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1. Introduction

The topological complexity of a space is a numerical homotopy invariant introduced
by Michael Farber in [11], which connects motion planning problems in robotics.
Briefly, given a mechanical system M, a motion planning algorithm for M is a
function that associates to any pair of states (a, b) of M to a continuous motion of
the system starting at a and ending at b. Interestingly, the topological complexity
is a particular case of another homotopy invariant called the ‘sectional category’ of
a map p : E → B where E and B are path connected spaces. The sectional category
of p, denoted by secat(p), is the least integer k such that there is an open cover
{U1, . . . , Uk} of B, and there is a local section si : Ui → E of p for each i satisfying
p ◦ si = idUi

: Ui ↪→ B where idUi
denotes the inclusion. We remark that the genus

of a fibration was introduced by Schwarz [25]. However, James [20] used ‘sectional
category’ instead of ‘genus’.

Let Y be the space of all possible configurations of a mechanical system. We
assume that Y is a Hausdorff path-connected topological space. Let PY be the
space of all continuous paths γ : [0, 1] → Y in Y equipped with the compact-open
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topology. Consider the path fibration

π : PY → Y × Y (1.1)

defined by π(γ) = (γ(0), γ(1)). A motion planning algorithm of Y is defined by
a section s : Y × Y → PY of the fibration π. This section exists if and only if
Y is contractible. Interestingly in general, almost all configuration spaces are
non-contractible. To compute the complexity of motion-planning algorithm for a
non-contractible space Y , Farber defined the topological complexity of Y by the
sectional category of π. The survey [12] contains several introductory results related
to motion planning.

A symmetric version of the topological complexity arises when one restricts the
local planners for which the motion from a to b is the reverse of the motion from
b to a and the motion from a to a is constant. In notation, consider a map s : Y ×
Y → PY (not necessarily continuous) such that π ◦ s = IdY ×Y and s(a, a)(t) = a,
s(a, b)(t) = s(b, a)(1 − t) for all a, b ∈ Y and t ∈ [0, 1]. This motivates the notion
of symmetric topological complexity, given by Farber and Grant in [13]. Some
developments in symmetric topological complexity can be found in [17–19].

Consider a continuous partial section s : U → PY of the fibration π over an open
subset U ⊆ Y × Y . The map s can be described as a homotopy h : U × [0, 1] → Y
defined by h(u, t) = s(u)(t) for u ∈ U, t ∈ [0, 1]. Let p1 : Y × Y → Y and p2 : Y ×
Y → Y denote the projections onto the first and the second factor, respectively.
Since s is a section, the homotopy h connects h(u, 0) = p1(u) and h(u, 1) = p2(u).
Therefore, the open sets Ui ⊆ Y × Y , which appear in the definition of topological
complexity, can be equivalently characterized by the property that their two projec-
tions Ui → Y on the first and the second factors are homotopic. For an aspherical
space Y , a connected subspace U of Y which is homotopy equivalent to a cell
complex, the set of homotopy classes of maps U → Y is in a one-to-one correspon-
dence with the set of conjugacy classes of homomorphisms π1(U, u0) → π1(Y, y0).
Using this idea, Farber et al. introduced TCD(Y ), the D-topological complexity
for a path-connected topological space, see [14]. Here the letter ‘D’ in the notation
TCD(Y ) stands for the ‘diagonal’. In [15], Farber et al. introduced some prop-
erties of D-topological complexity. Note that symmetric topological complexity is
not homotopy invariant but D-topological complexity is homotopy invariant. Some
related results can be found in [9].

A small cover of dimension n is an n-dimensional closed smooth manifold with a
locally standard Z

n
2 -action whose orbit space is a simple polytope. It was introduced

in the pioneering paper [8] as a generalization of real projective toric varieties. An
n-dimensional toric variety is an algebraic normal variety that admits an action of
(C∗)n with an open dense orbit. A non-singular complete toric variety is simply
called a toric manifold. The real locus of a toric manifold is called a real toric
manifold. A real Bott tower is a sequence of smooth complete real toric varieties,
see subsection 2.2. In this paper, we compute lower and upper bounds for the
topological complexity, symmetric topological complexity and LS one-category of
a class of small covers and real Bott manifolds.

The paper is organized as follows. In § 2, we study the definition of small cover
over a simple polytope, generalized real Bott manifold and the relation between
them. We modify the cohomology ring of a small cover over a product of simplices
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Various topological complexities 3∏m
j=1 Δnj with Z2 coefficients as Z2[y1, y2, . . . , ym]/I where I is given in (2.14).

We prove y
nj

j �= 0 in the cohomology ring H∗(Mn(P, λ); Z2) as in (2.13), see lemma
2.6. We also recall the notion of real moment angle manifolds and complexes.

In § 3, we recall the definition and some properties of LS-category and equivariant
LS-category of a topological space. We compute the LS-category and equivariant
LS-category of a small cover. We calculate the LS-category of the real moment
angle manifold for r-gon and the equivariant LS-category of a real moment angle
complex.

In § 4, we give a tight lower bounds to the topological complexity of a small cover
over a product of two simplices. We compute the topological complexity for some
classes of real Bott manifolds.

In § 5, we rewrite the definition and some basic properties of symmetric topologi-
cal complexity and give bounds for the symmetric topological complexity of several
small covers over a product of simplices.

Finally in § 6, we recall the definition and some basic properties of the LS
one-category and D-topological complexity. We calculate the exact value of LS
one-category of a simple polytope when its real moment angle manifold is simply
connected and orientable. We calculate LS one-category of a small cover over a
product of simplices, and give bounds of D-topological complexity for a small cover
over a product of simplices.

2. Cohomology rings of small covers, generalized real Bott manifolds
and real moment angle complexes

In this section, we recall simple polytopes and the constructive definition of a small
cover over a simple polytope using [8]. We also review the definition of a (gen-
eralized) real Bott manifold and then discuss its relation with a small cover over
a finite product of simplices. We give a presentation of the cohomology ring of a
generalized real Bott manifold. Later, we study real moment angle manifolds and
complexes.

2.1. Small covers and its cohomology ring

In this subsection, we recall the definition of small cover and its cohomology ring
with Z2-coefficients following [8].

A convex polytope is a convex hull of finitely many points in R
n for some n ∈ Z�0.

The face of dimension 0 and (n − 1) in a convex polytope of dimension n are
called the vertex and the facet of the polytope, respectively. The vertex set and the
facet set of a convex polytope P are denoted by V (P ) and F(P ), respectively. An
n-dimensional convex polytope is called simple if at each vertex exactly n many
facets intersect. Throughout this paper, we denote an n-dimensional simple
polytope by P .

Definition 2.1. A function λ : F(P ) → Z
n
2 is called a characteristic function if

the submodule of Z
n
2 generated by {λ(Fi1), . . . , λ(Fi�

)} is an �-dimensional direct
summand of Z

n
2 whenever Fi1 ∩ · · · ∩ Fi�

�= ∅. The vector λi := λ(Fi) is called the
characteristic vector associated with the facet Fi for i = 1, . . . , r, and the pair (P, λ)
is called a characteristic pair.
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We recall the construction of a small cover from a characteristic pair (P, λ).
For each point p ∈ P , let F (p) be the unique face of P , which contains p in its
relative interior. Let F (p) = Fi1 ∩ · · · ∩ Fik

for some unique facets Fi1 , . . . , Fik
.

Define GF (p) as a subgroup of Z
n
2 generated by λ(Fi1), . . . , λ(Fik

). We define an
equivalence relation on P × Z

n
2 as follows:

(p, g) � (q, h) ⇔ p = q, g−1h ∈ GF (p).

The identification space Mn(P, λ) := (P × Z
n
2 )/ ∼ has an n-dimensional manifold

structure with a natural Z
n
2 -action induced by the group operation on the second

factor of P × Z
n
2 . The projection onto the first factor gives the orbit map

ρ : Mn(P, λ) → P defined by [p, g]∼ �→ p,

where [p, g]∼ is the equivalence class of (p, g). The manifold Mn(P, λ) is called a
small cover over P with the characteristic function λ, see [8] for details.

Let {F1, . . . , Fr} be the facets of P and the indeterminates v1, . . . , vr correspond
bijectively to the facets F1, . . . , Fr respectively.

Proposition 2.2 [8, Theorem 4.14]. Let ρ : Mn(P, λ) → P be a small cover over
a simple polytope P with |F(P )| = r. Then

H∗(Mn(P, λ), Z2) ∼= Z2[v1, . . . , vr]/(Ĩ + J̃),

where the ideal Ĩ is generated by the monomials vs1 · · · vs�
, if Fs1 ∩ · · · ∩ Fs�

= ∅,
and the ideal J̃ is generated by the n coordinates of the vector ΛJ̃ where ΛJ̃ =∑r

i=1 λivi.

Example 2.3. The n-dimensional real projective space RP
n is an example of a

small cover over the n-dimensional simplex Δn. A finite product of RP
n’s is also a

small cover.

2.2. Generalized real Bott manifolds and its cohomology ring

In this subsection, we study generalized real Bott manifolds and give a nice
presentation of its cohomology ring with Z2-coefficients.

A generalized real Bott tower of height m is a sequence

Bm
πm−−→ Bm−1

πm−1−−−→ · · · π2−→ B1
π1−→ B0 = {pt} (2.1)

of manifolds Bj = P(R ⊕ E
(1)
j ⊕ · · · ⊕ E

(nj)
j ), where R is the trivial line bundle over

Bj−1, E
(i)
j is a real line bundle over Bj−1 for i = 1, . . . , nj , and j = 1, . . . , m. Here

P(·) denotes the projectivization. The space Bj is called a j-th stage generalized
real Bott manifold. In this case, when nj = 1 for every j, Bj is called a real Bott
manifold.

Proposition 2.4 [21, Corollary 4.6]. The j-th stage generalized real Bott manifold
Bj of the tower (2.1) is a small cover over

∏j
i=1 Δni where Δni is the ni-simplex.

The converse statement also holds by the following proposition.
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Proposition 2.5 [10, Proposition 2.7]. Every small cover over a product of
simplices is a generalized real Bott manifold.

Now we discuss the cohomology ring of a small cover over a finite product of
simplices. Let

P :=
m∏

j=1

Δnj , (2.2)

where Δnj is a simplex of dimension nj . Then, the dimension of P is n :=
∑m

j=1 nj .
Let

Ns :=
s∑

j=1

nj , (2.3)

for s = 1, . . . , m. Thus N1 = n1 and Nm = n. Let us assume N0 := 0.
Let V (Δnj ) := {vj

0, . . . , vj
nj
} be the vertices of Δnj for j = 1, . . . , m. Then the

vertex set of P is given by

V (P ) := {v�1�2...�m
:= (v1

�1 , v
2
�2 , . . . , v

m
�m

) | 0 � �j � nj}. (2.4)

Let F(Δnj ) := {FΔj

0 , . . . , F
Δj
nj } be the facets of Δnj where the facet F

Δj

kj
does not

contain the vertex vj
kj

for j = 1, . . . , m. So, the facet set of P is

F(P ) := {F j
kj

| 0 � kj � nj , j = 1, . . . ,m}, (2.5)

where F j
kj

:= Δn1 × · · · × Δnj−1 × F
Δj

kj
× Δnj+1 × · · · × Δnm . Observe that the

vertex v�1�2...�m
is the unique intersection of the n-many facets of F(P ) \ {F j

�j
|

j = 1, . . . , m}. In particular,

v0...0 = F 1
1 ∩ · · · ∩ F 1

n1
∩ · · · ∩ Fm

1 ∩ · · · ∩ Fm
nm

. (2.6)

Let

λ : F(P ) → Z
n
2 (2.7)

be a Z2-characteristic function on P where P is the product of simplices as in (2.2).
Then from (2.6), we have {λ(F 1

1 ), . . . , λ(F 1
n1

), . . . , λ(Fm
1 ), . . . , λ(Fm

nm
)} is a basis

of Z
n
2 over Z2. So, we may assume that these vectors are assigned with the standard

basis vectors. Thus,

λ(F j
1 ) = eNj−1+1, . . . , λ(F j

nj
) = eNj

,

for j = 1, . . . , m. The remaining m facets {F 1
0 , . . . , Fm

0 } are assigned with the
vectors as follows

λ(F j
0 ) := αj ∈ Z

n
2 for j = 1, . . . ,m, (2.8)

https://doi.org/10.1017/prm.2023.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.124


6 K. Brahma, B. Naskar, S. Sarkar and S. Sau

so that the above assignment satisfies definition 2.1. This gives us vector matrices
of order (1 × m) and (m × m), and a scalar matrix of order (n × m) as following:

A :=
(
α1 α2 . . . αm

)
1×m

=

⎛⎜⎝α1
1 . . . α1

m
... . . .

...
αm

1 . . . αm
m

⎞⎟⎠
m×m

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
11 . . . α1

m1
... . . .

...
α1

1n1
. . . α1

mn1
... . . .

...
αm

11 . . . αm
m1

... . . .
...

αm
1nm

. . . αm
mnm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×m

,

where αj ∈ Z
n
2 is the j-th column vector of A, αk

j ∈ Z
nk
2 is the (k, j)-th entry of

the m × m vector matrix and αk
ji ∈ Z2 is the (Nk−1 + i, j)-th entry of the n × m

scalar matrix. Throughout this paper, the vectors ei and αj of Z
n
2 are considered

as the column entries of the matrices for i = 1, . . . , n, and j = 1, . . . , m.
Now we calculate the cohomology ring of the small cover Mn(P, λ) when P is a

product of simplices as in (2.2) and the characteristic function λ on P is given by
(2.7). Let us assign the indeterminate xi to the facet F j

kj
where

i =

(
j−1∑
s=1

ns

)
+ kj = Nj−1 + kj ,

for 1 � kj � nj , j = 1, . . . , m. Therefore, i ∈ {1, . . . , n}. We also assign the inde-
terminate xi to the facet F j

0 where i = n + j for j = 1, . . . , m. Note that F j
1 ∩ · · · ∩

F j
nj

∩ F j
0 = ∅. Then, from proposition 2.2, we have

H∗(Mn(P, λ); Z2) ∼= Z2[x1, . . . , xn+m]/Ĩ + J̃ , (2.9)

where the ideals Ĩ and J̃ are as follows. The ideal Ĩ is given by

Ĩ =
〈{xNj−1+1xNj−1+2 · · ·xNj

xn+j | j = 1, . . . , m}〉, (2.10)

where Nj is defined in (2.3). The ideal J̃ is generated by the coordinates of

ΛJ̃ =
(
λ(F1)t λ(F2)t . . . λ(Fn+m)t

)
(n×(n+m))

· (x1 x2 . . . xn+m

)t

(n+m)×1
.

(2.11)
In (2.11); for i = 1, . . . , n, we denote Fi = F j

kj
with i = Nj−1 + kj for 1 � kj �

nj , j = 1, . . . , m and for i = n + 1, . . . , n + m, we denote Fi = F j
0 with i = n + j

where j = 1, . . . , m.
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Note that ΛJ̃ is an n tuple. The i-th coordinate of ΛJ̃ is

xi + αj
1kj

xn+1 + αj
2kj

xn+2 + · · · + αj
mkj

xn+m,

where i = Nj−1 + kj ; kj = 1, . . . , nj and j = 1, . . . , m. Thus, any xi can be written
as a Z2-linear combination of xn+1, . . . , xn+m for i = 1, . . . , n. For simplicity, we
denote the indeterminate xn+j by yj for j = 1, . . . , m. Thus,

xi =
m∑

�=1

αj
�kj

y� where i = Nj−1 + kj , kj = 1, . . . , nj and j = 1, . . . , m, (2.12)

in H∗(Mn(P, λ); Z2). Then the generators of the ideal Ĩ in (2.10) can be described
in terms of yj ’s. Therefore, we have

H∗(Mn(P, λ); Z2) ∼= Z2[y1, y2, . . . , ym]/I, where (2.13)

I =

〈⎧⎨⎩
nj∏

kj=1

(
m∑

�=1

αj
�kj

y�

)
yj | j = 1, . . . ,m

⎫⎬⎭
〉

. (2.14)

We have the following observation on the cohomology ring.

Lemma 2.6. Let Mn(P, λ) be a small cover over a finite product of simplices with
the characteristic function λ as in (2.7). Then y

nj

j is non-zero in the cohomology
ring H∗(Mn(P, λ); Z2) for j ∈ {1, . . . , m}, where yj’s are as in (2.13).

Proof. Let P :=
∏m

j=1 Δnj be a product of m simplices. We know the cohomol-
ogy ring of a small cover over a product of simplices from (2.13). The function λ
determines the following m × m vector matrix A.

A :=

⎛⎜⎜⎜⎝
α1

1 α1
2 . . . α1

m

α2
1 α2

2 . . . α2
m

...
... . . .

...
αm

1 αm
2 . . . αm

m

⎞⎟⎟⎟⎠
m×m

.

Therefore, by the arguments in [5, Proposition 5.1], A is conjugate to a unipotent
lower triangular vector matrix of the following form:

Ã :=

⎛⎜⎜⎜⎝
1 0 . . . 0
β2

1 1 . . . 0
...

... . . .
...

βm
1 βm

2 . . . 1

⎞⎟⎟⎟⎠
m×m

, (2.15)

where βk
j = (βk

j1, βk
j2, . . . , βk

jnk
)t ∈ Z

nk
2 and 1 = (1, . . . , 1)t ∈ Z

nk
2 for k =

1, . . . , m. The matrix Ã is called the Bott matrix. Thus, the ideal J̃ is generated
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by the coordinates of the following matrix.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1 0 · · · 0 · · · · · · 0 0
0 1 · · · 0 1 0 · · · 0 · · · · · · 0 0
...

...
. . .

...
...

...
. . .

...
. . .

. . .
...

...
0 0 · · · 1 1 0 · · · 0 · · · · · · 0 0
0 0 · · · 0 β2

11 1 · · · 1 · · · · · · 0 0
...

...
. . .

...
...

...
. . .

...
. . .

. . .
...

...
0 0 · · · 0 β2

1n2 0 · · · 1 · · · · · · 0 0
...

...
. . .

...
...

...
. . .

...
. . .

. . .
...

...
...

...
. . .

...
...

...
. . .

...
. . .

. . .
...

...
0 0 · · · 0 βm

11 0 · · · βm
21 · · · · · · 0 1

...
...

. . .
...

...
...

. . .
...

. . .
. . .

...
...

0 0 · · · 0 βm
1nm

0 · · · βm
2nm

· · · · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×(n+m)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...
xN1

y1

xN1+1

...
y2

...

...

...
xNm

ym

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n+m)×1

.

Let αj := xNj−1+1xNj−1+2 · · ·xNj
yj for j = 1, . . . , m. Here αj ’s are generators of

the ideal I in (2.13). From the above matrix multiplication, the first n1 elements
are x1 + y1 = 0, x2 + y1 = 0,. . . , xN1 + y1 = 0. Therefore, we get x1 = x2 = · · · =
xN1 = y1.

So,

α1 = x1x2 · · ·xn1y1 = yn1+1
1 .

We have the following using (2.12).

αj = xNj−1+1xNj−1+2 · · ·xNj
yj

= (yj + βj
11y1 + βj

21y2 + · · · + βj
(j−1)1yj−1)(yj + βj

12y1 + βj
22y2

+ · · · + βj
(j−1)2yj−1) · · · (yj + βj

1nj
y1 + βj

2nj
y2 + · · · + βj

(j−1)nj
yj−1)yj ,

for j = 2, . . . , m. Now the least power of yj in αj is nj + 1. Our claim is that
y

nj

j �= 0. If not, let y
nj

j = 0. Then y
nj

j ∈ I. But the least power of yj which appears
as a term in a polynomial in the ideal I is y

nj+1
j . This is a contradiction. Hence,

y
nj

j /∈ I, i.e. y
nj

j �= 0 in H∗(Mn(P, λ); Z2) for j = 1, 2, . . . , m. �

2.3. Real moment angle manifolds and complexes

We recall the notion of real moment angle complexes. Let r be a positive integer
and K be a simplicial complex with vertex set [r] = {1, . . . , r}. For each simplex
σ ∈ K, we define

(D1, S0)σ =
{
(x1, . . . , xr) ∈ (D1)r | xi ∈ S0 when i /∈ σ

}
.

Then the set

RZK :=
⋃

σ∈K

(D1, S0)σ ⊆ (D1)r
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is called the real moment angle complex of K. The space RZK has a natural Z
r
2-

action induced from the Z
r
2-action on (D1)r.

Let P be a simple polytope with facets {F1, . . . , Fr}. Then the set

KP :=
{
σ = {i1, . . . , ik} | Fi1 ∩ · · · ∩ Fik

�= ∅}
is a simplicial complex on {1, . . . , r}, see [3, Chapter 1]. The set KP is called the
dual of P , and RZKP

has a manifold structure. The space RZKP
is called the real

moment angle manifold for P .

Proposition 2.7. Let Mn(P, λ) be a small cover over a simple polytope P . Then
there is a subgroup Zλ of Z

r
2 of rank r − n such that Zλ acts on RZKP

freely and
RZKP

/Zλ
∼= Mn(P, λ).

Proof. This is similar to the proof of [3, Proposition 6.5], and [24,
Proposition 2.4]. �

We note that RZKΔn = S
n and RZKP1×P2

= RZKP1
× RZKP2

. Let Mn(P, λ) be
a small cover over an n-dimensional polytope

∏m
j=1 Δnj for j = 1, . . . , m. Then,

the number of facets of
∏m

j=1 Δnj is n + m, and the real moment angle manifold
RZKP

is
∏m

j=1 S
nj . By proposition 2.7, Mn(P, λ) can be realized as the orbit space

of the moment angle manifold
∏m

j=1 S
nj by a free Z

m
2 -action. More precisely, the

action of Z
m
2 on

∏m
j=1 S

nj is given by

(g1, g2, . . . , gm)((x1
0, . . . , x

1
n1

), . . . , (xm
0 , . . . , xm

nm
))

= ((g1x
1
0, (g

α1
11

1 · · · gα1
m1

m ) · x1
1, . . . , (g

α1
1n1

1 · · · gα1
mn1

m ) · x1
n1

), . . . ,

(gm · xm
0 , (gαm

11
1 · · · gαm

m1
m ) · xm

1 , . . . , (g
αm

1nm
1 · · · gαm

mnm
m ) · xm

nm
)) (2.16)

where (g1, g2, . . . , gm) ∈ Z
m
2 and (xj

0, . . . , xj
nj

) ∈ S
nj for j = 1, . . . , m, see [10,

Remark 2.3]. This Z
m
2 -action on

∏m
j=1 S

nj is free and one has
∏m

j=1 S
nj /Z

m
2

∼=
Mn(P, λ).

3. Equivariant LS-category of small covers

In this section, we recall some basics of LS-category following [6]. Then, we compute
the LS-category and the equivariant LS-category of a small cover over a simple
polytope. Next, we compute the LS-category of the real moment angle manifold for
r-gon and the equivariant LS-category of the real moment angle complex.

Let G be a compact topological group acting continuously on a Hausdorff topo-
logical space Y . In this case, Y is called a G-space. A subset U of a G-space Y is
called G-invariant if GU ⊆ U . The homotopy H : U × I → Y is called G-homotopy
if for any g ∈ G, y ∈ U and t ∈ I, we have gH(y, t) = H(gy, t). A G-invariant
open subset U of Y is called G-categorical if there exists an equivariant homo-
topy H : U × I → Y such that H0 is the inclusion, and H1 : U → Y has the image
in a single G-orbit. In particular, U is called categorical if G is trivial. Here we
denote the orbit of an element y ∈ Y by O(y).
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Definition 3.1. The equivariant LS-category of a G-space Y , denoted by catG(Y ),
is the least positive number of G-categorical invariant open sets required to cover
Y . If no such covering exists, then catG(Y ) = ∞.

In particular, if G is trivial, then catG(Y ) is called the LS-category of Y , denoted
by cat(Y ).

Let Y be a space and R be a commutative ring. The least integer n such that
all (n + 1)-fold cup products vanish in H∗(Y ;R) is called the cup-length of Y with
coefficients in R, denoted by clR(Y ). If no such n exists, we write clR(Y ) = ∞. The
cup-length gives a lower bound for LS-category, as follows:

Proposition 3.2. The cup-length of a topological space Y is less than the LS-
category of Y , i.e. clR(Y ) + 1 � cat(Y ), see [6, Proposition 1.5].

Proposition 3.3. If Y is a manifold, then cat(Y ) � dim(Y ) + 1, see [6,
Theorem 1.7].

Theorem 3.4. Let Mn(P, λ) be an n-dimensional small cover over a simple
polytope P . Then cat(Mn(P, λ)) = n + 1.

Proof. Since P is a simple polytope, at each vertex, exactly n many facets intersect.
Let v be a vertex of P , and v = Fs1 ∩ · · · ∩ Fsn

where Fs1 , . . . , Fsn
are unique n

facets of P . Let mv = ρ−1(v) and Mi = ρ−1(Fsi
) for i = 1, . . . , n. Here the Z

n
2 -

action on Mn(P, λ) is locally standard. So, mv is a fixed point, and M1, . . . , Mn

intersect to mv transversely. Therefore, the Poincare dual of Mi represents a
non-zero cohomology class in H1(Mn(P, λ); Z2). So by definition of cup-length,
n � clZ2(M

n(P, λ)). Therefore, by proposition 3.2, n + 1 � cat(Mn(P, λ)). Also
by proposition 3.3, we have cat(Mn(P, λ)) � dim(Mn(P, λ)) + 1 = n + 1. Hence,
cat(Mn(P, λ)) = n + 1. �

We remark that the LS-category of small covers has been studied in [22]. However,
it is written in Chinese. So, we write a proof.

We recall a result from [1], which helps us to calculate the equivariant LS-category
of a small cover over a simple polytope.

Proposition 3.5 [1, Theorem 3.3]. Let Y be a G space and
{
[O(yi)]

}
i∈A be the

collection of all minimal orbit classes in Y . Let

Yi =
⋃

O(y)∈[O(yi)]

O(y).

Then

#A �
∑
i∈A

catG(Yi) � catG(Y )

where #A is the cardinality of A.

Theorem 3.6. Let Mn(P, λ) be an n-dimensional small cover over a simple
polytope P with k vertices. Then catZn

2
(Mn(P, λ)) = k.
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Proof. Let M := Mn(P, λ). We know that there is a bijection between the fixed
point set MZ

n
2 and V (P ). Since the fixed points are isolated and minimal orbits, by

proposition 3.5, we have catZ
n
2
(M) � |V (P )|. So, it is enough to show that for any

v ∈ MZ
n
2 , there is a Z

n
2 -categorical subset Xv of M such that M =

⋃
v∈MZ

n
2 Xv. Let

ρ : M → P be the orbit map. Now for v ∈ MZ
n
2 , let

Cv =
⋃

ρ(v)/∈F

F, Uv = P − Cv, and Xv = ρ−1(Uv),

where F is a face of P . Here Xv is Z
n
2 -invariant subset of M . Since Uv is a convex

subset of P , it is contractible to v. So there exists a homotopy h : Uv × I → P such
that h(x, 0) = x and h(x, 1) = v for all x ∈ Uv and preserves the face structure
of Uv × I. So, for any face F of Uv, we have h(x, t) ∈ F for x ∈ F, t ∈ I. Thus,
by proposition 1.8 of [8], we can say Xv

∼= (Uv × Z
n
2 )/ ∼. Therefore, h induces a

homotopy

h × Id : Uv × I × Z
n
2 → P × Z

n
2

defined by (x, (r′, t)) �→ (h(x, r′), t). Since for each face F of Uv, we have

x ∈ F ⇒ h(x, r′) ∈ F, for all r′ ∈ I,

h × Id induces a homotopy H : Xv × I → M with ([x, t], r′) �→ [h(x, r′), t]. Since

gH([x, t], r′) = g[h(x, r′), t] = [h(x, r′), gt] = H([x, gt], r′) = H(g[x, t], r′),

the map H is a Z
n
2 -homotopy. Also H(x, 0) = x, H(x, 1) = ρ−1(v) = v, for all x ∈

Xv. Thus, Xv is Z
n
2 -categorical open invariant subset of M . Since {Xv | v ∈ V (P )}

covers M , catZ
n
2
(M) = |V (P )| = k. �

Proposition 3.7. Let P be an r-gon and RZKP
be a moment angle manifold. Then

cat(RZKP
) = 3.

Proof. We know the cohomology ring H∗(RZKP
; Z2) is generated by elements

of degree only 0, 1 and 2. We can get two elements of degree 1 such that
their cup product is non-zero in H∗(RZKP

; Z2), see [4, Section 3]. Therefore,
2 � clZ2(RZKP

). Then, we have 3 � cat(RZKP
). Also dim(RZKP

) = dim(P ) = 2.
Therefore, cat(RZKP

) � 3. Hence, cat(RZKP
) = 3. �

Remark 3.8. Let K be a triangulated d-sphere for d � 2 or a connected sum of
joins of such spheres. If K is k-Golod over Z2 (i.e. length k + 1 cup products of
positive degree elements in H∗(RZK ; Z2) vanish), then k � clZ2(RZK). Thus, k +
1 � cat(RZK), see [2, Theorem 4.2].

Theorem 3.9. Let S be the set of all maximal simplices of a simplicial complex K
on [r]. Then

catZr
2
(RZK) = |S|.
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Proof. Note that if τ is a face of σ in K, then (D1, S0)τ ⊆ (D1, S0)σ. So we have

RZK =
⋃
σ∈S

(D1, S0)σ ⊆ (D1)r.

The topology on RZK is the subspace topology of (D1)r. Also, any simplex of K
is a face of a maximal simplex. So the set

{(D1, S0)σ | σ ∈ S}
is an open covering for RZK . Moreover, (D1, S0)σ is a Z

r
2-invariant subset which

is equivariantly contractible to the orbit (S0)σ in RZK where

(S0)σ = {(x1, . . . , xr) ∈ RZK | xi = 0 if i ∈ σ and |xi| = 1 if i /∈ σ}.
So we obtain that

catZ
r
2
(RZK) � |S|.

Note that the set {(S0)σ | σ ∈ S} is the set of all minimal orbits of RZK with
respect to Z

r
2-action. So, by proposition 3.5, we have

catZ
r
2
(RZK) � |S|. �

4. Topological complexity of small covers

In this section, we recall the definition of topological complexity and zero-divisors-
cup-length. Next, we try to give bounds for the topological complexity of a class of
small covers over a product of simplices and real Bott manifolds.

Definition 4.1. Let Y be a path-connected space. The topological complexity of the
motion planning in Y is the least integer k such that Y × Y can be covered by k
open subsets U1, . . . , Uk on each of which there exists a section si : Ui → PY such
that π ◦ si is homotopic to the inclusion idUi

. If no such integer exists, then we set
TC(Y ) = ∞.

We note that in the above definition, we consider non-normalized topological
complexity. The cup product map

∪ : H∗(Y ;R) ⊗ H∗(Y ;R) → H∗(Y ;R) (4.1)

is an algebra homomorphism whose kernel is called the ideal of zero-divisors of
H∗(Y ;R). The multiplicative structure on the left in (4.1) is given by the formula
(α ⊗ β) · (γ ⊗ δ) = (−1)|β|.|γ|αγ ⊗ βδ. Here |β| and |γ| denote the degrees of the
cohomology classes β and γ, respectively.

Definition 4.2. The zero-divisors-cup-length of H∗(Y ;R), denoted by zclR(Y ),
is the length of the longest non-trivial product in the ideal of the zero-divisors of
H∗(Y ;R).

The following proposition gives a lower bound and an upper bound for TC(Y ).

https://doi.org/10.1017/prm.2023.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.124


Various topological complexities 13

Proposition 4.3 [11, Theorem 4,5,7]. If Y is a manifold, then we have

max{cat(Y ), zclR(Y ) + 1} � TC(Y ) � 2dim(Y ) + 1.

Proposition 4.4 [11, Theorem 11]. For any path-connected metric spaces
Y1, . . . , Ym, we have

TC(Y1 × · · · × Ym) � TC(Y1) + · · · + TC(Ym) − (m − 1).

Proposition 4.5. Let Mn(P, λ) be an n-dimensional small cover over a simple
polytope P . Then

n + 1 � TC(Mn(P, λ)) � 2n + 1.

Proof. The proof follows from theorem 3.4 and proposition 4.3. �

Now we calculate the topological complexity of several small covers over a product
of two simplices. Consider the set S := {n ∈ N | (n

i

)
is even for 0 < i < n}. Let

n � 2r − 1 < 2n, nj � 2rj − 1 < 2nj for j = 1, 2, and n = n1 + n2. Note that
(
2s

i

)
is even for 0 < i < 2s.

Theorem 4.6. Let Mn(P, λ) be a small cover other than RP
n1 × RP

n2 over
P = Δn1 × Δn2 .

(1) Let n2 ∈ S with n2 > n1. Then 2r1 + 2r2 − 1 � TC(Mn(P, λ)).

(2) Let n2 ∈ S with n2 divides n1. Then 2r � TC(Mn(P, λ)).

(3) Let n2 ∈ S + 1 with n2 > n1 + 1. Then, 2r � TC(Mn(P, λ)).

(4) Let n2 ∈ S + 2 with n2 > n1 + 2. Then, 2r � TC(Mn(P, λ)).

In particular, if n = 2s−1, then for the cases (2), (3) and (4), we have

2n � TC(Mn(P, λ)) � 2n + 1.

Proof. In the cohomology ring H∗(Mn(P, λ); Z2) described in proposition 2.2, the
ideal Ĩ is generated by α1 = x1x2 · · ·xn1y1 and α2 = xn1+1xn1+2 · · ·xn1+n2y2. The
ideal J̃ is generated by

x1 = x2 = · · · = xn1 = y1, and xn1+1 = xn1+2 = · · · = xn1+n2 = y1 + y2.

Therefore, α1 = yn1+1
1 = 0 and yn1

1 �= 0 in H∗(Mn(P, λ); Z2). From (2.6), and the
Poincare duality, we have x1 · · ·xn1xn1+1 · · ·xn1+n2 �= 0. So, yn1

1 (y1 + y2)n2 �= 0.

https://doi.org/10.1017/prm.2023.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.124


14 K. Brahma, B. Naskar, S. Sarkar and S. Sau

Now,

yn1
1 (y1 + y2)n2 = yn1

1 {yn2
2 + y1 · f(y1, y2)}

(where f(y1, y2) is a function of y1 and y2)

= yn1
1 yn2

2 + yn1+1
1 · f(y1, y2)

= yn1
1 yn2

2 (as yn1+1
1 = 0).

Therefore, we get the following:

yn1
1 yn2

2 �= 0. (4.2)

Let aj := 1 ⊗ yj − yj ⊗ 1 for j = 1, 2. Then aj is in the ideal of the zero-divisors
of H∗(Mn(P, λ); Z2). Let c = 2r − 1, and cj = 2rj − 1 for j = 1, 2.

(1) Let n2 ∈ S with n2 > n1. Here,

α2 = (y1 + y2)n2y2

= (yn2
1 + yn2

2 )y2 (as
(

n2

i

)
is even for 0 < i < n)

= yn2+1
2 ( as yn2

1 = 0, since n2 � n1 + 1 and yn1+1
1 = 0).

Therefore, yn2+1
2 = 0. Now, for j = 1, 2,

a
cj

j = (1 ⊗ yj − yj ⊗ 1)cj =
cj∑

kj=0

(−1)cj−kj

(
cj

kj

)
(ycj−kj

j ⊗ y
kj

j ).

Now, the binomial coefficient
(
2rj−1

ij

)
is odd for all 0 � ij � cj for j = 1, 2.

The binomial expansion of a
cj

j contains the term (ycj−nj

j ⊗ y
nj

j ) which is
non-zero. Now, by (4.2), yn1

1 yn2
2 �= 0. So, ac1

1 ac2
2 contains the term yn1

1 yn2
2 ⊗

(yc1−n1
1 yc2−n2

2 ) which is non-zero and there is no other term of this form in
the expression of ac1

1 ac2
2 .

Hence, zero-divisors-cup-length of H∗(Mn(P, λ); Z2) is greater than or
equal to c1 + c2. Therefore, by proposition 4.3, we have, 2r1 + 2r2 − 1 �
TC(Mn(P, λ)).

(2) Now, consider the case when n2 ∈ S with n2 divides n1. Let n1 = n̄n2 for
some n̄ ∈ Z. Since

(
n2
i

)
is even for 0 < i < n2, so,

α2 = (y1 + y2)n2y2 = (yn2
1 + yn2

2 )y2 = yn2
1 y2 + yn2+1

2 .

So, yn2+1
2 = yn2

1 y2 in H∗(Mn(P, λ); Z2). Thus,

yn1
1 yn2

2 = yn̄n2
1 yn2

2 = yn̄n2
1 yn̄

2 yn2−n̄
2 = yn̄n2+n̄

2 yn2−n̄
2 = yn̄n2+n2

2 = yn1+n2
2 = yn

2 .

Now, by (4.2), yn1
1 yn2

2 �= 0. Thus, yn
2 �= 0. Now,

ac
2 = (1 ⊗ y2 − y2 ⊗ 1)c =

c∑
k=0

(−1)c−k

(
c

k

)
(yc−k

2 ⊗ yk
2 ).

Therefore, by similar arguments as in (1), we get 2r � TC(Mn(P, λ)).

https://doi.org/10.1017/prm.2023.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.124


Various topological complexities 15

(3) Let n2 ∈ S + 1 with n2 > n1 + 1. Now,

α2 = (y1 + y2)n2y2

= (y1 + y2)n2−1(y1 + y2)y2

= (yn2−1
1 + yn2−1

2 )(y1 + y2)y2 (as
(

n2 − 1
i

)
is even for 0 < i < n2 − 1)

= (y1 + y2)yn2
2 ( as yn2−1

1 = 0, since n2 − 1 � n1 + 1 and yn1+1
1 = 0)

= y1y
n2
2 + yn2+1

2 .

So, yn2+1
2 = y1y

n2
2 in H∗(Mn(P, λ); Z2). Thus,

yn1
1 yn2

2 = yn1−1
1 (y1y

n2
2 ) = yn1−1

1 yn2+1
2 = · · · = yn1+n2

2 = yn
2 .

Therefore, by similar arguments as in (2), we get 2r � TC(Mn(P, λ)).

(4) Let n2 ∈ S + 2 with n2 > n1 + 2. Now,

α2 = (y1 + y2)n2y2

= (y1 + y2)n2−2(y1 + y2)2y2

= (yn2−2
1 + yn2−2

2 )(y2
1 + y2

2)y2 (as
(

n2 − 2
i

)
is even for 0 < i < n2 − 2)

= (y2
1 + y2

2)yn2−1
2 ( as yn2−2

1 = 0, since n2 − 2 � n1 + 1 and yn1+1
1 = 0)

= y2
1yn2−1

2 + yn2+1
2 .

So, yn2+1
2 = y2

1yn2−1
2 in H∗(Mn(P, λ); Z2). Let n1 be even. Then,

yn1
1 yn2

2 = yn1−2
1 (y2

1yn2−1
2 )y2 = yn1−2

1 yn2+1
2 y2 = · · · = yn1+n2

2 = yn
2 .

Therefore, by similar arguments as in (2), we get 2r � TC(Mn(P, λ)).
Now, let n1 be odd. Then,

yn1
1 yn2

2 = yn1−2
1 (y2

1yn2−1
2 )y2 = yn1−2

1 yn2+1
2 y2 = · · · = y1y

n1+n2−1
2 = y1y

n−1
2 .

Now, by (4.2), yn1
1 yn2

2 �= 0. Therefore, y1y
n−1
2 �= 0. So, yn−1

2 �= 0. We know
n � 2r − 1 < 2n, i.e. 2r − 1 � 2n − 1. If 2r − 1 = 2n − 1, then n is even. Since
n1 is odd, so n2 is odd, which is not true. Therefore, 2r − 1 � 2n − 2. Now,

ac
2 = (1 ⊗ y2 − y2 ⊗ 1)c =

c∑
k=0

(−1)c−k

(
c

k

)
(yc−k

2 ⊗ yk
2 ).

Here, the binomial expansion of ac
2 contains the term (yc−n+1

2 ⊗ yn−1
2 ) which is

non-zero, and there is no other same term in the expression of ac
2. So ac

2 is non-
zero. Therefore, by similar arguments as in (2), we get 2r � TC(Mn(P, λ)).

In particular, if n = 2s−1 then n � 2s − 1 < 2n. Therefore, by (2), (3) and
(4) we have 2s � TC(Mn(P, λ)). Thus, 2n � TC(Mn(P, λ)) � 2n + 1 for
any s � 1. �
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Proposition 4.7 [16, Corollary 8.1, 8.2]. If n equals 1, 3 or 7, then TC(RP
n) =

n + 1, and if n is a power of 2, then TC(RP
n) = 2n.

Proposition 4.8. Let the small cover Mn(P, λ) over the polytope P =
∏m

j=1 Δnj

be of the form RP
n1 × · · · × RP

nm .

(1) If nj = 2sj−1 for all j ∈ {1, 2, . . . , m}, then TC(Mn(P, λ)) = 2s1 + · · · +
2sm − (m − 1).

(2) If nj = 1, 3 or 7 for all j ∈ {1, 2, . . . , m}, then TC(Mn(P, λ)) = n + 1.

Proof. Here Mn(P, λ) = RP
n1 × · · · × RP

nm . In the cohomology ring H∗

(Mn(P, λ); Z2), the ideal Ĩ is generated by αj = xNj−1+1xNj−1+2 · · ·xNj
yj for

j = 1, . . . , m, and the ideal J̃ is generated by

xNj−1+1 = xNj−1+2 = · · · = xNj
= yj . (4.3)

Therefore, αj = y
nj+1
j = 0 in H∗(Mn(P, λ); Z2) for j = 1, . . . , m. Let

aj := 1 ⊗ yj − yj ⊗ 1

for j = 1, . . . , m. Then aj belongs to the ideal of the zero-divisors of
H∗(Mn(P, λ); Z2). Let cj = 2sj − 1 for j = 1, . . . , m. Now, by lemma 2.6, y

nj

j �= 0.
From (2.6), and the Poincare duality, we have

x1 · · ·xN1xN1+1 · · ·xN2xN2+1 · · ·xNm−1+1 · · ·xNm
�= 0.

Using (4.3), we have, yn1
1 · · · ynm

m �= 0. Therefore, by similar arguments as in the
proof of theorem 4.6 (1), we have ac1

1 ac2
2 · · · acm

m �= 0. Thus, c1 + · · · + cm + 1 �
TC(Mn(P, λ)).
That is

2s1 + · · · + 2sm − (m − 1) � TC(Mn(P, λ)).

Also, from proposition 4.4, we have

TC(Mn(P, λ)) � TC(RP
n1) + · · · + TC(RP

nm) − (m − 1). (4.4)

(1) If nj = 2sj−1 then nj � 2sj − 1 < 2nj . Now by proposition 4.7, we have
TC(RP

nj ) = 2sj . So, the right inequality can be obtained using (4.4). Hence,

TC(Mn(P, λ)) = 2s1 + · · · + 2sm − (m − 1).

(2) If nj = 1, 3 or 7, then there exists some sj which satisfies nj � 2sj − 1 < 2nj

and nj + 1 = 2sj . So, 2s1 + · · · + 2sm = n1 + · · · + nm + m = n + m. Thus,
we have n + m − (m − 1) = n + 1 � TC(Mn(P, λ)). By proposition 4.7, we
have TC(RP

nj ) = nj + 1. So, the right inequality can be obtained using (4.4).
Hence,

TC(Mn(P, λ)) = n + 1.

�
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We remark that if Mn(P, λ) is not RP
n1 × · · · × RP

nm then computation of
TC(Mn(P, λ)) is a challenging problem.

We recall that the n-th stage real Bott manifold is a small cover Mn(P, λ) over
the polytope P = (Δ1)n (an n-dimensional cube) and λ be as in (2.7). In this case,
the elements of the (n × n) matrix coming from (2.15) are scalars. Note that the
diagonal elements of this matrix are 1 that follows from the definition of λ. Since
the Bott matrix is unique up to conjugation, different βm

l
′s give different real Bott

manifolds up to equivariant diffeomorphism. Now we calculate some lower bounds
(possibly tight) of the topological complexity of the real Bott manifolds.

Theorem 4.9. For n � 3, let the elements βk+1
k in the Bott matrix (2.15) be 1 for

k = 1, . . . , n − 1, and the remaining elements βm
l be zero for l = 1, . . . , n − 2, and

m = 3, . . . , n. If n � 2r − 1 < 2n, then the topological complexity of the real Bott
manifold Mn(P, λ) is greater than or equal to 2r. In particular, if n = 2s−1, then
2n � TC(Mn(P, λ)) � 2n + 1.

Proof. In the cohomology ring H∗(Mn(P, λ); Z2) as in proposition 2.2, the gener-
ators of the ideal Ĩ are αj = xjyj for j = 1, . . . , n, and the ideal J̃ is generated by
the elements x1 + y1 and xj + yj + yj−1 for j = 2, . . . , n. Now for j ∈ {2, . . . , n},

αj = xjyj = (yj−1 + yj)yj = yj−1yj + y2
j .

Our claim is that y2
j �= 0 for j = 2, . . . , n. For this, it is enough to show that

yj−1yj �= 0 for j = 2, . . . , n as αj = 0 in H∗(Mn(P, λ); Z2). Note that in this case,
P =

∏n
1 Δ1, an n-cube. So, the facets corresponding to the indeterminates xj and

yj don’t intersect. But the facets corresponding to the indeterminates yj−1 and yj

intersect to an (n − 2)-dimensional face. So yj−1yj is non-zero in H∗(Mn(P, λ); Z2).
Therefore, y2

j �= 0 for j = 2, . . . , n.
Since P is an n-dimensional simple polytope, there is a vertex where the

facets corresponding to the indeterminates y1, y2, . . . , yn intersect. In other words,
y1y2 · · · yn �= 0, by Poincare duality. From the relation yj−1yj = y2

j for j = 2, . . . , n,
we have y1y2 · · · yn = yn

n . Therefore, yn
n �= 0.

Let an := 1 ⊗ yn − yn ⊗ 1. Then an is in the ideal of the zero-divisors of
H∗(Mn(P, λ); Z2). Then,

a2r−1
n = (1 ⊗ yn − yn ⊗ 1)2

r−1

=
2r−1∑
k=0

(−1)2
r−1−k

(
2r − 1

k

)
(1 ⊗ yn)k(yn ⊗ 1)2

r−1−k

=
2r−1∑
k=0

(−1)2
r−1−k

(
2r − 1

k

)
(y2r−1−k

n ⊗ yk
n).

The binomial coefficients
(
2r−1

i

)
are odd for all 0 � i � 2r − 1. The binomial

expansion of a2r−1
n contains the term (y2r−1−n

n ⊗ yn
n) which is non-zero and there

is no other term of this form in the expression of a2r−1
n . So a2r−1

n is non-zero.
Therefore, zero-divisors-cup-length of H∗(Mn(P, λ); Z2) is greater than or equal to
2r − 1. Hence, by proposition 4.3, we have 2r � TC(Mn(P, λ)).
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If n = 2s−1 then r satisfies n � 2s − 1 < 2n. Thus, 2s = 2n � TC(Mn(P, λ)) �
2n + 1. �

We recall that for n = 3, the Bott matrix is given by
(

1 0 0
β2
1 1 0

β3
1 β3

2 1

)
. We denote the

corresponding real Bott manifold M3(P, λ) by M3(β2
1 , β3

1 , β3
2).

Theorem 4.10. 5�TC(M3(1, 0, 0)),TC(M3(0, 1, 0)), TC(M3(0, 0, 1)),TC(M3

(0, 1, 1)) � 7.

Proof. The generators of the ideal Ĩ in proposition 2.2 are αj = xjyj where
j = 1, 2, 3. Let

aj := 1 ⊗ yj − yj ⊗ 1

for j = 1, 2, 3. Then aj is in the ideal of the zero-divisors of H∗(M3(β2
1 , β3

1 , β3
2); Z2).

Note that TC(M3(β2
1 , β3

1 , β3
2)) � 7 by proposition 4.5. The manifolds M3(1, 0, 0),

M3(0, 1, 0), M3(0, 0, 1), and M3(0, 1, 1) are diffeomorphic to each other by
[23, Theorem 4].

Consider the real Bott manifold M3(1, 0, 0). Then from proposition 2.2, the ideal
J̃ is generated by the elements x1 + y1, x2 + y1 + y2, and x3 + y3. So, x1 = y1,
x2 = y1 + y2 and x3 = y3 in H∗(M3(1, 0, 0); Z2). Therefore, we have y2

1 = y2
3 = 0,

and y2
2 = y1y2. Now,

a3
2a3 = (1 ⊗ y3

2 − y2 ⊗ y2
2 + y2

2 ⊗ y2 − y3
2 ⊗ 1)(1 ⊗ y3 − y3 ⊗ 1)

= y1y2 ⊗ y2y3 + y2y3 ⊗ y1y2 − y1y2y3 ⊗ y2 − y2 ⊗ y1y2y3.

So, the product a3
2a3 contains an element y1y2 ⊗ y2y3 which is non-zero. Therefore,

the zero-divisors-cup-length of H∗(TC(M3(1, 0, 0)); Z2) is greater than or equal
to 4. Hence, by proposition 4.3, we have 5 � TC(M3(1, 0, 0)). �

We remark that M3(1, 1, 0) is the 3-dimensional Klein Bottle, and [7, Theorem
3.1] gives TC(M3(1, 1, 0)) = 6.

Theorem 4.11. 6 � TC(M3(1, 0, 1)), TC(M3(1, 1, 1)) � 7.

Proof. The generators of the ideal Ĩ in proposition 2.2 are αj = xjyj where
j = 1, 2, 3. Let aj := 1 ⊗ yj − yj ⊗ 1 for j = 1, 2, 3. Then aj is in the ideal of the
zero-divisors of H∗(M3(P, λ); Z2). Note that TC(M3(β2

1 , β3
1 , β3

2)) � 7 by propo-
sition 4.5. The manifolds M3(1, 0, 1) and M3(1, 1, 1) are diffeomorphic by [23,
Theorem 4].

Consider the real Bott manifold M3(1, 0, 1). Then from proposition 2.2, the
ideal J̃ is generated by the elements x1 + y1, x2 + y1 + y2 and x3 + y2 + y3. So,
x1 = y1, x2 = y1 + y2 and x3 = y2 + y3 in H∗(M3(1, 0, 1); Z2). Now,

a2
2a

3
3 = (1 ⊗ y2

2 + y2 ⊗ 1)(1 ⊗ y3
3 − y3 ⊗ y2

3 + y2
3 ⊗ y3 − y3

3 ⊗ 1)

= (y1y2 + y2y3) ⊗ y1y2y3 − y1y2y3 ⊗ (y1y2 + y2y3).

So, the product a2
2a

3
3 contains an element y1y2 ⊗ y1y2y3 which is non-zero. There-

fore, the zero-divisors-cup-length of H∗(M3(1, 0, 1); Z2) is greater than or equal to
5. Hence, by proposition 4.3, we have 6 � TC(M3(1, 0, 1)). �
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Now, for n = 4, the Bott matrix is given by

⎛⎝ 1 0 0 0
β2
1 1 0 0

β3
1 β3

2 1 0

β4
1 β4

2 β4
3 1

⎞⎠. In this case, we denote

M4(P, λ) by M4(β2
1 , β3

1 , β3
2 , β4

1 , β4
2 , β4

3).

Theorem 4.12. Let β2
1 = 1. If at least one of {β3

1 , β3
2} is 1, and at least two of

{β4
1 , β4

2 , β4
3} are 1, then 8 � TC(M4(1, β3

1 , β3
2 , β4

1 , β4
2 , β4

3)) � 9.

Proof. The generators of the ideal Ĩ in the cohomology ring H∗(M4(1, β3
1 , β3

2 , β4
1 ,

β4
2 , β4

3); Z2) are αj = xjyj where j = 1, 2, 3, 4. Let aj := 1 ⊗ yj − yj ⊗ 1 for
j = 1, 2, 3, 4. Then aj is in the ideal of the zero-divisors of H∗(M4(1, β3

1 , β3
2 , β4

1 ,
β4

2 , β4
3); Z2). Note that TC(M4(1, β3

1 , β3
2 , β4

1 , β4
2 , β4

3)) � 9 by proposition 4.5. By
[23, Theorem 5], it is enough to consider the following manifolds to prove the claim;
M4(1, 1, 0, 1, 1, 0), M4(1, 0, 1, 1, 1, 0), M4(1, 0, 1, 0, 1, 1), M4(1, 0, 1, 1, 0, 1),
and M4(1, 1, 1, 1, 1, 0)

(1) Consider the real Bott manifold M4(1, 1, 0, 1, 1, 0). Then from proposition
2.2, the ideal J̃ is generated by the elements x1 + y1, x2 + y1 + y2, x3 + y1 +
y3 and x4 + y1 + y2 + y4. So x1 = y1, x2 = y1 + y2, x3 = y1 + y3, and x4 =
y1 + y2 + y4 in H∗(M4(1, 1, 0, 1, 1, 0); Z2). Therefore, we have y2

1 = 0, y2
2 =

y1y2, y2
3 = y1y3, y2

4 = y1y4 + y2y4. Now,

a2a
3
3a

3
4 = (1 ⊗ y2 − y2 ⊗ 1)(1 ⊗ y3

3 − y3 ⊗ y2
3

+ y2
3 ⊗ y3 − y3

3 ⊗ 1)(1 ⊗ y3
4 − y4 ⊗ y2

4 + y2
4 ⊗ y4 − y3

4 ⊗ 1)

= y1y2y3y4 ⊗ y1y2y3 − y1y2y3 ⊗ y1y2y3y4 + y1y2y3y4 ⊗ y1y3y4

− y1y3y4 ⊗ y1y2y3y4.

So, the product a2a
3
3a

3
4 contains an element y1y2y3 ⊗ y1y2y3y4 which is non-

zero. Therefore, the zero-divisors-cup-length of H∗(M4(1, 1, 0, 1, 1, 0); Z2)
is greater than or equal to 7. Hence by proposition 4.3, we have 8 �
TC(M4(1, 1, 0, 1, 1, 0)).

(2) Consider the real Bott manifold M4(1, 0, 1, 1, 1, 0). Then from proposition
2.2, the ideal J̃ is generated by the elements x1 + y1, x2 + y1 + y2, x3 + y2 +
y3 and x4 + y1 + y2 + y4. So, x1 = y1, x2 = y1 + y2, x3 = y2 + y3 and x4 =
y1 + y2 + y4 in H∗(M4(1, 0, 1, 1, 1, 0); Z2). Now,

a2a
3
3a

3
4 = (1 ⊗ y2 − y2 ⊗ 1)(1 ⊗ y3

3 − y3 ⊗ y2
3 + y2

3 ⊗ y3 − y3
3 ⊗ 1)(1 ⊗ y3

4

− y4 ⊗ y2
4 + y2

4 ⊗ y4 − y3
4 ⊗ 1)

= y1y2y3y4 ⊗ (y1y2y3 + y2y3y4 + y1y3y4)

− (y1y2y3 + y2y3y4 + y1y3y4) ⊗ y1y2y3y4.

So, the product a2a
3
3a

3
4 contains an element y1y2y3 ⊗ y1y2y3y4 which is non-

zero. Therefore, the zero-divisors-cup-length of H∗(M4(1, 0, 1, 1, 1, 0); Z2)
is greater than or equal to 7. Hence, by proposition 4.3, we have 8 �
TC(M4(1, 0, 1, 1, 1, 0)).
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(3) Consider the real Bott manifold M4(1, 0, 1, 0, 1, 1). Then from proposition
2.2, the ideal J̃ is generated by the elements x1 + y1, x2 + y1 + y2, x3 + y2 +
y3 and x4 + y2 + y3 + y4. So, x1 = y1, x2 = y1 + y2, x3 = y2 + y3 and x4 =
y2 + y3 + y4 in H∗(M4(1, 0, 1, 0, 1, 1); Z2). Now,

a2a
3
3a

3
4 = (1 ⊗ y2 − y2 ⊗ 1)(1 ⊗ y3

3 − y3 ⊗ y2
3 + y2

3 ⊗ y3 − y3
3 ⊗ 1)(1 ⊗ y3

4

− y4 ⊗ y2
4 + y2

4 ⊗ y4 − y3
4 ⊗ 1)

= y1y2y3y4 ⊗ (y1y2y3 + y2y3y4 + y1y2y4) − (y1y2y3 + y2y3y4+

y1y2y4) ⊗ y1y2y3y4.

So, the product a2a
3
3a

3
4 contains an element y1y2y3 ⊗ y1y2y3y4 which is non-

zero. Therefore, the zero-divisors-cup-length of H∗(M4(1, 0, 1, 0, 1, 1); Z2)
is greater than or equal to 7. Hence, by proposition 4.3, we have 8 �
TC(M4(1, 0, 1, 0, 1, 1)).

(4) Consider the real Bott manifold M4(1, 0, 1, 1, 0, 1). Then from proposition
2.2, the ideal J̃ is generated by the elements x1 + y1, x2 + y1 + y2, x3 + y2 +
y3 and x4 + y1 + y3 + y4. So x1 = y1, x2 = y1 + y2, x3 = y2 + y3 and x4 =
y1 + y3 + y4 in H∗(M4(1, 0, 1, 1, 0, 1); Z2). Now,

a2a
3
3a

3
4 = (1 ⊗ y2 − y2 ⊗ 1)(1 ⊗ y3

3 − y3 ⊗ y2
3 + y2

3 ⊗ y3

− y3
3 ⊗ 1)(1 ⊗ y3

4 − y4 ⊗ y2
4 + y2

4 ⊗ y4 − y3
4 ⊗ 1)

= y1y2y3y4 ⊗ y1y2y4 − y1y2y4 ⊗ y1y2y3y4 + y1y2y3y4 ⊗ y1y3y4

− y1y3y4 ⊗ y1y2y3y4.

So, the product a2a
3
3a

3
4 contains an element y1y2y4 ⊗ y1y2y3y4 which is non-

zero. Therefore, the zero-divisors-cup-length of H∗(M4(1, 0, 1, 1, 0, 1); Z2)
is greater than or equal to 7. Hence, by proposition 4.3, we have 8 �
TC(M4(1, 0, 1, 1, 0, 1)).

(5) Consider the real Bott manifold M4(1, 1, 1, 1, 1, 0). Then from proposition
2.2, the ideal J̃ is generated by the elements x1 + y1, x2 + y1 + y2, x3 + y1 +
y2 + y3 and x4 + y1 + y2 + y4. So, x1 = y1, x2 = y1 + y2, x3 = y1 + y2 + y3

and x4 = y1 + y2 + y4 in H∗(M4(1, 1, 1, 1, 1, 0); Z2). Now,

a2a
3
3a

3
4 = (1 ⊗ y2 − y2 ⊗ 1)(1 ⊗ y3

3 − y3 ⊗ y2
3 + y2

3 ⊗ y3 − y3
3 ⊗ 1)(1 ⊗ y3

4

− y4 ⊗ y2
4 + y2

4 ⊗ y4 − y3
4 ⊗ 1)

= y1y2y3y4 ⊗ y2y3y4 − y2y3y4 ⊗ y1y2y3y4.

So, the product a2a
3
3a

3
4 contains an element y2y3y4 ⊗ y1y2y3y4 which is non-

zero. Therefore, the zero-divisors-cup-length of H∗(M4(1, 1, 1, 1, 1, 0); Z2)
is greater than or equal to 7. Hence, by proposition 4.3, we have 8 �
TC(M4(1, 1, 1, 1, 1, 0)).

�
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5. Symmetric topological complexity of small covers

In this section, we recall the definition of symmetric topological complexity. Then
we compute this invariant for a class of small covers.

Let Y be a path-connected space. The path fibration π : PY → Y × Y restricts
to a fibration

π′ : P ′Y → F (Y ; 2), (5.1)

where F (Y ; 2) = {(x, y) ∈ Y × Y | x �= y} is the space of ordered pairs of distinct
points in Y , and P ′Y is the subspace {γ : I → Y | γ(0) �= γ(1)} ⊆ PY consisting of
paths with distinct endpoints.

The group Z2 acts on F (Y ; 2) by permutation of factors, and acts on P ′Y by
sending a path γ to its inverse γ̄ given by γ̄(t) = γ(1 − t). So, the group Z2 act-
ing on the spaces P ′Y and F (Y ; 2) freely. Observe that π′ : P ′Y → F (Y ; 2) is an
equivariant map of free Z2-spaces. So, it induces a map

π′′ : P ′Y/Z2 → B(Y ; 2), (5.2)

where B(Y ; 2) denotes the orbit space F (Y ; 2)/Z2 of unordered pairs of distinct
points in Y . This map is also a fibration.

Definition 5.1. The symmetric topological complexity of Y , denoted by TCS(Y ),
is defined to be one plus the sectional category of the fibration π′′. In other words,
TCS(Y ) = 1 + secat(π′′).

We adopt the convention that the sectional category of p : E → B vanishes if and
only if E = B = ∅. The space B(Y ; 2) is empty if and only if Y is a single point, and
so in this case, TCS(Y ) = 1. If Y contains more than one point then secat(π′′) � 1,
and therefore TCS(Y ) � 2.

Example 5.2. Let Y be a contractible space. Then there exists a continuous map
y �→ γy ∈ PY such that γy(0) = y and γy(1) = y0. Then setting s(a, b) to be equal
to the concatenation of γa and the inverse path to γb gives a symmetric equivari-
ant section of (5.1). Therefore, for any contractible space Y with more than one
point, we have TCS(Y ) = 2. We note that if Y is a path-connected space with
TCS(Y ) = 2, then Y is contractible.

Let NY be the sub-ring of H∗(Y ) ⊗ H∗(Y ) spanned by the norm elements (i.e.
the elements of the form x ⊗ y + y ⊗ x with x �= y). The following result follows
from corollary 9, proposition 10 and theorem 17 in [13].

Proposition 5.3. Let Y be a closed smooth manifold. Then

max{TC(Y ), cl(NY ) + 2} � TCS(Y ) � 2dimY + 1.

Next, we calculate the symmetric topological complexity of the circle.

Corollary 5.4. If P is a 1-simplex, then M1(P, λ) = RP
1 and TCS(RP

1) = 3.
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Proof. Note that the non-zero element 1 ⊗ y1 + y1 ⊗ 1 is the norm element
of H∗(M1(P, λ); Z2) ⊗ H∗(M1(P, λ); Z2). So, by proposition 5.3, we get 3 �
TCS(M1(P, λ)). The small cover over a 1-simplex is RP

1 = S
1. Therefore, by

proposition 5.3, we get

TCS(M1(P, λ)) � 2dim(M1(P, λ)) + 1 = 3.

�

We note that the conclusion of corollary 5.4 can be obtained from [13,
Corollary 18].

Remark 5.5. The element 1 ⊗ yj + yj ⊗ 1 is same as 1 ⊗ yj − yj ⊗ 1 in NMn(P,λ).
Thus, the zero-divisors-cup-length of Mn(P, λ) is the same as the cup-length of
NMn(P,λ).

Theorem 5.6. Let Mn(P, λ) be a small cover other than RP
n1 × RP

n2 over
P = Δn1 × Δn2 .

(1) Let n2 ∈ S with n2 > n1. Then 2r1 + 2r2 � TCS(Mn(P, λ)).

(2) Let n2 ∈ S with n2 divides n1. Then 2r + 1 � TCS(Mn(P, λ)).

(3) Let n2 ∈ S + 1 with n2 > n1 + 1. Then, 2r + 1 � TCS(Mn(P, λ)).

(4) Let n2 ∈ S + 2 with n2 > n1 + 2. Then, 2r + 1 � TCS(Mn(P, λ)).

In particular, if n = 2s−1, then for the cases (2), (3) and (4), we have
TCS(Mn(P, λ)) = 2n + 1.

Proof. Let NMn(P,λ) denote the sub-ring of H∗(Mn(P, λ); Z2) ⊗ H∗(Mn(P, λ); Z2)
spanned by the norm elements. Consider the norm elements aj := 1 ⊗ yj + yj ⊗ 1
in NMn(P,λ) for j = 1, 2. Then the proof follows from theorem 4.6, proposition 5.3
and remark 5.5. �

Theorem 5.7. For n � 3, let the elements βk+1
k in the Bott matrix (2.15) be 1 for

k = 1, . . . , n − 1, and the remaining elements βm
l be zero for l = 1, . . . , n − 2 and

m = 3, . . . , n. If n � 2r − 1 < 2n, then the symmetric topological complexity of the
real Bott manifold Mn(P, λ) is greater than or equal to 2r + 1. In particular, if
n = 2s−1, then TCS(Mn(P, λ)) = 2n + 1.

Proof. The proof follows from theorem 4.9, proposition 5.3 and remark 5.5. �

Remark 5.8.

(1) From theorem 4.11, proposition 5.3 and remark 5.5, we get,

TCS(M3(1, 1, 0)) = TCS(M3(1, 0, 1)) = TCS(M3(1, 1, 1)) = 7.

(2) Let β2
1 = 1. If at least one of {β3

1 , β3
2} is 1, and at least two of {β4

1 , β4
2 , β4

3}
are 1. Then from theorem 4.12, proposition 5.3 and remark 5.5, we get,

TCS(M4(1, β3
1 , β3

2 , β4
1 , β4

2 , β4
3)) = 9.

https://doi.org/10.1017/prm.2023.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.124


Various topological complexities 23

6. D-topological complexity of small covers

In this section, we recall the D-topological complexity and the LS one-category of
a space. We compute LS one-category for generalized real Bott manifolds and for a
class of small covers. Then, we give some bounds for the D-topological complexity
of small covers over finite product of simplices.

Definition 6.1. Let Y be a path-connected space with the fundamental group
G = π1(Y, y0). The D-topological complexity, denoted by TCD(Y ), is defined as the
minimal number k such that Y × Y can be covered by k open subsets U1, . . . , Uk

with the property that for each i ∈ {1, ..., k} and for every choice of the base point
ui ∈ Ui, the homomorphism π1(Ui, ui) → π1(Y × Y, ui) induced by the inclusion
Ui → Y × Y takes values in a subgroup conjugate to the diagonal Δ ⊆ G × G.

Note that there is an isomorphism π1(Y × Y, ui) → π1(Y × Y, (y0, y0)) ∼= G × G
determined uniquely up to conjugation, and the diagonal inclusion Y → Y × Y
induces the inclusion G → G × G onto the diagonal Δ.

We recall the Lusternik–Schnirelmann one-category (in short LS one-category)
of a space which is denoted by cat1(Y ) for a space Y .

Definition 6.2. Let Y be a connected, locally path-connected, and semi-locally sim-
ply connected space with the universal cover p : Ỹ → Y . Then the LS one-category
is the sectional category of the map p. That is, cat1(Y ) = secat(p).

Similar to cat(Y ) and TC(Y ) there is a relation between cat1(Y ) and TCD(Y ).

Proposition 6.3 [15, Proposition 2.4, Proposition 2.11]. If Y is a connected,
locally path-connected, and semi-locally simply connected topological space, then

cat1(Y ) � TCD(Y ) � min{TC(Y ), cat1(Y × Y )}.

We recall a result that gives a lower bound for the sectional category of fibrations.

Proposition 6.4 [6, Proposition 9.14]. Let F → E
p−→ B be a fibration. If there

exists y1, . . . , yk ∈ H∗(B;R) with p∗(y1) = · · · = p∗(yk) = 0 and y1 ∪ · · · ∪ yk �= 0,
then secat(p) � k + 1.

The following result gives the computation of LS one-category of infinitely many
small covers.

Theorem 6.5. Let Mn(P, λ) be a small cover over a simple polytope P such that
RZKP

is simply connected. Then cat1(Mn(P, λ)) = n + 1.

Proof. Consider the principal Z
m
2 -bundle map p : RZKP

→ Mn(P ;λ) given by
proposition 2.7. So we get the induced graded ring homomorphism

p∗ : H∗(Mn(P, λ); Z2) → H∗(RZKP
; Z2).

Note that p∗ carries Hj(Mn(P, λ); Z2) to Hj(RZKP
; Z2). Now, for j = 1,

H1(RZKP
; Z2) = 0 as RZKP

is simply connected. Therefore, each v in

https://doi.org/10.1017/prm.2023.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.124


24 K. Brahma, B. Naskar, S. Sarkar and S. Sau

H1(Mn(P, λ); Z2) maps to 0 in H∗(RZKP
; Z2). Hence, p∗(v) = 0 for v ∈

H1(Mn(P, λ); Z2). Since P is a simple polytope, at each vertex, exactly n many
facets intersect. So the cup product of corresponding n indeterminates is non-
zero. Therefore, by proposition 6.4, secat(p) � n + 1. Since p is the universal
cover, so by definition of LS one-category, secat(p) = cat1(Mn(P, λ)). Therefore,
n + 1 � cat1(Mn(P, λ)).

On the other hand, we know that cat1(Mn(P, λ)) � cat(Mn(P, λ)) as discussed
in [15]. Since cat(Mn(P, λ)) = n + 1 (by theorem 3.4), so cat1(Mn(P, λ)) � n + 1.
Hence, we get the result. �

Corollary 6.6. Let Mn(P, λ) be a small cover over P =
∏m

j=1 Δnj such that
nj � 2 for j = 1, . . . , m. Then cat1(Mn(P, λ)) = n + 1.

Proof. The moment angle manifold RZKP
for the polytope P =

∏m
j=1 Δnj is

S
n1 × · · · × S

nm . Thus, RZKP
is simply connected and orientable for nj � 2 for

j = 1, . . . , m. Therefore, by theorem 6.5, cat1(Mn(P, λ)) = n + 1. �

Theorem 6.7. Let Mn(P, λ) be a small cover over P =
∏m

j=1 Δnj . Then
cat1(Mn(P, λ)) = n + 1.

Proof. Corollary 6.6 gives the proof for all nj � 2.
Now consider the small cover Mn(P, λ) over P =

∏m
j=1 Δnj where some nj = 1.

Without loss of generality, we assume that n1 = n2 = · · · = ns−1 = 1 and the
remaining nj ’s are greater than or equal to 2. Then the map p̄ : (

∏s−1
1 R ×∏m

j=s S
nj ) → (

∏s−1
1 S

1 ×∏m
j=s S

nj )/Z
m
2 = Mn(P, λ) is the universal cover where

R → S
1 is given by exponential map. This induces a ring homomorphism

p̄∗ : H∗(Mn(P, λ); Z2) → H∗

⎛⎝s−1∏
1

R ×
m∏

j=s

S
nj ; Z2

⎞⎠ .

We know that the cohomology ring of Mn(P, λ) is generated by y1, . . . , ym and
y

nj

j �= 0 for j = 1, 2, . . . , m. Hence,

p∗(y1) = · · · = p∗(ym) = 0.

Since all y
nj

j �= 0 for j = 1, . . . , m, so

y1 ∪ · · · ∪ ys−1 ∪ ys ∪ · · · ∪ ys︸ ︷︷ ︸
ns times

∪ · · · ∪ ym ∪ · · · ∪ ym︸ ︷︷ ︸
nm times

�= 0.

Therefore, by proposition 6.4, secat(p̄) � n1 + · · · + nm + 1 = n + 1. By the
definition of LS one-category, secat(p) = cat1(Mn(P, λ)). Therefore, n + 1 �
cat1(Mn(P, λ)). Using theorem 3.4, cat(Mn(P, λ)) = n + 1. Thus, cat1(Mn(P, λ))
� n + 1. Hence, cat1(Mn(P, λ)) = n + 1. �

We give some bounds on TCD(Mn(P, λ)) in the following.
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Theorem 6.8. Let Mn(P, λ) be a small cover over a product of simplices P . Then

n + 1 � TCD(Mn(P, λ)) � 2n + 1.

In particular, if Mn(P, λ) = RP
n1 × · · · × RP

nm with nj ∈ {1, 3, 7}, then
TCD(Mn(P, λ)) = n + 1.

Proof. By proposition 6.3, we have cat1(Mn(P, λ)) � TCD(Mn(P, λ)). There-
fore, by theorem 6.7, we have n + 1 � TCD(Mn(P, λ)). By proposition 6.3,
TCD(Mn(P, λ)) � TC(Mn(P, λ)). So, the upper bound of TCD(Mn(P, λ)) is
2n + 1, i.e. TCD(Mn(P, λ)) � 2n + 1.

The second part follows from corollary 4.8 and TCD(Mn(P, λ)) �
TC(Mn(P, λ)). In this case TCD(Mn(P, λ)) � n + 1. �
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17 J. González. Symmetric topological complexity as the first obstruction in Goodwillie’s
Euclidean embedding tower for real projective spaces. Trans. Amer. Math. Soc. 363 (2011),
6713–6741.
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