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Abstract

We consider linear-fractional branching processes (one-type and two-type) with immi-
gration in varying environments. For n ≥ 0, let Zn count the number of individuals of the
nth generation, which excludes the immigrant who enters the system at time n. We call n
a regeneration time if Zn = 0. For both the one-type and two-type cases, we give criteria
for the finiteness or infiniteness of the number of regeneration times. We then construct
some concrete examples to exhibit the strange phenomena caused by the so-called vary-
ing environments. For example, it may happen that the process is extinct, but there are
only finitely many regeneration times. We also study the asymptotics of the number of
regeneration times of the model in the example.
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1. Introduction

It is known that Galton–Watson processes are widely applied in nuclear physics, biology,
ecology, epidemiology, and many other areas, and have been extensively studied; see [2, 10, 18]
and references therein. The study of Galton–Watson processes can be extended directly in two
directions. One popular extension is the branching process in a random environment (BPRE),
which has attracted much attention. Many interesting results arise from the existence of the
random environment; we refer the reader to [15] and references therein for details. Another
interesting extension of the Galton–Watson process is the branching process in a varying envi-
ronment (BPVE). Compared with BPREs, the the study of BPVEs has not been as successful.
The main reason is that a BPVE is no longer a time-homogeneous Markov chain, but BPREs
do have some homogeneous properties. Indeed, if the environments are assumed to be station-
ary and ergodic, then a BPRE is a time-homogeneous process under annealed probability. The
emerging of the so-called varying environments also brings some strange phenomena to the
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2 H. SUN ET AL.

branching processes. For example, the process may ‘fall asleep’ in some positive state [19], it
may diverge at different exponential rates [21], and the tail probabilities of the surviving time
may show some strange asymptotics [9, 29]. For other aspects of the study of BPVEs, we refer
the reader to [3–5, 7, 11, 13, 14] and the references therein.

In this paper we study BPVEs with immigration. For simplicity, we assume that only one
immigrant immigrates into the system in each generation. Roughly speaking, for n ≥ 0, let
Zn be the number of individuals in the nth generation, which does not count the immigrants
entering the system at time n. If Zn = 0, we call n a regeneration time. Our aim is to provide
the necessary and sufficient conditions to decide whether the process has finitely or infinitely
many regeneration times. We should note that for Galton–Watson processes or BPREs with
immigration, if the process has one regeneration time it must have infinitely many regeneration
times. In other words, it will never happen that such a process owns finitely many regeneration
times if there are any due to the time homogeneity.

Our motivation originates from two aspects, the regeneration structure of BPREs and the
cutpoints of random walks in varying environments. On one hand, in [16], in order to study
the stable limit law of random walks in random environments, a regeneration structure of a
single-type BPRE was constructed, and the tail probabilities of the regeneration time and the
number of total progeny before the first regeneration time were estimated. Related problems
in the multitype case of this regeneration structure can be found in [17, 23, 25]. Along these
lines, it is natural for us to consider the number of regeneration times for BPVEs. On the
other hand, in [6, 12, 20, 26], a class of questions related to the cutpoints of random walks in
varying environments was considered. We find that the regeneration structures for BPVEs and
the excursions between successive cutpoints share some similarities, so we aim to study the
regeneration of BPVEs in this paper.

We currently treat only the regeneration times of one-type and two-type BPVEs with linear
fractional offspring distributions. Basically, the one-type case is much easier, and the two-type
case is very complicated. But the ideas in studying the two models are similar, so we omit the
proofs of the one-type case. The difficulty in studying the two-type case arises from the fact
that the probability that n is a regeneration time is written in terms of the product of 2 × 2
nonnegative matrices, which are hard to estimate. To overcome this difficulty, we need some
delicate analyses among the spectral radii, the tails of continued fractions, and the product of
nonnegative matrices. These analyses lead to some interesting results in these fields, which
may be of independent interest.

In Section 2, we precisely define the models and state the main results. In Section 3, we
prove some properties of continued fractions that are useful for the proof of the main result. In
Section 4, we focus on the proof of the main result. In Section 5, we construct some concrete
examples that explicitly exhibit the new phenomena that arise from the existence of so-called
varying environments.

2. Models and main results

Linear-fractional branching processes are of special interest as the iterations of their gen-
erating functions are again linear-fractional functions, allowing for explicit calculations of
various entities of importance [2, pp. 7–8]. Such explicit results illuminate the known asymp-
totic results concerning more general branching processes, and, on the other hand, may bring
insight into less-investigated aspects of the theory of branching processes. So, in order to dis-
cuss the properties of the generation time of branching processes in varying environments
(one-type and two-type), we study linear-fractional branching processes first.
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Regeneration of branching processes with immigration in varying environments 3

2.1. One-type case

For k ≥ 1, suppose 0 < pk ≤ 1
2 , qk > 0 are numbers such that pk + qk = 1 and

fk(s) = pk

1 − qks
, s ∈ [0, 1].

Let {Zn}n≥0 be a Markov chain such that Z0 = 0 and E(sZn | Z0, . . . , Zn−1) = [fn(s)]1+Zn−1 ,
n ≥ 1. Clearly, {Zn}n≥0 forms a branching process in varying environments with exactly
one immigrant in each generation. We now define the regeneration time with which we are
concerned.

Definition 1. Let C = {n ≥ 0: Zn = 0}, and for k ≥ 1 let Ck = {n : n + i ∈ C, 0 ≤ i ≤ k − 1}. If
n ∈ C, n is called the regeneration time of the process {Zn}. If n ∈ Ck, we call n a k-strong
regeneration time of the process {Zn}.
Remark 1. Here, we slightly abuse the term ‘regeneration time’. Notice that if R ∈ C then
ZR = 0, i.e. the process temporarily dies out. But the process may get regenerated at time
R, since there is an immigrant entering into the system at time R that may give birth to a
number of individuals. In this point of view, we call R a regeneration time. We emphasize that
the regeneration times here are different from the classical regeneration times of regenerative
processes. In the literature (see, e.g., [24]), for a stochastic process X = {X(t)}t≥0, if there is
a random variable R > 0 such that {X(t + R)}t≥0 is independent of {{X(t)}t<R, R}, and {X(t +
R)}t≥0 equals {X(t)}t≥0 in distribution, then X is call a regenerative process and R is called a
regeneration time. In our setting, for a regeneration time R, due to the existence of the so-called
varying environments the distribution of {ZR+n}n≥0 differs from that of {Zn}n≥0.

For k ≥ 1, let mk = f ′
k(1) = qk/pk. For n ≥ k ≥ 1, set D(k, n) := 1 +∑n

j=k mj · · · mn and
write, for simplicity, D(n) ≡ D(1, n).

The following theorem provides a criterion for the finiteness of the number of regeneration
times.

Theorem 1. Suppose that, for some ε > 0, ε < pn ≤ 1
2 , n ≥ 1. Let D(n), n ≥ 1, be as defined

above. If

∞∑
n=2

1

D(n) log n
< ∞,

then {Zn} has at most finitely many regeneration times, almost surely. If there exists some δ > 0
such that D(n) ≤ δn log n for n large enough and

∞∑
n=2

1

D(n) log n
= ∞,

then {Zn} has infinitely many k-strong regeneration times, almost surely.

2.2. Two-type case

Suppose ak, bk, dk, θk, k ≥ 1, are positive real numbers and set

Mk :=
[

ak bk

dk θk

]
, k ≥ 1.
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For n ≥ 1 and s = (s1, s2)	 ∈ [0, 1] × [0, 1], let

fn(s) = (
f (1)
n (s), f (2)

n (s)
)	 = 1 − Mn(1 − s)

1 + e	
1 Mn(1 − s)

, (1)

which is known as the probability-generating function of a linear-fractional distribution. Here
and in what follows, a	 denotes the transpose of the vector a, e1 = (1, 0)	, e2 = (0, 1)	, and
1 = e1 + e2 = (1, 1)	.

Suppose Zn = (Zn,1, Zn,2)	, n ≥ 0, is a two-type branching process with immigra-
tion satisfying E

(
sZn | Z0, . . . , Zn−1

)= fn(s)Zn−1+e1 for all n ≥ 1. Here, fn(s)Zn−1+e1 =[
f (1)
n (s)

]Zn−1,1+1[
f (2)
n (s)

]Zn−1,2 .
We now define the regeneration times and the k-strong regeneration times of the two-type

process {Zn} in a similar fashion to the one-type case.

Definition 2. Let C = {n ≥ 0: Zn = (0, 0)	} and, for k ≥ 1, let Ck = {n : n + i ∈ C, 0 ≤ i ≤ k −
1}. If n ∈ C, we call n a regeneration time of the process {Zn}. If n ∈ Ck, we call n a k-strong
regeneration time of the process {Zn}.

To study the regeneration times of the two-type branching process, we need the following
condition on the sequences ak, bk, dk, θk, k ≥ 1.

Assumption 1. Suppose that

∞∑
k=2

|ak − ak−1| + |bk − bk−1| + |dk − dk−1| + |θk − θk−1| < ∞, (2)

and ak → a, bk → b, dk → d, θk → θ as k → ∞, where b, d > 0 and a, θ ≥ 0 are certain
numbers such that a + θ > 0 and bd − aθ �= 0.

In what follows, for a matrix M we denote by �(M) its spectral radius (the largest
eigenvalue). For n ≥ m ≥ 1, we set

L(m, n) = 1 +
n∑

j=m

n∏
i=j

�(Mi), (3)

and write L(1,n) as L(n) for simplicity. In the two-type case, we have the following criteria.

Theorem 2. Assume Assumption 1 holds, and that �(Mk) ≥ 1 for all k ≥ 1.
(i) If

∞∑
n=2

1

L(n) log n
< ∞

then {Zn} has at most finitely many regeneration times, almost surely.
(ii) If there exists some δ > 0 such that L(n) ≤ δn log n for n large enough and

∞∑
n=2

1

L(n) log n
= ∞,

then {Zn} has infinitely many k-strong regeneration times, almost surely.
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Remark 2. For branching processes with general offspring distributions, the probability-
generating function of the population size cannot be computed explicitly in general, but, as
seen in [1, 15], it can be controlled from below and above by that of a branching process
with linear-fractional offspring distributions. Based on this observation, our results may be
generalized to branching processes with general offspring distributions.

Remark 3. We give some explanation on Assumption 1. The assumption in (2) allows us to
show that

ζ ≤ �(Mm · · · Mn)

�(Mm) · · · �(Mn)
≤ γ

for some universal constant 0 < ζ < γ < ∞, i.e. the spectral radius of the product of matrices
can be uniformly bounded from below and above by the product of the spectral radii of these
matrices; see Lemma 5. Such a result plays an important role in proving Theorem 2.

Remark 4. In the following, we discuss only the two-type case and give the proof of
Theorem 2. The proof of Theorem 1 is omitted since it is similar to that of Theorem 2.

3. Products of 2 × 2 matrices and continued fractions

The probability-generating function of Zn can be written in terms of the products of the
mean offspring matrices, which are hard to compute directly since they are inhomogeneous.
But it is known that the products of 2 × 2 matrices can be written in terms of the products of
the tails of certain continued fractions.

In this section, we focus on how to estimate the products of the mean offspring matrices by
means of continued fractions. To begin with, we introduce some new matrices related to Mk,
k ≥ 1. For k ≥ 1, set

Ak :=
(

ãk b̃k

d̃k 0

)
, ãk = ak + bkθk+1

bk+1
, b̃k = bk, d̃k = dk − akθk

bk
,

and write

�k :=
(

1 0

θk/bk 1

)
.

Then, for n ≥ k ≥ 1, we have

Ak = �−1
k Mk�k+1, e	

1

n∏
i=k

Mi1 = e	
1

n∏
i=k

Ai(1, 1 − θn+1/bn+1)	, (4)

and Ak · · · An = �−1
k Mk · · · Mn�n+1, n ≥ k ≥ 1. Since ak, bk, dk, and θk are all positive

numbers, we have

e	
1 Ak · · · Ane1 = e	

1 Mk · · · Mn(1, θn+1/bn+1)	 > 0, n > k ≥ 1, (5)

e	
1 Ak · · · Ane2 = e	

1 Mk · · · Mne2 > 0, n > k ≥ 1,

e	
2 Ak · · · Ane1 = (−θk/bk, 1)Mk · · · Mn(1, θn+1/bn+1)	, n ≥ k ≥ 1.
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Under Assumption 1, we have

lim
k→∞ Mk = M :=

(
a b

d θ

)
, lim

k→∞ Ak = A :=
(

a + θ b

d − aθ/b 0

)
,

whose spectral radii are

� := �(M) = �(A) = a + θ +√
(a + θ )2 + 4(bd − aθ )

2
,

�1 := �1(M) = �1(A) = a + θ −√
(a + θ )2 + 4(bd − aθ )

2
.

Next, we introduce some basics on continued fractions. Let βk, αk, k ≥ 1 be certain real
numbers. For 1 ≤ k ≤ n, we denote by

ξk,n ≡ βk

αk +
βk+1

αk+1 + · · · +
βn

αn
:= βk

αk + βk+1

αk+1+. . .

+βn
αn

(6)

the (n − k + 1)th approximant of a continued fraction, and

ξk := βk

αk +
βk+1

αk+1 +
βk+2

αk+2 + · · · . (7)

If limn→∞ ξk,n exists, we say that the continued fraction ξk is convergent and its value is defined
as limn→∞ ξk,n. We call ξk, k ≥ 1, in (7) the tails, and

hk := βk

αk−1 +
βk−1

αk−2 + · · · +
β2

α1
,

k ≥ 2, the critical tails of the continued fraction

β1

α1 +
β2

α2 + · · · ,

respectively.
The following lemma gives the convergence of the tails and the critical tails of the continued

fractions.

Lemma 1. If limn→∞ αn = α �= 0, limn→∞ βn = β, and α2 + 4β ≥ 0, then, for any k ≥ 1,
limn→∞ ξk,n exists and, furthermore,

lim
k→∞ hk = lim

k→∞ ξk = α

2

(√
1 + 4β/α2 − 1

)
.

The proof of Lemma 1 can be found in many references. We refer the reader to [20] (see
the discussion between (4.1) and (4.2) on p. 81 therein).

For n ≥ k ≥ 1, let

yk,n = e	
1

n∏
i=k

Aie1, ξk,n = yk+1,n

yk,n
, (8)
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where we stipulate that yn+1,n = 1. Then we have

e	
1

n∏
i=k

Aie1 = ξ−1
k,n · · · ξ−1

n,n , n ≥ k ≥ 1. (9)

Lemma 2. For 1 ≤ k ≤ n, ξk,n defined in (8) coincides with the one in (6) with βk = b̃−1
k d̃−1

k+1

and αk = ãkb̃−1
k d̃−1

k+1.

Proof. Clearly,

ξn,n = 1

yn,n
= 1

ãn
= b̃−1

n d̃−1
n+1

ãnb̃−1
n d̃−1

n+1

= βn

αn
.

For 1 ≤ k < n, note that

ξk,n = yk+1,n

yk,n
= e	

1 Ak+1 · · · Ane1

e	
1 Ak · · · Ane1

= e	
1 Ak+1 · · · Ane1(

ãke	
1 + b̃ke	

2

)
Ak+1 · · · Ane1

= 1

ãk + b̃k
e	

2 Ak+1 · · · Ane1

e	
1 Ak+1 · · · Ane1

= 1

ãk + b̃kd̃k+1
e	

1 Ak+2 · · · Ane1

e	
1 Ak+1 · · · Ane1

= b̃−1
k d̃−1

k+1

ãkb̃−1
k d̃−1

k+1 + ξk+1,n
= βk

αk + ξk+1,n
.

We come to the conclusion that the lemma is true by iterating this equation. �

In the remainder of this section, we always assume that Assumption 1 holds, and ξk, ξk,n,
n ≥ k ≥ 1, are as defined in (6) and (7) with βk = b̃−1

k d̃−1
k+1 and αk = ãkb̃−1

k d̃−1
k+1. Since

lim
k→∞ βk =: β = (bd − aθ )−1 �= 0, lim

k→∞ αk =: α = a + θ

bd − aθ
�= 0, α2 + 4β = (a − θ )2 + 4bd

(bd − aθ )2
> 0,

it follows from Lemma 1 that

lim
n→∞ ξk,n = ξk, lim

k→∞ ξk =: ξ = α

2

(√
1 + 4β/α2 − 1

)
= �−1 > 0. (10)

Moreover, consulting (5), (8), and the relationship ξk = βk/(αk + ξk+1), we have

ξk > 0, ξk,n > 0 for all n ≥ k ≥ 1. (11)

The relationship between the entries ξ−1
k+1 · · · ξ−1

k+n and Ak+1 · · · Ak+n, which plays an impor-
tant role in the proof of our main result, was established in [28, Theorem 2]. For convenience,
we state it here.

Proposition 1. ([28, Theorem 2].) Let ξk be as in (7) for all k ≥ 1. Suppose Mk → M, a + θ �=
0, b �= 0, and bd �= aθ . Then there exists a k0 > 0 such that, for k ≥ k0 and i, j = 1, 2, we have

lim
n→∞

e	
i Ak+1 · · · Ak+nej

ξ−1
k+1 · · · ξ−1

k+n

= ϕ(i, j, k), (12)
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where the convergence is uniform in k, and

ϕ(1) := ϕ(1, 1, k) = �

� − �1
, ϕ(2) := ϕ(1, 2, k) = b

� − �1
,

ϕ(2, 1, k) = ρ

� − �1

d̃k+1

ξ−1
k+1

, ϕ(2, 2, k) = b

� − �1

d̃k+1

ξ−1
k+1

.

Furthermore, if ρ ≥ 1 then, for k ≥ k0, with the above i, j = 1, 2,

lim
n→∞

∑n+1
s=1 e	

i Ak+s · · · Ak+nej∑n+1
s=1 ξ−1

k+s · · · ξ−1
k+n

= ϕ(i, j, k), (13)

where the convergence is uniform in k.

4. Proof of the main result

Keep in mind that in what follows, unless otherwise specfied, c (with or without an index)
is a positive constant whose value may be different from line to line.

For n ≥ k ≥ 1, write fk,n(s) := fk(fk+1 · · · (fn(s)) · · ·). By iterating (1), we see that

fk,n(s) = 1 − Mk · · · Mn(1 − s)

1 +∑n
j=k e	

1 Mj · · · Mn(1 − s)
.

As a consequence,

E
(
sZn | Z0 = 0

)=
n∏

k=1

e	
1 fk,n(s) = 1

1 +∑n
j=1 e	

1 Mj · · · Mn(1 − s)
,

which implies that

P(Zn = 0 | Z0 = 0) = 1

1 +∑n
j=1 e	

1 Mj · · · Mn1
. (14)

Let G(k, n) := 1 +∑n
j=k e	

1 Mj · · · Mn1, n ≥ k ≥ 1.
In order to study the regeneration times of the process {Zn}, we should estimate G(k,n).

With Proposition 1 in hand, and using some other estimates, we can control G(k,n) by the
entries

∑n
j=k �(Mj) · · · �(Mn). We state the methods of the estimates in the following lemmas.

Lemma 3. Assume Assumption 1 holds, and �(Mk) ≥ 1. Then, for ε > 0, there exist constants
k0 and N such that, for all k > k0 and n − k > N,

ϕ(1) +
(

1 − θ

b

)
ϕ(2) − ε ≤ G(k, n)

1 +∑n
j=k ξ−1

j · · · ξ−1
n

≤ ϕ(1) +
(

1 − θ

b

)
ϕ(2) + ε, (15)

where ϕ(1) and ϕ(2) are as defined in Proposition 1. Furthermore, for n > N,

ϕ(1) +
(

1 − θ

b

)
ϕ(2) − ε ≤ G(1, n)

1 +∑n
j=1 ξ−1

j · · · ξ−1
n

≤ ϕ(1) +
(

1 − θ

b

)
ϕ(2) + ε. (16)

Proof. In view of (4), we have

G(k, n) = 1 +
n∑

j=k

(
e	

1

n∏
i=j

Aie1

)
+
(

1 − θn+1

bn+1

) n∑
j=k

(
e	

1

n∏
i=j

Aie2

)
(17)
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for all n ≥ k ≥ 1. Assumption 1 means that all the conditions of Proposition 1 are fulfilled.
Then, in view of (13), we can see that for each ε > 0 there exists a constant N′ > 0 such that,
for all n > N′ and k ≥ k0,

ϕ(l) − ε <

∑n+1
s=1 e	

1 Ak+s · · · Ak+nel∑n+1
s=1 ξ−1

k+s · · · ξ−1
k+n

< ϕ(l) + ε, l = 1, 2.

Thus, for k > k0 and n − k ≥ N′,∣∣∣∣∣
∑n+1

j=k e	
1

∏n
i=j Aiel∑n+1

j=k ξ−1
j · · · ξ−1

n
− ϕ(l)

∣∣∣∣∣=
∣∣∣∣∣
∑n−k+2

s=1 e	
1

∏(k−1)+n−(k−1)
i=(k−1)+s Aiel∑n−k+2

s=1 ξ−1
(k−1)+s · · · ξ−1

n
− ϕ(l)

∣∣∣∣∣< ε (18)

for l = 1, 2. Noticing that 1 − (θn+1/bn+1) → 1 − (θ/b) as n → ∞, we conclude that (15) is
true.

Now we turn to (16). For the above ε, it follows from (12) that there exist constants k0 and
N” such that, for all k > k0 and n − k ≥ N′′,∣∣∣∣e	

1 Ak · · · Anel

ξ−1
k · · · ξ−1

n
− ϕ(l)

∣∣∣∣< ε, l = 1, 2. (19)

Taking (9) into account, we rewrite

n∑
j=1

(
e	

1

n∏
i=j

Aie1

)
=

k0∑
j=1

ξ−1
j,n · · · ξ−1

n,n +
n∑

j=k0+1

(
e	

1

n∏
i=j

Aie1

)

= ξ−1
k0+1,n · · · ξ−1

n,n

k0∑
j=1

ξ−1
j,n · · · ξ−1

k0,n
+

n∑
j=k0+1

(
e	

1

n∏
i=j

Aie1

)

= e	
1 Ak0+1 · · · Ane1

k0∑
j=1

ξ−1
j,n · · · ξ−1

k0,n
+

n∑
j=k0

(
e	

1

n∏
i=j

Aie1

)
. (20)

It follows from (10) that

lim
n→∞

∑k0
j=1 ξ−1

j,n · · · ξ−1
k0,n∑k0+1

j=1 ξ−1
j · · · ξ−1

k0

= 1. (21)

Then, using (18), (19), and (21) to estimate (20), we get, for n > max{N′ + k0, N′′ + k0},
∣∣∣∣∣
∑n

j=1

(
e	

1

∏n
i=j Aie1

)
∑n

j=1 ξ−1
j · · · ξ−1

n
− ϕ(1)

∣∣∣∣∣< cε. (22)

We can rewrite the second summand in (17) as

∑n
j=1

(
e	

1

∏n
i=j Aie2

)
∑n

j=1 ξ−1
j · · · ξ−1

n
=
∑n

j=1

(
e	

1 Aj · · · An−1e1
)

∑n
j=1 ξ−1

j · · · ξ−1
n−1

b̃n

ξ−1
n

.
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Then, taking the fact ϕ(1) · limn→∞ b̃n/ξ
−1
n = ϕ(2) and (22) into consideration, we get that

there exists a constant K such that, for n > K,

∣∣∣∣∣
∑n

j=1

(
e	

1

∏n
i=j Aie2

)
∑n

j=1 ξ−1
j · · · ξ−1

n
− ϕ(2)

∣∣∣∣∣< cε. (23)

Therefore, taking (22), (23), and (17) together, we see that (16) is true. �

Lemma 4. Suppose that Assumption 1 holds. Then there are constants 0 < c1 < c2 < ∞ and
numbers N1, N2, which may depend on c1 and c2, such that, for all n − m > N1, m > N2,

c1 <
e1Am · · · Ane	

1

�(Mm) · · · �(Mn)
< c2.

Proof. The lemma is a direct consequence of Lemmas 5, 6, and 7. �

The following is [27, Lemma 4]. For convenience, we state it here.

Lemma 5. ([27, Lemma 4].) Suppose that Assumption 1 holds. Then, for n ≥ m ≥ 1,

ζ ≤ �(Mm · · · Mn)

�(Mm) · · · �(Mn)
≤ γ

for some constants 0 < ζ < γ < ∞ independent of m and n.

Lemma 6. Suppose that Assumption 1 holds. Then there exist constants
c3 > 0, c4 > 0 and numbers N1, N3 > 0, which may depend on c3 and c4, such that, for
all n − m ≥ N1 and m > N3,

c3 <
�(Am · · · An)

e1Am · · · Ane	
1

< c4.

The proof of this lemma is similar to that of [27, Lemma 5]; we just point out the differences.

Proof of Lemma 6. We write

Am,n := Am · · · An =
(

Am,n(11) Am,n(12)

Am,n(21) Am,n(22)

)
, n ≥ m ≥ 1.

From the proof of [27, Lemma 5], we get that

�(Am,n) = Am,n(11) + Am,n(22)

2
+
√

(Am,n(11) + Am,n(22))2 + 4Pm,n

2
, (24)

where Pm,n = Am,n(12)Am,n(21) − Am,n(11)Am,n(22).
Applying Proposition 1, we have that for ε > 0 there exist k0 > 0 and N1 > 0 such that, for

all m > k0, n − m ≥ N1,∣∣∣∣ Am,n(ij)

Am,n(11)
− ϕ(i, j, m − 1)

ϕ(1, 1, m − 1)

∣∣∣∣< ε, i, j = 1, 2. (25)

It follows from Lemma 1 that limm→∞ ξm = −�1/(bd − aθ ). As a result,

lim
m→∞

[
1 + ϕ(2, 2, m − 1)

ϕ(1, 1, m − 1)

]
= lim

m→∞

[
1 +

(
θm

bm
− ξm

amθm − dmbm

bm

)
b

� − θ

]
= � − �1

� − θ
> 0.
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On the other hand, note that

Rm := ϕ(1, 2, m − 1)ϕ(2, 1, m − 1) − ϕ(1, 1, m − 1)ϕ(2, 2, m − 1) = 0. (26)

We thus see that

lim
m→∞ Vm := lim

m→∞

[
ϕ(1, 1, m − 1) + ϕ(2, 2, m − 1)

2ϕ(1, 1, m − 1)
+
√

(ϕ(1, 1, m − 1) + ϕ(2, 2, m − 1))2 + 4Rm

2ϕ(1, 1, m − 1)

]

= � − �1

� − θ
> 0.

Consequently, there exist constants c′
3 > 0, c′

4 > 0, and k1 > 0 such that, for m > k1,

c′
3 < Vm < c′

4. (27)

Taking (25) and (24) into consideration, we have that, for all m > k0 and n − m ≥ N1, there
exists a constant c’ such that

−c′ε <
�(Am · · · An)

e1Am · · · Ane	
1

− Vm < c′ε.

Therefore, in view of (27), we conclude that the lemma is true. �

Lemma 7. Suppose Assumption 1 is fulfilled. Then there exist constants c5 < c6 < ∞ and
numbers N1, N4 such that, for all n − m > N1, m > N4,

c5�(Mm · · · Mn) < �(Am · · · An) < c6�(Mm · · · Mn).

Proof. Let Am,n and Pm,n be as defined in Lemma 6. Define

Qm,n := Am,n(11) + Am,n(22) + Am,n(12)

(
θm

bm
− θn+1

bn+1

)
.

By some easy calculation, we have �(Mm · · · Mn) = 1
2 (Qm,n +

√
Q2

m,n + 4Pm,n).

Note that

lim
n→∞ lim

m→∞

[
1 + ϕ(2, 2, k)

ϕ(1, 1, k)
+ ϕ(1, 2, k)

ϕ(1, 1, k)

(
θm

bm
− θn+1

bn+1

)]
= � − �1

� − θ
> 0.

Thus, in view of (25) we get that there exist constants 0 < c′
5 < c′

6 < ∞ and N1 > 0, N′
3 > k0

such that. for all m > N′
3, n − m > N1,

c′
5 <

Qk,m

Am,n(11)
< c′

6. (28)

Consulting (25) and (26), we have that there exists a constant c′ > 0 such that, for all n − m >

N1 and m > k0,

−c′ε <
Pm,n

Am,n(11)
< c′ε. (29)
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Taking (28) and (29) into account, we get that there exist constants 0 < c′′
5 < c′′

6 < ∞ such that,
for all m > N′

3 and n − m > N1,

c′′
5 <

�(Mn · · · Mn)

Am,n(11)
< c′′

6.

Thus, in view of Lemma 6, we conclude that Lemma 7 is true. �

For 1 ≤ m < n, let L(m,n) be as in (3) and write

H(m, n) = 1 +
n∑

j=m

ξ−1
j · · · ξ−1

n . (30)

Also, we write H(1,n) as H(n) for simplicity.
We establish the relationship between L(n) and H(n) as follows.

Lemma 8. Suppose that Assumption 1 holds. Then there exist constants 0 < c7 < c8 < ∞, 0 <

c9 < c10 < ∞ and positive integers N5, N6, N7 such that, for n − m ≥ N5, m ≥ N6,

c7 <
ξm · · · ξn

�−1(Mm) · · · �−1(Mn)
< c8, (31)

and for n > N7,

c9L(n) ≤ H(n) ≤ c10L(n). (32)

Proof. Clearly, taking (12) and Lemma 4 together, we get (31).
For (32), first, by (31) we have that, for m > N6 and n > N5 + N6,

c7

n−N5∑
j=m

�(Mj) · · · �(Mn) <

n−N5∑
j=m

ξ−1
j · · · ξ−1

n < c8

n−N5∑
j=m

�(Mj) · · · �(Mn). (33)

For n > N5 + N6, we rewrite

H(n) = 1 +
N6∑
j=1

ξ−1
j · · · ξ−1

n +
n−N5∑

j=N6+1

ξ−1
j · · · ξ−1

n +
n∑

j=n−N5+1

ξ−1
j · · · ξ−1

n . (34)

Since

n∑
j=n−N5+1

ξ−1
j · · · ξ−1

n →
(

aθ − bd

ρ1

)N5

+ · · · + aθ − bd

ρ1
> 0,

∑n
j=n−N5+1 �(Mj) · · · �(Mn) → �N5 + · · · + � > 0 as n → ∞. Then there exist constants

0 < c11 < c12 < ∞ and N′
7 > 0 such that, for all n > N′

7,

c11

n∑
j=n−N5+1

�(Mj) · · · �(Mn) <

n∑
j=n−N5+1

ξ−1
j · · · ξ−1

n < c12

n∑
j=n−N5+1

�(Mj) · · · �(Mn). (35)
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We rewrite

N6∑
j=1

ξ−1
j · · · ξ−1

n = ξ−1
N6

· · · ξ−1
n

∑N6
j=1 ξ−1

j · · · ξ−1
N6−1∑N6

j=1 �(Mj) · · · �(MN6−1)

N6∑
j=1

�(Mj) · · · �(MN6−1)

=: ξ−1
N6

· · · ξ−1
n

N6∑
j=1

�(Mj) · · · �(MN6−1)�.

Recalling that, by (11), ξj > 0 for all j > 0, in view of the fact that �(Mj) > 0 for all j > 0
we get that � is a positive constant. Therefore, it follows from (31) that there exist constants
0 < c13 < c14 < ∞ such that

c13

N6∑
j=1

�(Mj) · · · �(Mn) ≤
N6∑
j=1

ξ−1
j · · · ξ−1

n ≤ c14

N2∑
j=1

�(Mj) · · · �(Mn). (36)

Taking (34), (33), (35), and (36) into consideration, we conclude that, for all n > N7 :=
max{N5 + N6, N′

7}, (32) is true. �

Lemma 9. For every n and k,

P(n ∈ Ck) = 1

G(1, n)

n+k−1∏
i=n+1

1

1 + ai + bi
.

Also, for every l > n + k,

P(n ∈ Ck, l ∈ Ck) = 1

G(1, n)

1

G(n + k, l)

n+k−1∏
i=n+1

1

1 + ai + bi

l+k−1∏
i=l+1

1

1 + ai + bi
.

Proof. Using the Markov property and (14), we have

P(n ∈ Ck) = P(Zn = 0, . . . , Zn+k−1 = 0)

= P(Zn = 0)
k−2∏
j=0

P(Zn+j+1 = 0 | Zn+j = 0)

= 1

G(1, n)

n+k−1∏
j=n+1

1

1 + aj + bj
,

P(n ∈ Ck, l ∈ Ck) = P(n ∈ Ck)P(l ∈ Ck | n ∈ Ck)

= P(n ∈ Ck)P(l ∈ Ck | Zn+k−1 = 0)

= 1

G(1, n)

n+k−1∏
i=n+1

1

1 + ai + bi
× 1

G(n + k, l)

l+k−1∏
i=l+1

1

1 + ai + bi
.

We thus complete the proof of the lemma. �

Recalling the definitions in (30) and (3), by some easy computations we see that

L(n + 1) = 1 + ρ(Mn+1)L(n) (37)
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and

H(n + 1) = 1 + ξ−1
n+1H(n),

H(k, n)

H(n)
= 1 −

n∏
j=k−1

(
1 − 1

H(j)

)
. (38)

Now we are ready to prove the main results.

Proof of Theorem 2. For j < i, set Cj,i = {x : x ∈ (2j, 2i], x ∈ C} and let Aj,i = |Cj,i| be the car-
dinality of the set Cj,i. On the event {Am,m+1 > 0}, let lm = max{k : k ∈ Cm,m+1} be the largest
regeneration time in Cm,m+1. Then, for m ≥ 1 we have

2m+1∑
j=2m−1+1

P(j ∈ C) = E(Am−1,m+1)

≥
2m+1∑

n=2m+1

E(Am−1,m+1, Am,m+1 > 0, lm = n)

=
2m+1∑

n=2m+1

P(Am,m+1 > 0, lm = n)E(Am−1,m+1 | Am,m+1 > 0, lm = n)

=
2m+1∑

n=2m+1

P(Am,m+1 > 0, lm = n)
n∑

i=2m−1+1

P(i ∈ C | Am,m+1 > 0, lm = n)

≥ P(Am,m+1 > 0) min
2m<n≤2m+1

n∑
i=2m−1+1

P(i ∈ C | Am,m+1 > 0, lm = n) =: ambm. (39)

Fix 2m + 1 ≤ n ≤ 2m+1 and 2m−1 + 1 ≤ i ≤ n. Using Lemma 9 and the Markov property, we
get that

P(i ∈ C | Am,m+1 > 0, lm = n)

= P(Zi = 0, Zn = 0, Zt �= 0, n + 1 ≤ t ≤ 2m+1)

P(Zn = 0, Zt �= 0, n + 1 ≤ t ≤ 2m+1)

= P(Zi = 0, Zn = 0)

P(Zn = 0)

P(Zt �= 0, n + 1 ≤ t ≤ 2m+1 | Zi = 0, Zn = 0)

P(Zt �= 0, n + 1 ≤ t ≤ 2m+1 | Zn = 0)

= P(Zi = 0, Zn = 0)

P(Zn = 0)
= G(n)

G(i)G(i + 1, n)
. (40)

It follows from Lemma 3 that for fixed ε > 0 there exists a constant K1 > 0 such that, for all
i > K1 and n − i > K1,

G(n)

G(i)G(i + 1, n)
>

H(n)

H(i)H(i + 1, n)
· ϕ(1) + (1 − θ/b)ϕ(2) − ε

[ϕ(1) + (1 − θ/b)ϕ(2) + ε]2
, (41)

G(i) > H(i)(ϕ(1) + (1 − θ/b)ϕ(2) − ε). (42)
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Recall that ξk > 0, k ≥ 1 by (11). Then, by some easy computation, we have

H(n)

H(i)H(i + 1, n)
=

∑n+1
j=1 ξ−1

j · · · ξ−1
n(∑i+1

j=1 ξ−1
j · · · ξ−1

i

)(∑n+1
j=i+1 ξ−1

j · · · ξ−1
n
)

=
∑n+1

j=1 ξ1 · · · ξj−1(∑i+1
j=1 ξ1 · · · ξj−1

)(∑n+1
j=i+1 ξi+1 · · · ξj−1

) ≥ 1∑n+1
j=i+1 ξi+1 · · · ξj−1

. (43)

It follows from (31) that, for all i > N6 and j − i ≥ N5 + 2,

ξi+1 · · · ξj−1 ≤ c8�(Mi+1)−1 · · · �(Mj−1)−1.

Thus, for all i > N6,

n+1∑
j=i+N5+2

ξi+1 · · · ξj−1 < c8

n+1∑
j=i+N5+2

�(Mi+1)−1 · · · �(Mj−1)−1. (44)

Then, under the assumption �(Mi+1) ≥ 1, we have

n+1∑
j=i+N5+2

ξi+1 · · · ξj−1 ≤ c8(n − i − N5). (45)

On the other hand, since ξn → �1/(aθ − bd) =: ξ > 0 as n → ∞, there exists a constant K2
such that, for all n ≥ K2, ξn < ξ + 1. As a result, for all i > K2,

i+N5+1∑
j=i+1

ξi+1 · · · ξj−1 ≤ N5(ξ + 1)N5 .

Consulting (43), (44), and (45), we have, for all i > K3 := max{K2, N6},
H(n)

H(i)H(i + 1, n)
≥ c

n − i + 1
.

In view of (41), we have thus shown that, for all i ≥ K := max{K3, K1} and n − i > K1,

G(n)

G(i)G(i + 1, n)
≥ c

n − i + 1
.

Taking this and (40) together, we get, for m > log K (which implies 2m−1 + 1 > K),

bm = min
2m<n≤2m+1

n∑
i=2m−1+1

P(i ∈ C | Am,m+1 > 0, lm = n)

≥ c min
2m<n≤2m+1

n−K1−1∑
i=2m−1+1

1

n − i + 1

= c min
2m<n≤2m+1

n−2m−1∑
j=K1+2

1

j
= c

2m−1∑
j=K1+2

1

j
≥ c

∫ 2m−1+1

K1+2

1

x
dx ≥ cm log 2.
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Substituting this into (39), using Lemma 9 and (42), we see that

∞∑
m=K+1

P(Am,m+1 > 0) ≤
∞∑

m=K+1

1

bm

2m+1∑
j=2m−1+1

P(j ∈ C)

=
∞∑

m=K+1

1

bm

2m+1∑
j=2m−1+1

1

G(j)

≤ c
∞∑

m=K+1

1

m

2m+1∑
j=2m−1+1

1

H(j)

≤ c
∞∑

m=K+1

2m+1∑
j=2m−1+1

1

H(j) log j
≤ c

∞∑
n=2K+1

1

H(n) log n
. (46)

Note that under the condition in case (i),
∑∞

n=2 1/(L(n) log n) < ∞. Thus, it follows from
(32) that the right-hand side side of (46) is finite, so is

∑∞
m=K+1 P(Am,m+1 > 0). Applying the

Borel–Cantelli lemma, we conclude that with probability 1, at most finitely many of the events
{Am,m+1 > 0}, m ≥ 1, occur, which completes the first part of Theorem 2.

Next, we turn to the second part. Suppose there exists some δ > 0 such that L(n) ≤ δn log n
for n large enough and

∑∞
n=2 1/(L(n) log n) = ∞.

We also use Borel–Cantelli Lemma to prove the result in this case, but here we need to
estimate not only the sum of P(Aj), but also the sum of P(AjAl).

First, let’s study the probability P(Aj). For j ≥ 1, let nj = [j log j] be the integer part of j log j
and set Aj = {nj ∈ Ck}. For fixed ε > 0, in view of Lemma 3 there exist constants L1 > k0 and
L2 such that, for all n − k ≥ L1, k ≥ k0,

ϕ(1) +
(

1 − θ

b

)
ϕ(2) − ε ≤ G(k, n)

H(k, n)
≤ ϕ(1) +

(
1 − θ

b

)
ϕ(2) + ε, (47)

and, for all m > L2,

ϕ(1) +
(

1 − θ

b

)
ϕ(2) − ε ≤ G(1, m)

H(1, m)
≤ ϕ(1) +

(
1 − θ

b

)
ϕ(2) + ε. (48)

Notice that the sequence an + bn, n ≥ 0, is bounded away from 0 and positive. Then, taking
(48) and Lemma 9 into account, we obtain

∞∑
j=L2

P(Aj) =
∞∑

j=L2

1

G(1, nj)

nj+k−1∏
i=nj+1

1

1 + ai + bi
≥ c

∞∑
j=L2

1

H([j log j])
. (49)

Under the assumption �(Mj) ≥ 1 for all j ≥ 1, we can see that L(n) is increasing from
(37). Applying [6, Lemma 2.2], we conclude that

∑∞
j=2 1/(L([j log j])) and

∑∞
j=2 1/(L(j) log j)

converge or diverge simultaneously. As a result, it follows from (49) and Lemma 8 that

∞∑
j=max{L2,N7}

P(Aj) ≥ c
∞∑

j=max{L2,N7}

1

L([j log j])
= ∞. (50)
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Second, we study the probability P(AjAl). Define Ck = {(j, l) : 2 ≤ j < l, l log l > j log j +
k}. Note that when j > emax{L1,L2}+k and l ≥ j + 1, we have nl − nj − k > L1 and nl > L2.
It thus follows from Lemma 9 and (47) that for the ε above, when (j, l) ∈ Ck satisfying
j > emax{L1,L2}+k,

P(AjAl) = P(nj ∈ Ck, nl ∈ Ck)

= 1

G(nj)

1

G(nj + k, nl)

nj+k−1∏
i=nj+1

1

1 + ai + bi

nl+k−1∏
i=nl+1

1

1 + ai + bi

= P(Aj)P(Al)
G(nl)

G(nj + k, nl)

≤ P(Aj)P(Al)
H(nl)

H(nj + k, nl)

ϕ(1) + (1 − θ/b)ϕ(2) + ε

ϕ(1) + (1 − θ/b)ϕ(2) − ε

= P(Aj)P(Al)
H(nl)

H(nj + k, nl)
(1 + cε).

Then, taking (38) and the fact log (1 − x) ≤ −x for all 0 < x < 1 into account, we have

P(AjAl) ≤ P(Aj)P(Al)

(
1 − exp

{
−

nl∑
i=nj+k−1

1

H(i)

})−1

(1 + cε). (51)

For the above ε > 0, let

� = min

{
l ≥ j + 1:

nl∑
i=nj+k−1

1

H(i)
≥ log

1 + ε

ε

}
.

Obviously, for l ≥ �,
(
1 − exp

{−∑nl
i=nj+k−1 1/H(i)

})−1 ≤ 1 + ε. Thus, it follows from (51)
that

P(AjAl) ≤ (1 + cε)(1 + ε)P(Aj)P(Al) ≤ (1 + cε)P(Aj)P(Al) for all l ≥ �, (j, l) ∈ Ck. (52)

Next, suppose l < �. Note that for 0 < u < log ((1 + ε)/ε) we have 1 − e−u ≥ cu for some
c := c(ε) > 0 small enough. Then, in view of (51) and (32), we have

P(AjAl) ≤ c(1 + cε)P(Aj)P(Al)

( nl∑
i=nj+k−1

1

H(i)

)−1

≤ c(1 + cε)P(Aj)P(Al)

( nl∑
i=nj+k−1

1

L(i)

)−1

for j > N7. (53)

Since L(n) is increasing, we have

( nl∑
i=nj+k−1

1

L(i)

)−1

≤ L(nl)

nl − nj − k + 2
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for all j ≥ N7. Again by (32), we have( nl∑
i=nj+k−1

1

L(i)

)−1

≤ 1

c9

H(nl)

nl − nj − k + 2
.

Therefore, taking (53) and (48) into account, we get that for (j, l) ∈ Ck satisfying � ≥ l ≥ j + 1
and j ≥ max{N7, emax{L1,L2}+k} =: M,

P(AjAl) ≤ c
G(nl)

nl − nj − k + 2
P(Aj)P(Al)

= c

(
k−1∏
i=1

1

1 + anl+i + bnl+i

)
P(Aj)

nl − nj − k + 2
≤ cP(Aj)

l log l − j log j
.

Consequently, for j ≥ M,

∑
j+1≤l<�,(j,l)∈Ck

P(AjAl) ≤
∑

j+1≤l<�,(j,l)∈Ck

cP(Aj)

l log l − j log j

≤ cP(Aj)
�−1∑

l=j+1

1

l log l − j log j

≤ cP(Aj)
1

log j

�−1∑
l=j+1

1

l − j
≤ cP(Aj)

log �

log j
. (54)

Recall that
nl∑

i=nj+k−1

1

H(i)
< log

1 + ε

ε
, j + 1 ≤ l < �, (55)

and L(n) ≤ δn log n for some δ > 0 and n large enough. We claim that if j is large enough, then

� < jγ if γ >

(
1 + ε

ε

)c10δ

+ ε. (56)

Suppose on the contrary that � ≥ jγ . Then, for j > N7,

n�∑
i=nj+k−1

1

H(i)
≥

n�∑
i=nj+k−1

1

c10L(i)

≥ 1

c10δ

n�∑
i=nj+k−1

1

i log i

≥ 1

c10δ
( log log n� − log log (nj + k − 1))

≥ 1

c10δ
( log log n� − log log nj+k)

≥ 1

c10δ
log

γ log j + log γ + log log j

log (j + k) + log log (j + k)
≥ 1

c10δ
log (γ − ε)
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for j large enough. Since γ > ((1 + ε)/ε)c10δ + ε, we have

n�∑
i=nj+k−1

1

H(i)
≥ log

1 + ε

ε
,

which contradicts (55). This means (56) is right.
Applying (56) and (54), we obtain, for j large enough,∑

j+1≤l<�,(j,l)∈Ck

P(AjAl) ≤ cP(Aj).

Taking this together with (52), we conclude that, for some j0 > 0,

n∑
j=j0

∑
j<l≤n,(j,l)∈Ck

P(AjAl) ≤
n∑

j=j0

∑
j<l≤n,(j,l)∈Ck

(1 + cε)P(Aj)P(Al) + c
n∑

j=j0

P(Aj).

Therefore, taking (50) into account, we have

α := lim
n→∞

∑n
j=j0

∑
j<l≤n,(j,l)∈Ck

P(AjAl) −∑n
j=j0

∑
j<l≤n,(j,l)∈Ck

(1 + cε)P(Aj)P(Al)(∑n
j=j0 P(Aj)

)2
≤ lim

n→∞
c∑n

j=j0 P(Aj)
= 0.

An application of the Borel–Cantelli lemma [22, p. 235] yields

P(Aj, j ≥ 1 occur infinitely often) ≥ P(Aj, j ≥ j0 occur infinitely often)

≥ 1

1 + ε + 2α
≥ 1

1 + ε
.

Since ε > 0 is arbitrary, we can conclude that P(Aj, j ≥ 1 occur infinitely often) = 1. So, the
second part of the theorem is proved. �

5. Examples

For n ≥ 1, let qn, pn > 0 be numbers such that qn + pn = 1. Suppose that Zn, n ≥ 0, is a two-
type branching process with immigration satisfying Z0 = 0, and there is a fixed immigration
e1 in each generation, with offspring distributions

P(Zn = (0, j) | Zn−1 = e1) = qj
npn,

P(Zn = (1, j) | Zn−1 = e2) = qj
npn, j ≥ 0, n ≥ 1.

Some computation yields the mean matrix

Mn =
(

0 bn

1 bn

)

with bn = qn/pn, n ≥ 1. Then �(Mk) = (bk +
√

b2
k + 4bk)/2.

https://doi.org/10.1017/jpr.2024.74 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.74


20 H. SUN ET AL.

Fix B ≥ 0. Set i0 := min
{
i : B/3i < 2

3

}
and let

pi :=
{

2
3 − B/3i, i ≥ i0,
2
3 , i < i0.

Theorem 3. Fix B ≥ 0. If B ≥ 1, then {Zn} has finitely many regeneration times, almost surely.
If B < 1, then {Zn} has infinitely many k-strong regeneration points, almost surely.

Proof. For B ≥ 0, let rn = B/3n. It is easy to see that limn→∞ n2(rn − rn+1) = B/3. Thus, by
some computation, we obtain

|bk+1 − bk| ∼ |rn+1 − rn| ∼ 1

n2
, n → ∞,

which implies that
∑∞

k=1 |bk+1 − bk| < ∞. Since pk = 2
3 − rk, k ≥ 1, we see that bk ≥ 1

2 . As a
result, �(Mk) ≥ 1. Thus, the conditions in Theorem 2 are fulfilled.

By Taylor expansion of �(Mk) at 0, we get �(Mk) = 1 + 3rk + O(r2
k ) as k → ∞. And then,

by Euler’s asymptotic formula for the harmonic series, we get that

�(M1) · · · �(Mn) ∼ cnB as n → ∞. (57)

When B > 1, c
∫ n

k0
1/xB dx is convergence, so is

∑n
k=k0

�(M1)−1 · · · �(Mk)−1 by (57). Then
it follows from (57) that

L(n) =
n∑

k=1

�(Mk) · · · �(Mn) = �(M1) · · · �(Mn)
n∑

k=k0

�(M1)−1 · · · �(Mk−1)−1 ∼ cnB

as n → ∞, which implies that
∑∞

n=2 1/(L(n) log n) < ∞. So the conditions in Theorem 2(i) are
satisfied. Then, by Theorem 2(i), the branching process has finitely many regeneration times
almost surely.

When B ≤ 1,
∫ n

i0
1/xB dx is divergent, so is

∑n
k=k0

�(M1)−1 · · · �(Mk−1)−1, and we have∑n
k=k0

�(M1)−1 · · · �(Mk−1)−1 ∼ ∫ n
i0

1/xB dx by (57), while

lim
n→∞

∫ n

i0

1

xB
dx =

⎧⎨
⎩

1

1 − B
n1−B − 1

(1 − B)
i1−B
0 , B < 1,

log n − log i0, B = 1.
(58)

In view of (57), we thus have

L(n) ∼
{

cn, B < 1,

cn log n, B = 1
as n → ∞. (59)

So if B = 1, then
∑∞

n=2 1/(L(n) log n) < ∞. Applying Theorem 2(i), we can see that the
branching process has finitely many regeneration times almost surely.

Assuming B < 1, it follows from (59) that
∑∞

n=2 1/(L(n) log n) = ∞ and L(n) log n ≤
cn log n for n large enough. Then, by Theorem 2(ii), we conclude that the process has infinitely
many k-strong regeneration times almost surely. �

Remark 5. Let {Yn}n≥0 be a branching process in varying environments with Y0 = e1, which
shares the same branching mechanism as {Zn}n≥0 in this section. By the results in [27,
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Theorem 1], we can see that the tail probability of surviving time ν of the process {Yn}n≥0
satisfies

P(ν > n) ∼ c

1 +∑n
k=1 �(M1)−1 · · · �(Mk)−1

.

When B = 1, it follows from (58) that P(ν > n) ∼ c/(n log n) → 0. So {Yn}n≥0 is extinct in this
situition. Then we conclude that {Zn}n≥0 should have a regeneration time. But, by Theorem 3,
in this case, the process {Zn}n≥0 has finitely many regeneration times. Such a phenomenon
never happens for the time-homogenous branching process, since by the time-homogenous
property, if the process owns one regeneration time, it must have infinitely many regeneration
times.

When there are infinitely many regeneration times, we have established the asymptotic
property of the number of regeneration times in [0,n] as follows.

Theorem 4. Fix 0 ≤ B < 1. Then

lim
n→∞

E#{k : k ∈ C ∩ [0, n]}
log n

= c > 0 (60)

and, for any ε > 0,

lim
n→∞

#{k : k ∈ C ∩ [0, n]}
( log n)1+ε

= 0 (61)

almost surely.

Remark 6. Notice that Theorem 4 contains the case B = 0. In this case, pi ≡ 2
3 and �(Mi) ≡ 1

for all i ≥ 1, so that {Zn} is indeed a critical Galton–Watson process with immigration. As
shown by Theorem 4, it seems that, up to multiplication by a positive constant, the value of
0 ≤ B < 1 does not affect the order of the number of regeneration times in [0,n].

Proof. Let Sn = #{k : k ∈ C ∩ [0, n]}. By (14), we can see that

E(Sn) =
n∑

i=1

P(Zi = 0) =
n∑

i=1

1

G(i)
.

Consulting (16) and (32), there exist positive constants C1 and C2 such that

C1

n∑
i=1

1

L(k)
≤

n∑
i=1

1

G(i)
≤ C2

n∑
i=1

1

L(k)
.

It follows from (59) that when B < 1, L(n) ∼ cn. As a result,

E(Sn) ≤
∑

1≤i≤n

c

i
. (62)

We thus get (60).
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Now we turn to the second part. Noticing that Sn is positive and nondecreasing,
by (62) we have E( max1≤k≤n Sk) = E(Sn) <

∑
1≤i≤n c/i. We know that, for each ε > 0,∑∞

i=2 1/(i( log i)1+ε) < ∞. Therefore, by [8, Theorem 2.1], we have

Sn

( log n)1+ε
→ 0

almost surely as n → ∞, which completes the proof of (61). �
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