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Abstract

In this paper we obtain necessary and sufficient conditions on a regular semigroup in order that it should
be an idempotent separating homomorphic image of a full subsemigroup of the direct product of a group
and a fundamental or combinatorial regular semigroup. The main tool used is the concept of a
prehomomorphism 6: S -> T between regular semigroups. This is a mapping such that (ab) 9 ^a0b9 in
the natural partial order on T.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 10.

Much of the structure theory of regular semigroups has been concerned with the
problem of determining the extent to which a regular semigroup S can be described
in terms of groups and semigroups determined by the idempotents of S. If p is any
congruence on S which is contained in Green's relation #f, the p-classes which
contain idempotents are subgroups of S so that S is a coextension of S/p by a family
of groups. In particular S is a coextension of F = S/fi, where \i is the maximum
congruence on S contained in Jf, by a family of groups. The semigroup F is
fundamental in the sense that no nontrivial congruence on F is contained in 3/C. For
this reason fundamental regular semigroups have played an important role in the
structure theory of regular semigroups.

Munn (1970) showed that any fundamental inverse semigroup can be realized as a
semigroup of isomorphisms between the principal ideals of its semilattice of
idempotents. Nambooripad {1979), following Hall (1973), has extended Munn's
result to regular semigroups by showing that each fundamental regular semigroup F
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476 D. B. McAlister [2]

can be realized as a semigroup constructed from partial isomorphisms of the
biordered set of idempotents of F.

On the other hand, McAlister and Reilly (1977) have shown that any inverse
semigroup S is an idempotent separating homomorphic image of a subdirect
product of a fundamental inverse semigroup F and a group G. The kernel of this
homomorphism is a semilattice of groups so that S is obtained from a fundamental
inverse semigroup and a group (thus from its semilattice and a group) by factoring
out subgroups.

The main purpose of this paper is to obtain necessary and sufficient conditions
under which an analogous result holds for regular semigroups. The main tool used
to obtain these conditions is the notion of a prehomomorphism which was used in
McAlister and Reilly (1977) to characterize £-unitary covers, for inverse semigroups.
Prehomomorphisms on regular semigroups are introduced in Section 1 and a
method for constructing them is developed which is used in Section 2 to obtain
necessary and sufficient conditions for a regular semigroup to divide the direct
product of a fundamental regular semigroup and a group. These conditions depend
on the properties of an equivalence relation n. A construction for n is obtained in
Section 3 which is used in Section 4 to show that a regular semigroup S divides the
direct product of a fundamental regular semigroup and a group if and only if the
smallest full self conjugate subsemigroup CIG(S) is fundamental. The methods used
in Sections 2 and 4 can also be applied to determine when a regular semigroup
divides the direct product of a combinatorial regular semigroup and a group. This
permits us to answer, for regular semigroups, the question of Schiitzenberger which
was considered in McAlister (1980).

0. Preliminaries

We shall assume familiarity with the basic results and terminology of semigroup
theory which will be found, for example, in Clifford and Preston (1961, 1967) or
Howie (1976).

A semigroup S is called regular if for each element aeS there exists xeS such that
a = axa. In this case, there exists d eS such that both a = ad a and d = dad are
satisfied. Such an element d is called an inverse for a; the set of inverses of a is
denoted by V(a). Thus V(a) = {xeS : a = axa, x = xax}.

A regular semigroup is called inverse if each element has a unique inverse. In this
case, the inverse of a product ab is the product b'd of the inverses b' of b and d of a
respectively. This fortunate circumstance does not hold for arbitrary regular
semigroups. Nambooripad (1980) has introduced the concept of the sandwich set of
a pair of idempotents e, f in a regular semigroup S. This concept permits one to
locate inverses of products in regular semigroups.
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DEFINITION 0.1. Let S be a regular semigroup and let e,fbe idempotents ofS. The
sandwich set S(e, f) of S is the set

LEMMA 0.2. (Nambooripad, 1980) Let S be a regular semigroup and let a,beS.
Suppose that a' e V(a), b' e V{b) and let g e S(a'a, bb'). Then b'gd e V(ab).

Furthermore, ab = albl where a t = ag,bx = gb and

ab&ax Seg&b^ <£ab.

FitzGerald (1972) has shown that the subsemigroup IG(S), generated by the
idempotents of a regular semigroup S, is itself regular. Hall (1973) showed that each
element of IG(S) can be written as a product of ^-equivalent idempotents. This
result has been refined by Nambooripad (1979).

If S is a regular semigroup then we shall denote by n the maximum congruence on
S which is contained in Green's relation Jf. S is called fundamental if n is the equality
relation A. Grillet (1974), Hall (1973) and Nambooripad (1979) have given
representation theorems for fundamental regular semigroups S as semigroups
defined solely in terms of the idempotents of S.

There is a minimum group congruence on every regular semigroup. We shall
denote this relation by a.

LEMMA 0.3 (Nambooripad, 1979). Let Sbe a regular semigroup. Then each element
ofIG(S) can be written as a product ex e2... en where

Inverse semigroups have been extensively studied in recent years and, in this
paper, we shall obtain results about regular semigroups by using properties of
inverse semigroups. In particular we shall use the fact (Schein (1966)) [see McAlister
(1976)] that the set Jf(G) of cosets of a group G, modulo subgroups of G, forms an
inverse semigroup under the product

X * Y= smallest coset containing XY.

The natural partial order on JT(G) is the inverse of inclusion.
An inverse semigroup S is called £-unitary if the equations ea = e = e2 in S

together imply that a2 = e. It is shown in McAlister (1974), that every inverse
semigroup S has an £-unitary cover P in the sense of the following lemma which
summarizes the results on E-unitary inverse semigroups which we shall need in this
paper.
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LEMMA 0.4 (McAlister (1974) and McAlister and Reilly (1977)). Let S be an in-
verse semigroup. Then there is an E-unitary inverse semigroup P and an idempotent
separating homomorphism of P onto S; P is called an E-unitary cover for S.

IfP is an E-unitary cover for S then P is a subdirect product of a fundamental inverse
semigroup (S/fi) and a group G. Further G is the maximum group homormorphic image
ofPand,for(a,g),(b,h)eP

(a, g) a(b, h) if and only if g = h.

1. Prehomomorphisms

In a recent paper (1980), K. S. S. Nambooripad has introduced a partial order on
an arbitrary regular semigroup which generalizes the natural partial order on an
inverse semigroup.

DEFINITION 1.1. Let Sbe a regular semigroup. Then the relation < onS defined by

a ^b if and only ifaebS and a = eb for some e2 = e&a

is a partial order on S. It is called the natural partial order on S.

Although it is not evident from the definition, the definition of the natural partial
order is self dual. Further, for a,beS

a ^ ab implies a = ab

for a ^ ab implies a = eab for some idempotent e. Thus ea = e2 ab = eab = a so that
a = eab = ab. Dually a ^ ba implies a = ba.

McAlister (1976) introduced the concept of a prehomomorphism on an inverse
semigroup. This notion too can be extended to regular semigroups by means of the
natural partial order.

DEFINITION 1.2. Let S and T be regular semigroups. Then a mapping q>: S-*T is a
prehomomorphism if(ab)<p ^ acpbq> for all a,beS.

In McAlister (1976) the definition of a prehomomorphism between inverse
semigroups also required that aq>~v = a~1q> for each aeS. This is in fact a
consequence of Definition 1.2. In addition, many of the properties of pre-
homomorphisms which were obtained for inverse semigroups also hold for regular
semigroups.
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LEMMA 1.3. Let cp be a prehomomorphism of a regular semigroup S into a regular
semigroup T and let a,beS. Then

(i) a'(p e V(acp) for each a' e V(a);
(ii) cp maps idempotents of S to idempotents of T;
(iii) (ab) cp = acpbcp if there exist a' e V(a), V e V(b) such that a'aco' bb' or bb'co' da;
(iv) cp is isotone.

PROOF, (i) Let a' e V(a). Then acp = {ada) cp < acp(a'a) cp and hence acp = acp(da) cp.
Further (da) cp ^ a'q>aq> implies (da) cp = dcpacpe for some e2 = e e T so that
acp = acpa'<paq>e. This then implies aq> = acpe so that acp = a<pdq>aq>. Dually

dcp = a'(fia<pd(p.

(ii) Let e2 = e e S and set a = eq> e T. Then a = e<p = e2 <p < e«pe(/> = a2, so that
a = a2.

(iii) Suppose that a'aco' bb'. Then

(ab) q> ^ a(pb<p = (abb') (pbq>.

But (abb') <p < (ab) cpb'<p so that (abb') <p = (ab) (pb'cp. e for some e2 = e^C(abb') q>.

Thus
(ab) q> ^ aq>b(p = (abb1) cpb(p = (ab) cpb'<p. e(bcp)

so that (ab) q> = (ab) <pb'(p. e(bq>) and therefore (ab) <p = acpbcp.

A similar argument shows the truth of (iii) if bb'cor da.
(iv) Let a,beS and suppose a^b. Then aebS,a = eb for some e2 = eSia. Hence,

if a = bx, we have, firstly,

a<p = (bx)</!> ^ bcpxcp which implies acpebcpxcpT^ bcpT.

Next a = eb with e£?a implies a<p = (eb)q> ^ e<pb<p so that aq> =f(e<pb(p) for some
f2 =feTv/ithf&acp. But a^2e implies e = aa' with deV(a) and, by (iii), since
da = bb' where b = d, b' = a, e<p = (aa') 9 = a<pa'(p with dcp e V(acp). Thus
acp&ecp&f so that/(e</>) = ecp and acp = c<pb<p with ecp&iacp. Hence a(p < b(p.

COROLLARY 1.4. Let cp be a prehomomorphism of a regular semigroup S into a
regular semigroup T. Then

(i) aebS implies acpsbcpT; aeSb implies acpeT(bcp);
(ii) cp preserves Green's relations; if Jf is any one of Green's relations the aJfb

implies acpJfbcp
(iii) cp preserves the quasiorders col and cor on the idempotents of S.

COROLLARY 1.5. The composition of prehomomorphisms is a prehomomorphism.
Thus regular semigroups, with prehomomorphisms as morphisms, constitute a
category. The category has products but not equalizers.
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In this paper we shall be primarily interested in prehomomorphisms of regular
semigroups into inverse semigroups. The following theorem shows that, in a
theoretical sense, the problem of constructing these reduces to that of constructing
homomorphisms between inverse semigroups. It is the analog of McAlister (1976),
Theorem 2.3.

THEOREM 1.6. Let S be a regular semigroup. Then there exist an inverse semigroup
I(S) and a prehomomorphism y = ys of S into I(S) with the following property:

if 9 is any prehomomorphism ofS into an inverse semigroup Tthen there is a unique
homomorphism \fi of I(S) into Tsuch that the diagram

commutes.

PROOF. First note that 9: S -* Tis a prehomomorphism if and only if

(ab) 9 = (ab) 9{(ab) 9)~1 a9b9

for all a,beS.

Let F = FI{S) be the free inverse semigroup on S with n the canonical embedding
of S into F and let p be the congruence on F generated by the relations

(ab) n = (ab) n(ab) n ~l anbn.

Set I(S) = Fjp and y = r\p. Then y is a prehomomorphism of S into I(S) and the
universal property of F shows that 9 factors uniquely through y.

Although Theorem 1.6 gives a theoretical method for constructing prehomomor-
phisms into inverse semigroups, it does not lead to a practical construction. For use
later in the paper we shall need alternative methods for constructing pre-
homomorphisms of regular semigroups into inverse semigroups. The next lemma
gives some elementary properties of such mappings.

LEMMA 1.7. Let q>be a prehomomorphism of a regular semigroup S into an inverse
semigroup T. Then

(i) if a and b have a common inverse then aq> = bq>
(ii) ifx, ye Sad, where a' eV(a), then x<p = y<p if and only if(xa)(p = (ya)<p.

PROOF, (i) is immediate since each element of an inverse semigroup has a unique
inverse.
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(ii) Suppose x e Sad and let x' 6 V(x). Then x'xco' ad so that (xa) q> = xcpacp. It
follows that xq> = yep implies (xa) q> = xcpacp = y<pa<p = (yd) q>.

Similarly, (xa) q> = (yd) (p implies (xad) q> = (yad) (p since

xa, yaeSa = Sda = Sd(d)'

with a = (d)'eV(d). But x, ye Sad so that we get xcp = yq>.
Theorem 1.6 shows that any prehomomorphism of a regular semigroup S into an

inverse semigroup T can be factored through ys and a homomorphism of I(S) into T.
However I(S) is hard to construct, even if S is inverse, so that in most cases, Theorem
1.6 does not give a practical method of constructing prehomomorphisms from
regular to inverse semigroups. In some special cases, a situation dual to that in
Theorem 1.6 prevails and the problem of constructing prehomomorphisms into
inverse semigroups can be reduced to that of constructing prehomomorphisms
between inverse semigroups. (A method of constructing some prehomomorphisms,
in the general situation, is given in Construction 1.13.)

The following weak analog of the fundamental homomorphism theorem for
semigroups will be crucial in obtaining the dual to Theorem 1.6.

LEMMA 1.8. Let <p be a prehomomorphism of a regular semigroup S into a regular:
semigroup Tand let pbe a congruence on S such that p <= q>°<p~l. Then <p = p^Ofor a
unique prehomomorphism 0 of S/p into T.

PROOF. For each A e S/p, set Ad = acp if A = ap. Then 6 is the unique mapping of
S/p into Tsuch that <p = p*Q. Let A = ap, B = bp; then

(AB)6 = (ap^bp^O = (ab)p*6 = (ab)<p < acpbcp = A6B6.

Hence 0 is a prehomomorphism.

THEOREM 1.9. Suppose that S is either an orthodox or a completely regular
semigroup and let <& be the minimum inverse semigroup congruence on S. Then each
prehomomorphism (p of S into an inverse semigroup T can be uniquely factored
through <&.

PROOF. Suppose S is orthodox. Then from Hall (1969)

f = {(

Hence, if <p is a prehomomorphism of S into an inverse semigroup T, it follows, from
Lemma 1.7, that <W £ <p ° <p~x and so, by Lemma 1.8, q> factors uniquely through <W.

Alternatively, suppose that S is completely regular. Thus S is the union of a
semilattice {Sx: cteA} of completely simple semigroups Sx. Let e, / b e idempotents
of S r Then e&g&fhx some idempotent g e Sa. Thus, if (p is a prehomomorphism of S
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into an inverse semigroup T, then ecpSfgy&fcp so that, since Tis inverse, eq> =fq>- It
follows that if a e Hf then aq>Jff(p = eq> so that q> maps the completely simple
semigroup Sx into a single ^-class of T. Since it contains an idempotent, this Jff-
class Hx must be a group and then, since the natural partial order on a group is
trivial, q> must actually induce a homomorphism of Sx into H„.

For each a e A, let Ux = Sx<p and let 1/ be the disjoint union of the V v a e A. We
shall show that U can be turned into an inverse semigroup in such a way that q> can
be factored through a homomorphism of S into U.

For each aeA, pick 6 = ^ 6 5 , , and for each b = bcpe Up, /? > a set brj^ „ = bcjoê o.
Then ecp=f(p where /eSj , is an idempotent with fcob~lb. Hence
b(pe(j9 = b<pf(p = (bf)<p since fa>b~1 b = bb'1. But b<pe<p ^ (be)q> and, since beQse,

(be) q>3}e(p2d(bf) (p. Because the natural partial order on a group is trivial it follows
from the inequalities

bq>eq> = (bf) <p > (be) <p,

with all three terms in the same ^-class, that bq>eq> = (bf) q> — (be) q>. Indeed, we
have

b<pe<p = (be) q> = (eb) q> = eq>bq> e Ux,

so that r\fi a is a mapping of Uf into Ux; it is, clearly, well denned.
Let a — acp, b = bcpe Up. Then ab = (ab) q> since q> is a homomorphism on Sp, so

(ab)r\pa, = (ab) q>eq> = (ab) <pgq> (where 3 e S,, gcofo ~ ! b = bb

= (abg)cp (since ab£fb and goib~l b)

= "(Ple<P(bg) <p] (since (ftgi) q> e l / J

so fyjB is a prehomomorphism of the group Up into the group Ux and is therefore a
homomorphism. Further, it is easy to see that the r\t „ form a directed set of
homomorphisms and it therefore follows that U becomes an inverse semigroup
(semilattice of groups) under the product

a*b = at]^^brif^A!t for aeUx,beUfi.

Define q>* : S -> U by

a<p* — a<p in Ua if
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[9] Regular semigroups, fundamental semigroups and groups 483

Then, for aeSx,beSp

(ab)(p* = (ah.hb)(p* (where heS{a~l a,bb~1))

= (ah. hb) q> (in S,, A fi since ah, hbeSaA fi)

= (ah)(p.(hb)q> (since <p is a homomorphism on SXAfi)

= aq>hq>. h<pbcp (since hof a'1 a, hco'bb~l)

= <*<iP*'/a,1zA,sW>*f7/»,a,A/> ( s i n c e heS**i) a n d h(Pb(P = bcphcp)

= a<p* *b<p*.

Thus q>* is a homomorphism of S into the inverse semigroup U and, from the
definition (p*°q>*~1 <=:q>°<p~l. Hence <& £ (peep"1 and so, by Lemma 1.9, <p can be
uniquely factored through <&.

REMARK 1.10. The dual of Theorem 1.6 (analog of Theorem 1.9) is not true in
general. Example 5.4 shows that a completely 0-simple semigroup may admit
nontrivial prehomomorphisms into inverse semigroups even though it admits no
nontrivial inverse homomorphic images.

REMARK 1.11. Because the category of regular semigroups and prehomomorph-
isms admits products a weak analog of Theorem 1.6 holds for prehomomorphisms
in the following sense. Given any regular semigroup S there exists an inverse
semigroup W and a prehomomorphism 5 of S into Wwith the property that if 6 is a
prehomomorphism of S into any inverse semigroup T then there is a pre-
homomorphism i/f: W-> T such that the diagram

commutes.
Theorem 1.9 shows that, in case S is orthodox or completely regular, then W can

be chosen as S/<& and then \// is unique. I have been unable to show that W can
always be chosen so that ^ is unique.

Theorem 1.9 gives a method for constructing prehomomorphisms when S is
orthodox or completely regular. For use later in the paper we need a method for
constructing prehomomorphisms when S is an arbitrary regular semigroup.

It follows from Lemma 1.7 that the equivalence relation p = q>°q>~1 determined a
prehomomorphism q> of a regular semigroup S into an inverse semigroup T has the
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following properties:
(i) V(a) n V(b) # <?> implies {a,b)ep;

(ii) (xaa', yaa') e p if and only if (xa, yd) e p
for all a,b,x, yeS, de K(a).

Conversely, we shall show, given an equivalence relation p on S, which satisfies (i)
and (ii), how to construct a prehomomorphism from 5 into an inverse semigroup. In
order to simplify terminology in this construction, and later, we make the following
definition.

DEFINITION 1.12. Let Sbe a regular semigroup. Then an equivalence ponS is a right
precongruence if

(i) V{a)nV(b) ¥= 9 implies (a,b)ep;
(ii) (xaa', yaa') e p if and only if(xa,ya)ep

for all a,b,x, yeS, a'e V(a).

CONSTRUCTION 1.13. Let p be a right precongruence on a regular semigroup S and,
for aeS, denote the p-class of a by [a].

For each aeS define pa by

Apa = {[*]:xeSaa', a'eV(a)}

and

M Pa = [*«] for [x] e Apa.

Then <p = <pp: a-> pa is a prehomomorphism of S into the symmetric inverse

semigroup ^s/p on $/P-

PROOF. First, we show that each pa is well defined. Let a', a" e V(a) and xeS.
Choose x' e V(x) and g e S{x'x, aa'); then aa'gx' e V(xaa'). But

xad'adgx'. xaa" = xadgx'xad. aa" = xad. aa" = xaa"

since aa'gx' e V(xad). Similarly

aa'gx'. xaa". aa'gx' = aa'gx'

so that V(xad) n V(xaa") # (J>. It follows that xadpxaa" so that

{[x] : xeSad} = {[x] : xeSaa"}.

Hence the domain of pa is independent of the choice of d e V(a).
Suppose now that [x} = [y] where x, ye Sad. Then, by (ii), [xa] = [ya] so that pa

is well defined. On the other hand, if [x] pa = [y] pa for x, y e Sad then [xa] = [yd]
implies [x] = [y] by (ii). Hence pa is one-to-one and so is in Jslp.

https://doi.org/10.1017/S1446788700021649 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021649


[11] Regular semigroups, fundamental semigroups and groups 485

Let a, b e S, d e V(a), b' e V(b), h e S(da, bb'). Then b'ha' e V(ab) and so

&Pab = { M :xeSabb'ha' = Saha'}.

Let x e Sa/ia'. Then [x] e Apa and [x] pa = [xa]. But xa = (xahd) a — xah since
x e Sahd and since h e S(a'a, bb'). Let x' e F(x), g e S(x'x, a/ia'); then ha'gx' e V(xah).
But

xahbb'. ha'gx'. xahbb' = xah. ha'gx'. xah. bb' (since h e S{da, bb'))

= xahbb' (since fca'gx' e K(xa/i)).

Similarly

/la'gix'. xahbb'. ha'gx' = ha'gx'. xah. hdgx' (since h e S(da, bb'))

= ha'gx' (since ha'gx' e V(xah)).

Thus F(xa/i) n K(xa/ibb') # (^ so that, since xa = xah, h 6 S(a'a, bb'),

[xa] = [xa/i] = [xafcW] = [xabfe']

so that [x] pa e Apb. Further

M pa pb = [xa] pb = [xabb'] pb = \_xab] = [x] pab.

It therefore follows that pab ^ /3a pb and so <p is a prehomomorphism.
The set of right precongruences p on a regular semigroup S is clearly closed under

intersections and therefore has a smallest member which we shall denote by n.
When S is orthodox n is the minimum inverse congruence on S. That is, n is the

smallest equivalence on S which satisfies (i); it satisfies (ii) automatically. This is not
the case in general. Example 5.1 shows that n can properly contain the equivalence
relation generated by

{(a,b)eSxS: V(a) n V(b) # 0}.

Construction 1.13 shows that every right precongruence p on a regular semigroup
S gives rise to a prehomomorphism 6 of S into an inverse semigroup. In general,
however, p ^ 6°6~l. Indeed

LEMMA 1.14. a6 = bd if and only if
(i) for all xeSad[ueSbb'~\ there exist yeSbb'[veSad~\ such that

(x,y)ep[[u,v)ep'];

(ii) for all xeSad, ye Sbb', (x,y)ep implies (xa,yb)ep.

PROOF. Suppose a6 - bd and let x e Sad. Then [x] e AaO = AbO so that (x, y) e p
for some y € Sbb'. The dual also holds so (i) holds. Now suppose that x e Sad, y e Sbb'

https://doi.org/10.1017/S1446788700021649 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021649


486 D. B. McAlister [12]

and (x, y) e p. Then X = [x] = [y] e Aa0 = Ab0 so that [xa] = Xa0 = Xbd = [yb~\.
Thus (ii) holds.

Conversely, suppose that (i), (ii) hold for a,beS. Then from (i),

{[x]:xeSaet} = {[y] : ye Sbb'.}

so that Aad = Ab6. By (ii) Xad = XbO for any XeAad = Ab9.
We shall denote by p* the equivalence obtained from p using (i) and (ii) in Lemma

1.14.

LEMMA 1.15. Suppose that p ^ a. Then p* ^ a*.

PROOF. Let (a, b)ep*. Then clearly (i) of Lemma 1.13 implies (i) holds for a*. Next
suppose x e Saa', y e Sbb' and (x, y) e a. Since (a, b)ep* there exists u e Sbb' such that
(x, u) e p; then (u, y) e a. Further (xa, ub) e p ^ a and (ub, yb) e a since u, y 6 Sfofc'. Thus
(xa, yb) e ff so that (a, b) e c*.

COROLLARY 1.16. Let S be a regular semigroup and let n be the smallest right
precongruence on S. Then n* = y ° y ~' where y is as in Theorem 1.6. It is the smallest
equivalence on S of the form 9°Q~l for a prehomomorphism 0 of S into an inverse
semigroup.

2. Fundamental regular semigroups and groups

In this section we shall apply the machinery developed in Section 1 to investigate
the extent to which a regular semigroup can be constructed from a fundamental
semigroup and a group using direct products, regular subsemigroups and idem-
potent separating homomorphisms. To make matters precise we make the following
definition.

DEFINITION 2.1. Let S and T be regular semigroups. Then S divides T strongly if
there is an idempotent separating homomorphismfrom a full regular subsemigroup ofT
onto S.

In the terminology of Definition 2.1, the main result of this section is the following.

THEOREM 2.2. Let S be a regular semigroup. Then S strongly divides the direct
product of a fundamental regular semigroup and a group if and only if p. n n = A, where
p. is the maximum idempotent separating congruence on S.
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PROOF. We shall show that S strongly divides the direct product of a group and a
fundamental regular semigroup if and only if fi n n* = A. This is equivalent to
proving Theorem 2.2, as shown by the following lemma.

LEMMA 2.3. Let p be a right precongruence on a regular semigroup S. Then
. p* c\#e. Thus nnJf = n*nje and n n ft = n* n fi.

PROOF. Suppose that (a,b)ep* <~\3fC Then aa'peApa = Apb so that

ap = aa'pa = aa'pb = bp.

Hence (a,b)ep
Conversely, suppose {a,b)enr\jif. Then clearly (a,b)en* njV. Hence

n n Jf = n* n 3t.
The equivalence n*, and prehomomorphisms, appear in Theorem 2.2 because of

the following considerations. Suppose that Tis a regular semigroup and 9, \ji are
homomorphism of Tonto a regular semigroup S and into a group G respectively so
that we have the following diagram of maps :

e

s
For each s e S set

s(p = {geG : t6 = s, t^ = g for some t e T}

= s6~l\j/.

LEMMA 2.4. The mapping q>: s \-+ s<f> is a prehomomorphism ofS into the inverse
semigroup Jf{G) of cosets of G.

PROOF. Let g,h,ke scp with, say g = t\j/,h = uty, k = vi//, t9 = u9 = v6 = s. Then,

for

u' e V(u), u'ilf = h~1 and u'd e V(u6) = V{s).

Hence

gh~ik = {tu'v)\j/ and (tu'v)d = s(u'0)s = s

so that gh ~1 k e scp. Since, always, scp c scp(scp) ~1 scp it follows from this calculation
that scp = scp(scp)~1 scp and therefore that scp e Jf(G).
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Suppose now that x,yeS and let gexq>, hey<p with x = t6, y = uO where t,ueT
and tip = g,wj/ = h. Then gh = tw/', xy = tuO so that gffc e xjxp. Thus x<py<p ^ (xy) <p.
The natural partial order on JT(G) is the inverse of inclusion so that (xy)q> ^ x<pyq>
in JT(G). Hence <p is a prehomomorphism of S into Jf (G).

With these preliminaries we can move on to the proof of Theorem 2.1. Suppose
that S divides F x G strongly where F is a fundamental regular semigroup and G is a
group. Then we have the following diagram of maps

FxG > G

Ul

T

e

s
where T is a full regular subsemigroup of F x G and the unnamed map is the
projection onto G. By Lemma 2.3, q> = 9~l <]/ is a prehomomorphism into JT(G).

Suppose that (s,u) e/inn*. Then, since n r> n* = n nn <=: <p ° q>~x ,sq> = uq> and so

(a,g)G = s, (b,g)6 = u for some a,beF, geG.

Further since 6 is idempotent separating spu implies (a, g) n(b, g) in T. Thus, because
Tis full in F x G, (a, #) /i(fe, #) in F x G and, finally, a/*fr in F. Since F is fundamental,
this implies a = b whence s = u. Therefore (inn*— = A.

On the other hand, suppose that j i n i * = A and let q> be the prehomomorphism
of S into JSjn arising from n via Construction 1.13. Let T = <S<p>, the (inverse)
subsemigroup generated by Sep. By Lemma 0.4, T" admits an £-unitary cover so that
T' divides strongly F x G where F is fundamental and U is £-unitary with maximum
group homomorphic image G, under the projection F x G -> G in the diagram

F x G >G
Ul

U • T <—-— S.

Consider

T= {(a,9)e(S//i)xG : a = sfi,scp = (b,g)O for some seS, (b,0)0eT'}.

Then, firstly, T is a subsemigroup of (S/n) x G. For, let (a, g), (u, k) e Twhere a = six,
scp = {b,g)9, u = t/i, £<p = (c, k)0. Then au = (st)/x and stq> ^ scpfcp = (bc,gk)6. But
this implies s£<p = e(bc,gk)9 for some idempotent ee T. Now £ = (/, 1)6 for some
idempotent fe F so that step = (fbc, gk) 6 so that {au, gk) e T Next T is regular.
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For if (a,g)eT with a = sfi, s(p=(b,g)0 then (b~l,g~l)eU and

(b^1,g~1)9 = ((b,g)d)~l = s'(p for s ' e ^ s ) since cp is a prehomomorphism. It
follows that, if a' = s'/x, then (a',g~ ^ e T and is an inverse for (a,g). Finally, if e is an
idempotent of S//z then e = f\i for some/2 = / e S. Now/<p is idempotent in T' and so
/<p = (u, 1)0 for some u2 = ueF.lt follows therefore that (e, 1)e Tso that Tis a full
regular subsemigroup of (S/fi) x G.

To complete the proof of the theorem, we need only construct an idempotent
separating homomorphism of Tonto S. To this end, set

(a, g) i/f = s if a = sfi, s<p = (b, g) 6 for some beF.

Suppose also that a = tfx, tq> = (c, g) 6 for some ceF. Then sfit implies sJf t which in
turn implies sq>Jift(p and so, since 6 is idempotent separating, (b, g) Jf(c, g). Since
(b,g) and (c,g) have the same image, g, in the maximum group homomorphic image
G of U which is E-unitary, it follows from these relations that (b, g) = (c, g) so that
sq> = t(p. Because fi n n* = A, this means that s = t so that i/f is well defined; it is
clearly onto.

Let (a, g)ij/ = s, (u, k) i/f = t; thus a = sfi, sq> = {b, g)6,u = tfi and t<p = (c, k) 9 for
some b,ceF. Then the proof that Tis a subsemigroup of (S/n)x G shows that
step = (fbc,gk)9 for some idempotent/eF, and, clearly, stp = au. Hence

(a, g) 4i{u, k)\ji = st = (au, glc) \j/

so that ij/ is a homomorphism. Finally, the idempotents of Tare the pairs (en, 1) with
e2 = eeS; since (e/i, l)\j/ = e, i// is idempotent separating.

The method employed in the proof of Theorem 2.2 can also be used to determine
when a regular semigroup strongly divides the direct product of a group and a
combinatorial regular semigroup.

COROLLARY 2.5. Let S be a regular semigroup. Then S strongly divides the direct
product of a group and a combinatorial regular semigroup if and only if Jf is a
congruence on S and Jf nn = A.

PROOF. Suppose that S is an idempotent separating homomorphic image of T ,
where T is a full regular subsemigroup of Tx G, with G a group and T
combinatorial. Then Jf is a congruence on Tx G, thus on T". Hence, since 6 is
idempotent separating, Jf is a congruence on S. Thus, also, J f = n and the
conditions of Corollary 2.5 are necessary.

Conversely, suppose 3tt is a congruence and J f n 7r* = A. Then n = J f and so by
the proof Theorem 2.2, S strongly divides the direct product of S/n and a group. But,
since Jf is a congruence, /x = J f so that S/ji = S/Jf is combinatorial.
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3. The equivalence n

Theorem 2.2 reduces the problem of finding necessary and sufficient conditions,
under which a semigroup S strongly divides the direct product of a group and a
fundamental inverse semigroup, to that of describing the equivalence relation n. In
this section we give such a description which we can then use to strengthen Theorem
2.2 and Corollary 2.5. The first step in obtaining the description of n is to introduce a
class of equivalence relations on a regular semigroup S.

CONSTRUCTION 3.1. Let S be a regular semigroup and let U,V be full regular
subsemigroups ofS. Define a relation p = p(U, V) on S by (a, b)ep if and only if there
exist idempotents e, fe S, and elements ueU,ve Vsuch that a&eSCu&b, aS^fMvSfb
and b = uav. Then p is an equivalence on S such that

V(a) n V{b) # <J> implies (a, b) e p.

If further, Vis self-conjugate in the sense that a' Va ^ Vfor each aeS,a'e V(a) then p
is a right precongruence on S.

Before verifying the statements made above it is helpful to give a diagrammatic
representation of the S£-3l relations holding between a, e, f u, v, b. Here, as usual,
vertical lines join if-related elements while horizontal ones connect ^-related ones.
Then (a, b) e p gives rise to the following diagram

FIGURE 1.

with e, f idempotent and ueU, veV.

VERIFICATION OF 3.1. Let aeS. Then a = {aa')a(a'a) for a' eV(a). Hence if we put
e = u = aa',f'= v = a'a we have the diagram in Figure 1 and also a = uav. Thus
(a, a) e p so p is reflexive.

Next, let (a, b)ep and let e,f, u, v be as in the description of the construction. Pick
idempotents geRb, heLb. Then there exist u'eV(u), v'eV(v) such that e = u'u,
g = uu',f= vv', h = v'v, so that b0ig£fu'^a, bSfh^v'Sfa and u'eU,v'eV. Further,
since u'uMa, vv'SCa we have

a = u'uavv' = u'bv'

so that (b, a)ep and p is symmetric.
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Next, suppose (a,b)ep, (b,c)ep. Then b — uav, c = wbz where

u,weU, v,zeV and

for idempotents e,f,g,heS. Now c = wbz = (wu)a(vz) where wuet/, vzeV and,
since u$?gj£?w we fraue wifwu^w and since v£Ch<Mz we have v^vz^z. Thus
aMe!£wu&b, a£ff^vz£Cc so that (a, c) e p. Hence p is transitive.

Suppose now that a and b in S have a common inverse x. Then
b = bxb = (bx)a(xb) = Mai; where u = bx, v — xb. Set e = ax,f= xa; then e,/are
idempotent as are u, i> (thus ueU, veV, since [/, Vare full) and a9te!£x<£u@lb,
a£Pf@tx9lv££b. Thus (a,b)ep. Finally, suppose that V is selfconjugate and let
(xaa',yaa')ep so that yaa' = uxaa'v where uel/ , U E F and xaa'^eifu^yaa',
xaa'SCf^v^yaa' for some idempotents e, fe S. Thenya = (uxa)(dva) where ue U,
a'vaeV.

Since f£Cxad we have that f=faa' which implies a/a is idempotent. Further

Sxa = Sfa = Sf2a = Sfaa'fa c Sa'/a £ S/a

so that a'fa£Cxa. Likewise, vSCyaa' implies va£Cya. But then

Sa'va ̂  Sva = Svv'va = Sfva = Sfaa'va c

where v'eV(v) is such that vv' =f=faa'. Thus a'raJ5ft;aJ5fya. Hence ya = uxaw
where wet/, weVand xaMeZ£u9lya, xa^a'faStw^ya so that (xa,ya)ep.

It is easy to see that p(U, V) ^ p(U', V) whenever U s U', F s V so that there is a
smallest equivalence of the form p(U, V); namely p(IG{S), IG(S)) where IG(S) denotes
the subsemigroup generated by the idempotents of S. Likewise there is a largest
equivalence of the form p(U, V); namely p(S, S). The next lemma shows that p{S, S) is,
in fact, a very familiar object.

LEMMA 3.2. Let S be a regular semigroup. The p(S, S) is Green's relation S>. Further
p(S, S)* is Green's relation #.

PROOF. First of all, if (a, b)ep = p(S, S) then aMe^u0ib for some idempotent e and
element u in S. Thus aQ)b. Conversely, suppose that aSib and let e, g be idempotents
with e0la, gdtb. Then there exists ueS, u' e V{u) such that e = u'u, g = uu'. Then

b = gb — uu'b = uu'uu'b = uaa'u'b = uat>,

where a'eV(a) is such that e = ad and where f = a'u'b. Further, i f /= da then
so that (a,b)ep(S,S).

Now (a, b) e p* = p(S, S)* implies (ad, ybb') e p for some y e S, d e F(a), £>' e V(b).
Thus a^aa'Siybb'. This implies a/ybb' so that

SaS S Sybb'S = SybS £
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Dually, SbS s SaS so that a/b. Conversely, suppose that a/b and let
x = xaa'eSaa'. Since a/b there exists yeS such that yy' = ad, y'ycobb'. Then
x = xyy1 so that x = xyy'&lxyeSbb'. Thus (x,xy)ep with xyeSbb'. Further, if
x e Saa', y e Sbb' and xS>y then xaMxSfiyfflyb so that (xa, yb) e p. Hence a/b implies
(a,b)ep* so that p* = ^ .

Since F(a) n F(b) # $ implies (a, ft) e p for each equivalence p = p(U, V) it follows
that nQ, the equivalence generated by

{(a,b)eSxS: V(a)n V{b) * 0}

is contained in the smallest equivalence relation p = p(U, V).

LEMMA 3.3. Let S be a regular semigroup. Then n0 = p(IG(S),IG(S)).

PROOF. By the remarks above, we need only show that p = p{IG(S), IG(S)) £ n0.
Suppose that (a, b) e p. Then there exist idempotents e, fe S and elements u,ve IG{S)
such that b = uav and a3te&u®b, a££f@v££b. By a result of Nambooripad (1979)
(Lemma 0.3) we may assume

" = e2ne2n-i,...,eu v = / , fz,...,f2n

where et, f( are idempotent and

Set e0 = e,f0 =f,a = a0 and ai+ x = e2i+lai f2i+ u 0 ^ i < n. Then an = b. Further,
for each 0 ^ i < n we have

a, ®e2i £Ce2i+, &ai+1(

That is, (at,ai+ J e t where

x = {(x,y)eS x S : y = wxu, x&e<£u0ly and x&f&v££y for some

idempotents e, /),«,o€S}.

Suppose now that (x, y) e T and let e,f, u, v be as in the definition of x. Si
x has an inverse x' with xx' = e, x'x =f. But then u£fe£Cx'^if3iv so that

= uxvx'uxv = uxx'xv = wxy,

x'yx' = x'uxvx' = x'xx' = x'.

Thus x' e V(x) n F(y)so that (x, y)en0. It follows that (a(, ai+1)eno,0 ^i < n. Hence

(a,b) = (ao,an)eno.

COROLLARY 3.4. Let S be a regular idempotent generated semigroup. Then
n = 7r0 = 3). Further n = n* if and only if / = 3) on S.
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PROOF. By Lemma 3.3, TT0 = p(IG(S), IG(S)) = p(S, S) = 2, by Lemma 3.2. Since S
is self conjugate it follows from Construction 3.1 that n ^ S>. Hence since n0 £ n we
have n = Q).

Finally, by Lemma 3.2, ®* = , / so that n = n* if and only if ^ = @ on S.
There is a smallest self conjugate full regular subsemigroup of a regular semigroup

S. We shall denote this by CIG(S); it is the self conjugate closure of the subsemigroup
IG{S) of S generated by the idempotents. Thus

where Vo = IG(S) and, for i Ss 0

Vi+l = (a'Via:aeS1, a'eV{a) in S1).

Note that, since Vo is full, each Vt is a full regular subsemigroup of S. By Construction
3.1, p = p(IG(S),CIG(S)) has the property that

(xaa', yaa') 6 p implies (xa, yd) e p.

Hence n ^ p. We shall show, conversely, that p £ TT SO that 7t can be explicitly
described as follows:

(a, b) e n if and only if there exist idempotents e, fe E,

elements u,veCIG(S) such that a®e&u®b, a<£f®v<£b and b = uav.

To show this, we shall need the following lemmas concerning CIG(S).

LEMMA 3.5. Let v = t>,... vn, n > 1, where Vj = x'jUjXj,Uje Vt, x^eF(Xj), XjeS1 then
v = wz where

(i) w£fel%z for some idempotent eeS,
(ii) wex , VjXi, and

(iii) z = z2...zn where Z,GX|-^X,-, 2 ^ i ^ n.

PROOF. Suppose n = 2 and let /jeS(i;'1 D,, V2 V'2) where ^ e F^-), j = 1,2. Then

i> = ((>! h)(hv2) = wz and w = vt h££h@thv2 = z.

Further /i e S(v\ vt, v2 v'2) implies h = hv\ vt so that, from the form of vu h = hx\ xv

Thus

w = vlh = x\ulx1h = x\ M, xt hx\ xl = x\(ul xt hx\)xl ex\ Uixl

since h = hx\ xl implies xl hx\ is idempotent and (/, is full. Likewise zex'2 Utx2 so
that the result is true for n = 2.
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Suppose that it is true for n and let v = vt v2,..., vn+1 where Vj ex'j V( Xj. Then, by
induction, v2 ... vn+l = ty where tSCkffiy for some k2 = k, tex'1Vix1 and

y = y3-yn+i where y^x'^Xj, 3^j^n + l. Thus v2... vn+ j @t.

Let

h6S(v\ vu W) = S{v\ vu(v2... vn+ ,)(p2... vn+1)')

where v\eV(vx), t'eV(t). Then r = (t^ /i)(/ity). Then, as in the first paragraph,
w = v1hex'lVixl and likewise htex'2 Vix2. Thus z = /?f_y = y2... yn+, where

Further, since ty3tt, z = htyMht<Mhy vlh = w asheS(v\Vi,tt'). Hence the lemma is

true for n + 1 and therefore holds for all n > 1.
The lemma can immediately be redefined to show that each element of V( + 1 can be

written in the form v1v2...vn where tjexjl^Xj and VjJifej&tvi+l for some
idempotent et, 1 < i < n. However, we shall not need this result.

For each i ^ 1, let pt = p(IG(S), VJ)- Then it is immediate that

TC0 = p0 £ pi £ ... and p(IG(S), CIG(S) = u {p{: i ^ 1}.

We shall show by induction that each pt s n, so that p zn. Then since the converse
inclusion is clear we shall have shown p = n.

Suppose that (a,b)epi+1. Then there exist idempotents e,feS and elements
ueIG(S), veVi+1 such that a0le<£umb, aSff&v&b and b = uav.

LEMMA 3.6. Suppose that pi^it and that, with the notation above, v = x'wx where
w = xx'w = wxx' e Vt. Then (a, b) e n.

PROOF. We show first that (ax',bx')epi. Indeed, since b = uav we have

bx' — uavx' = uax'wxx' = uax'w

where ueIG(S), weVt so that it suffices to find idempotents g,h such that

Let a'e V(a) be such that ad = e, da =f. Then, since v@fwe have x'x/ = / a n d
therefore ax'xa'ax' = ax' so that ax'&ax'xd = e while ax'£Cxfx' and xfx' is
idempotent. Put g — e, h = xfx'. Then we need only show (i) u&bx' and (ii)
h^w£Cbx'. Since b = bx'x, because b<£ v = vx'x, (i) is in fact immediate so we turn to
(ii).

Since x'xf=f we find (xf)x'{xf) = xfso that xfMxfx'. Thus

wS = xvx'S = xvx'xS = xvS = xfS = xfx'S
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since vStf. Thus w&xfx' = h. Finally, since b$£ v,

Sbx' = Svx' = Sx'wxx' = Sx'w = Sxx'w = Sw

since w = xx'w. Thus w£Cbx' and (ii) holds so that (ax', bx') e pt.
It follows that (ax', bx') e n and therefore (ax'x, bx'x) e n. That is (ax'x, b) e n.
But, since a'a = / and / = x'xf we have

ax'x .a' .a. x'x = a. x'xfx'x = afx'x = ax'x,

(a'ax'x) a' = (a'a) x'x(a'aa') = a'ax'xfa' = a'aa' = a'

so that a'eK(a)n F(ax'x). Hence (a,ax'x)en. It follows therefore that {a,b)en.

THEOREM 3.7. Let S be a regular semigroup. Then n = p(IG(S), CIG(S)).

PROOF. AS above, let pt = p(IG(S), V^. Then

p = p(IG(S),CIG(S)) = u {p,,i ^ 0}

contains n. We use induction on r to show that each pt s n, whence p ^ n.
Since pQ = n0 £ n the result is certainly true for i — 1. Suppose it is true for i and

suppose (a,b)epi+1. Then there exist idempotents e,feS and elements we/G(S),
veVi+1 such that a0te^£u3tb, a&f&v&b and fc = uav. Now t; = vt v2... vn where
Vjex'j VjXj, 1 ^ j < n. By Lemma 3.6, (a,b)6 7t if n = 1. We use induction on n to
show this is true in general.

Suppose it is true for n — 1. Then, without, loss of generality, we may assume, by
Lemma 3.5, that vr ^h3tv2 — vn for some idempotent h. Let a^ — eavv = avv Then
a&e&e&avy = at and aSff^v^ SCav^ = al since ayf&v$vv Hence (a, at) errand
it suffices to show that (altb)en.

From the definition of al5 we have b = ua^ v2... vn. Further a, 9teS£u®b so we
need only find an idempotent g such that at 2?g3lv2... vn^b in order to apply the
induction hypothesis and conclude that (al,b)en. From Lemma 3.5, we have
at S?Vi £eh&v2... vn. Further,

Sb — Sv!... vn S Sv2... vn = Svi v2... vn = Sb

since vt yh3tv2... vn. Hence at yh3tv2... vnj?b and we may take g = h. By the
induction hypothesis, therefore, (aub)en. Thus, since (a,a,)en we find (a,b)en.

It follows therefore, that pi+1 E n. Hence, by induction each pt s n so that p = n.

It is natural to ask under what conditions n0 and n coincide. The characteriz-
ations of these equivalences given in Lemma 3.3 and Theorem 3.7 permit this
question to be answered.
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PROPOSITION 3.8. Let S be a regular semigroup. Then n = n0 if and only if the
subsemigroup generated by the idempotents is self conjugate.

PROOF. If IG(S) = CIG(S), then certainly n = n0. Conversely, suppose that

p(IG(S), U) = p(IG(S), V);

we show that U = V. It follows from this that n0 = n implies IG(S) = CIG(S).
Let be V. Then, for b'eV(b), set e = u = bb' = a =f, v = b. Then a^e^u^b,

a£Cf^v£Cb and b = uav where ueIG(S), veV. Thus (b,bb')ep{IG(S),V). On the
other hand, if a is idempotent and (a, b) e p(IG(S), V) then, since Fis full, b e V. Hence,

V= {beS:(b,e)ep(IG(S), V) for some idempotent e}.

Thus, p(IG(S), U) = p{IG(S),V) implies U = V.

4. Applications

Now that we have a characterization of the equivalence n, we can give refinements
of the main results of Section 2 which avoid the direct mention of equivalence
relations.

THEOREM 4.1. Let S be a regular semigroup. Then S strongly divides the direct
product of a group and a fundamental regular semigroup if and only if CIG(S) is
fundamental.

PROOF. Suppose that CIG(S) is fundamental and suppose that (a, b)efinn. Then
there exist elements u e IG{S), v e CIG(S) and idempotents e, /such that a^e^uStb,
a<£f&v&b and b = uav. Further, since (a,b)efi c jf, eJ^u,fJtv. Let a'eV(a) be
such that ad = e, a'a = f. Then {ad, uavd) e\i where ad, uavd e CIG(T) Thus, since
CIG(S) is fundamental ad = uavd so that a = uavd a = uav = b since v£Cf= da.
Hence fi n n — A so that, by Theorem 2.2, S strongly divides the direct product of a
group and a fundamental regular semigroup.

Conversely, suppose that 0 is an idempotent separating homomomorphism of T
onto S where T is a full regular subsemigroup off x G where F is fundamental and G
is a group. From Lallement's Lemma (see Howie (1976), p. 52) it is easy to see that
CIG(T)d = CIG(S) and it is also easy to see that CIG(T) is a full regular
subsemigroup of Fx{l} where {1} denotes the identity of G. Thus CIG(T) is
fundamental and, since 0 is idempotent separating, so is CIG(S).
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COROLLARY 4.2. Let S be an orthodox semigroup. Then S strongly divides the direct
product of a group and a fundamental orthodox semigroup.

In a similar fashion, one obtains the following result when fundamental is
replaced by combinatorial.

THEOREM 4.3. Let S be a regular semigroup. Then S strongly divides the direct
product of a group and a combinatorial regular semigroup if and only if Jt is a
congruence on S and CIG(S) is combinatorial.

COROLLARY 4.4. Let S be an orthodox semigroup. Then S strongly divides the direct
product of a group and a combinatorial orthodox semigroup if and only if Jf is a
congruence on S.

COROLLARY 4.5. Let S be a union of groups. Then S strongly divides the direct
product of a group and a combinatorial regular semigroup if and only ifS is an orthodox
band of groups.

When S is finite, the result in Theorem 4.3 can be strengthened to give the
following result.

THEOREM 4.6. Let S be a finite regular semigroup. Then S divides the direct product
of a finite group and a finite combinatorial semigroup if and only ifjf? is a congruence
on S and CIG(S) is combinatorial.

PROOF. By the constructions yielding Theorem 4.3, the conditions clearly suffice.
Conversely, suppose that S is a homomorphic image of a subsemigroup T of the
direct product of a finite group G and a finite combinatorial semigroup C; let 6
denote the homomorphism of Tonto S. By McAlister (1980), Jf is a congruence on S
so it suffices to show that CIG(S) is combinatorial.

Let U, = IG(S) and Un+l = <a'Una : aeSl>; then CIG(S) = \J {Un : n > 1}.
Now, set Vx = IG(T) and Vn+l = (b'Vnb :beT1}, which is regular. We shall show
firstly that Un = Vn8 for each n > 1 and secondly that Vn £ C x {1} for each n, so
that Vn is combinatorial. It follows that V=[J{Vn: n ^ 1} is combinatorial. Hence,
since Vis finite, so is CIG{S) = VQ.

Clearly, Vt9 ^ I/,. On the other hand, the inverse image of an idempotent in S
contains an idempotent of T, since Tis finite. Hence Vl6— Ut. Suppose that
Vn 6 = t/B; then, clearly, Vn+i6^Un+ v On the other hand, if a e S, a' e V(a) then, by
Rhodes (1966), Proposition 3.2, since Tis finite there exist inverse elements b,b' e T
such that b0 = a, b'd = a', so that

a'Una = b'dVJbG = {b'Vnb)G.
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Hence, since Un+i is generated by the sets a'Una, t / n + 1 £F n + 1 0 . Thus
Un+ l = Vn+l0<mdV6 = CIG(S).

Again, since the idempotents of Tare of the form (e, 1) when e e C, it is immediate
that Vx £ Cx {1}. Suppose that F , s C x { l ) and let veVn, teT1, t'eV(t). Then
v = (x, 1), t = {y,g), t' = (y',g~l) where x,y,yeC and geG. Thus
t'uf = {y'xy, l )eCx {1} and, since Fn+1 is generated by |J {t'Knt: teT1, r'eK(t)},it
follows that Vn+ i c c x {1}. Hence F g C x {1}.

Theorem 4.6 answers, for regular semigroups, the question of Schiitzenberger
which was considered in McAlister (1980). The argument implicitly depends on the
fact that every inverse semigroup admits an E-unitary cover. That is, if S is an inverse
semigroup then there is an £-unitary inverse semigroup T and an idempotent
separating homomorphism of Tonto S. Specifically, Theorem 2.2 uses the fact that

THEOREM 4.7. Let She a regular semigroup. Then there exist a regular semigroup T,
on which anJf = A, and an idempotent separating homomorphism 9 of Tonto S, if and
only if CIG(S) is combinatorial.

PROOF. Suppose that a n Jf = A on T and let 9 be an idempotent separating
homomorphism of T onto S. Suppose that w e CIG(S). Then w = u6 where
ueCIG(T). Since u is a product of conjugates of products of conjugates of ...
products of idempotents, ua = 1 in T/a. Hence, since (w2, w) e Jf implies (u2, u)eJf,
w e CIG(S) implies (u2, u)eJfna and thus w2 = u whence w2 = w. Thus CIG{S) is
combinatorial.

Conversely, suppose that CIG(S) is combinatorial and let <p be the pre-
homomorphism of S into £slK associated with n. Let T" be an £-unitary cover of
<S(p> with 0 the idempotent separating homomorphism of T onto <S<p>. Then since
CIG(S) is combinatorial Jifnn* = Jifnn = A so that, if we let

T= {(a, g) e {S/fi) x G : a = sn,scp = (c,g)9, for some seS}

then T is a full regular subsemigroup of (S/fi) x G and t/', defined by (a, g) ifr = s if
a = s/i, sq> = (c, g) 9 for some c € S//i, is an idempotent separating homomorphism of
Tonto S (see the proof of Theorem 2.2).

Suppose ((a, g), (b, h)) e a n 3V. Then, since (a, g) i-> g is a homomorphism onto a
group, g = h. Further a^b . Thus, if

a = sp, b = t/z, s<p = (c, g) 0 and tq> = (d, h) 9,

we have s^Ct so that s(pJttq>. Hence, since q>°(p~l=n* we have
(s, f)e Jf n 7r* = Jf n ?r = A. It follows that a = b so that, since we have shown
g = h, (a,g) = (b,h). Hence an Jf = A on T.
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As was the case with Theorem 4.3, Theorem 4.7 can be strengthened when S is
finite.

THEOREM 4.8. Let S be a finite regular semigroup. Then there exists a finite regular
semigroup T, on which anJ^ = A, and a homomorphism of T onto S if and only if
CIG(S) is combinatorial.

5. Examples

EXAMPLE 5.1. Let S = J?(G,I,A; P) be a completely simple semigroup, and
suppose, without loss of generality that P has been normalized so that pA1 = e = pu

for each XeA, iel, where e denotes the identity of G. Set
M = {xeG: (x, 1, l)eIG(S)}. Then it is easy to see that
IG(S) = {(x; i, X): x e M, i e /, X e A} and so that since IG(S) is full and completely
simple, M is a subgroup of G. Further, since the idempotents of S have the form
(Pxt '»'. ̂ )» M is contained in the subgroup of G generated by {pXi: i e I, X e A}. On the
other hand,

(Pi1,1,1) = («, 1, l)(Pul,i,X){e, 1, l)e/G(S)

so that p^jl e M. Hence M is the subgroup of G generated by the entries of P.
Suppose that M is not normal. Then there exists x e G such that x~ l Mx $ M.

Hence,

(x- \ 1, l)/G(S)(x, 1,1) = (x-1 Mx, 1,1) <£ IG(S)

so that CIG(S) / !G(S). It therefore follows that n0 # TC.

EXAMPLE 5.2. Let 5 be the fundamental w-simple semigroup with d ^-classes and
let w be the generator for the (cyclic) semigroup Le where e denotes the identity of B.

Let P be the 2 x 2 matrix | | and set S = M(B\ 2,2; P), the 2 x 2 matrixnx
le e]

semigroup over B with sandwich matrix P. Then S is a combinatorial, idempotent
generated simple regular semigroup with d ^-classes; each ^-class is isomorphic to
the 4-spiral semigroup (Byleen and others (1978)).

Because S is idempotent generated n = S> and n* = f so that n ^ n*. Hence
7t* / p(U, V) for any full regular subsemigroups U, V.

EXAMPLE 5.3. Let S = J(°(G; I, A; P) be a completely 0-simple semigroup and let
N be the normal subgroup of G generated by the non-zero entries of P; set H = G/N.
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Then the mapping cp : S -» Jf(H°) defined by

(x; i, A) q> = Nx,

Ocp = 0,

is easily seen to be a prehomomorphism of S onto H°.

Hence S may admit nontrivial prehomomorphisms even though it is congruence
free.

EXAMPLE 5.4. Let S = Jt°(G; I, A; P) be a completely 0-simple semigroup. Then, S
strongly divides the direct product of a fundamental regular semigroup and a group
if and only if CIG(S) is fundamental and thus combinatorial. In this case, P can be
normalized so that each entry of P is either 0 or e, the identity of G.

On the other hand, suppose that each entry of P is either e or 0. Then it is easy to
show that each non-zero element of CIG{S) has the form (e, i, A) so that CIG(S) is
combinatorial. Hence S strongly divides the direct product of a group and a
fundamental regular semigroup.

Define i ~j if and only if pXi # 0, px j # 0 for some Ae A and let =R denote the
transitive closure of ~ . Define = L in a dual fashion. We can define a mapping
9:1-* A / s L as follows :

i6 = [1] if pu # 0 where [2] denotes the = L class.

Then 9 is well defined since pXi # 0, p^ # 0 implies X = L fi. Further i ~ j implies
iO = [A] =j9 for some XeA. Hence sRc Qo0~l so that 9 induces a mapping
9* : I/=R -> A/=L defined by

A9* = B if 3 ieA, XeB such that pki # 0.

Dually there is a mapping q>*: A/= L - » / / = R defined by

Bq>* = A i f 3 1 e B , iel such that p^ # 0.

It is immediate that 9*,q>* are inverse mappings so that | A / = t | = | / /=j{ | .
Let T be the Brandt semigroup Jl\G\ A/=L,A/=L; A) and define \p : S -» T by

0^ = 0.

Then, if (x, i, X) (y,j, /z) # 0 we have pAj- # 0 so that

(x, i, X) Hy, j , v) * = (^, [0 0*, W ) (y, [;] 0*, M )

= (xy, i,/i) ^ = ((x, i, A) (y, j ,

since pXj # 0 implies [A] = [;] 9*. Hence ^ is a prehomomorphism of S onto X
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It can be shown that every prehomomorphism of S into an inverse semigroup W
factors through a prehomomorphism of Tinto W via t//.

The next two examples show that none of Theorems 4.1, 4.3, 4.7 remain true if
CIG{S) is replaced by 7G(S). The second example shows that this is also the case with
Theorems 4.6,4.8. Each of these examples involves a Rees matrix semigroup over an
inverse semigroup and depends on the following simple properties of such
semigroups. Let T= T1 be an inverse semigroup, /, A nonempty sets and P a A x /
matrix over T. Set S = J((T; I, A; P).

1. (x, i, A) is idempotent if and only if x < p^1. Suppose that pkl = 1 = plfforeach
i e I, A 6 A. Then S is regular and

2. IG(S) = M{M\ I, A; P) where M is the inverse subsemigroup of T generated by

{x : x ^ p^1 for some iel, Xe A}.

3. (x, i, A) Jf(y, j , n) if and only if i =j,A = fi and xJfy. Thus Jf is a congruence on
S if and only if it is a congruence on T.

EXAMPLE 5.5. Let T= B(G, 6) be a bisimple co-semigroup where 9 is a non identity
endomorphism of G. Thus Thas elements (m,g,n), m,n > 0, geG with

(m,g,n)(u,h, v) = (u v n — n + m,gOuV''~''h6nVu~'',n v u — u + v).

Let w = (0,1,1) where 1 denotes the identity of G and set S = J?{T; 2,2; P) where

P = \e e with e = (0,1,0) the identity of T.

Then, since Jf is a congruence on 7̂  Jf is a congruence on S. Further
7G(S) = Jt{M\ 2,2; P) where M is the inverse subsemigroup of T generated by
{ x : x ^ w " 1 or x < e}. Since (w.w"1) contains all the idempotents of T,
M = <w, w~l} which is bicyclic and thus IG(S) is combinatorial.

Let zeG be such that z # zf? and set y = (0,z,0)eX Then y"1 = (O.z'^O). Let
x=(y, l , l )eS; then x' = (y"1,1, l)eF(x) so that, if we let u = (w, 1, l)e/G(S), we
have x'ux e C/G(S).

Now x'ux = (y~' wy, 1,1) where y~i wy = (0,z~ ̂ zfl), 1) # w so that x'ux # w.
Further, since Jf is a congruence on Tand yjf 1, x'uxJfu. Hence, since IG(S) is
combinatorial, x'ux<£IG(S). Consequently, CIG(S) # IG(S) and C7G(S) is not
combinatorial. Since Jf is a congruence on S, it is a congruence on CIG{S) and
hence, since C/G(S) is not combinatorial, CIG(S) is not a fundamental regular
semigroup.

It follows that IG(S) may be fundamental [combinatorial] without the same being
true of CIG(S), even if Jt is a congruence on S.
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EXAMPLE 5.6. Let M2 denote the (inverse) semigroup of 2 x 2 matrix units and let G
be a finite non-abelian group. Let T denote the quotient (G x M\)/{G x {0}) of
G x M\ by the ideal G x {0} and set w = (y, 1,2) where y is not in the centre of G.

te el
Consider S = Jt{T\ 2,2; P) where P = \ with e the identity of T. Then, since

le wj
J f is a congruence on 7̂  it is a congruence on S and IG(S) = ^ ( M ; 2,2; P) where M
is the inverse subsemigroup of Tgenerated by {xe T: x ^ e or x ^ w}. From the
structure of 7̂  M is thus {0,e, w, w~l, ww~l, w~i w} w M] and so is combinatorial.
Hence IG(S) is combinatorial.

Now, let ze G be such that y # z~l yz(z exists since y is not in the center of G) and
set x = (z, l)e T. Then x~lwx = (z~' yz, 1,2) # w and x~' wxJf w. Set « = (w, 1,1),
v =(x, 1, l);theni;' = (x" 1 ,1 , 1)GF(U)SO that t/ui;GC/G(S)but r'ut; ?t u although,
since x~l wxJrifw, v'uvJ^u. Hence, since IG(S) is combinatorial, v'uv£IG(S).
Consequently, CIG(S) is not combinatorial. Since Jf is a congruence on S, it is a
congruence on CIG(S) and hence, since CIG{S) is not combinatorial, it is not a
fundamental regular semigroup.

It follows that IG(S) may be fundamental [combinatorial] without the same being
true of CIG(S), even if Jt? is a congruence on S and S is finite. Hence Theorems 4.6,4.8
are not true if CIG(S) is replaced by IG(S).
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