resistive decay time for the smallest 
wave numbers? 

Nagarajan: Yes . W e follow the time evolution until the initial form dependence is washed out. 
Essentially this turns out to be larger than the resistive time scale of the initial specimen. But after 
that time, the further buildup of the spectrum - even towards smaller wave numbers - takes energy 
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from the velocity spectrum. This time-invariant self-preserving form with the tail in steady-state with 
the velocity, keeps growing in over-all energy and extent. This may look like a violation of simple 
physical and statistical requirements. But it is not. 

Cowling: In many ways the assumptions made (nature of background fields, motions, statistical 
assumptions) appear to be as important in the theory of magnetohydrodynamic turbulence as the 
detailed theory. 

Nagarajan: True: statistical description does not in any sense minimize the number of necessary 
assumptions. But the statistical theory has an advantage in that one requires only on-the-average 
features. So many of the phasing requirements are weakened. But the main feature of this investigation 
has been to show that the back-transfer in wave-number spectrum is significant, which can have truly 
deep conceptual consequences. 
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