
Chapter 1

Linear Algebra

Basic Object: Vector Spaces
Basic Map: Linear Transformations
Basic Goal: Equivalences for the Invertibility of Matrices

1.1 Introduction

Though a bit of an exaggeration, it can be said that a mathematical prob-
lem can be solved only if it can be reduced to a calculation in linear algebra.
And a calculation in linear algebra will reduce ultimately to the solving of
a system of linear equations, which in turn comes down to the manipula-
tion of matrices. Throughout this text and, more importantly, throughout
mathematics, linear algebra is a key tool (or more accurately, a collection
of intertwining tools) that is critical for doing calculations.

The power of linear algebra lies not only in our ability to manipulate
matrices in order to solve systems of linear equations. The abstraction of
these concrete objects to the ideas of vector spaces and linear transforma-
tions allows us to see the common conceptual links between many seemingly
disparate subjects. (Of course, this is the advantage of any good abstrac-
tion.) For example, the study of solutions to linear differential equations
has, in part, the same feel as trying to model the hood of a car with cubic
polynomials, since both the space of solutions to a linear differential equa-
tion and the space of cubic polynomials that model a car hood form vector
spaces.

The key theorem of linear algebra, discussed in section six, gives many
equivalent ways of telling when a system of n linear equations in n unknowns
has a solution. Each of the equivalent conditions is important. What is
remarkable and what gives linear algebra its oomph is that they are all the

https://doi.org/10.1017/CBO9780511800498.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511800498.004


2 CHAPTER 1. LINEAR ALGEBRA

same.

1.2 The Basic Vector Space Rn

The quintessential vector space is R n , the set of all n-tuples of real numbers

As we will see in the next section, what makes this a vector space is that
we can add together two n-tuples to get another n-tuple:

(x i , . . . , r r n ) + (2/i,...,2/n) = (x± +yi,...,xn+yn)

and that we can multiply each n-tuple by a real number A:

to get another n-tuple. Of course each n-tuple is usually called a vector
and the real numbers A are called scalars. When n = 2 and when n = 3
all of this reduces to the vectors in the plane and in space that most of us
learned in high school.

The natural map from some R n to an R m is given by matrix multipli-
cation. Write a vector x G R n as a column vector:

Similarly, we can write a vector in R m as a column vector with m entries.
Let A be an m x n matrix

( a n a i 2

= ;

ami

Then Ax is the m-tuple:

/ f l u ^12 ••• ain \ / ^ i \ / dux! + ... + alnxnA*-(; : ; : ) U
For any two vectors x and y in R n and any two scalars A and /i, we have

A(Ax + jiy) = AAx +
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1.2. THE BASIC VECTOR SPACE RN 3

In the next section we will use the linearity of matrix multiplication to
motivate the definition for a linear transformation between vector spaces.

Now to relate all of this to the solving of a system of linear equations.
Suppose we are given numbers 61 , . . . , bm and numbers a n , . . . , amn. Our
goal is to find n numbers x\,..., xn that solve the following system of linear
equations:

\-alnxn = bi

Calculations in linear algebra will frequently reduce to solving a system of
linear equations. When there are only a few equations, we can find the
solutions by hand, but as the number of equations increases, the calcula-
tions quickly turn from enjoyable algebraic manipulations into nightmares
of notation. These nightmarish complications arise not from any single
theoretical difficulty but instead stem solely from trying to keep track of
the many individual minor details. In other words, it is a problem in book-
keeping.

Write

( h \ (an a i2 . . . a i n

; I , A =
bm,

and our unknowns as x =

Then we can rewrite our system of linear equations in the more visually
appealing form of

Ax = b.

When m > n (when there are more equations than unknowns), we
expect there to be, in general, no solutions. For example, when m — 3
and n — 2, this corresponds geometrically to the fact that three lines in
a plane will usually have no common point of intersection. When m < n
(when there are more unknowns than equations), we expect there to be,
in general, many solutions. In the case when m = 2 and n = 3, this
corresponds geometrically to the fact that two planes in space will usually
intersect in an entire line. Much of the machinery of linear algebra deals
with the remaining case when m = n.

Thus we want to find the n x l column vector x that solves Ax = b,
where A is a given n x n matrix and b is a given n x 1 column vector.
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4 CHAPTER 1. LINEAR ALGEBRA

Suppose that the square matrix A has an inverse matrix A~l (which means
that A~l is also n x n and more importantly that A~lA = / , with / the
identity matrix). Then our solution will be

since
Ax = A{A-Xh) = Ib = b.

Thus solving our system of linear equations comes down to understanding
when the n x n matrix A has an inverse. (If an inverse matrix exists, then
there are algorithms for its calculations.)

The key theorem of linear algebra, stated in section six, is in essence a
list of many equivalences for when an n x n matrix has an inverse and is
thus essential to understanding when a system of linear equations can be
solved.

1.3 Vector Spaces and Linear Transformations

The abstract approach to studying systems of linear equations starts with
the notion of a vector space.

Definition 1.3.1 A set V is a vector space over the real numbers1 R if
there are maps:

1. R x V —> V, denoted by a • v or av for all real numbers a and
elements v in V,

2. V x V —> V, denoted by v + w for all elements v and w in the vector
space V,

with the following properties:
a) There is an element 0, in V such that 0 -f v — v for all v G V.
b) For each v G V, there is an element (—v) £ V with v + (—v) = 0.
c) For all v,w £V, V + W = w + v.
d) For all a G R and for all v, w G V, we have that a(v + w) = av + aw.
e) For all a, b G R and all v G V, a(bv) = (a • b)v.
f) For all a, b G R and all v G V, (a + b)v = av + bv.
g) For all v G V, 1 • v = v.

l rrhe real numbers can be replaced by the complex numbers and in fact by any field
(which will be defined in Chapter Eleven on algebra).
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1.3. VECTOR SPACES AND LINEAR TRANSFORMATIONS 5

As a matter of notation, and to agree with common usage, the elements of
a vector space are called vectors and the elements of R (or whatever field
is being used) scalars. Note that the space Rn given in the last section
certainly satisfies these conditions.

The natural map between vector spaces is that of a linear transforma-
tion.

Definition 1.3.2 A linear transformation T : V —> W is a function from
a vector space V to a vector space W such that for any real numbers a\ and
a2 and any vectors v\ and v2 in V, we have

T{a1v1 + a2v2) = aiT{vx) + a2T(v2).

Matrix multiplication from an Rn to an Rm gives an example of a linear
transformation.

Definition 1.3.3 A subset U of a vector space V is a subspace ofV ifU
is itself a vector space.

In practice, it is usually easy to see if a subset of a vector space is in fact
a subspace, by the following proposition, whose proof is left to the reader:

Proposition 1.3.1 A subset U of a vector space V is a subspace of V if
U is closed under addition and scalar multiplication.

Given a linear transformation T : V ->• W, there are naturally occurring
subspaces of both V and W.

Definition 1.3.4 If T :V —> W is a linear transformation, then the kernel
ofT is:

ker(T) = {v E V : T(v) = 0}

and the image of T is

Im(T) = {w e W : there exists av G Vwith T(v) = w}.

The kernel is a subspace of V, since if v\ and v2 are two vectors in the
kernel and if a and b are any two real numbers, then

bv2) = oT(vi) + bT(v2)
= a-0 + 6-0
- 0.

In a similar way we can show that the image of T is a subspace of W.
If the only vector spaces that ever occurred were column vectors in Rn,

then even this mild level of abstraction would be silly. This is not the case.
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6 CHAPTER 1. LINEAR ALGEBRA

Here we look at only one example. Let Ck [0,1] be the set of all real-valued
functions with domain the unit interval [0,1]:

/ : [0,1] -»• R

such that the kth derivative of / exists and is continuous. Since the sum of
any two such functions and a multiple of any such function by a scalar will
still be in Ck[0,1], we have a vector space. Though we will officially define
dimension next section, C*[0,1] will be infinite dimensional (and thus defi-
nitely not some R n) . We can view the derivative as a linear transformation
from Ck[0,1] to those functions with one less derivative, Ck~l[0,1]:

The kernel of ^ consists of those functions with ~£ = 0, namely constant
functions.

Now consider the differential equation

Let T be the linear transformation:

The problem of finding a solution f(x) to the original differential equation
can now be translated to finding an element of the kernel of T. This suggests
the possibility (which indeed is true) that the language of linear algebra can
be used to understand solutions to (linear) differential equations.

1.4 Bases, Dimension, and Linear Transfor-
mations as Matrices

Our next goal is to define the dimension of a vector space.

Definition 1.4.1 A set of vectors (i>i,... ,vn) form a basis for the vector
space V if given any vector v in V, there are unique scalars a i , . . . , anG R
with v = a\Vi + . . . + anvn.

Definition 1.4.2 The dimension of a vector space V, denoted by dim(V),
is the number of elements in a basis.
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1.4. BASES AND DIMENSION 7

As it is far from obvious that the number of elements in a basis will
always be the same, no matter which basis is chosen, in order to make
the definition of the dimension of a vector space well-defined we need the
following theorem (which we will not prove):

Theorem 1.4.1 All bases of a vector space V have the same number of
elements.

For Rn, the usual basis is

Thus Rn is n dimensional. Of course if this were not true, the above def-
inition of dimension would be wrong and we would need another. This is
an example of the principle mentioned in the introduction. We have a good
intuitive understanding of what dimension should mean for certain specific
examples: a line needs to be one dimensional, a plane two dimensional and
space three dimensional. We then come up with a sharp definition. If this
definition gives the "correct" answer for our three already understood ex-
amples, we are somewhat confident that the definition has indeed captured
what is meant by, in this case, dimension. Then we can apply the definition
to examples where our intuitions fail.

Linked to the idea of a basis is:

Definition 1.4.3 Vectors (vi,... ,vn) in a vector space V are linearly in-
dependent if whenever

H \-anvn = 0,

it must be the case that the scalars a\,..., an must all be zero.

Intuitively, a collection of vectors are linearly independent if they all point
in different directions. A basis consists then in a collection of linearly
independent vectors that span the vector space, where by span we mean:

Definition 1.4.4 A set of vectors (vi,... ,t>n) span the vector space V if
given any vector v in V, there are scalars a i , . . . ,an£ R with v = a\V\ +
'" + anvn.

Our goal now is to show how all linear transformations T : V -» W
between finite-dimensional spaces can be represented as matrix multiplica-
tion, provided we fix bases for the vector spaces V and W.

First fix a basis {v±,..., vn} for V and a basis {wi,..., wm} for W. Before
looking at the linear transformation T, we need to show how each element
of the n-dimensional space V can be represented as a column vector in Rn

and how each element of the m-dimensional space W can be represented
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8 CHAPTER 1. LINEAR ALGEBRA

as a column vector of Rm . Given any vector v in V, by the definition of
basis, there are unique real numbers oi, ...,an with

V = a±Vi H h an^n-

We thus represent the vector v with the column vector:

Similarly, for any vector w in W, there are unique real numbers &i, ...,
with

w = &i^i H +

Here we represent u> as the column vector

h

Note that we have established a correspondence between vectors in V and
W and column vectors Rn and Rm , respectively. More technically, we can
show that V is isomorphic to Rn (meaning that there is a one-one, onto
linear transformation from V to Rn) and that W is isomorphic to Rm ,
though it must be emphasized that the actual correspondence only exists
after a basis has been chosen (which means that while the isomorphism
exists, it is not canonical; this is actually a big deal, as in practice it is
unfortunately often the case that no basis is given to us).

We now want to represent a linear transformation T : V -» W as an
m x n matrix A. For each basis vector v% in the vector space V, T(vi) will
be a vector in W. Thus there will exist real numbers an,..., ami such that

T(vi) = auwi H h amiWm.

We want to see that the linear transformation T will correspond to the
m x n matrix

( an 012

Given any vector v in 7 , with v = a±vi + • • - + anvn, we have

T(v) =

H h a m i i y m ) H
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1.5. THE DETERMINANT 9

But under the correspondences of the vector spaces with the various column
spaces, this can be seen to correspond to the matrix multiplication of A
times the column vector corresponding to the vector v:

U <2i2 . . . a i n

Note that if T : V -> V is a linear transformation from a vector space to
itself, then the corresponding matrix will be n x n, a square matrix.

Given different bases for the vector spaces V and W, the matrix asso-
ciated to the linear transformation T will change. A natural problem is to
determine when two matrices actually represent the same linear transfor-
mation, but under different bases. This will be the goal of section seven.

1.5 The Determinant

Our next task is to give a definition for the determinant of a matrix. In fact,
we will give three alternative descriptions of the determinant. All three are
equivalent; each has its own advantages.

Our first method is to define the determinant of a 1 x 1 matrix and then
to define recursively the determinant of an n x n matrix.

Since l x l matrices are just numbers, the following should not at all
be surprising:

D e f i n i t i o n 1 . 5 . 1 The d e t e r m i n a n t of a lxl matrix ( a ) is the real-valued
function

det(a) = a.

This should not yet seem significant.
Before giving the definition of the determinant for a general n x n matrix,

we need a little notation. For a n n x n matrix

( an

denote by Aij the (n — 1) x (n — 1) matrix obtained from A by deleting

the ith row and the ?th column. For example, if A = ( n ), then
J K ' \fl2i 022/'

/2 3 5\ /
A12 = (o2i). Similarly if A = 6 4 9 , then A12 = [

\7 1 8 /
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10 CHAPTER 1. LINEAR ALGEBRA

Since we have a definition for the determinant for 1 x 1 matrices, we
will now assume by induction that we know the determinant of any (n -
1) x (n — 1) matrix and use this to find the determinant of an n x n matrix.

Definition 1.5.2 Let A be annxn matrix. Then the determinant of A is

det(A) =
k=l

Thus for A = ( a n a i 2 ^ , we have
Va21 a22 )

det(A) = an det (An) - ai2 det(Ai2) =

which is what most of us think of as the determinant. The determinant of
our above 3 x 3 matrix is:

While this definition is indeed an efficient means to describe the determi-
nant, it obscures most of the determinant's uses and intuitions.

The second way we can describe the determinant has built into it the
key algebraic properties of the determinant. It highlights function-theoretic
properties of the determinant.

Denote the n x n matrix A as A = (Ai,..., An), where Ai denotes the
ith column:

/ait

Definition 1.5.3 The determinant of A is defined as the unique real-valued
function

det : Matrices -)> R

satisfying:
a) det(Ai,...,AAfc,...,An) = Adet(Ai, ...,Afc).
b) d e t ( A i , . . . , A k + XAU ..., An) = d e t ( A i , . . . , An) for k^i.
c) det (Identity matrix) = 1.

Thus, treating each column vector of a matrix as a vector in Rn, the de-
terminant can be viewed as a special type of function from Rn x . . . x Rn

to the real numbers.
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1.5. THE DETERMINANT 11

In order to be able to use this definition, we would have to prove that
such a function on the space of matrices, satisfying conditions a through c,
even exists and then that it is unique. Existence can be shown by checking
that our first (inductive) definition for the determinant satisfies these con-
ditions, though it is a painful calculation. The proof of uniqueness can be
found in almost any linear algebra text.

The third definition for the determinant is the most geometric but is
also the most vague. We must think of an n x n matrix A as a linear
transformation from Rn to Rn. Then A will map the unit cube in Rn to
some different object (a parallelepiped). The unit cube has, by definition,
a volume of one.

Definition 1.5.4 The determinant of the matrix A is the signed volume
of the image of the unit cube.

This is not well-defined, as the very method of defining the volume of the
image has not been described. In fact, most would define the signed volume
of the image to be the number given by the determinant using one of the
two earlier definitions. But this can be all made rigorous, though at the
price of losing much of the geometric insight.

(1 (TLet's look at some examples: the matrix A —

square to
0 1

takes the unit

1

1
1
i
1
pi
n
vvCv

1

J

1

J

JNNNNN

H
1 2

Since the area is doubled, we must have

det(A) = 2.

Signed volume means that if the orientations of the edges of the unit
cube are changed, then we must have a negative sign in front of the volume.

-2 (T
For example, consider the matrix A = 0 . Here the image is
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12 CHAPTER 1. LINEAR ALGEBRA

Note that the orientations of the sides are flipped. Since the area is still
doubled, the definition will force

det(A) = - 2 .

To rigorously define orientation is somewhat tricky (we do it in Chapter
Six), but its meaning is straightforward.

The determinant has many algebraic properties. For example,

Lemma 1.5.1 : If A and B are n x n matrices, then

det(AB) = det(A)det(J9).

This can be proven by either a long calculation or by concentrating on the
definition of the determinant as the change of volume of a unit cube.

1.6 The Key Theorem of Linear Algebra
Here is the the key theorem of linear algebra. (Note: we have yet to define
eigenvalues and eigenvectors, but we will in section eight.)

Theorem 1.6.1 (Key Theorem) Let A be an n x n matrix. Then the
following are equivalent:

1. A is invertible.

2. det(A) ^ 0.

3. ker(A) = 0.

4. If b is a column vector in Hn, there is a unique column vector x
in Rn satisfying Ax = b.
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1.6. THE KEY THEOREM OF LINEAR ALGEBRA 13

5. The columns of A are linearly independent n x 1 column vectors.

6. The rows of A are linearly independent 1 x n row vectors.

7. The transpose A1 of A is invertible. (Here, if A— (a^) ; then
A* = {an)).

8. All of the eigenvalues of A are nonzero.

We can restate this theorem in terms of linear transformations.

Theorem 1.6.2 (Key Theorem) LetT :V -^ V be a linear transforma-
tion. Then the following are equivalent:

1. T is invertible.

2. det(T) ^ 0, where the determinant is defined by a choice of basis
onV.

3. ker(T) = 0.

4- If b is a vector in V, there is a unique vector v in V satisfying
T(v) = b.

5. For any basis v±,..., vn ofV, the image vectors T(vi),...,T(vn)
are linearly independent.

6. For any basis vi,..., vn ofV, if S denotes the transpose linear
transformation ofT, then the image vectors S(vi),... ,S(vn) are
linearly independent.

7. The transpose of T is invertible. (Here the transpose is defined by a
choice of basis on V).

8. All of the eigenvalues of T are nonzero.

In order to make the correspondence between the two theorems clear, we
must worry about the fact that we only have definitions of the determinant
and the transpose for matrices, not for linear transformations. While we
do not show it, both notions can be extended to linear transformations,
provided a basis is chosen (in fact, provided we choose an inner product,
which will be defined in Chapter Thirteen on Fourier series). But note that
while the actual value det(T) will depend on a fixed basis, the condition
that det(T) ^ 0 does not. Similar statements hold for conditions (6) and
(7). A proof is the goal of exercise 7, where you are asked to find any linear
algebra book and then fill in the proof. It is unlikely that the linear algebra
book will have this result as it is stated here. The act of translating is in
fact part of the purpose of making this an exercise.

Each of the equivalences is important. Each can be studied on its own
merits. It is remarkable that they are the same.

https://doi.org/10.1017/CBO9780511800498.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511800498.004


14 CHAPTER 1. LINEAR ALGEBRA

1.7 Similar Matrices

Recall that given a basis for an n dimensional vector space V, we can
represent a linear transformation

T :V ->V

as an nxn matrix A. Unfortunately, if you choose a different basis for V, the
matrix representing the linear transformation T will be quite different from
the original matrix A. This section's goal is to find out a clean criterion for
when two matrices actually represent the same linear transformation but
under different choice of bases.

Definition 1.7.1 Two nxn matrices A and B are similar if there is an
invertible matrix C such that

A = C^BC.

We want to see that two matrices are similar precisely when they repre-
sent the same linear transformation. Choose two bases for the vector space
V, say {i>i,..., vn} (the v basis) and {wi,. . . , wn} (the w basis). Let A be
the matrix representing the linear transformation T for the v basis and let
B be the matrix representing the linear transformation for the w basis. We
want to construct the matrix C so that A = C~lBC.

Recall that given the v basis, we can write each vector z £ V as an n x 1
column vector as follows: we know that there are unique scalars a i , . . . , an

with
z = aivi H \-anvn.

We then write z, with respect to the v basis, as the column vector:

Similarly, there are unique scalars b\,..., bn so that

z = biWi -f • • • + bnwn,

meaning that with respect to the w basis, the vector z is the column vector:
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1.8. EIGENVALUES AND EIGENVECTORS 15

The desired matrix C will be the matrix such that

/ 01

C

If (7 = (cij), then the entries Cij are precisely the numbers which yield:

Wi = CnVi + . . . + CinVn.

Then, for 4̂ and B to represent the same linear transformation, we need
the diagram:

Rn 4 Rn

c i ^ i c
Rn B Rn

to commute, meaning that CA = BC or

A = C~1BC,

as desired.
Determining when two matrices are similar is a type of result that shows

up throughout math and physics. Regularly you must choose some coordi-
nate system (some basis) in order to write down anything at all, but the
underlying math or physics that you are interested in is independent of the
initial choice. The key question becomes: what is preserved when the coor-
dinate system is changed? Similar matrices allow us to start to understand
these questions.

1.8 Eigenvalues and Eigenvectors

In the last section we saw that two matrices represent the same linear trans-
formation, under different choices of bases, precisely when they are similar.
This does not tell us, though, how to choose a basis for a vector space so
that a linear transformation has a particularly decent matrix representa-
tion. For example, the diagonal matrix

A =

is similar to the matrix

4 » 5 4 15

r l
0

,0

1
1

0
2
0

- 4
8

o\
0
3 /

- 5
- 1
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16 CHAPTER 1. LINEAR ALGEBRA

but all recognize the simplicity of A as compared to B. (By the way, it is
not obvious that A and B are similar; I started with A, chose a nonsingular
matrix C and then used the software package Mathematica to compute
C~1AC to get B. I did not just suddenly "see" that A and B are similar.
No, I rigged it to be so.)

One of the purposes behind the following definitions for eigenvalues
and eigenvectors is to give us tools for picking out good bases. There are,
though, many other reasons to understand eigenvalues and eigenvectors.

Definition 1.8.1 Let T : V ->• V be a linear transformation. Then a
nonzero vector v £ V will be an eigenvector of T with eigenvalue A, a
scalar, if

T(y) = \v.

For an n x n matrix A, a nonzero column vector x G Rn will be an eigen-
vector with eigenvalue A, a scalar, if

Ax = Ax.

Geometrically, a vector v is an eigenvector of the linear transformation T
with eigenvalue A if T stretches v by a factor of A.

For example,

and thus 2 is an eigenvalue and ( ) an eigenvector for the linear trans-

( —2 —2
D 0

Luckily there is an easy way to describe the eigenvalues of a square
matrix, which will allow us to see that the eigenvalues of a matrix are
preserved under a similarity transformation.

Proposition 1.8.1 A number A will be an eigenvalue of a square matrix
A if and only if A is a root of the polynomial

P(t)=det(tl-A).

The polynomial P(t) — det(£/ - A) is called the characteristic polynomial
of the matrix A.
Proof: Suppose that A is an eigenvalue of A, with eigenvector v. Then
Av = Xv, or

Xv — Av = 0,
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1.8. EIGENVALUES AND EIGENVECTORS 17

where the zero on the right hand side is the zero column vector. Then,
putting in the identity matrix / , we have

0 = Xv - Av = (XI - A)v.

Thus the matrix XI — A has a nontrivial kernel, v. By the key theorem of
linear algebra, this happens precisely when

d e t ( A / - A ) = 0 ,

which means that A is a root of the characteristic polynomial P(t) =
det(tl — A). Since all of these directions can be reversed, we have our
theorem. •

Theorem 1.8.1 Let A and B be similar matrices. Then the characteristic
polynomial of A is equal to the characteristic polynomial of B.

Proof: For A and B to be similar, there must be an invertible matrix C
with A = C-XBC. Then

det(tI-A) = det(tl - C"1 BC)

= det(tC-1C-C-1BC)

= det(C"1) det(*/ - B) det(C)

= det(tl - B)

using that 1 = det(C~lC) = det(C"1) det(C). •
Since the characteristic polynomials for similar matrices are the same,

this means that the eigenvalues must be the same.

Corollary 1.8.1.1 The eigenvalues for similar matrices are equal.

Thus to see if two matrices are similar, one can compute to see if the
eigenvalues are equal. If they are not, the matrices are not similar. Unfor-
tunately in general, having equal eigenvalues does not force matrices to be
similar. For example, the matrices

I1 ~7
\0 2

and

2

both have eigenvalues 1 and 2, but they are not similar. (This can be shown
by assuming that there is an invertible two-by-two matrix C with C~l AC =
B and then showing that det(C) = 0, contradicting C's invertibility.)
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Since the characteristic polynomial P(t) does not change under a simi-
larity transformation, the coefficients of P(t) will also not change under a
similarity transformation. But since the coefficients of P(t) will themselves
be (complicated) polynomials of the entries of the matrix A, we now have
certain special polynomials of the entries of A that are invariant under a
similarity transformation. One of these coefficients we have already seen
in another guise, namely the determinant of A, as the following theorem
shows. This theorem will more importantly link the eigenvalues of A to the
determinant of A.

Theorem 1.8.2 Let Ai,. . . , An be the eigenvalues, counted with multiplic-
ity, of a matrix A. Then

det(A) =\i'-\n.

Before proving this theorem, we need to discuss the idea of counting
eigenvalues "with multiplicity". The difficulty is that a polynomial can have
a root that must be counted more than once (e.g., the polynomial (x — 2)2

has the single root 2 which we want to count twice). This can happen
in particular to the characteristic polynomial. For example, consider the
matrix

which has as its characteristic polynomial the cubic

For the above theorem, we would list the eigenvalues as 4, 5, and 5, hence
counting the eigenvalue 5 twice.
Proof: Since the eigenvalues Ai,.. . , An are the (complex) roots of the
characteristic polynomial det(tl — A), we have

(t-X1)'"(t-Xn)=det{tI-A).

Setting t = 0, we have

In the matrix (—A), each column of A is multiplied by (—1). Using the
second definition of a determinant, we can factor out each of these (—l)s,
to get

(-l)nAi---An = (-!)*det(A)
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and our result. •
Now finally to turn back to determining a "good" basis for representing

a linear transformation. The measure of "goodness" is how close the matrix
is to being a diagonal matrix. We will restrict ourselves to a special, but
quite prevalent, class: symmetric matrices. By symmetric, we mean that
if A = (a^), then we require that the entry at the ith row and jth column
(a^) must equal to the entry at the jth row and the ith column (a^). Thus

is symmetric but

is not.

Theorem 1.8.3 If A is a symmetric matrix, then there is a matrix B sim-
ilar to A which is not only diagonal but with the entries along the diagonal
being precisely the eigenvalues of A.

Proof: The proof basically rests on showing that the eigenvectors for A
form a basis in which A becomes our desired diagonal matrix. We will
assume that the eigenvalues for A are distinct, as technical difficulties occur
when there are eigenvalues with multiplicity.

Let vi, v 2 , . . . , vn be the eigenvectors for the matrix A, with correspond-
ing eigenvalues Ai, A2,..., An. Form the matrix

where the ith column of C is the column vector v*. We will show that
the matrix C~1AC will satisfy our theorem. Thus we want to show that
C~lAC equals the diagonal matrix

B =
0

0 0

0

Denote

, 0 /

, . . . , e n —
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Then the above diagonal matrix B is the unique matrix with Bei = A ^ ,
for all i. Our choice for the matrix C now becomes clear as we observe that
for all i, Cei = v^. Then we have

giving us the theorem. •
This is of course not the end of the story. For nonsymmetric matrices,

there are other canonical ways finding "good" similar matrices, such as the
Jordan canonical form, the upper triangular form and rational canonical
form.

1.9 Dual Vector Spaces
It pays to study functions. In fact, functions appear at times to be more
basic than their domains. In the context of linear algebra, the natural class
of functions is linear transformations, or linear maps from one vector space
to another. Among all real vector spaces, there is one that seems simplest,
namely the one-dimensional vector space of the real numbers R. This leads
us to examine a special type of linear transformation on a vector space,
those that map the vector space to the real numbers, the set of which we
will call the dual space. Dual spaces regularly show up in mathematics.

Let V be a vector space. The dual vector space, or dual space, is:

V* = {linear maps from V to the real numbers R}

= {v* : V -> R | v* is linear}.

You can check that the dual space V* is itself a vector space.
Let T : V —»• W be a linear transformation. Then we can define a

natural linear transformation

T* : W* -> F*

from the dual of W to the dual of V as follows. Let w* G W*. Then
given any vector w in the vector space W, we know that w*(w) will be a
real number. We need to define T* so that T*(w*) £ V*. Thus given any
vector v G V, we need T*(w*)(v) to be a real number. Simply define

T*(w*)(v)=w*(T(v)).

By the way, note that the direction of the linear transformation T :
V -t W is indeed reversed to T* : W* -> V*. Also by "natural", we do
not mean that the map T* is "obvious" but instead that it can be uniquely
associated to the original linear transformation T.
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Such a dual map shows up in many different contexts. For example, if
X and Y are topological spaces with a continuous map F : X -» Y and if
C(X) and C(Y) denote the sets of continuous real-valued functions on X
and Y, then here the dual map

F* : C(Y) -> C(X)

is defined by F*(g)(x) = g(F(x)), where g is a continuous map on Y.
Attempts to abstractly characterize all such dual maps were a major

theme of mid-twentieth century mathematics and can be viewed as one of
the beginnings of category theory.

1.10 Books

Mathematicians have been using linear algebra since they have been doing
mathematics, but the styles, methods and the terminologies have shifted.
For example, if you look in a college course catalogue in 1900 or proba-
bly even 1950, there will be no undergraduate course called linear algebra.
Instead there were courses such as "Theory of Equations" or simply "Alge-
bra" . As seen in one of the more popular textbooks in the first part of the
twentieth century, Maxime Bocher's Introduction to Higher Algebra [10], the
concern was on concretely solving systems of linear equations. The results
were written in an algorithmic style. Modern day computer programmers
usually find this style of text far easier to understand than current math
books. In the 1930s, a fundamental change in the way algebraic topics
were taught occurred with the publication of Van der Waerden's Modern
Algebra [113] [114], which was based on lectures of Emmy Noether and Emil
Artin. Here a more abstract approach was taken. The first true modern
day linear algebra text was Halmos' Finite-dimensional Vector Spaces [52].
Here the emphasis is on the idea of a vector space from the very beginning.
Today there are many beginning texts. Some start with systems of linear
equations and then deal with vector spaces, others reverse the process. A
long time favorite of many is Strang's Linear Algebra and Its Applications
[109]. As a graduate student, you should volunteer to teach or TA linear
algebra as soon as possible.

1.11 Exercises

1. Let L : V -)> W be a linear transformation between two vector spaces.
Show that

dim(fcer(L)) + dim( Jra(L)) = dim(V).
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2. Consider the set of all polynomials in one variable with real coefficients
of degree less than or equal to three.

a. Show that this set forms a vector space of dimension four.
b. Find a basis for this vector space.
c. Show that differentiating a polynomial is a linear transformation.
d. Given the basis chosen in part (b), write down the matrix represen-

tative of the derivative.
3. Let A and B be two n x n invertible matrices. Prove that

4. Let

( 9
3

Find a matrix C so that C~1AC is a diagonal matrix.
5. Denote the vector space of all functions

which are infinitely differentiate by C°°(R). This space is called the space
of smooth functions.

a. Show that C°°(R) is infinite dimensional.
b. Show that differentiation is a linear transformation:

c. For a real number A, find an eigenvector for -ĵ - with eigenvalue A.
6. Let V be a finite dimensional vector space. Show that the dual vector
space V* has the same dimension as V.
7. Find a linear algebra text. Use it to prove the key theorem of linear
algebra. Note that this is a long exercise but is to be taken seriously.
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