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Abstract

In this paper we obtain necessary and sufficient conditions on a regular semigroup in order that it should
be an idempotent separating homomorphic image of a full subsemigroup of the direct product of a group
and a fundamental or combinatorial regular semigroup. The main tool used is the concept of a
prehomomorphism 6 : S — T between regular semigroups. This is a mapping such that (ab) 6 < a8 b8 in
the natural partial order on T.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 10.

Much of the structure theory of regular semigroups has been concerned with the
problem of determining the extent to which a regular semigroup S can be described
in terms of groups and semigroups determined by the idempotents of S. If p is any
congruence on § which is contained in Green’s relation 3, the p-classes which
contain idempotents are subgroups of S so that S is a coextension of §/p by a family
of groups. In particular S is a coextension of F = S/u, where u is the maximum
congruence on S contained in J#, by a family of groups. The semigroup F is
fundamental in the sense that no nontrivial congruence on F is contained in . For
this reason fundamental regular semigroups have played an important role in the
structure theory of regular semigroups.

Munn (1970) showed that any fundamental inverse semigroup can be realized as a
semigroup of isomorphisms between the principal ideals of its semilattice of
idempotents. Nambooripad {1979), following Hall (1973), has extended Munn’s
result to regular semigroups by showing that each fundamental regular semigroup F
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can be realized as a semigroup constructed from partial isomorphisms of the
biordered set of idempotents of F.

On the other hand, McAlister and Reilly (1977) have shown that any inverse
semigroup S is an idempotent separating homomorphic image of a subdirect
product of a fundamental inverse semigroup F and a group G. The kernel of this
homomorphism is a semilattice of groups so that S is obtained from a fundamental
inverse semigroup and a group (thus from its semilattice and a group) by factoring
out subgroups.

The main purpose of this paper is to obtain necessary and sufficient conditions
under which an analogous result holds for regular semigroups. The main tool used
to obtain these conditions is the notion of a prehomomorphism which was used in
McAlister and Reilly (1977) to characterize E-unitary covers, for inverse semigroups.
Prehomomorphisms on regular semigroups are introduced in Section 1 and a
method for constructing them is developed which is used in Section 2 to obtain
necessary and sufficient conditions for a regular semigroup to divide the direct
product of a fundamental regular semigroup and a group. These conditions depend
on the properties of an equivalence relation n. A construction for # is obtained in
Section 3 which is used in Section 4 to show that a regular semigroup S divides the
direct product of a fundamental regular semigroup and a group if and only if the
smallest full self conjugate subsemigroup CIG(S) is fundamental. The methods used
in Sections 2 and 4 can also be applied to determine when a regular semigroup
divides the direct product of a combinatorial regular semigroup and a group. This
permits us to answer, for regular semigroups, the question of Schiitzenberger which
was considered in McAlister (1980).

0. Preliminaries

We shall assume familiarity with the basic results and terminology of semigroup
theory which will be found, for example, in Clifford and Preston (1961, 1967) or
Howie (1976).

A semigroup S is called regular if for each element a € S there exists x € S such that
a = axa. In this case, there exists a’ €S such that both a = aa’a and @’ = d'aa’ are
satisfied. Such an element 4’ is called an inverse for a; the set of inverses of a is
denoted by V(a). Thus V(a) = {x€S: a = axa, x = xax}.

A regular semigroup is called inverse if each element has a unique inverse. In this
case, the inverse of a product ab is the product b'a’ of the inverses b’ of b and ¢’ of a
respectively. This fortunate circumstance does not hold for arbitrary regular
semigroups. Nambooripad (1980) has introduced the concept of the sandwich set of
a pair of idempotents e, f in a regular semigroup S. This concept permits one to
locate inverses of products in regular semigroups.
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DEFINITION Q.1. Let S be a regular semigroup and let e, f be idempotents of S. The
sandwich set S(e, f) of S is the set

S(e, f) = {g*> = ge€S; eaf = ¢f, ge = g = fg}.

Lemma 0.2. (Nambooripad, 1980) Let S be a regular semigroup and let a,beS.
Suppose that a' e V(a), b’ € V(b) and let g€ S(a'a,bb’). Then b'ga’ € V(ab).
Furthermore, ab = a, b, where a; = ag, b, = gb and

abRa, LgRb, Lab.

FitzGerald (1972) has shown that the subsemigroup IG(S), generated by the
idempotents of a regular semigroup S, is itself regular. Hall (1973) showed that each
element of IG(S) can be written as a product of @-equivalent idempotents. This
result has been refined by Nambooripad (1979).

If S is a regular semigroup then we shall denote by u the maximum congruence on
S which is contained in Green’s relation J. S is called fundamental if j is the equality
relation A. Grillet (1974), Hall (1973) and Nambooripad (1979) have given
representation theorems for fundamental regular semigroups S as semigroups
defined solely in terms of the idempotents of S.

There is a minimum group congruence on every regular semigroup. We shall
denote this relation by o.

Lemma 0.3 (Nambooripad, 1979). Let S be a regular semigroup. Then each element
of IG(S) can be written as a product e, e, ... e, where

e, Le,Re, ...

Inverse semigroups have been extensively studied in recent years and, in this
paper, we shall obtain results about regular semigroups by using properties of
inverse semigroups. In particular we shall use the fact (Schein (1966)) [see McAlister
(1976)] that the set #(G) of cosets of a group G, modulo subgroups of G, forms an
inverse semigroup under the product

X * Y = smallest coset containing XY.

The natural partial order on #(G) is the inverse of inclusion.

An inverse semigroup S is called E-unitary if the equations ea =e =¢* in S
together imply that a® = e. It is shown in McAlister (1974), that every inverse
semigroup S has an E-unitary cover P in the sense of the following lemma which
summarizes the results on E-unitary inverse semigroups which we shall need in this
paper.
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LeMMA 0.4 (McAlister (1974) and McAlister and Reilly (1977)). Let S be an in-
verse semigroup. Then there is an E-unitary inverse semigroup P and an idempotent
separating homomorphism of P onto S; P is called an E-unitary cover for S.

If Pis an E-unitary cover for S then P is a subdirect product of a fundamental inverse
semigroup (S/u) and a group G. Further G is the maximum group homormorphic image
of P and, for (a,g), (b,h)e P

(a,g)o(b,h) if and only if g = h.

1. Prehomomorphisms

In a recent paper (1980), K. S. S. Nambooripad has introduced a partial order on
an arbitrary regular semigroup which generalizes the natural partial order on an
inverse semigroup.

DEFINITION 1.1. Let S be a regular semigroup. Then the relation < on S defined by
a<b ifand onlyifachS and a=eb for some e*® = eRa

is a partial order on S. It is called the natural partial order on S.

Although it is not evident from the definition, the definition of the natural partial
order is self dual. Further, for a,be S

a < ab implies a =ab

for a < abimplies a = eab for some idempotent e. Thus ea = e* ab = eab = aso that
a = eab = ab. Dually a < ba implies a = ba.

McAlister (1976) introduced the concept of a prehomomorphism on an inverse
semigroup. This notion too can be extended to regular semigroups by means of the
natural partial order.

DEFINITION 1.2. Let S and T be regular semigroups. Then a mapping ¢ : S—T isa
prehomomorphism if (ab) ¢ < ap bo for all a,beS.

In McAlister (1976) the definition of a prehomomorphism between inverse
semigroups also required that ap~! = a~'¢ for each aeS. This is in fact a
consequence of Definition 1.2. In addition, many of the properties of pre-
homomorphisms which were obtained for inverse semigroups also hold for regular
semigroups.
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LEMMA 1.3. Let ¢ be a prehomomorphism of a regular semigroup S into a regular
semigroup T and let a,beS. Then
(i) dpeV(ap) for each a’ e V(a);
(ii) @ maps idempotents of S to idempotents of T,
(iii) (ab)@ = apbe if there exist a’ € V(a), b’ € V(b) such that a aw' bb’ or bb'w" d a;
(iv) ¢ is isotone.

PROOF. (i) Let @' € V(a). Thenag = {(ad'a) ¢ < ap(a'a) ¢ and hence ap = ap(d'a) ¢.
Further (d'a)¢ < d'pap implies (d'a) ¢ = dpage for some e* =eeT so that
ap = apd pagpe. This then implies ap = ape so that ag = apd@ap. Dually

do = ddupde.
(i) Let e2 = ecS and set a = ep € T. Then a = ep = e? ¢ < epep = a?, so that
a=a.
(iii) Suppose that a’aw'bb’. Then

(ab) @ < apbg = (abb’) pbe.
But (abb’) ¢ < (ab) @b’ so that (abb’)¢ = (ab)pb'¢p . e for some e? = eL(abb) .

Thus ,
(ab) ¢ < apbe = (abb") pbe = (ab) pb'e . e(bo)

so that (ab) p = (ab) b’ . e(bp) and therefore (ab) ¢ = apbep.

A similar argument shows the truth of (iii) if bb'w" d'a.

(iv) Leta,beS and suppose a < b. Then ae bS, a = eb for some e? = eRa. Hence,
if a = bx, we have, firstly,

ap = (bx)¢ < bpxe which implies ap ebpxeT< bpT.

Next a = eb with eda implies ap = (eb) ¢ < e@bep so that ap = f(epbg) for some
f? =feT with fRap. But aRe implies e = aa’ with a' € V(a) and, by (iii), since
da=bb where b=ad, b'=a, ep =(ad)p = apde with d'¢eV(ap). Thus
apRepRf so that f(ep) = ep and ap = epbp with epRap. Hence ap < be.

COROLLARY 1.4. Let ¢ be a prehomomorphism of a regular semigroup S into a
regular semigroup T. Then
(i) aebS implies ap ebpT; acSb implies ap € T(be);
(ii) ¢ preserves Green’s relations; if X" is any one of Green's relations the aX'b
implies ap X be
(iif) @ preserves the quasiorders w' and " on the idempotents of S.

COROLLARY 1.5. The composition of prehomomorphisms is a prehomomorphism.

Thus regular semigroups, with prehomomorphisms as morphisms, constitute a
category. The category has products but not equalizers.
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In this paper we shall be primarily interested in prehomomorphisms of regular
semigroups into inverse semigroups. The following theorem shows that, in a
theoretical sense, the problem of constructing these reduces to that of constructing
homomorphisms between inverse semigroups. It is the analog of McAlister (1976),
Theorem 2.3.

THEOREM 1.6. Let S be a regular semigroup. Then there exist an inverse semigroup
I(S) and a prehomomorphism y = yg of S into I(S) with the following property:

if @ is any prehomomorphism of S into an inverse semigroup Tthen there is a unique
homomorphism  of I(S) into T such that the diagram

)
s/.p

N

T

I(S)

commutes.

PROOF. First note that 6: S — Tis a prehomomorphism if and only if
(ab) 6 = (ab) K(ab) 6) ! abbO

for all a,beS.
Let F = FI(S) be the free inverse semigroup on S with # the canonical embedding
of S into F and let p be the congruence on F generated by the relations

(ab)n = (ab)n(ab)n™ " anbn.

Set I(S) = F/p and y = np. Then y is a prehomomorphism of S into I(S) and the
universal property of F shows that 6 factors uniquely through 7.

Although Theorem 1.6 gives a theoretical method for constructing prehomomor-
phisms into inverse semigroups, it does not lead to a practical construction. For use
later in the paper we shall need alternative methods for conmstructing pre-
homomorphisms of regular semigroups into inverse semigroups. The next lemma
gives some elementary properties of such mappings.

LEMMA 1.7. Let ¢ be a prehomomorphism of a regular semigroup S into an inverse
semigroup T. Then

(i) if a and b have a common inverse then ap = bo

(i) if x,ye Sad', where a' e V(a), then x@ = yo if and only if (xa) @ = (ya) ¢.

PRrOOF. (i) is immediate since each element of an inverse semigroup has a unique
inverse.
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(ii) Suppose x € Saa’ and let x' € V(x). Then x'xw'aa’ so that (xa) @ = xpagp. It
follows that x¢ = ye implies (xa) @ = xpap = ypap = (ya) .
Similarly, (xa) ¢ = (ya) ¢ implies (xaa’) ¢ = (yaa’) ¢ since

xa,yaeSa = Sa'a = Sa'(a’)

with a = (a') € V(). But x, ye Saa’ so that we get xp = yo.

Theorem 1.6 shows that any prehomomorphism of a regular semigroup S into an
inverse semigroup T can be factored through yg and a homomorphism of I(S) into T.
However I(S) is hard to construct, even if § is inverse, so that in most cases, Theorem
1.6 does not give a practical method of constructing prehomomorphisms from
regular to inverse semigroups. In some special cases, a situation dual to that in
Theorem 1.6 prevails and the problem of constructing prehomomorphisms into
inverse semigroups can be reduced to that of constructing prehomomorphisms
between inverse semigroups. (A method of constructing some prehomomorphisms,
in the general situation, is given in Construction 1.13.)

The following weak analog of the fundamental homomorphism theorem for
semigroups will be crucial in obtaining the dual to Theorem 1.6.

LeEMMA 1.8. Let ¢ be a prehomomorphism of a regular semigroup S into a regular:
semigroup Tand let p be a congruence on S suchthatp S @ o~ . Then @ = p"0fora
unique prehomomorphism 0 of S/p into T.

Proor. Foreach A € S/p, set A@ = ag if A = ap. Then 0 is the unique mapping of
S/p into Tsuch that ¢ = p"O. Let A = ap, B = bp; then
(AB)8 = (ap"bp?) 0 = (ab) p10 = (ab) ¢ < apbp = AOBY.

Hence 6 is a prehomomorphism.

THEOREM 1.9. Suppose that S is either an orthodox or a completely regular
semigroup and let % be the minimum inverse semigroup congruence on S. Then each
prehomomorphism ¢ of S into an inverse semigroup T can be uniquely factored
through %.

ProoOF. Suppose S is orthodox. Then from Hall (1969)

¥ = {(a,b)eSxS: V(a)n V(b) # Q}.

Hence, if ¢ is a prechomomorphism of § into an inverse semigroup T, it follows, from
Lemma 1.7, that % < ¢ 0@~ ! and so, by Lemma 1.8, ¢ factors uniquely through #.

Alternatively, suppose that S is completely regular. Thus § is the union of a
semilattice {S, : a € A} of completely simple semigroups S,. Let ¢, f be idempotents
of S,. Then e LgRffor some idempotent g € S,. Thus, if ¢ is a prehomomorphism of S
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into an inverse semigroup 7, then ep L goRf ¢ so that, since Tis inverse, eg = fo. It
follows that if ae H; then apX#'fp = ep so that ¢ maps the completely simple
semigroup S, into a single #-class of T. Since it contains an idempotent, this -
class H, must be a group and then, since the natural partial order on a group is
trivial, ¢ must actually induce a homomorphism of S, into H,.

ForeachaeA,let U, = S, ¢ and let U be the disjoint union of the U, ac A. We
shall show that U can be turned into an inverse semigroup in such a way that ¢ can
be factored through a homomorphism of S into U.

For each a€ A, pick ¢ = e,€S, and for each b = bp e U, B > a set by , = bpep.
Then ep =fp where feS, is an idempotent with fwb~'b. Hence
bpep = bofp = (bf) @ since fwb™'b = bb~ 1. But bpep > (be)¢ and, since bePe,
(be) pDeqpP(bf) @.Because the natural partial order on a group is trivial it follows
from the inequalities

bpep = (bf) 9 = (be) o,

with all three terms in the same #-class, that bpep = (bf) ¢ = (be) ¢. Indeed, we
have

bpep = (be)p = (eb) ¢ = epbp e U,

so that 5, , is a mapping of Uy into U, it is, clearly, well defined.
Leta = ap, b = bp € Uj,. Then ab = (ab) ¢ since ¢ is a homomorphism on S, so

(ab)1s,, = (ab) e = (ab)pgp  (Where geS,, gwb™'b = bb™?)
= (abg) @ (since ab#b and gwb~' b)
< agp(bg) @
= aplep(bg) 9] (since (bg)@eU,)
= ang, . bng,.

$O 14, 1s 2 prehomomorphism of the group U, into the group U, and is therefore a
homomorphism. Further, it is easy to see that the n,, form a directed set of
homomorphisms and it therefore follows that U becomes an inverse semigroup
(semilattice of groups) under the product

?J*I;=Tu1,,“,l-n1,,ﬂm for?zeUa,T)eU,,.
Define ¢p*: S - U by

ap* =ap in U, if aeSs,.
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Then, for aeS,, beS;

(ab)@* = (ah. hb) p* (where heS(a~Ya,bb™ 1))
= (ah.hb) ¢ (in S, ;4 since ah,hbeS§,, p)
= (ah)¢.(hb)o (since ¢ is a homomorphism on S, , ;)
= aphg . hobo (since hw"a ' a, hw'bb™ 1)

=aQ* N, 4, sb@* 1y 4,5 (since heS§,,; and hobe = bohy)
= ap* xbo*.

Thus ¢* is a homomorphism of S into the inverse semigroup U and, from the
definitionp*c@* ! S pop™!. Hence® < @ - 'andso,by Lemma 1.9, ¢ canbe
uniquely factored through #.

ReEMARK 1.10. The dual of Theorem 1.6 (analog of Theorem 1.9} is not true in
general. Example 5.4 shows that a completely O-simple semigroup may admit
nontrivial prehomomorphisms into inverse semigroups even though it admits no
nontrivial inverse homomorphic images.

REMARK 1.11. Because the category of regular semigroups and prehomomorph-
isms admits products a weak analog of Theorem 1.6 holds for prehomomorphisms
in the following sense. Given any regular semigroup S there exists an inverse
semigroup W and a prehomomorphism 6 of S into Wwith the property that if is a
prehomomorphism of S into any inverse semigroup T then there is a pre-
homomorphism y : W— T such that the diagram

commutes.

Theorem 1.9 shows that, in case S is orthodox or completely regular, then W can
be chosen as S/# and then y is unique. I have been unable to show that W can
always be chosen so that  is unique.

Theorem 1.9 gives a method for constructing prehomomorphisms when S is
orthodox or completely regular. For use later in the paper we need a method for
constructing prehomomorphisms when S is an arbitrary regular semigroup.

It follows from Lemma 1.7 that the equivalence relation p = ¢ - ¢ ~ ! determined a
prehomomorphism ¢ of a regular semigroup S into an inverse semigroup T has the
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following properties :
(i) V(a)n V(b) # Q implies (a,b)e p;

(ii) (xad', yaa')e p if and only if (xa, ya)ep
for all a,b,x, yeS, a' e V(a).

Conversely, we shall show, given an equivalence relation p on S, which satisfies (i)
and (ii), how to construct a prehomomorphism from S into an inverse semigroup. In
order to simplify terminology in this construction, and later, we make the following
definition.

DEFINITION 1.12. Let S be a regular semigroup. Then an equivalence p on S is aright
precongruence if

(i) V(a)n V(b) £ @ implies (a,b)ep;

(1) (xad,yaa’)ep if and only if (xa, ya)ep
for all a,b,x, yeS, a’ e V(a).

CONSTRUCTION 1.13. Let p be a right precongruence on a regular semigroup S and,
for a€S, denote the p-class of a by [al.
For each aeS define p, by

Ap, = {[x] : xeSaa, d € V(a)}
and
[x1p, = [xa] for [x]eAp,.

Then ¢ = ¢@,:a—p, is a prehomomorphism of S into the symmetric inverse
semigroup Fg,, on S/p.

Proor. First, we show that each p, is well defined. Let a',a" € V(a) and x€S.
Choose x'€ V(x) and g€ S(x'x, ad’); then ad’gx’ € V(xaa'). But
xaa’ad' gx'.xaa" = xad'gx'xad’ .aa" = xaa'.aa" = xaa"
since ad'gx’ € V(xad'). Similarly
adgx'.xaa".ad gx' = aa'gx’
so that V(xaa') n V(xaa”) # Q. It follows that xada' pxaa” so that
{[x]: xeSaa'} = {[x]: xeSaa"}.

Hence the domain of p, is independent of the choice of a’ € V(a).

Suppose now that [x] = [y] where x, ye Saa’. Then, by (ii), [xa] = [ya] so that p,
is well defined. On the other hand, if [x] p, = [y] p, for x, ye Saa’ then [xa] = [ya]
implies [x] = [y] by (ii). Hence p, is one-to-one and so is in S,
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Let a,beS, a eV(a), b’ e V(b), he S(d'a,bb’). Then b'ha’' e V(ab) and so
Ap,, = {[x] :xeSabb'ha’ = Saha'}.

Let xeSaha'. Then [x]e€Ap, and [x] p, = [xa]. But xa = (xaha')a = xah since
x € Saha' and since he S(d'a, bb’). Let x' € V(x), g € S(x'x, aha');, then ha'gx’ € V(xah).
But

xahbb' . hd'gx' . xahbb’ = xah.ha'gx’.xah.bb’" (sinceé he S(a'a, bb"))
= xahbb’' (since ha'gx’ € V(xah)).
Similarly
hd'gx'.xahbb’ . hd'gx' = ha'gx’.xah.ha'gx’ (since he S(a'a, bb’))

' = hd'gx' (since ha'gx’ e V(xah)).

Thus V(xah) N V(xahbb') # Q so that, since xa = xah, he S(a'a, bb’),
[xa] = [xah] = [xahbb"] = [xabb']
so that [x] p, € Ap,. Further
[x]papp = [xa] p, = [xabb’] p, = [xab] = [x] po.

It therefore follows that p,, < p,p, and so ¢ is a prehomomorphism.

The set of right precongruences p on a regular semigroup S is clearly closed under
intersections and therefore has a smallest member which we shall denote by 7.

When § is orthodox = is the minimum inverse congruence on S. That is, 7 is the
smallest equivalence on S which satisfies (i); it satisfies (i1) automatically. This is not
the case in general. Example 5.1 shows that = can properly contain the equivalence
relation generated by

{(a,b)eSx S : V(a)n V(b) # Q}.

Construction 1.13 shows that every right precongruence p on a regular semigroup
S gives rise to a prehomomorphism 6 of S into an inverse semigroup. In general,
however, p # 000!, Indeed

LeEMMA 1.14. af = b0 if and only if
(i) for all xeSaa'[ue Sbb'] there exist ye Sbb'[ve Saa'] such that

(x,y)epl(u, v)ep];
(i) for all xeSad, ye Sbb', (x, y)e p implies (xa, yb)e p.

PROOF. Suppose afl = b and let x e Saa’. Then [x] € Aad = Abf so that (x, y)ep
for some y € Sbb'. The dual also holds so (i) holds. Now suppose that x € Saa’, y € Sbb’
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and (x, y)ep. Then X = [x] = [y] € Aaf = AbO so that [xa] = Xal = Xb6 = [yb].
Thus (ii) holds.
Conversely, suppose that (i), (ii) hold for a,b€S. Then from (i),

{[x]: xeSaa’} = {[y]: yeSbb'}

so that Aaf = Abf. By (ii) Xa@ = Xb0 for any X € Aaf = AbG.
We shall denote by p* the equivalence obtained from p using (i) and (ii) in Lemma
1.14.

LeMMA 1.15. Suppose that p = 6. Then p* < o*.

PRrOOF. Let (a, b) € p*. Then clearly (i) of Lemma 1.13 implies (i) holds for o*. Next
suppose x € Saa’, ye Sbb’ and (x, y) € g. Since (a, b) € p* there exists u € Sbb’ such that
(x, u) € p; then (u, y) e 6. Further (xa,ub) € p < o and (ub, yb) e o since u, ye Sbb’. Thus
(xa, yb)€ o so that (a,b)ec*.

COROLLARY 1.16. Let S be a regular semigroup and let © be the smallest right
precongruence on S. Then n* = yoy~ ! where y is as in Theorem 1.6. It is the smallest
equivalence on S of the form 000~ for a prehomomorphism 0 of S into an inverse
semigroup.

2. Fundamental regular semigroups and groups

In this section we shall apply the machinery developed in Section 1 to investigate
the extent to which a regular semigroup can be constructed from a fundamental
semigroup and a group using direct products, regular subsemigroups and idem-
potent separating homomorphisms. To make matters precise we make the following
definition.

DEFINITION 2.1. Let S and T be regular semigroups. Then S divides T strongly if
there is an idempotent separating homomorphism from a full regular subsemigroup of T
onto S.

In the terminology of Definition 2.1, the main result of this section is the following.

THEOREM 2.2. Let S be a regular semigroup. Then S strongly divides the direct
product of a fundamental regular semigroup and a group ifand onlyif u n n = A, where
1 is the maximum idempotent separating congruence on S.
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PrOOF. We shall show that S strongly divides the direct product of a group and a
- fundamental regular semigroup if and only if g~ n* = A. This is equivalent to
proving Theorem 2.2, as shown by the following lemma.

LeEMMA 2.3. Let p be a right precongruence on a regular semigroup S. Then
pnX2p*nH . ThusanH =n*nH andnnp=n*np

ProoF. Suppose that (a,b)e p* N ). Then ad'peAp, = Ap, so that

ap = aa'p, = ada'p, = bp.

Hence (a,b)ep n ¥.

Conversely, suppose (a,b)enn #. Then clearly (a,b)en* n#. Hence
nnH =n*nAH.

The equivalence n*, and prehomomorphisms, appear in Theorem 2.2 because of
the following considerations. Suppose that Tis a regular semigroup and 6,y are
homomorphism of Tonto a regular semigroup S and into a group G respectively so
that we have the following diagram of maps :

4

T——G

0

For each se S set
s ={geG:t0 =s, ty =g for some te T}
=501y

LeEMMA 2.4. The mapping ¢ : s+ s¢ is a prehomomorphism of S into the inverse
semigroup X' (G) of cosets of G.

PROOF. Let g, h,kesp with,say g = ty, h = uy, k = vy, t0 = uf = v0 = s. Then,
for
WweVu), uy=h"' and w0ecV(ub) = V(s)
Hence

gh™'k=(uv)y and (W)l =sud)s=s

so that gh~ ! ke s. Since, always, s = s@(s@)~ ' s¢ it follows from this calculation
- that s¢ = s@(s@)” ' s@ and therefore that sp € #(G).
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Suppose now that x, ye S and let g€ x¢, he yp with x = t0, y = uf where t,ue T
and ty = g, uy = h. Then gh = tuy, xy = tuf so that ghe xyp. Thus xpyp < (xy)¢.
The natural partial order on J#(G) is the inverse of inclusion so that (xy) ¢ < x@ye
in J(G). Hence ¢ is a prehomomorphism of S into X (G).

With these preliminaries we can move on to the proof of Theorem 2.1. Suppose
that S divides F x G strongly where F is a fundamental regular semigroup and Gisa
group. Then we have the following diagram of maps

FxG— G

where Tis a full regular subsemigroup of F x G and the unnamed map is the
projection onto G. By Lemma 2.3, ¢ = 0~ ' is a prehomomorphism into X(G).
Suppose that (s,u)e g~ n*. Then,sincey " n* = punn S @op ™!, s¢ = up andso

(a,g)80 =5, (b,g)0=u forsomeabeF, gegG.

Further since 6 is idempotent separating suu implies (a, g) (b, g) in T. Thus, because
Tis fullin F x G, (a,g) u(b,g) in F x G and, finally, aub in F. Since F is fundamental,
this implies a = b whence s = u. Therefore ynn*— = A.

On the other hand, suppose that u n n* = A and let ¢ be the prehomomorphism
of § into £, arising from n via Construction 1.13. Let T’ = {S¢), the (inverse)
subsemigroup generated by S¢. By Lemma 0.4, T" admits an E-unitary cover so that
T’ divides strongly F x G where F is fundamental and U is E-unitary with maximum
group homomorphic image G, under the projection F x G — G in the diagram

FxG —G

Ui
0 4

U—— T «——8.
Consider
T={(a,g)e(S/u)x G : a = su, sp = (b,g)0 for some seS, (b,g)0eT'}.

Then, firstly, T is a subsemigroup of (S/u) x G. For, let (a, g), (u, k) € Twhere a = sy,
s =(b,g)0, u=tu, to = (c,k)0. Then au = (st) u and stp < sptp = (bc,gk) 6. But
this implies stg = e(bc, gk) 0 for some idempotent ee T'. Now ¢ = (f, 1) 0 for some
idempotent fe F so that st¢ = (fbc,gk)8 so that (au,gk)e T. Next T is regular.
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For if (a,9)eT with a=su, sp=(b,g)0 then (b ',g )eU and
(b9 ™10 = ((b,g)0) ' =s¢ for s’eV(s) since ¢ is a prehomomorphism. It
follows that, if @’ = s'u, then (@,g~ ')e T and is an inverse for (a, g). Finally, if e is an
idempotent of S/u then e = fu for some f? = fe S. Now fo is idempotent in T' and so
fo = (u,1)0 for some u? = ueF. It follows therefore that (e, 1)e T'so that Tis a full
regular subsemigroup of (S/u) x G.

To complete the proof of the theorem, we need only construct an idempotent
separating homomorphism of T onto S. To this end, set

(a,g)yy=s fa=su, so=(b,g)0 forsomebeF.

Suppose also that a = tu, to = (c,g) 8 for some c e F. Then sut implies s#'t which in
turn implies sp#te and so, since 0 is idempotent separating, (b, g) #/(c, g). Since
(b, g) and (c, g) have the same image, g, in the maximum group homomorphic image
G of U which is E-unitary, it follows from these relations that (b,g) = (c,g) so that
sp = tg. Because unn* = A, this means that s = ¢ so that ¥ is well defined; it is
clearly onto.

Let (a,g) ¥ = s, (u, k)Y = t; thus a = sy, s¢p = (b,g) 0, u = tu and te = (¢, k)0 for
some b,ce F. Then the proof that T is a subsemigroup of (S/u) x G shows that
stg = (fbc,gk) 6 for some idempotent fe F, and, clearly, sty = au. Hence

(a,9)Y(u, k)Y = st = (au,gk)y

so that y is a homomorphism. Finally, the idempotents of Tare the pairs (eu, 1) with
e? = e€S; since (ep, 1)Y = e, Y is idempotent separating.

The method employed in the proof of Theorem 2.2 can also be used to determine
when a regular semigroup strongly divides the direct product of a group and a

combinatorial regular semigroup.

COROLLARY 2.5. Let S be a regular semigroup. Then S strongly divides the direct
product of a group and a combinatorial regular semigroup if and only if # is a
congruence on S and # N = A. :

ProOOF. Suppose that S is an idempotent separating homomorphic image of T,
where T' is a full regular subsemigroup of Tx G, with G a group and T
combinatorial. Then 5 is a congruence on Tx G, thus on T'. Hence, since 0 is
idempotent separating, »# is a congruence on S. Thus, also, ¥ = u and the
conditions of Corollary 2.5 are necessary.

Conversely, suppose ) is a congruence and 3¢ N n* = A. Then u = 5 and so by
the proof Theorem 2.2, S strongly divides the direct product of S/u and a group. But,
since ¥ is a congruence, u = ) so that S/u = S/ is combinatorial.
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3. The equivalence n

Theorem 2.2 reduces the problem of finding necessary and sufficient conditions,
under which a semigroup S strongly divides the direct product of a group and a
fundamental inverse semigroup, to that of describing the equivalence relation #. In
this section we give such a description which we can then use to strengthen Theorem
2.2 and Corollary 2.5. The first step in obtaining the description of z is to introduce a
class of equivalence relations on a regular semigroup S.

CONSTRUCTION 3.1. Let S be a regular semigroup and let U,V be full regular
subsemigroups of S. Define a relation p = p(U, V) on S by (a,b)e p if and only if there
exist idempotents e, f€ S, and elements ue U, ve Vsuch that aRe LuRb, a L f RvFLb
and b = uav. Then p is an equivalence on S such that

V@) V(b) # Q@ implies (a,b)ep.

Iffurther, Vis self-conjugate in the sense that a'Va < Vfor eacha€ S,a e V(a)then p
is a right precongruence on S.

Before verifying the statements made above it is helpful to give a diagrammatic
representation of the ¥~ relations holding between q, ¢, f, u, v, b. Here, as usual,
vertical lines join .#-related elements while horizontal ones connect #-related ones.
Then (a,b)e p gives rise to the following diagram

I v
€ a
u b
FI1GURE 1.

with e, f idempotent and ue U, veV.

VERIFICATION OF 3.1. Let ae S. Then a = (aa’) a(d'a) for a’ € V(a). Hence if we put
¢ =u=ad,f= v =da we have the diagram in Figure 1 and also a = uav. Thus
(a,a)e p so p is reflexive.

Next, let (a,b)e p and let ¢, f, u, v be as in the description of the construction. Pick
idempotents geR,, he L,. Then there exist u'€ V(u), v'e V(v) such that e = v'u,
g=uu,f=vv,h=vv,sothat bRgL YU Ra, bLhRv Laand v € U, v’ € V. Further,
since u'u®a, vv'.¥La we have

a = vuavy = u'bv

so that (b,a)e p and p is symmetric.
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Next, suppose (a,b)e p, (b,c)ep. Then b = uav, ¢ = wbz where
uwelU, v,zeV and aReLukb,alfRvEb,bRgLWRC,bLhRzL

for idempotents e, f,g,heS. Now ¢ = wbz = (wu) a(vz) where wue U, vzeV and,
since u#gFw we have uLwuRw and since v.LhRz we have vRvz¥z Thus
aRe S wuRkb, a ¥ f Rvz¥Lc so that (a,c)e p. Hence p is transitive.

Suppose now that ¢ and b in § have a common inverse x. Then
b = bxb = (bx) a(xb) = uav where u = bx, v = xb. Set ¢ = ax, f = xa; then e, f are
idempotent as are u,v (thus ue U, veV, since U,V are full) and aRe.fx LuRb,
alf RxRvEb. Thus (a,b)ep. Finally, suppose that V is selfconjugate and let
(xad',yad’yep so that yaa' = uxad'v where ueU, veV and xad ReLuRyad,
xad L fRvY yaa' for some idempotents e, fe S. Then ya = (uxa)(a'va) where ue U,
dvaeV.

Since f ¥xaa’ we have that f = fad’ which implies a'fa is idempotent. Further

Sxa = Sfa = Sf? a = Sfadfa < Sd'fa < Sfa
so that afa¥xa. Likewise, v.%yaa’ implies va#ya. But then
Sda'va € Sva = Svv'va = Sfva = Sfaa’'va < Sa'va

where v € V(v) is such that vv' = f = fad'. Thus a'va¥va¥ya. Hence ya = uxaw
where ue U, we Vand xaReLuRya, xa¥ dfaRw ya so that (xqa, ya)e p.

It is easy to see that p(U, V) € p(U’, V') whenever U € U’, V< V’so that thereisa
smallest equivalence of the form p(U, V); namely p(IG(S), IG(S)) where IG(S) denotes
the subsemigroup generated by the idempotents of S. Likewise there is a largest
equivalence of the form p(U, V ); namely p(S, S). The next lemma shows that p(S, S) is,
in fact, a very familiar object.

LEMMA 3.2, Let S be a regular semigroup. The p(S, S) is Green’s relation 2. Further
(S, S)* is Green’s relation §.

Proor. First of all, if (g, b) e p = p(S, S) then adle LuARb for some idempotent ¢ and
element u in S. Thus a2b. Conversely, suppose that a2b and et ¢, g be idempotents
with e#a, g#b. Then there exists ue S, v’ € V(u) such that e = v'u, g = w/'. Then

b = gb = uw'b = u'uu'b = uad'v'b = uav,

where a'€V(a) is such that ¢ = aa’ and where v = a'w'b. Further, if f= a'a then
aZfRvEFb so that (a,b)e p(S, S).

Now (a,b)e p* = p(S, S)* implies (aa’, ybb')e p for some ye S, a' € V(a), b’ e V(b).
Thus aZaa' @ ybb'. This implies a £ybb’ so that

SaS < Sybb'S = SybS < SbS.
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Dually, SbS < SaS so that a#b. Conversely, suppose that a b and let
x = xaa' € Saa’. Since a ¢b there exists yeS such that yy = ad’, y'yobb'. Then
x = xyy so that x = xyy#xyeSbb’. Thus (x,xy)ep with xyeShb'. Further, if
x€Sad, ye Sbb’ and x2y then xa®xZyRyb so that (xa, yb)e p. Hence a #b implies
(a,b)e p* so that p* = #.

Since V(a) n V(b) # @ implies(a, b) € p for each equivalence p = p(U, V)it follows
that m,, the equivalence generated by

{(a,b)eSxS:V(ayn V(b) # @}

is contained in the smallest equivalence relation p = p(U, V).
LEmMMA 3.3. Let S be a regular semigroup. Then ny = p(IG(S), IG(S)).

Proor. By the remarks above, we need only show that p = p(IG(S), IG(S)) < n,.
Suppose that (a, b) € p. Then there exist idempotents ¢, fe S and elements u, v € IG(S)
such that b = uav and a#e Lukb, aLf Rv.Lb. By a result of Nambooripad (1979)
(Lemma 0.3) we may assume

U=€3,€3,- 151, U=f1 for0rs f2n
where ¢;, f; are idempotent and
e, Rey, Les, s Reyy 1L 2meis Lfom

Sete, =e,fo =f,a=azand a;,, = e5; .1 a; f2;4 1,0 < i< n Thena, = b. Further,
for each 0 < i < n we have

a;Rey; Leyi\ Ry, GLL i R i1 L
That is, (a;,a;, ;)€1 where

T ={(x,)eSxS8: y=uxv, xReFLuRy and xLf Rv¥y for some

idempotents e,b,u, ve S}.

Suppose now that(x, y)e T and let e, f, u, v be as in the definition of 7. Since e#x.¥#f,
x has an inverse x’ with xx' = ¢, x'x = f. But then uZe L x'Rf Rv so that

yx'y = uxvx'uxv = uxx'xv = uxv,
x'yx' = x'uxvx’ = x'xx’ = x'.

Thus x" € V(x) n V(y) so that (x, y) e n,,. It follows that(a;, a;, ;)€ 73,0 < i < n. Hence
(a,b) = (ay,a,) € 7,

COROLLARY 34. Let S be a regular idempotent generated semigroup. Then
n=mny=2. Further n = n* ifand only if § =D on S.

https://doi.org/10.1017/51446788700021649 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021649

(9] Regular semigroups, fundamental semigroups and groups 493

ProoF. By Lemma 3.3, 7y, = p(IG(S), IG(S)) = p(S,S) = 2, by Lemma 3.2. Since S
is self conjugate it follows from Construction 3.1 that n < 2. Hence since n, S 7 we
have n = 9.

Finally, by Lemma 3.2, 2* = ¢ so that n = n* if and only if # = 2 on S.

There is a smallest self conjugate full regular subsemigroup of a regular semigroup
S. We shall denote this by CIG(S); it is the self conjugate closure of the subsemigroup
IG(S) of S generated by the idempotents. Thus

CIGS) = {V,: n >0},
where V, = IG(S) and, for i > 0
Vi1 =<aV,a:aeS', deV(a)in $*.

Note that, since V,, is full, each V;is a full regular subsemigroup of S. By Construction
3.1, p = p(IG(S), CIG(S)) has the property that

(xad',yaa')ep implies (xa, yd) Ep.

Hence n < p. We shall show, conversely, that p = n so that = can be explicitly
described as follows :

(a,b)en if and only if there exist idempotents e, fe E,
elements u, ve CIG(S) such that aRe Lukb, af Rv.¥b and b = uav.

To show this, we shall need the following lemmas concerning CIG(S).

R ! 1
LEMMA 3.5. Let v = v, ... v,,n > 1, where v; = Xju; x;, u;€ V, x;e V(x;), x;€ S then
v = wz where
(1) wZeR:z for some idempotent e€ S,
(ii) wex| V;x,, and

(i) z =2,..2, where z;ex;V,x, 2 <i<n

PROOF. Suppose n = 2 and let he S(v) vy, v, v3) where v;e V(vy), j = 1,2. Then
v= (v h)(hvy))=wz and w=0v, hLhRhv, =z

Further he S(v| vy, v, v;) implies h = ht'| v, so that, from the form of v, h = hx', x,.
Thus

w=uv,h=x\ux h=x{u,x, hx|x, =xj(u, x; hxy)x,ex; U;x,
since h = hx, x, implies x, hx is idempotent and U, is full. Likewise ze x}, U; x, so

that the result is true for n = 2.
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Suppose that it is true for n and let v = v, v,,...,v,, ; Where v;e x; V, x;. Then, by
induction, v,..v,,, =ty where t¥kRy for some k*=k, tex,V,x, and
Y =Y3..Yns1 Where y;ex;V,x;, 3<j<n+1 Thus v,..0,, L

Let

he S(vy vy, 1) = S( 01, (V2 .. Uy 1) (V2 - Vns 1))

where v e V(v,), ' e V(t). Then v = (v, h)(hty). Then, as in the first paragraph,
w=uv,hex| V,x, and likewise htex}, V;x,. Thus z = hty = y, ... y,, , Where

yiexjVix, 2<j<n+l

Further, since ty#®t, z = htyRhtRhF v, h = w as he S(vjv,, tt'). Hence the lemma is
true for n+1 and therefore holds for all n > 1.

The lemma can immediately be redefined to show that each element of V;, ; can be
written in the form v, v,..v, where v;ex;V,x; and v; Le;#v;,, for some
idempotent ¢;, 1 < i < n. However, we shall not need this result.

For each i > 1, let p;, = p(IG(S), V). Then it is immediate that

o =po S p,S.. and p(IG(S),CIG(S)=u{p;:i=1}.

We shall show by induction that each p; < =, so that p < n. Then since the converse
inclusion is clear we shall have shown p = 7.

Suppose that (a,b)ep,, . Then there exist idempotents e, fe S and elements
ueIG(S), veV,,, such that aRe LPuRkb, afRv¥b and b = uav.

LEMMA 3.6. Suppose that p, < n and that, with the notation above, v = x'wx where
w = xx'w = wxx'eV,. Then (a,b)er.

PrOOF. We show first that (ax’, bx') € p,. Indeed, since b = uav we have
bx' = uavx' = uax'wxx’ = uax'w

where uelG(S), weV, so that it suffices to find idempotents g,h such that
ax'RgLuRbx’ and ax' LhAwLbx'.

Let a' € V{u) be such that aa’ = e, a'a = f. Then, since v#f we have x'xf = f and
therefore ax'xa’ax’ = ax’ so that ax'®ax'xa = e while ax'¥xfx’ and xfx’ is
idempotent. Put g = ¢, h = xfx'. Then we need only show (i) u#®bx’ and (ii)
hRwLbx'. Since b = bx'x, because b.#v = vx'x, (i) is in fact immediate so we turn to
(ii).

Since x'xf = f, we find (xf) x'(xf) = xf so that xf #xfx’. Thus

wS = xvx'S = xvx'xS = xv8 = xf S = xfx'S

https://doi.org/10.1017/51446788700021649 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021649

» 211 Regular semigroups, fundamental semigroups and groups 495

since v f. Thus w#xfx' = h. Finally, since bZv,
Shx’ = Svx’ = Sx'wxx’ = Sx'w = Sxx'w = Sw

since w = xx'w. Thus wZbx’ and (ii) holds so that (ax’,bx')ep;.
It follows that (ax’, bx')en and therefore (ax'x,bx'x)e n. That is (ax'x,b)e n.
But, since a'a = f and f = x'xf we have

ax'x.a’.a.x'x = a. X'xfx'x = afx'x = ax'x,
(@ax'x)a = (da)x'x(dad’) = dax'xfa = dad = d

so that a’ € V(a) n V(ax'x). Hence (a, ax'x) e n. It follows therefore that (a,b)e n.
THEOREM 3.7. Let S be a regular semigroup. Then n = p(IG(S), CIG(S)).

PROOF. As above, let p, = p(I1G(S), V). Then
p = p(IG(S),CIG(S)) = U {p,i = 0}

contains n. We use induction on i to show that each p; < =, whence p = 7.

Since p, = 1y < 7 the result is certainly true fori = 1. Suppose it is true for i and
suppose (a,b)e p;. ;. Then there exist idempotents e, fe S and elements u e 1G(S),
veV,,, such that aRe LuRkb, aLf Rv.Lb and b = uav. Now v = v, v, ... v, where
viex;V;x;, 1 <j<n By Lemma 3.6, (a,b)en if n = 1. We use induction on n to
show this is true in general

Suppose it is true for n— 1. Then, without, loss of generality, we may assume, by
Lemma 3.5, that v, Zh%Rv, ... v, for some idempotent h. Let a; = eav, = av;. Then
aReLeRav, = a, and alf Rv, Lav, = a, since a¥Lf Rv&v,. Hence (a,a,) e and
it suffices to show that (a,,b)en.

From the definition of a,, we have b = ua, v, ...v,. Further a, #eLukb so we
need only find an idempotent g such that a, £gRv, ... v, £Lb in order to apply the
induction hypothesis and conclude that (a,,b)en. From Lemma 3.5, we have
a, Lv, £hRv, ... v, Further,

Sb=3Sv,..v,S Sv,..0,=Sv,v,...0,= Sb

since v, LhRv,...v, Hence a, LhRv, ...v, £b and we may take g = h. By the
induction hypothesis, therefore, (a,, b)e n. Thus, since (a,a,)e n we find (a,b)en.
It follows therefore, that p;, , < n. Hence, by induction each p; S nso thatp = &

It is natural to ask under what conditions 7, and = coincide. The characteriz-

ations of these equivalences given in Lemma 3.3 and Theorem 3.7 permit this
question to be answered.
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PROPOSITION 3.8. Let S be a regular semigroup. Then n = m,, if and only if the
subsemigroup generated by the idempotents is self conjugate.

Proor. If IG(S) = CIG(S), then certainly n = n,. Conversely, suppose that

pUG(S), U) = pIG(S), V),

we show that U = V. It follows from this that n, = = implies IG(S) = CIG(S).
Let beV. Then, for b'eV(b), set e=u=bb' = a =f, v = b. Then aRe L uRb,

alfRvLb and b = uav where ue IG(S), ve V. Thus (b,bb’)e p(I1G(S), V). On the

other hand, if a is idempotent and (a, b) € p(IG(S), V) then, since Vis full, b e V. Hence,

V={beS :(b,e)e p(IG(S), V) for some idempotent e}.

Thus, p(I1G(S), U) = p(IG(S),V) implies U = ¥,

4. Applications

Now that we have a characterization of the equivalence =, we can give refinements
of the main results of Section 2 which avoid the direct mention of equivalence
relations.

THEOREM 4.1. Let S be a regular semigroup. Then S strongly divides the direct
product of a group and a fundamental regular semigroup if and only if CIG(S) is
Jfundamental.

Proor. Suppose that CIG(S) is fundamental and suppose that (a,b) e u n . Then
there exist elements u € IG(S), v € CIG(S) and idempotents e, fsuch that a®e Lukb,
aLf RvFb and b = uav. Further, since (a,b)ep < H#, e u, fHv. Let a’' e V(a) be
such that aa’ = e, a'a = f. Then (aad', uava’) € p where aa’,uava € CIG(T) Thus, since .
CIG(S) is fundamental aa’ = uava’ so that a = uava'a = uav = b since v.%f = d'a.
Hence u n n = A so that, by Theorem 2.2, S strongly divides the direct product of a
group and a fundamental regular semigroup.

Conversely, suppose that 8 is an idempotent separating homomomorphism of T
onto S where T is a full regular subsemigroup of F x ¢ where F is fundamental and G
is a group. From Lallement’s Lemma (see Howie (1976), p. 52) it is easy to see that
CIG(T)8 = CIG(S) and it is also easy to see that CIG(T) is a full regular
subsemigroup of F x {1} where {1} denotes the identity of G. Thus CIG(T) is
fundamental and, since 6 is idempotent separating, so is CIG(S).
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COROLLARY 4.2. Let S be an orthodox semigroup. Then S strongly divides the direct
product of a group and a fundamental orthodox semigroup.

In a similar fashion, one obtains the following result when fundamental is
replaced by combinatorial,

THEOREM 4.3. Let S be a regular semigroup. Then S strongly divides the direct
product of a group and a combinatorial regular semigroup if and only if # is a
conigruence on S and CIG(S) is combinatorial.

COROLLARY 4.4. Let S be an orthodox semigroup. Then S strongly divides the direct
product of a group and a combinatorial orthodox semigroup if and only if # is a
congruence on S.

COROLLARY 4.5. Let S be a union of groups. Then S strongly divides the direct
product of a group and a combinatorial regular semigroup if and only if S is an orthodox
band of groups.

When § is finite, the result in Theorem 4.3 can be strengthened to give the
following result.

THEOREM 4.6. Let S be a finite reqular semigroup. Then S divides the direct product
of a finite group and a finite combinatorial semigroup if and only if H# is a congruence
on S and CIG(S) is combinatorial.

ProOF. By the constructions yielding Theorem 4.3, the conditions clearly suffice.
Conversely, suppose that S is a homomorphic image of a subsemigroup T of the
direct product of a finite group G and a finite combinatorial semigroup C; let 8
denote the homomorphism of Tonto S. By McAlister (1980), 5 is a congruence on S
so it suffices to show that CIG(S) is combinatorial.

Let U, = IG(S) and U,,, =<{d'U,a: aeS'); then CIG(S)=|J{U,: n=1}.
Now, set V, = IG(T)and V,,, = {b'V,b:be T'), which is regular. We shall show
firstly that U, = V, 0 for each n > 1 and secondly that V, < C x {1} for each n, so
that ¥, is combinatorial. It follows that V= ( | {V, : n > 1} is combinatorial. Hence,
since Vis finite, so is CIG(S) = V®.

Clearly, ¥, 8 < U,. On the other hand, the inverse image of an idempotent in S
contains an idempotent of 7, since T is finite. Hence V, 0 = U,. Suppose that
V,0 = U ;then,clearly, V,, , 8 < U, (. On the other hand, ifa€ S, a’' € V(a) then, by
Rhodes (1966), Proposition 3.2, since Tis finite there exist inverse elements b,b'e T
such that b8 = a, b'0 = a', so that

aU,a=boV,060 =(b'V,b)0.
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Hence, since U,,, is generated by the sets aU,a, U,,, < V,,,6 Thus
U,i1 =V, 0and V8 = CIG(S).

Again, since the idempotents of Tare of the form (e, 1) when e € C, it is immediate
that ¥; < C x {1}. Suppose that ¥, = Cx {1} and let veV,, teT", ¢ e V(t). Then
v=(x,1), t=(9), t=(/,g ') where x,5,yeC and geG. Thus
t'vt = (y'xy,1)e C x {1} and, since V,, , is generated by | | {t'V,t: te T', { e V(1)}, it
follows that ¥,,; = Cx {1}. Hence V< C x {1}.

Theorem 4.6 answers, for regular semigroups, the question of Schiitzenberger
which was considered in McAlister (1980). The argument implicitly depends on the
fact that every inverse semigroup admits an E-unitary cover. That s, if S is an inverse
semigroup then there is an E-unitary inverse semigroup T and an idempotent
separating homomorphism of Tonto S. Specifically, Theorem 2.2 uses the fact that
Hnno=AonT

THEOREM 4.7. Let S be a regular semigroup. Then there exist aregular semigroup T,
onwhicho n # = A, and anidempotent separating homomorphism 0 of Tonto S, if and
only if CIG(S) is combinatorial.

PrOOF. Suppose that 6~ # = A on T and let 6 be an idempotent separating
homomorphism of T onto S. Suppose that we CIG(S). Then w = uf where
ue CIG(T). Since u is a product of conjugates of products of conjugates of ...
products of idempotents, us = 1 in T/o. Hence, since (w?, w)e o implies (12, u) € 5,
we CIG(S) implies (u?,u)e # N o and thus u? = u whence w? = w. Thus CIG(S) is
combinatorial.

Conversely, suppose that CIG(S) is combinatorial and let ¢ be the pre-
homomorphism of § into £, associated with n. Let T’ be an E-unitary cover of
{S¢> with 0 the idempotent separating homomorphism of T’ onto {S¢). Thensince
CIG(S) is combinatorial J# N n* = # N = A so that, if we let

T={(a,9)e(S/W)x G : a =sp,s¢ = (c,g)0, for some seS}

then Tis a full regular subsemigroup of (S/u) x G and ¥, defined by (a,g) ¥ = s if
a = sy, s = (c,g) 0 for some c e S/u, is an idempotent separating homomorphism of
T onto S (see the proof of Theorem 2.2).
Suppose ((a, 9), (b, h)) € 0 n H#. Then, since (a,g) — g is a homomorphism onto a
group, g = h. Further as#b. Thus, if
a=su, b=tu, sp=I(cg)0 and te =(d,h)6,
we have sH#t so that seXtp. Hence, since @o@~!=n* we have

(s,t)e HF nn* = # nn=A. It follows that a = b so that, since we have shown
g=h,(a,g)=(b,h). Hence cn ¥ =Aon T
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As was the case with Theorem 4.3, Theorem 4.7 can be strengthened when S is
finite.

THEOREM 4.8. Let S be a finite regular semigroup. Then there exists a finite reqular
semigroup T, on which ¢ n ¥ = A, and a homomorphism of T onto S if and only if
CIG(S) is combinatorial.

5. Examples

EXAMPLE 5.1. Let S = #(G,I,A; P) be a compietely simple semigroup, and
suppose, without loss of generality that P has been normalized so thatp,;, = ¢ = py;
for each JleA, iel, where e denotes the identity of G. Set
M={xeG:(x,1,1)eIG(S)}. Then it is easy to see that
IG(S) = {(x; i,A): xe M, iel, e A} and so that since IG(S) is full and completely
simple, M is a subgroup of G. Further, since the idempotents of S have the form
(pz',i,4), M is contained in the subgroup of G generated by {p,; : ieI, A€ A}. Onthe
other hand,

(Pi' LD = (e, 1, )(py",i, (e, 1,1)eIG(S)

so that p;;' e M. Hence M is the subgroup of G generated by the entries of P.
Suppose that M is not normal. Then there exists xe G such that x ™! Mx ¢ M.
Hence,
TLLDIGES)(x, 1, 1) = (x7 ! Mx, 1,1) & IG(S)

so that CIG(S) # IG(S). It therefore follows that n, # n.

ExaMpLE 5.2. Let B be the fundamental w-simple semigroup with d Z-classes and
let w be the generator for the (cyclic) semigroup L, where e denotes the identity of B.

Let P be the 2 x 2 matrix [e w] and set S = #(B; 2,2; P), the 2 x 2 matrix
e e

semigroup over B with sandwich matrix P. Then S is a combinatorial, idempotent
generated simple regular semigroup with d @-classes; each 2-class is isomorphic to
the 4-spiral semigroup (Byleen and others (1978)).

Because S is idempotent generated 7 = 2 and n* = ¢ so that n # n* Hence
n* # p(U, V) for any full regular subsemigroups U, V.

EXAMPLE 5.3. Let S = #°(G; I, A; P)be a completely 0-simple semigroup and let
N be the normal subgroup of G generated by the non-zero entries of P;set H = G/N.
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Then the mapping ¢ : S — X#(H®) defined by
(x;i,4)¢ = Nx,
0p =0,
is easily seen to be a prehomomorphism of S onto H®.

Hence S may admit nontrivial prehomomorphisms even though it is congruence
free.

EXAMPLE 5.4. Let S = .#°(G; I, A; P)be a completely O-simple semigroup. Then, S
strongly divides the direct product of a fundamental regular semigroup and a group
if and only if CIG(S) is fundamental and thus combinatorial. In this case, P can be
normalized so that each entry of P is either Q or e, the identity of G.

On the other hand, suppose that each entry of P is either e or 0. Then it is easy to
show that each non-zero element of CIG(S) has the form (e, i, 1) so that CIG(S) is
combinatorial. Hence S strongly divides the direct product of a group and a
fundamental regular semigroup.

Define i ~ j if and only if p; # 0, p, ; # 0 for some A€ A and let = denote the
transitive closure of ~. Define =, in a dual fashion. We can define a mapping
0:1-A/=, as follows :

i@ =[A] if p;; # 0 where [/] denotes the =, class.
Then 0 is well defined since p,; # 0, p,; # 0 implies 4 = u. Further i ~ j implies

i = [A] = jO for some 1eA. Hence =, < 060~ so that § induces a mapping
0*: I/=x > A/=, defined by
‘ A0* = B if die A, e B such that p,; # 0.
Dually there is a mapping ¢*: A/= ; — I/= g defined by
Bp* = A if3ieB,iel such that p,, # 0.

It is immediate that 6* ¢* are inverse mappings so that |A/=,| =|I/=g|.
Let T be the Brandt semigroup #°(G; A/=,,A/=,; A)and define yy : S » T by

(L, )Y = (x,[i] 0%, [1]),
Oy =0.
Then, if (x,i, 2)(y,j, ) # O we have p,; # 0 so that
(LAY, j,m ¥ = (x, [[1 0%, [AD (v, [10%, [1])
= (xy, (11 0%, [u])
= (xy, i)Y = (x5, A, j, ¥

since p;; # 0 implies [4] = [j] 0* Hence y is a prehomomorphism of S onto T,
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It can be shown that every prehomomorphism of § into an inverse semigroup W
factors through a prehomomorphism of Tinto W via .

The next two examples show that none of Theorems 4.1, 4.3, 4.7 remain true if
CIG(S) s replaced by 1G(S). The second example shows that this is also the case with
Theorems 4.6, 4.8. Each of these examples involves a Rees matrix semigroup over an
inverse semigroup and depends on the following simple properties of such
semigroups. Let T= T be an inverse semigroup, I, A nonempty sets and Pa A x |
matrix over T. Set S = #(T; I,A; P).

1. (x,i, A)isidempotentifand only if x < p;*. Suppose that p,; = 1 = p,;foreach

iel, Ae A. Then S is regular and

2. IG(S) = .#(M; 1, A; P)where M is the inverse subsemigroup of T generated by

x:x < py! forsomeiel, AieA}.
Ai

3. (x,i,A) #(y, j,u)ifand onlyifi = j, A = pand x3¢y. Thus 5 is a congruence on
S if and only if it is a congruence on T.

ExXAMPLE 5.5. Let T = B(G, 0) be a bisimple w-semigroup where 6 is a non identity
endomorphism of G. Thus T has elements (m,g,n), m,n > 0, ge G with

(mg,n)(uhv)=@uv n—n+mgf’" " "h@""* " n v u—u+v).

Let w = (0,1, 1) where 1 denotes the identity of G and set S = #(T; 2,2; P) where
P= [e ;] with e = (0, 1,0) the identity of T.
e

Then, since  is a congruence on T, » is a congruence on S. Further
IG(S) = #(M; 2,2; P) where M is the inverse subsemigroup of T generated by
{x:x<w™! or x<e} Since {w,w™ !> contains all the idempotents of T,
M = {w,w™ !> which is bicyclic and thus IG(S) is combinatorial.

Let ze G be such that z # z8 and set y = (0,2,0)e T. Then y~ ! =(0,z7!,0). Let
x=(y,1,1)eS; then x' = (y~ 1, 1,1)e V(x) so that, if we let u = (w, 1,1)eIG(S), we
have x'ux e CIG(S).

Now x'ux =(y~!wy,1,1) where y~'wy =(0,z1(z6),1) # w so that x'ux # u.
Further, since # is a congruence on T and y#°'1, x'ux#u. Hence, since I1G(S) is
combinatorial, x'ux¢IG(S). Consequently, CIG(S) # IG(S) and CIG(S) is not
combinatorial. Since J is a congruence on S, it is a congruence on CIG(S) and
hence, since CIG(S) is not combinatorial, CIG(S) is not a fundamental regular
semigroup.

It follows that IG(S) may be fundamental [combinatorial] without the same being
true of CIG(S), even if J# is a congruence on S.
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EXAMPLE 5.6. Let M, denote the (inverse) semigroup of 2 x 2 matrix units and let G
be a finite non-abelian group. Let T denote the quotient (G x M3)AG x {0}) of
G x M; by the ideal G x {0} and set w = (y, 1,2) where y is not in the centre of G.

Consider S = .#(T; 2,2; P)where P = [e e:l with e the identity of T. Then, since
ew

J 1s a congruence on T, it is a congruence on S and IG(S) = #(M; 2,2; P)where M

is the inverse subsemigroup of T generated by {xe T: x < e or x < w}. From the

structure of T, M is thus {0,e,w,w™ ', ww™ !, w™ ! w} & M} and so is combinatorial.

Hence IG(S) is combinatorial.

Now, let ze G be such that y # z~ ! yz(zexists since y is not in the center of G)and
set x = (z,1)e T. Then x " 'wx = (z7'yz,1,2) # wand x ' wxH#w. Set u = (w, 1, 1),
v=(x,1,1);then v’ = (x~1,1,1)e V(v) so that v'uve CIG(S) but v'uv # u although,
since x~'wxH#w, vuv¥u. Hence, since IG(S) is combinatorial, v'uvé¢IG(S).
Consequently, CIG(S) is not combinatorial. Since J is a congruence on S, it is a
congruence on CIG(S) and hence, since CIG(S) is not combinatorial, it is not a
fundamental regular semigroup.

It follows that /G(S) may be fundamental [combinatorial] without the same being
true of CIG(S), even if 5 is a congruence on S and S is finite. Hence Theorems 4.6, 4.8
are not true if CIG(S) is replaced by IG(S).
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