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A diffusion-based wind turbine wake model
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Describing the evolution of a wind turbine’s wake from a top-hat profile near the turbine
to a Gaussian profile in the far wake is a central feature of many engineering wake
models. Existing approaches, such as super-Gaussian wake models, rely on a set of tuning
parameters that are typically obtained from fitting high-fidelity data. In the current study,
we present a new engineering wake model that leverages the similarity between the shape
of a turbine’s wake normal to the streamwise direction and the diffusion of a passive
scalar from a disk source. This new wake model provides an analytical expression for
a streamwise scaling function that ensures the conservation of linear momentum in the
wake region downstream of a turbine. The model also considers the different rates of
wake expansion that are known to occur in the near- and far-wake regions. Validation
is presented against high-fidelity numerical data and experimental measurements from
the literature, confirming a consistent good agreement across a wide range of turbine
operating conditions. A comparison is also drawn with several existing engineering wake
models, indicating that the diffusion-based model consistently provides more accurate
wake predictions. This new unified framework allows for extensions to more complex wake
profiles by making adjustments to the diffusion equation. The derivation of the proposed
model included the evaluation of analytical solutions to several mathematical integrals that
can be useful for other physical applications.

Key words: wakes

1. Introduction

Wind energy has emerged as a crucial source of renewable energy, with global installed
capacity surpassing 1 TW by the end of 2023 (Global Wind Energy Council 2024).
With ambitions to double this capacity by 2030, optimising wind-farm efficiency and
minimising energy losses due to wake effects becomes imperative. Although clustering
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wind turbines can be economically advantageous, such as through shorter connections, it
increases the potential for power losses due to wake interactions, underscoring the need
for fast computational tools (Balakrishnan & Hur 2022). Computational models like large
eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) provide detailed
insights into turbine loading and wake physics but are computationally intensive (Tabib,
Rasheed & Kvamsdal 2015; Maas & Raasch 2022). Additionally, mesoscale models are
used for studying large-scale interactions within the turbulent atmospheric boundary layer,
albeit with less detail in wake resolution compared with RANS and LES microscale
models (Fitch et al. 2012; Ali et al. 2023).

For more rapid analysis, engineering wake models are popular in various wind-energy
applications, including layout optimisation (e.g. Hou et al. 2016), wind-farm control (e.g.
Bay et al. 2018; Shapiro, Starke & Gayme 2022) and farm-to-farm interactions (e.g. van
der Laan et al. 2023; Freitas et al. 2024). These models often assume the wake behind a
turbine is self-similar, and is defined by a streamwise deficit function and a shape function
that describes the deficit distribution normal to the flow direction. Various shape functions
have been proposed in the literature including a top-hat profile (Jensen 1983; Larsen
1988), a Gaussian profile (Bastankhah & Porté-Agel 2014, 2016; Ishihara & Qian 2018),
a double-Gaussian profile (Keane et al. 2016; Schreiber, Balbaa & Bottasso 2020) and a
super-Gaussian profile (Shapiro et al. 2019; Blondel & Cathelain 2020; Cathelain et al.
2020; Blondel 2023). Downstream of a wind turbine, the shape of the wake normal to the
streamwise direction evolves from a uniform profile (top hat), or a double-Gaussian-like
profile in the case of non-uniform disk loading, to a Gaussian profile far enough from the
turbine. The ability to model this streamwise evolution is an important feature to include
in a low-fidelity wake model.

In a Gaussian wake model, the distribution of the wind-speed deficit normal to the
streamwise direction is assumed to be proportional to exp(−r2/(2σ 2)), where r is the
radial distance from the wake centre, and σ is a length scale acting as the standard
deviation of the Gaussian distribution (Bastankhah & Porté-Agel 2014). The assumption
of a Gaussian wake shape has been shown to accurately match experimental measurements
and simulation results far enough from the wake source (e.g. Pedersen et al. 2022),
but is not applicable close to the wake source i.e. in the near wake (Krutova et al.
2020). A super-Gaussian wake model extends the limitations of a Gaussian wake by
assuming that the wake distribution normal to the streamwise direction is proportional to
exp(−rn/(2σ 2)), where n is a super-Gaussian exponent obtained, typically, by fitting LES
results (Blondel & Cathelain 2020; Ouro & Lazennec 2021). Having a super-Gaussian
exponent n(x) that varies in the streamwise direction x enables modelling of the flatness
in the shape of the wind-speed deficit in the near wake, while asymptotically approaching
a Gaussian wake profile far from the wake source (Shapiro et al. 2019).

Blondel & Cathelain (2020) suggested an alternative formulation to the super-Gaussian
profile compared with that of Shapiro et al. (2019) based on enforcing the conservation of
mass and momentum, and provided an empirical form for the streamwise evolution of the
super-Gaussian exponent n(x) by fitting LES data. This model was later re-calibrated by
Blondel (2023) by giving more weight to the far wake than the near wake when optimising
the empirical constants of the model to have better agreement with LES results. A similar
approach was followed by Cathelain et al. (2020), who suggested a different empirical form
for the wake expansion, and consequently a variant expression for n(x), by giving more
weight to the near wake than to the far wake. Other modifications to the super-Gaussian
model include extension to three dimensions (non-axisymmetric wake) for terrain effects
(Zhang et al. 2023; Dai et al. 2024) and to vertical-axis wind turbines (Ouro & Lazennec
2021).
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A diffusion-based wind turbine wake model

The similarity between the distribution of the wind-speed deficit normal to the
streamwise direction and the diffusion of a passive scalar provides an alternative
representation to the streamwise evolution of the wake shape (Göçmen et al. 2016). Cheng
& Porté-Agel (2018) made use of this similarity and introduced a wake model based
on Taylor’s diffusion theory of a passive scalar in a turbulent flow (Taylor 1921; Hay
& Pasquill 1959), which was extended by Vahidi & Porté-Agel (2022) to include the
effect of turbine-induced turbulence. However, both models rely on estimating Lagrangian
statistics of the free-stream flow by calculating Eulerian statistics of an upstream point
from a high-fidelity simulation, such as LES, and making use of the scaled similarity
between Lagrangian and Eulerian statistics (Hay & Pasquill 1959; Hanna 1981). Having
high-fidelity data a priori is not suitable for many applications that rely on simulating a
large number of turbine–wake interactions such as farm control and the estimation of a
farm’s annual energy production (Howland et al. 2020; Zhan, Letizia & Iungo 2020).

In this study, we build upon the premise of Cheng & Porté-Agel (2018) by developing
an analytical solution to the diffusion equation of a passive scalar emitted from a circular
disk source, similar to Vahidi & Porté-Agel (2022), rather than a point source situated at a
virtual origin upstream of the turbine. The key in such approach is to provide an analytical
form to a streamwise scaling function that ensures that the solution of the diffusion
equation conserves linear momentum at all distances downstream of the turbine. The
diffusion-based model accounts for the streamwise evolution of the wake profile through a
physics-based principle (i.e. diffusion normal to the streamwise direction) rather than the
empirical super-Gaussian exponent n(x) that is not typically related to the physics of the
wake. The proposed model also alleviates the need to evaluate Lagrangian statistics from
high-fidelity data. Furthermore, super-Gaussian models can provide less accurate results
when applied to datasets that were not included in their calibration process, as later shown
in § 3. Within a unified framework, diffusion-based wake models offer a higher degree
of freedom regarding the wake shape through controlling the distribution of the passive
scalar across the source disk.

The rest of the paper is structured as follows. The new wake model is introduced in
§ 2, where the solution to the diffusion equation is discussed in § 2.1. Discussions on
the conservation of linear momentum in the wake region and on far-wake expansion are
presented in §§ 2.2 and 2.3, respectively. A modification to the far-wake expansion that
takes into account near-wake effects is presented in § 2.4, and the size of the passive
scalar disk source is discussed in § 2.5. A step-by-step summary of the proposed model
is presented in § 2.6. In § 3, the proposed model is validated against published LES data
and experimental measurements, and is compared with other engineering wake models
from the literature. The main findings of this paper are discussed in more detail in § 4,
and are summarised in § 5. Appendix A suggests a solution to the diffusion equation, and
Appendix B derives an analytical solution to a streamwise scaling function that ensures
the conservation of linear momentum. A review of the engineering wake models that are
considered for comparison in the current study is presented in Appendix C, and some
supplementary materials are included in Appendix D.

2. Wake model based on the diffusion of a passive scalar

2.1. Expression for wake shape
In this section, we present a turbine-wake model based on the analogy between the
distribution of a turbine’s wake normal to the streamwise direction and the diffusion of
a passive scalar from a disk source. Following Crank (1979), the diffusion equation from
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a circular disk source with a uniform initial concentration ϑo is

ϑ(t, r)
ϑo

= 1
2Dt

exp(−r2/(4Dt))
∫ Rd

0
r′ exp(−r′2/(4Dt))I0

(
rr′

2Dt

)
dr′, (2.1)

where ϑ is the concentration of the passive scalar, D is a diffusion coefficient, t is time,
Rd is the radius of the disk source, r is the radial distance from the disk’s centre and
Iν is the modified Bessel function of first kind and order ν. An analogous expression
can be written for a self-similar axisymmetric wake of a wind turbine by introducing the
length scale σ = √

2Dt, which varies in the streamwise direction. The notion of time in
the case of the diffusion of a passive scalar is equivalent to the distance downstream of
a turbine. This means that every time instance of the concentration profile of the passive
scalar (2.1) corresponds to the wake distribution normal to the streamwise direction at
a specific distance downstream of the turbine, both of which are related through some
advection wind speed (Cheng & Porté-Agel 2018). However, the notion of time in the
framework of a turbine’s wake is irrelevant since we seek a steady-state solution, and we
do not adopt Lagrangian approaches which rely on quantifying the time required for a
particle to travel from the turbine to a specific distance downstream of the turbine.

Herein, we assume that the normalised wind-speed deficit W takes the form

W(x, r) = 1 − u(x, r)
u∞

= C(x) exp(−r2/(2σ 2))
1
σ 2

∫ Rd

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′

︸ ︷︷ ︸
S(x,r)

,

(2.2)

where u is the streamwise wind speed in the wake region, u∞ is the free-stream wind speed
and C(x) is a scaling function that will be determined from the conservation of linear
momentum. Note that Rd is the radius of the passive scalar disk source and is generally
different from the turbine’s radius R (§ 2.5). Also, the introduced length scale σ is not the
same as the Gaussian or the super-Gaussian wake widths, but is analogous to these two
definitions specific to the assumed wake profile (2.2).

The right-hand side of (2.2) contains a Gaussian function exp(−r2/(2σ 2)) multiplied
by a shaping function S(x, r) whose role is to have a radially uniform profile near to
the wake source and a Gaussian profile in the far wake. To show this, we examine the
limiting cases of S when the length scale σ is small (close to the turbine) and when σ is
large (far from the turbine). As discussed in Appendix A (A11), for a small σ the shaping
function S can be approximated by exp(r2/(2σ 2)), which cancels out the Gaussian part
in (2.2) resulting in a radially uniform deficit profile. Far away from the turbine, σ is
large enough to have I0(rr′/σ 2) ≈ 1, and hence S = S(x) is no longer dependent on the
radial coordinate r, making the profile of W defined by the Gaussian part exp(−r2/(2σ 2)).
Therefore, the shaping function S transitions from having an exponential profile (inverse
of a Gaussian profile) to having a radially uniform profile away from the turbine. This
transition is caused by the decay of I0(rr′/σ 2) to unity as the wake evolves. Moreover, a
similar formulation of (2.2) can be obtained by seeking a rotor-averaged wind-speed deficit
for a turbine of radius Rd that is placed in a Gaussian axisymmetric upstream wake and is
radially offset from the wake source by a distance r (Ali, Stallard & Ouro 2024b). In this
case, the shaping function S acts as a filter to a background Gaussian field using a circular
disk of radius Rd. At a far-enough distance from the turbine, the filter size Rd becomes
sufficiently smaller than the wake width so that the filtering process does not affect the
Gaussian profile of the upstream wake.
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A diffusion-based wind turbine wake model

To use the wake description provided in (2.2), the integral in S needs to be evaluated.
This one-dimensional integral can be evaluated using quadrature integration by any
mathematical toolbox. However, here, we propose two possible semi-analytical solutions
to this integral which require the evaluation of a series, as will be shown. Based on the
solution in Appendix A (A7), a possible solution to (2.2) is

W(x, r) = C(x)

⎛
⎝1 − exp(−R2

d/(2σ 2)) exp(−r2/(2σ 2))
∑
k≥0

(
r

Rd

)k

Ik

(
rRd

σ 2

)⎞⎠ , (2.3)

which can also be written in terms of the Marcum Q-function (A9) as

W(x, r) = C(x)(1 − Q1(r/σ, Rd/σ)). (2.4)

When σ is small (i.e. close to the turbine) the summation over k in (2.3) may require a large
number of evaluations of modified Bessel functions to converge, although the recursive
property of the modified Bessel function should be employed in this case (Abramowitz
& Stegun 1972, p. 376; 9.6.26). Also, the Marcum Q-function may not be available in
all mathematical toolboxes. Alternatively, we can use the solution presented by Ali et al.
(2024b) based on the tables by Rosenheinrich (2017) to obtain

W(x, r) = C(x) exp(−R2
d/(2σ 2)) exp(−r2/(2σ 2))Ψ

(
r

Rd
,

σ

Rd

)
, (2.5)

where Ψ = S exp(R2
d/(2σ 2)) is defined as

Ψ (ζ1, ζ2) = I0

(
ζ1

ζ 2
2

)∑
k≥1

(
fk(ζ1/ζ2)(

2ζ 2
2
)k
)

− ζ1

ζ 2
2

I1

(
ζ1

ζ 2
2

)∑
k≥1

(
gk(ζ1/ζ2)(

2ζ 2
2
)k

)
, (2.6)

and the coefficients fk and gk satisfy the recursions

fk(α) = fk−1(α) + α2gk−1(α)

k
, gk(α) = fk(α) + 2gk−1(α)

2k
, (2.7a,b)

with f0 = 1 and g0 = 0. The summations in (2.6) converge rapidly in less than 10 iterations
of simple algebraic operations (2.7a,b), and (2.6) requires only two evaluations of the
modified Bessel function, which makes it computationally more efficient than (2.3).
A Python implementation of (2.6) and (2.7a,b) is available at Ali, Stallard & Ouro (2024a).

2.2. Conservation of linear momentum
To obtain an expression for the scaling function C (2.2), we make use of the integral form
of the conservation of linear momentum for an axisymmetric wake (Tennekes & Lumley
1972)

2πρ

∫ ∞

0
u(u∞ − u)r dr = 1

2ρCtπR2u2
∞, (2.8)

where ρ is air density, and Ct is the thrust coefficient of the wind turbine. Detailed
derivations to solve (2.8) are available in Appendix B. Equation (2.8) can be
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simplified to ∫ ∞

0
rW dr︸ ︷︷ ︸

A1

−
∫ ∞

0
rW2 dr︸ ︷︷ ︸
A2

= R2Ct/4. (2.9)

Following the solution in Appendix B, we have A1 = R2
dC/2 and A2 ≈ R2

dC2Λ/4, where

Λ = 2
(

erf
(

Rd

σ

)
− σ√

πRd

(
1 − exp(−R2

d/σ
2)
))2

, (2.10)

with erf being the error function (Ng & Geller 1969; Ali, Stallard & Ouro 2024c). We used
an approximation sign for A2 because Λ was not derived directly from A2 but from an alias
of A2 (see Appendix B for more details). Therefore, (2.9) can be solved for C as

C ≈ 1 −
√

1 − (R/Rd)2ΛCt

Λ
. (2.11)

To complete the model, expressions for the source disk radius Rd and the length scale σ

are needed. Thus far, no assumptions were made about the length scale σ , making (2.2),
along with its solutions (2.3)–(2.5), and the scaling function (2.11) generic for any σ(x).

2.3. Far-wake expansion
Far from the wake source, high-fidelity simulations and experimental measurements
of turbine wakes in turbulent flows show that wakes expand almost linearly in the
streamwise direction with a rate that is proportional to the free-stream turbulence intensity
(Porté-Agel, Bastankhah & Shamsoddin 2020). Multiple linear expressions have been
suggested in the literature based on fitting high-fidelity data (e.g. Bastankhah & Porté-Agel
2014; Carbajo Fuertes, Markfort & Porté-Agel 2018; Cathelain et al. 2020). Herein, we
use the linear expression suggested by Cathelain et al. (2020), which provided the best
performance against simulations and measurements when combined with (2.2) and (2.11),
as shown later in § 3. There are no restrictions to use an expression that was obtained for
a super-Gaussian model here with a diffusion-based model (2.2) as long as it is applied in
the far wake only, since both the proposed model and the super-Gaussian model approach
a Gaussian form far enough downstream (see figure 8). Following Cathelain et al. (2020),
the far-wake length scale σfw is defined as

σfw = (0.0119 + 0.18 Ti)︸ ︷︷ ︸
k∗

x + (0.13 + 0.0564 Ct)
√

β︸ ︷︷ ︸
ε

D, (2.12)

where Ti is the free-stream turbulence intensity, k∗ is the rate of expansion in the far wake
and D is the rotor’s diameter. In linear-expansion models, the parameter ε represents the
initial wake width at x = 0, and the constant β is defined as

β = 1 + √
1 − Ct

2
√

1 − Ct
. (2.13)

Due to differences in the flow structure between the near-wake and the far-wake regions
(discussed in § 2.4), (2.12) is only applied to the far-wake region, and some modifications
are made to σfw to suit the near wake as follows.
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A diffusion-based wind turbine wake model

2.4. Near-wake treatment
The near wake is a region of complex structures that are challenging to model analytically.
The structure of the flow within this region is three-dimensional, non-symmetric and
highly influenced by the geometry of the turbine and the operating tip-speed ratio
(Bastankhah & Porté-Agel 2017). Although adopting engineering wake models in the
near wake should be handled with caution, as the assumption of self-similarity is not
theoretically valid in this region, we attempt to modify the linear expansion of the far-wake
length scale σfw (2.12) to approximate the near-wake deficit shape and evolution. The
streamwise extent of the near wake has been addressed in multiple studies (e.g. Vermeulen
1980; Sørensen et al. 2014, 2015; Bastankhah & Porté-Agel 2016). Herein, we adopt the
formulation of the near-wake length xo suggested by Bastankhah & Porté-Agel (2016)
following Lee & Chu (2003) for a non-yawed turbine

xo

D
= 1 + √

1 − Ct√
2
(
4c1 Ti + c2

(
1 − √

1 − Ct
)) , (2.14)

where c1 = 0.58 and c2 = 0.154.
Downstream of a turbine, a free-shear layer is formed between the free-stream flow

and the waked flow due to the drop in pressure and wind speed caused by the turbine’s
momentum extraction (Posa & Broglia 2021). The evolution of this shear layer depends on
the strength and stability of the tip vortices shed by the blades, which partially shield the
waked flow from the free-stream flow by reducing momentum and mass transfer across the
shear layer (Ivanell et al. 2010). If, hypothetically, the tip vortices were to be modelled as
an elastic tube that perfectly insulates the waked flow from the free-stream flow, then the
pressure difference across this elastic tube would cause the tube to contract, assuming an
infinitely long tube in the streamwise direction. However, this does not occur for a turbine’s
wake as the tip vortices do not perfectly prevent any mass and momentum transfer, leading
to a relatively quick pressure recovery shortly downstream of the turbine. On the other
hand, a free-shear layer with no resistance for mass and momentum transfer across the layer
would have a relatively faster expansion than a shear layer with some resistance. Based on
this, we propose an expression for the near-wake length scale σnw as a superposition of a
contraction tendency (in case of perfect wake insulation) and an expansion tendency (in
case of no wake insulation)

σnw = εRd exp(−x/(τxo))︸ ︷︷ ︸
contraction

+ σfw (Rd/R) exp(−R2/(2σ 2
fw))︸ ︷︷ ︸

expansion

, (2.15)

where τ = 2, the far-wake length scale σfw and the parameter ε are defined in (2.12),
the near-wake length xo is given by (2.14), Rd is the radius of the source disk and R is
the turbine’s radius. It is crucial to note that (2.15) is an empirical expression structured
to be used specifically with the expression for the far-wake length scale σfw (2.12) and
the proposed wake shape (2.2). A generic expression for the near-wake length scale σnw
obtained from first principles is beyond the scope of the current study. Furthermore, the
parameter τ in the contraction term of (2.15) was obtained through trial and error against
the LES deficit profiles included in § 3 (figure 4), while noting that the model’s predictions
were not very sensitive to τ since it only affects the shape of the near wake but has small
effect on the far wake (see examples in Appendix D).

Finally, the overall length scale σ is obtained by combining (2.12) and (2.15) using

σ(x) =
{

σnw if x ≤ xo,

σfw − exp(τ (1 − x/xo))
(
σfw − σnw

)
if x > xo.

(2.16)
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(a) (b)

Figure 1. The streamwise variation of the length scale σ following (2.16) for (a) Ct = 0.4 and (b) Ct = 0.8
at different turbulence intensities (Ti) from 5 % to 14 %. The vertical dotted lines are the near-wake lengths as
predicted by (2.14).

Similar to (2.15), the suggested blend in (2.16) for x > xo is empirical and is designed to
be used specifically with the expressions for the near- and far-wake length scales (2.15)
and (2.12) and the proposed wake shape (2.2).

The streamwise variation of the length scale σ (2.16) is shown in figure 1 for low (Ct =
0.4) and high (Ct = 0.8) turbine thrust coefficients at different free-stream turbulence
intensities. The corresponding near-wake lengths xo (2.14) are shown by vertical dotted
lines for each case. Similar to high-fidelity observations (e.g. Troldborg, Sorensen &
Mikkelsen 2010), the rate of wake expansion in the near wake (2.15) is slower than that in
the far wake (2.12), with the high turbulence cases having higher recovery rates and shorter
near-wake regions (figure 1). Moreover, figure 8 (Appendix D) shows the difference
between the adopted length scale σ (2.16) and the far-wake length scale σfw (2.12) for
one of the cases in figure 1. As previously indicated, σfw is used only in the very-far wake
where both the proposed wake model (2.2) and the super-Gaussian model of Cathelain
et al. (2020, who developed the expression for σfw in (2.12)) approach a Gaussian wake
profile (at x/D ∼ 8 for the case in figure 8). Otherwise, the near-wake length scale σnw
(2.15) and the exponential blend between σnw and σfw (2.16) set the difference between the
adopted length scale σ and the far-wake length scale σfw. Having obtained an expression
for the length scale σ , a solution to (2.2) requires a definition for the radius of the source
disk Rd, which is discussed in the next section.

2.5. Source disk radius
To have an expression for the source disk radius Rd, we rely on one-dimensional
momentum theory by assuming that the pressure recovers quickly to its free-stream value
a short distance downstream of the turbine, i.e. when x ∼ 0 (Narasimhan, Gayme &
Meneveau 2024). This is a simplifying assumption, because in reality the pressure recovers
after a finite distance downstream of the turbine, along which the wake expands slightly
from its initial size (the turbine’s size). Modelling the pressure-recovery region within the
proposed low-fidelity wake model is not straightforward, and so this initial wake expansion
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d/

R

Figure 2. The variation of the ratio between the source disk radius Rd and the turbine radius R (2.18) with the
thrust coefficient Ct. The shaded region is where the one-dimensional momentum theory becomes impractical
by predicting very low wind speeds (very high deficits approaching 100 %) downstream of the turbine, and is
typically replaced by empirical expressions.

is modelled in a similar manner to Blondel & Cathelain (2020) by increasing the size of
the source disk.

At x = 0, the wake’s profile normal to the streamwise direction is fairly uniform, so that
we can use the centreline deficit (i.e. r = 0). From one-dimensional momentum theory,
the normalised wind-speed deficit (W) when the pressure recovers to its free-stream value
(here at x = 0) is 1 − √

1 − Ct (Burton et al. 2021), which can be equated to the exact
solution of (2.2) at the centre of the wake

Co

(
1 − exp(−R2

d/(2σ 2
o ))
)

= 1 −
√

1 − Ct. (2.17)

In (2.17), Co = C(0) and σo = σ(0) are the scaling function C and the length scale σ just
downstream of the turbine, respectively. We can use (2.11) at x = 0 to solve for the disk
radius

Rd/R =
√

Ct

Co (2 − ΛoCo)
, (2.18)

where Λo = Λ(0) can be evaluated from (2.10) by replacing σ/Rd with σo/Rd which is
known from (2.15)

σo/Rd = ε
(

1 + 2 exp(−1/(8ε2))
)

. (2.19)

Similarly, Co is given by (2.17) by employing (2.19). From (2.18), the ratio Rd/R is
dependent on the thrust coefficient Ct only, and this dependency is shown in figure 2,
which indicates that the source disk radius Rd is at most approximately 9 % larger than the
turbine’s radius which occurs at Ct ∼ 0.81. At higher thrust coefficients, the required disk
radius to satisfy the one-dimensional momentum theory (2.17) decreases until it reaches
a value of 1 at Ct ∼ 0.95, after which (2.17) cannot be satisfied. In the shaded region of
figure 2, the one-dimensional momentum theory is often replaced by empirical expressions
for the relation between the thrust coefficient and the axial induction of the turbine (e.g.
Glauert 1926; Buhl 2005; Burton et al. 2021; Liew, Heck & Howland 2024), because
the momentum theory predicts very low wind speeds downstream of the turbine (deficit
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approaching 100 %) which is not physical. However, this is beyond the scope of the current
study, and we suggest limiting (2.18) to values of Ct up to 0.9.

2.6. Summary of the proposed model
Thus far, we have determined expressions for all the variables required to solve for the
deficit W (2.2). To summarise, the input data of the proposed wake model are the turbine’s
thrust coefficient Ct, the free-stream turbulence intensity Ti and the turbine’s rotor radius
R. The model predicts the streamwise and radial distributions of the wind-speed deficit
downstream of the turbine based on the following steps.

(i) Calculate the source disk radius Rd.
(a) From (2.19), calculate the ratio σo/Rd using the definition of ε in (2.12).
(b) Evaluate Λo (2.10) and Co (2.17) using the ratio σo/Rd obtained above.
(c) Using Λo and Co, the radius of the source disk Rd can be obtained from (2.18).

(iii) Calculate the length scale σ .
(a) Calculate the far-wake length scale σfw from (2.12), where the constant β is

obtained from (2.13).
(b) The near-wake length xo is obtained from (2.14).
(c) Calculate the near-wake length scale σnw from (2.15).
(d) The length scale σ can be obtained from (2.16) based on the streamwise distance

x from the turbine relative to the near-wake length xo.
(iii) Calculate the streamwise scaling function C(x).

(a) Evaluate Λ from 2.10 using the values for σ and Rd obtained above.
(b) Use (2.11) to calculate the function C(x).

(iv) Evaluate the radial distribution of the deficit W(x, r) using one of the following
options.
(a) Numerically approximate (2.2) using quadrature integration.
(b) Use the series solution in (2.3).
(c) If the Marcum Q-function is accessible via the used mathematical toolbox, use

(2.4).
(d) Use the solution of W in (2.5) with the aid of the function Ψ (2.6), which

depends on the recursions in (2.7a,b).

3. Validation

In this section, we compare the results of the wake model presented in § 2 with LES and
experimental data. Rather than performing a special set of simulations and/or experiments
to provide reference data for validation, we employ published numerical and experimental
datasets from different research groups.

The first dataset is the LES results of a wind turbine obtained by Vahidi & Porté-Agel
(2022) with an in-house LES code using an actuator disk model in a neutral atmospheric
boundary layer flow. They performed a set of simulations for a range of Ti (5.3 %–14 %)
while keeping Ct nearly constant at a value of 0.8. The results of these simulations
are labelled ‘EPFL-LES’. The second set is the experimental measurements used by
Blondel & Cathelain (2020) for their validation based on the experiments by Aubrun
et al. (2013) of a model porous disk in isotropic turbulence, where measurements were
taken using wire probes. The experiments comprised cases with high (12 %) and low (5 %)
turbulence intensities for different values of Ct within the range 0.45–0.73. We also use
the experimental measurements reported by Schreiber et al. (2020) based on Wang et al.
(2017) for a model turbine operating at Ct = 0.75 in a free-stream turbulence intensity of
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5 %, where wake measurements were obtained using hot-wire probes and particle image
velocimetry. Using these datasets, the present model is compared with the Gaussian
model of Bastankhah & Porté-Agel (2014, hereafter BPA14), and the super-Gaussian
models of Blondel & Cathelain (2020, hereafter B20), Cathelain et al. (2020, hereafter
C20) and Blondel (2023, hereafter B23). The details of these models are summarised
in Appendix C. It should be noted that the Gaussian model (BPA14) is intended to be
used only in the far wake. Therefore, its predictions in the near wake are included for
comparison only.

Figure 3 presents a comparison of the hub-height normalised wind-speed deficit
predicted by the present model along with the previously mentioned models against the
EPFL-LES data. The streamwise variation of the maximum deficit for the same cases of
figure 3 is shown in figure 4. The comparison indicates that the present model (black
curves) agrees well with the LES results in the near- and far-wake regions. The largest
deviations from the LES results are a slight overestimation of the near-wake width in the
highest turbulence case (figure 3a), and a slight overestimation of the far-wake deficit in
the lowest turbulence case (figure 3s,t). For all other locations, the wake profiles predicted
with the new diffusion-based model are in excellent agreement with the LES, and it is
noted that none of the considered models capture the observed behaviour in the far wake
for the lowest turbulence case (figure 3s,t).

Figure 4 shows that the near-wake formulation of the length scale σ introduced in
§ 2.4 captures the transition from a low recovery rate in the near-wake region to faster
recovery further downstream. It is noted that the maximum deficit predicted by the present
model is slightly less than that of the LES in the near-wake region of the low turbulence
cases (figure 4d,e). This is expected as the maximum deficit in the near-wake region is
typically offset from the wake centreline (figure 3m,q), but the present model as well as
all the considered models has the maximum deficit at the centre of the wake. Figure 4
shows that the B20 and B23 models were calibrated to match the profiles of the centreline
deficit rather than the maximum deficit because both predict an initial increase in the
maximum wind-speed deficit rather than the monotonic decrease in the maximum deficit
close to the turbine as predicted by LES (e.g. figure 4e). Matching the behaviour of the
centreline deficit with a model that does not include the lateral offset of the maximum
deficit from the wake centreline can lead to an underestimation of the deficit in the near
wake by incorrectly matching the maximum deficit to the centreline deficit. To include
the radial offset of the maximum deficit away from the wake centreline in the proposed
diffusion-based model, the initial distribution of the passive scalar across the source
disk would need to be non-uniform. However, this is beyond the scope of the current
study.

Because it is not designed for the near wake, the BPA14 model (blue curves) deviates
substantially from LES data in the near-wake region of the cases with Ti = 9.9 %
(figure 3e) and Ti = 7.7 % (figure 3i), and is not applicable for the cases with Ti = 6.2 %
(figure 3m) and Ti = 5.3 % (figure 3q) because of having σg < R

√
Ct/2 (C2). However, for

x ≥ 6D, the Gaussian model matches the deficit of the LES data well except for the cases
of high turbulence, where it slightly underestimates the deficit (figure 3b, f ). The B20
model (green curves) overestimates the deficit compared with LES in all of the cases and
at almost all locations downstream of the turbine except in the near-wake region of the low
turbulence cases (figures 3m,q and 4b–e). The model also underestimates the deficit in the
near-wake region of the high turbulence cases (figure 3a,e,i). However, the re-calibration
of this model as presented by the B23 model (dashed-green curves) enhances the model’s
predictions significantly. Nonetheless, the B23 model overestimates the far-wake deficit
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Figure 3. A comparison of hub-height lateral profiles of the normalised wind-speed deficit for different
distances downstream against LES results (red circles) obtained from Vahidi & Porté-Agel (2022), between
the present wake model (black curves), the Gaussian wake model (blue curves) of Bastankhah & Porté-Agel
(2014) and the super-Gaussian wake models of Blondel & Cathelain (2020) shown by solid-green curves (B20),
Cathelain et al. (2020) shown by yellow curves (C20) and Blondel (2023) shown by dashed-green curves (B23).
All the shown cases have Ct = 0.8. Each row represents a case with a different turbulence intensity as indicated.
Whenever a model fails in one of the cases, its abbreviation is written with the label ‘NA’, which stands for
‘not applicable’.

for the low turbulence case (figure 3r–t). Finally, the C20 model (yellow curves) generally
overestimates the deficit for the high turbulence cases (figures 3b–d, f –h and 4a,b), except
in the near wake where it matches the LES data well (figure 3a). Similar to the Gaussian
model, the C20 model is not applicable in the near wake of the low turbulence cases
because the quantity in the square root in (C8) is negative.
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Figure 4. Comparing the streamwise variation of the maximum normalised wind-speed deficit Wmax(x)
against the LES results of Vahidi & Porté-Agel (2022). The compared models, and their colours, are the same
as in figure 3. The vertical dotted lines represent the location of the near wake of each case as defined by (2.14).

Figure 5 shows a similar comparison as that in figure 3 but against the porous-disk
experiments of Aubrun et al. (2013) for a combination of high and low values of Ct and
Ti. The present model (black curves) matches the experiments well in all of the cases
except in the far wake, where the deficit is underestimated (figure 5h,l,p). However, all
the considered models underestimate the far-wake deficit except the B20 model which
was calibrated to match this dataset. Also, the present model better captures the wake
width compared with the other models, which underestimate the wake width in some
of the cases (e.g. figure 5b,c,e, f ). The discrepancies between the present model and the
porous-disk measurements can be partially attributed to the adopted model of near-wake
length xo (2.14) that is calibrated for the wakes of wind turbines (Bastankhah & Porté-Agel
2016). Using different values for c1 and c2 in (2.14) can mitigate these discrepancies.
However, when compared with the experimental measurements of a three-bladed turbine
(see figure 6), the proposed model gave good predictions.
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Figure 5. Comparing the lateral profiles of the normalised wind-speed deficit of the present model (black
curves) and the other Gaussian and super-Gaussian models mentioned in figure 3 with the porous-disk
experiments (red circles) of Aubrun et al. (2013). Each row represents a case with its Ct and Ti as indicated,
whereas each column is a specific location downstream of the wake source. Whenever a model fails in one of
the cases, its abbreviation is written with the label ‘NA’, which stands for ‘not applicable’.

Similar to the LES results in figure 3, the BPA14 model performs poorly in the near
wake of the low Ti and low Ct case (figure 5a), and is not applicable for the low Ti and
high Ct case (figure 5e). Also, the BPA14 model underestimates the deficit in the high
turbulence cases (third and fourth rows of figure 5), except in the near wake, where it
slightly overestimates the deficit (figure 5i,m). The B20 model captures the deficit well
in the near wake of the low turbulence case (figure 5a,e), but overestimates the deficit
at x = 4D (figure 5b, f ) and x = 6D (figure 5c,g). The B23 model did not enhance the
accuracy of the B20 model in this dataset, but gave worse results in the near wake of the
high turbulence cases (figure 5i,m). The C20 model consistently overestimates the deficit in
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Figure 6. Comparing the lateral profiles of the normalised wind-speed deficit of the present model (black
curves) and the other Gaussian and super-Gaussian models mentioned in figure 3 with the measurements in the
wake of a model G1 turbine done by Wang et al. (2017) and reported by Schreiber et al. (2020). The model
turbine operated at Ct = 0.75 in a free-stream turbulence intensity of 5 %. Each panel represents a specific
location downstream of the turbine as indicated. Whenever a model fails in one of the cases, its abbreviation is
written with the label ‘NA’, which stands for ‘not applicable’.

the near wake of all the cases of this dataset (first column of figure 5), and underestimates
the deficit in the far wake of the low turbulence cases (figure 5d,h).

The last considered dataset is the experimental measurements of a three-bladed turbine
(Wang et al. 2017), which are presented in figure 6 comparing the lateral profiles of the
normalised deficit for the considered wake models (same as in figure 3). The present model
captures both the width and the magnitude of the deficit profiles well compared with
the experimental measurements (figure 6). As this experiment is at low Ti and high Ct,
the BPA14 model is not applicable in the near wake (figure 6a,b), and overestimates the
deficit significantly at x = 3D (figure 6c) and x = 4D (figure 6d). However, the model
captures the wake profile well in the far wake (figure 6f ). The B20 model captures
the magnitude of the deficit well in the near wake but underestimates the width of the
wake (figure 6a,b), after which the model consistently overestimates the deficit magnitude
(figure 6c–f ). The re-calibration in the B23 model did not improve the performance of
the B20 model in the near wake, as the B23 model underestimates both the magnitude
and the width of the wake (figure 6a,b). The overestimation of the deficit magnitude just
after the near wake still persists for the B23 model compared with the B20 model and to
the experimental measurements (figure 6c,d), but the overestimation of the deficit in the
very far wake is significantly enhanced for the B23 model (figure 6e, f ). The C20 model
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deviates significantly from the experimental measurements in the near wake (figure 6a–c),
but performs well in the far wake (figure 6d–f ).

4. Discussion

From the validation results shown in § 3, the proposed wake model has been shown to be
the most consistent when compared with the reference data of the considered experimental
and LES datasets, whereas the other wake models performed well in some cases and
poorly in other cases, yielding larger uncertainty. Nonetheless, the diffusion-based model
coupled with the expansion model in (2.12) underestimated the far-wake deficit of the high
turbulence cases in the porous-disk experiments (figure 5l,p). This discrepancy is partially
due to using a near-wake length model (2.14) that is calibrated for turbine wakes, which
is supported by the better performance of the proposed model when compared with the
measurements in the wake of a three-bladed turbine (figure 6).

It should be noted that the super-Gaussian models, which rely on a set of tuning
parameters obtained from fitting high-fidelity data, perform well in the datasets that were
included in their calibration process but their accuracy can deteriorate in other datasets.
For instance the B20 model performed better than the B23 model in the dataset shown in
figure 5 but worse in figures 3 and 6. The C20 model provided good accuracy in the far
wake of the high turbulence cases but performed poorly in the near wake, especially for the
low turbulence cases. Even the BPA14 model, coupled with the expansion model in (C4),
overestimated the wake recovery in the far wake of the high turbulence cases. In contrast,
the proposed diffusion-based model matched LES data and experimental measurements,
with an acceptable accuracy for a low-fidelity engineering wake model, in both the near-
and far-wake regions of all the considered cases with low/high turbulence and low/high
turbine thrust coefficients.

The suggested form of the deficit equation (2.2), along with the suggested solutions
(2.3)–(2.5) and the streamwise scaling function (2.11) are generic expressions in the sense
that they do not depend on any empirical relations. Modelling σ is, however, empirical.
The linear expansion of the length scale σ in the far wake (2.12) is empirical based on
fitting high-fidelity data. Analogously, the near-wake modification discussed in § 2.4 is
empirical, as it was not derived from first principles. The condition for obtaining the
radius of the source disk (2.17) is also generic as it was obtained from the suggested
deficit equation (2.2) and the one-dimensional momentum theory. However, converting
this condition to an expression for Rd as a function of the turbine’s thrust coefficient
depends on the empirical expressions of σfw (far-wake length scale; (2.12)) and σnw
(near-wake length scale; (2.15)).

The presented combination of these generic and empirical expressions provides
consistent and accurate-enough predictions for a low-fidelity wake model, and outperforms
current engineering wake models from the literature for a wide range of turbulence
intensities and turbine thrust coefficients. All the considered validation cases in the current
study were of a single wake. Nonetheless, the proposed model can be extended to a
wind farm by using various wake-superposition methods (e.g. Voutsinas, Rados & Zervos
1990; Niayifar & Porté-Agel 2015; Bastankhah et al. 2021) and turbine-induced turbulence
models (e.g. Crespo & Hernandez 1996). However, we did not include a validation case for
a wind farm as farm results are largely influenced by the used wake-superposition method,
and the intent of the current study is not to compare superposition methods.

The mathematical analogy between the suggested deficit equation (2.2), and the
rotor-averaged deficit of a turbine in a Gaussian axisymmetric upstream wake (Ali et al.
2024b) suggests that the turbine’s impact on the flow can be depicted as a moving circular
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filter through a Gaussian field. The shape of the resulting wake from the filtered field
depends on the relative size of the filter and the length scale of the Gaussian field. Far
enough from the turbine the filtering process has no effect on the wake shape (i.e. the
wake is similar to the Gaussian field), but close to the turbine the filtering process defines
the shape of the wake. This way of perceiving the evolution of the wake shape allows for
the modelling of more complex wake profiles, such as a double-Gaussian profile, within
the same framework of a diffusion-based description of the wake by altering the radial
uniformity of the moving filter. In that sense, the Gaussian field is a potential field for
different wake shapes and sizes depending on the shape, size and nature of the applied
filter.

5. Summary

A new engineering wake model was presented and validated based on the analogy between
the profile of a turbine’s wake normal to the streamwise direction and the diffusion of a
passive scalar from a disk source. The proposed model guarantees that linear momentum is
conserved at all locations downstream of the turbine, and it naturally takes into account the
evolution of the wake shape from a top-hat profile in the near wake to a Gaussian profile far
downstream of the turbine. The model relies on a far-wake linear-expansion model from
the literature, but introduces further adjustments to this linear expansion to describe the
lower rate of wake expansion observed in the near-wake region. The size of the source
disk of the passive scalar is determined from one-dimensional momentum theory based
on the assumption of a fully recovered pressure field over a short distance downstream of
the turbine.

Three datasets were used to validate the proposed wake model, including high-fidelity
LES data and experimental measurements in the wake of a porous disk and a model
turbine. The diffusion-based model captured the wake profiles and the streamwise
evolution of the maximum deficit well when compared with the reference datasets, with
a slight deviation against the far-wake porous-disk measurements in the case of high
free-stream turbulence. A comparison with other widely used engineering wake models
from the literature, including Gaussian and super-Gaussian models, showed that the new
diffusion-based wake model offers a more consistent performance over a wide range
of turbulence intensities and turbine thrust coefficients. Super-Gaussian wake models
performed well when applied to datasets that were included in their calibration process,
but reduced performance is observed when applied to other datasets.

Importantly, the streamwise evolution of the wake shape is accounted for in the proposed
model through a physics-based principle (wake diffusion normal to the streamwise
direction) rather than an empirical super-Gaussian exponent. Wake models in the literature
typically assume a constant deficit in the near-wake region, whereas the introduced
empirical expression for near-wake expansion is not restricted to this simplification and
is better aligned with LES near-wake results. The presented framework in this study can
be extended to more complex wake shapes to account for the near-wake radial offset of the
maximum deficit by controlling the initial distribution of the passive scalar. The analytical
solutions presented in the current study are not exclusive to turbine wakes but are useful
to other applications relying on similar integrals.
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Appendix A. Emphasis on the integral in the diffusion equation

In this appendix, we present a series solution to the integral in (2.2). First, we make use of
the improper version of the integral to write (Gradshteyn & Ryzhik 2007, p. 707; 6.633-4)∫ ∞

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′ = σ 2 exp(r2/(2σ 2)), (A1)

which we can use to re-write the integral of interest as∫ Rd

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′

= σ 2 exp(r2/(2σ 2)) − R2
d

∫ ∞

1
r′′ exp(−r′′2R2

d/(2σ 2))I0

(
rr′′Rd

σ 2

)
dr′′

︸ ︷︷ ︸
G

, (A2)

where r′′ = r′/Rd. We can also make use of the multiplication theorem of the modified
Bessel function (Abramowitz & Stegun 1972, p. 377; 9.6.51) to write

I0

(
rr′′Rd

σ 2

)
=
∑
k≥0

1
k!

(
r′′2 − 1

)k
(

rRd

2σ 2

)k

Ik

(
rRd

σ 2

)
, (A3)

and hence

G =
∑
k≥0

1
k!

(
rRd

2σ 2

)k

Ik

(
rRd

σ 2

)∫ ∞

1
r′′
(

r′′2 − 1
)k

exp(−r′′2R2
d/(2σ 2)) dr′′

︸ ︷︷ ︸
Fk

. (A4)

Applying integration by parts to Fk leads to the following recursion:

Fk = 2kσ 2

R2
d

Fk−1, (A5)

whose solution is k!(2σ 2/R2
d)

kF0, where

F0 =
∫ ∞

1
r′′ exp(−r′′2R2

d/(2σ 2)) dr′′ = σ 2

R2
d

exp(−R2
d/(2σ 2)). (A6)
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Inserting the solution of Fk into (A4) and then into (A2) gives∫ Rd

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′

= σ 2 exp(r2/(2σ 2)) − σ 2 exp(−R2
d/(2σ 2))

∑
k≥0

(
r

Rd

)k

Ik

(
rRd

σ 2

)
. (A7)

Moreover, we can relate the generating function in (A7) to the Marcum Q-function
QM(a, b) through (Proakis 1983, p. 44; 2-1-123)

∑
k≥0

(
r

Rd

)k

Ik

(
rRd

σ 2

)
= exp(r2/(2σ 2)) exp(R2

d/(2σ 2))Q1(r/σ, Rd/σ), (A8)

and hence

∫ Rd

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′ = σ 2 exp(r2/(2σ 2))(1 − Q1(r/σ, Rd/σ)). (A9)

The Marcum Q-function is found in some, but not all, mathematical toolboxes, and hence
(A7) can still be useful. Also, (A7) can be used to examine the limiting behaviour of the
shaping function S defined in (2.2) as follows. Close to the wake source, the characteristic
length σ is small, making the argument of the modified Bessel function sufficiently large
to use the approximation (Abramowitz & Stegun 1972, p. 377; 9.7.1)

Ik

(
rRd

σ 2

)
∼ σ

exp(rRd/σ
2)√

2πrRd

(
1 + O(σ 2)

)
. (A10)

Using this approximation along with (A7) and lim
σ→0

σ exp(−c/σ 2) = 0, we can

approximate S for a small σ as

S|σ� ≈ exp(r2/(2σ 2)). (A11)

A similar result can be obtained from (A9) using the fact that the first-order Marcum
Q-function Q1(a, b) vanishes for large values of b, which occurs when σ is small as b =
Rd/σ .

Appendix B. Conservation of linear momentum

In this appendix, we present a derivation for the streamwise scaling function C(x) to ensure
that the wake form introduced in (2.2) conserves linear momentum. From the integral form
of the conservation of linear momentum in the wake of a turbine, we have (Tennekes &
Lumley 1972)

2πρ

∫ ∞

0
u(u∞ − u)r dr = 1

2ρCtπR2u2
∞, (B1)

where ρ is the air density, Ct is the thrust coefficient, R is the turbine’s radius, u∞ is
the free-stream wind speed, u is the wind speed in the turbine’s wake and r is a radial
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coordinate. By making use of the definition W = 1 − u/u∞, (B1) becomes

∫ ∞

0
rW dr︸ ︷︷ ︸

A1

−
∫ ∞

0
rW2 dr︸ ︷︷ ︸
A2

= R2Ct/4. (B2)

From (2.2), the normalised wind-speed deficit W is

W = C exp(−r2/(2σ 2))
1
σ 2

∫ Rd

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′, (B3)

and the corresponding integrals A1 and A2 are evaluated as follows.

B.1. The integral A1

The integral A1 is

A1 = C
σ 2

∫ ∞

0
r exp(−r2/(2σ 2))

(∫ Rd

0
r′ exp(−r′2/(2σ 2))I0

(
rr′

σ 2

)
dr′
)

dr, (B4)

which can be re-arranged as

A1 = C
σ 2

∫ Rd

0
r′ exp(−r′2/(2σ 2))

(∫ ∞

0
r exp(−r2/(2σ 2))I0

(
rr′

σ 2

)
dr
)

dr′. (B5)

The improper integral in (B5) is given by (A1), and hence,

A1 = C
∫ Rd

0
r′ dr′ = 1

2
R2

dC. (B6)

B.2. The integral A2

As for the integral A2

A2 = C2

σ 4

∫ ∞

0
r exp(−r2/σ 2)

×
(∫ Rd

0
η1 exp(−η2

1/(2σ 2))I0

(rη1

σ 2

)
dη1

∫ Rd

0
η2 exp(−η2

2/(2σ 2))I0

(rη2

σ 2

)
dη2

)
dr.

(B7)

The dummy variable r′ in (2.2) was replaced with the dummy variables η1 and η2 for each
instance of this integral in W2. We could not obtain a mathematically exact solution of A2.
However, we will present two approaches to obtain an approximate expression for A2.
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B.2.1. Approach 1
By re-arranging (B7), we get

A2 = C2

σ 4

∫ Rd

0

∫ Rd

0
η1η2 exp

(
−
(
η2

1 + η2
2

)
/(2σ 2)

)
×
(∫ ∞

0
r exp(−r2/σ 2)I0

(rη1

σ 2

)
I0

(rη2

σ 2

)
dr
)

dη1 dη2. (B8)

The solution of the improper integral in (B8) is (Gradshteyn & Ryzhik 2007, p. 707;
6.633-4)∫ ∞

0
r exp(−r2/σ 2)I0

(rη1

σ 2

)
I0

(rη2

σ 2

)
dr = 1

2
σ 2 exp

((
η2

1 + η2
2

)
/(4σ 2)

)
I0

(η1η2

2σ 2

)
,

(B9)
and hence (B8) simplifies to

A2 = R2
dC2

2σ̃ 2

∫ 1

0

∫ 1

0
ξ1ξ2 exp

(
−
(
ξ2

1 + ξ2
2

)
/(4σ̃ 2)

)
I0

(
ξ1ξ2

2σ̃ 2

)
dξ1 dξ2, (B10)

where ξ1 = η1/Rd, ξ2 = η2/Rd and σ̃ = σ/Rd. Equation (B10) contains an integral over
a unit square in the first quadrant of the ξ1 − ξ2 space. We can split this integral into A′

2,
which is the integral over the quarter of the unit circle inscribed in the unit square of
integration, and A′′

2, which is the integral over the left-over area (i.e. A2 = A′
2 + A′′

2). By
introducing the polar coordinates rξ − θξ that satisfy ξ1 = rξ cos θξ and ξ2 = rξ sin θξ , the
integral A′

2 becomes

A′
2 = R2

dC2

4σ̃ 2

∫ 1

0
r3
ξ exp(−r2

ξ /(4σ̃ 2))

∫ π/2

0
sin (2θξ ) I0

(
r2
ξ sin (2θξ )

4σ̃ 2

)
dθξ drξ . (B11)

The solution to inner integral in (B11) (over θξ ) is 4σ̃ 2r−2
ξ sinh (0.25 r2

ξ σ̃
−2) (Gradshteyn

& Ryzhik 2007, p. 725; 6.681-8), and hence

A′
2 = R2

dC2
∫ 1

0
rξ exp(−r2

ξ /(4σ̃ 2)) sinh

(
r2
ξ

4σ̃ 2

)
drξ

= R2
dC2

4

(
1 − 2σ 2

R2
d

(
1 − exp(−R2

d/(2σ 2))
))

. (B12)

As for the integral A′′
2, we have

A′′
2 = R2

dC2

4σ̃ 2

∫ π/2

0
sin (2θξ )

∫ sec θξ

1
r3
ξ exp(−r2

ξ /(4σ̃ 2)) I0

(
r2
ξ sin (2θξ )

4σ̃ 2

)
drξ dθξ . (B13)

The integral over rξ in (B13) is not straightforward to solve analytically. However, using
numerical evaluation of the integral A2 (B7) and (B12), we can show that

A′′
2 ≈ R2

dC2

8

(
1 − σ 2

R2
d

(
1 − exp(−R2

d/σ
2)
))

+ R2
dC2

10

(
1 − 23σ 2

R2
d

(
1 − exp(−R2

d/(22σ 2))
))

, (B14)
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and hence A2 ≈ R2
dC2λ/4, where

λ = 1.9 − 2σ 2

R2
d

(
1 − exp(−R2

d/(2σ 2))
)

− σ 2

2R2
d

(
1 − exp(−R2

d/σ
2)
)

− 46σ 2

5R2
d

(
1 − exp(−R2

d/(22σ 2))
)

. (B15)

B.2.2. Approach 2
The difficulty in solving the integral A2 in (B7) analytically arises in part due to the
presence of the modified Bessel function I0, which emerges from the integration of
a Gaussian function over a circular disk. Geometrically, the integral A2 represents the
volume between the surface W2(y, z) and the y–z plane (scaled by 2π for the azimuthal
integration over θ ). This volume is an integral quantity and hence is not exclusive to a
specific shape of the disk source, but can be obtained from other shapes by appropriate
sizing and scaling relative to the circular disk source. Unlike the circular case, the
equations for a rectangular disk source can be solved exactly. Given that we are considering
an axisymmetric wake, modelled through the diffusion of a passive scalar from a uniform
circular disk source, we seek an approximate solution for the integral A2 by using a uniform
square disk source with a side length 2l. This approximation is intended solely for solving
A2 and is not related to the presented wake model which assumes a circular disk source.
We define W̃ as the normalised wind-speed deficit due to a square disk source, and seek to
evaluate Ã2 such that

Ã2 =
∫ ∞

−∞

∫ ∞

−∞
W̃2 dy dz. (B16)

For a square disk source, W̃ can be expressed in terms of the error function (erf) as (Ng &
Geller 1969; Crank 1979)

W̃ = πC
2

[
erf
(

l − y√
2σ

)
+ erf

(
l + y√

2σ

)][
erf
(

l − z√
2σ

)
+ erf

(
l + z√

2σ

)]
. (B17)

Since C and σ are functions of the streamwise direction x but are not functions of y and z,
they are the assumed to be same for the circular and square disk sources. Because y and
z are separable in (B17), we can consider only one of them in the integration over the y–z
plane (B16), and the other integral would be the same. For the y direction, the integral in
(B16) yields an integration in the form

M(a) =
√

2σ

∫ ∞

−∞
(erf (a − η) + erf (a + η))2 dη, (B18)

where a = l/(
√

2σ), and η = y/(
√

2σ). According to Ali et al. (2024c),∫ ∞

−∞
(erf(a − η) + erf(a + η))2 dη = 8

(
a erf(

√
2a) + exp(−2a2) − 1√

2π

)
, (B19)

and hence

Ã2 = 16πC2l2
(√

π erf
(

l
σ

)
− σ

l

(
1 − exp(−l2/σ 2)

))2

. (B20)
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Figure 7. A comparison between (a) the function λ (B15) and (b) the function Λ (B21) against the numerical
evaluation of A2 (B7) shown by the red markers.

Through a comparison with numerical evaluation of A2 (B7) and exploiting the form in
(B20) assuming that l = Rd, we can show that A2 ≈ R2

dC2Λ/4, where

Λ = 2
(

erf
(

Rd

σ

)
− σ√

πRd

(
1 − exp(−R2

d/σ
2)
))2

. (B21)

B.3. An expression for the scaling function C
Figure 7 shows a comparison between the approximate solutions of the integral A2: λ (B15)
and Λ (B21) against numerical evaluation of A2. From this comparison, we adopt the Λ

function as an approximate solution to A2. Having evaluated the integrals A1 (B6) and A2
(B21), the conservation of linear momentum (B2) simplifies to ΛC2 − 2C + (R/Rd)

2Ct =
0, whose solution is

C ≈ 1 −
√

1 − (R/Rd)2ΛCt

Λ
. (B22)

We use the approximation symbol in (B22) because the integral A2 is not mathematically
exact in the sense that we could not derive (B21) directly from the main expression of A2
(B7), but from an alias of A2 (B16).

Appendix C. Review of analytical wake models

In this appendix we review some engineering wake models from the literature that are
included in the comparisons of § 3. We mainly focus on the Gaussian model of Bastankhah
& Porté-Agel (2014) and the super-Gaussian models of Blondel & Cathelain (2020),
Cathelain et al. (2020) and Blondel (2023).

C.1. Gaussian wake
In the Gaussian model of Bastankhah & Porté-Agel (2014), the normalised wind-speed
deficit Wg (the subscript g means Gaussian) is expressed as

Wg = Cg(x) exp(−r2/(2σ 2
g )), (C1)
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where the scaling function Cg(x) is

Cg(x) = 1 −
√

1 − Ct

8
(
σg/D

)2 , (C2)

and the length scale σg expands linearly in the streamwise direction following

σg = k∗
gx + εgD. (C3)

The rate of wake expansion k∗
g is assumed to linearly depend on the free-stream turbulence

intensity Ti

k∗
g = 0.003678 + 0.3837 Ti, (C4)

and the initial wake width εg is

εg = 0.2
√

β, (C5)

where

β = 1 + √
1 − Ct

2
√

1 − Ct
. (C6)

C.2. Super-Gaussian wake
In a super-Gaussian model, the normalised wind-speed deficit Wsg (the subscript sg means
super-Gaussian) is

Wsg = Csg(x) exp(−rn/(2σ 2
sg)), (C7)

where n is a super-Gaussian exponent, Csg is a super-Gaussian scaling function and σsg
is a characteristic length scale of the super-Gaussian model. Note that n, Csg and σsg will
have the same formulation for all the considered super-Gaussian models, and hence were
not given special subscripts although their tuneable parameters will have different values,
as will be discussed. Blondel & Cathelain (2020) derived an expression for Csg(x) based
on the conservation of linear momentum to be

Csg(x) = 2−1+2/n −
√

2−2+4/n − nCt

16Γ (2/n) (σsg/D)4/n , (C8)

where Γ is the gamma function. The super-Gaussian exponent n takes the form

n = af exp(bf x) + cf , (C9)

where af , bf and cf are tuneable parameters. The characteristic length scale σsg is

σsg = (asTi + bs) x + cs
√

βD, (C10)

where as, bs and cs are tuneable parameters, and β is given by (C6). The six tuneable
parameters af , bf , cf , as, bs and cs are obtained from fitting LES data differently for each of
the considered super-Gaussian models, as summarised in table 1. In the model of Blondel
& Cathelain (2020), all six parameters have numeric values as listed in the first row of
table 1. However, in the model of Cathelain et al. (2020), the parameters bf and cs are
defined to be functions of Ti and Ct, respectively,(

bf
)

C20 = 1.59 exp(−23.31 Ti) − 2.15 (C11)

(cs)C20 = 0.0564 Ct + 0.13. (C12)
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Model af bf cf as bs cs

Blondel & Cathelain (2020) 3.11 −0.68 2.41 0.17 0.005 0.2
Cathelain et al. (2020) Csg(0) = a (C11) 2.98 0.18 0.0119 (C12)
Blondel (2023) (C13) (C14) 2.0 0.28 0.01 (C15)

Table 1. The numerical values of the tuneable parameters in (C9) and (C10) for different super-Gaussian
models.

1 2 3 4 5 6 7 8 9 10
x/D

0

0.1

0.2

0.3

0.4

0.5

0.6

σ/D
σfw

σnw

wσnw + (1 – w)σfw

w = exp(τ(1 – x/xo))

Ct = 0.8
Ti = 11 %

Figure 8. The streamwise evolution of the length scale σ (solid black curve) for Ct = 0.8 and Ti = 11 %. The
range of the near wake xo (2.14) is shown by a vertical red line. The far-wake length scale σfw (2.12) is shown
by a dashed line. The difference between σfw and the adopted expression for σ (2.16) is shaded in grey for the
near-wake region and in blue for the far-wake region. The parameter τ = 2 as outlined in § 2.4.

Also, af is obtained from one-dimensional momentum theory (Burton et al. 2021) using
root finding to ensure that the maximum deficit at the start of the wake equals the axial
induction of the turbine a = 0.5(1 − √

1 − Ct). In the model of Blondel (2023), the
parameters af , bf and cs are defined as(

af
)

B23 = −8.2635 C3
t + 8.5939 C2

t − 8.9691 Ct + 10.7286 (C13)(
bf
)

B23 = 1.68 exp(−25.98 Ti) − 1.06 (C14)

(cs)B23 = 0.1 Ct + 0.1. (C15)

Appendix D. Supplementary material

In this appendix we include some supplementary figures to the main text. Figure 8 shows
the streamwise profile of the adopted length scale σ (2.16) and the far-wake length scale
σfw (2.12) for an exemplary case of Ct = 0.8 and Ti = 11 %. The near-wake adjustment
due to the definition of σnw (2.15) is indicated by the grey-shaded region, whereas the role
of the exponential blend between σnw and σfw (2.16) in the far wake is indicated by the
blue-shaded region. The length scale σ approaches σfw in the very-far wake where both
the proposed wake model (2.2) and the super-Gaussian model (Cathelain et al. 2020, for
which σfw in (2.12) is designed) approach a Gaussian wake profile.
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Figure 9. Sensitivity of the proposed wake model to the parameter τ in the expression for σnw (2.15) and in
the exponential blend between σnw and σfw (2.16). Three values are tested: τ = 1 (blue), τ = 2 (black; original
value in (2.15)) and τ = 4 (green) against LES results (red). Shown is the fourth row (Ti = 6.2 %) of the LES
deficit profiles indicated in figure 3.

The expression for the near-wake length scale σnw (2.15) is formed by the superposition
of a contraction and an expansion tendencies. The parameter τ in the contraction term was
obtained empirically using the LES deficit profiles of figure 3, as outlined in § 2.4. Figure 9
presents an exemplary sensitivity analysis of the parameter τ for the case of Ti = 6.2 %
(fourth row) of the LES deficit profiles in figure 3. Figure 9 indicates a slight variation in
the deficit W for the three tested values of τ . When τ was halved from 2 to 1 (50 % drop),
the increase in the deficit W was approximately 6 % of the free-stream wind speed u∞
at x/D = 2, and approximately 6.6 % of u∞ at x/D = 6. Moreover, when τ was doubled
from 2 to 4 (a 100 % increase), the deficit W dropped by approximately 2 % of u∞ at
x/D = 2 and by approximately 5 % of u∞ at x/D = 6. These variations occurred for the
near-wake case (x/D = 2) and for x/D = 6 along the wake’s centreline, but considering
the full deficit profile normal to the streamwise direction τ = 2 gives best agreement. The
other cases show negligible differences.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I.A. 1972 Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Dover.

ALI, K., SCHULTZ, D.M., REVELL, A., STALLARD, T. & OURO, P. 2023 Assessment of five wind-farm
parameterizations in the weather research and forecasting model: a case study of wind farms in the North
Sea. Mon. Weath. Rev. 151 (9), 2333–2359.

ALI, K., STALLARD, T. & OURO, P. 2024a Analytical evaluation of non-axisymmetric Gaussian wind-turbine
wake including yaw and wind-veer effects [Computer software]. https://doi.org/10.5281/zenodo.12784758.

ALI, K., STALLARD, T. & OURO, P. 2024b Evaluating wind-farm power generation using a new direct
integration of axisymmetric turbine wake. J. Phys.: Conf. Ser. 2767 (9), 092015.

ALI, K., STALLARD, T. & OURO, P. 2024c An exact solution of a momentum-conservation condition
for scalar diffusion from a uniform-concentration region. Preprint https://doi.org/10.13140/RG.2.2.27966.
09287.

AUBRUN, S., LOYER, S., HANCOCK, P.E. & HAYDEN, P. 2013 Wind turbine wake properties: comparison
between a non-rotating simplified wind turbine model and a rotating model. J. Wind Engng Ind. Aerodyn.
120, 1–8.

1001 A13-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.5281/zenodo.12784758
https://doi.org/10.13140/RG.2.2.27966.09287
https://doi.org/10.1017/jfm.2024.1077


A diffusion-based wind turbine wake model

BALAKRISHNAN, R.K. & HUR, S.-H. 2022 Maximization of the power production of an offshore wind farm.
Appl. Sci. 12 (8), 4013.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2014 A new analytical model for wind-turbine wakes. Renew. Energy
70, 116–123.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2016 Experimental and theoretical study of wind turbine wakes in
yawed conditions. J. Fluid Mech. 806, 506–541.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2017 Wind tunnel study of the wind turbine interaction with a
boundary-layer flow: upwind region, turbine performance, and wake region. Phys. Fluids 29 (6), 065105.

BASTANKHAH, M., WELCH, B.L., MARTÍNEZ-TOSSAS, L.A., KING, J. & FLEMING, P. 2021 Analytical
solution for the cumulative wake of wind turbines in wind farms. J. Fluid Mech. 911, A53.

BAY, C.J., ANNONI, J., TAYLOR, T., PAO, L. & JOHNSON, K. 2018 Active power control for wind farms
using distributed model predictive control and nearest neighbor communication. In 2018 Annual American
Control Conference (ACC), pp. 682–687. IEEE.

BLONDEL, F. 2023 Brief communication: a momentum-conserving superposition method applied to the
super-Gaussian wind turbine wake model. Wind Energy Sci. 8 (2), 141–147.

BLONDEL, F. & CATHELAIN, M. 2020 An alternative form of the super-Gaussian wind turbine wake model.
Wind Energy Sci. 5 (3), 1225–1236.

BUHL, M.L. 2005 A new empirical relationship between thrust coefficient and induction factor for the
turbulent windmill state. Tech. Rep. NREL/TP-500-36834. National Renewable Energy Laboratory, Golden,
CO.

BURTON, T., SHARPE, D., JENKINS, N. & BOSSANYI, E. 2021 Wind Energy Handbook, 3rd edn. John Wiley
& Sons.

CARBAJO FUERTES, F., MARKFORT, C.D. & PORTÉ-AGEL, F. 2018 Wind turbine wake characterization
with nacelle-mounted wind lidars for analytical wake model validation. Remote Sens. 10 (5), 668.

CATHELAIN, M., BLONDEL, F., JOULIN, P.A. & BOZONNET, P. 2020 Calibration of a super-Gaussian wake
model with a focus on near-wake characteristics. J. Phys.: Conf. Ser. 1618 (6), 062008.

CHENG, W.-C. & PORTÉ-AGEL, F. 2018 A simple physically-based model for wind-turbine wake growth in a
turbulent boundary layer. Boundary-Layer Meteorol. 169 (1), 1–10.

CRANK, J. 1979 The Mathematics of Diffusion. Oxford University Press.
CRESPO, A. & HERNANDEZ, J. 1996 Turbulence characteristics in wind-turbine wakes. J. Wind Engng Ind.

Aerodyn. 61 (1), 71–85.
DAI, L., LUO, Z., GUO, T., CHAO, H., DONG, G. & HU, Z. 2024 Two three-dimensional super-Gaussian

wake models for hilly terrain. J. Renew. Sustain. Energy 16 (1), 013304.
FITCH, A.C., OLSON, J.B., LUNDQUIST, J.K., DUDHIA, J., GUPTA, A.K., MICHALAKES, J. &

BARSTAD, I. 2012 Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP
model. Mon. Weath. Rev. 140 (9), 3017–3038.

FREITAS, S., ROWEN, M., DIAZ, G.N. & ERBSLÖH, S. 2024 Ranking multi-fidelity model performances in
reproducing internal and external wake impacts at neighbouring offshore wind farms. J. Phys.: Conf. Ser.
2767 (9), 092045.

GLAUERT, H. 1926 The analysis of experimental results in the windmill brake and vortex ring states of an
airscrew. ARC/R & M-1026. H.M. Stationery Office.

GLOBAL WIND ENERGY COUNCIL 2024 Global wind report 2024. https://gwec.net/global-wind-report-2024/.
GÖÇMEN, T., VAN DER LAAN, P., RÉTHORÉ, P.-E., DIAZ, A.P., LARSEN, G.C. & OTT, S. 2016 Wind

turbine wake models developed at the technical university of Denmark: a review. Renew. Sustain. Energy
Rev. 60, 752–769.

GRADSHTEYN, I.S. & RYZHIK, I.M. 2007 Table of integrals, series, and products. In 6-7 – Definite Integrals
of Special Functions, 7th edn. (ed. A. Jeffrey, D. Zwillinger, I.S. Gradshteyn & I.M. Ryzhik), pp. 631–857.
Academic.

HANNA, S.R. 1981 Lagrangian and Eulerian time-scale relations in the daytime boundary layer. J. Appl.
Meteorol. Climatol. 20 (3), 242–249.

HAY, J.S. & PASQUILL, F. 1959 Diffusion from a continuous source in relation to the spectrum and scale of
turbulence. Adv. Geophys. 6, 345–365.

HOU, P., HU, W., CHEN, C., SOLTANI, M. & CHEN, Z. 2016 Optimization of offshore wind farm layout in
restricted zones. Energy 113, 487–496.

HOWLAND, M.F., GHATE, A.S., LELE, S.K. & DABIRI, J.O. 2020 Optimal closed-loop wake steering – part
1: conventionally neutral atmospheric boundary layer conditions. Wind Energy Sci. 5 (4), 1315–1338.

ISHIHARA, T. & QIAN, G.-W. 2018 A new Gaussian-based analytical wake model for wind turbines
considering ambient turbulence intensities and thrust coefficient effects. J. Wind Engng Ind. Aerodyn. 177,
275–292.

1001 A13-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://gwec.net/global-wind-report-2024/
https://doi.org/10.1017/jfm.2024.1077


K. Ali, T. Stallard and P. Ouro

IVANELL, S., MIKKELSEN, R., SØRENSEN, J.N. & HENNINGSON, D. 2010 Stability analysis of the tip
vortices of a wind turbine. Wind Energy 13 (8), 705–715.

JENSEN, N.O. 1983 A note on wind generator interaction. Risø-M 2411. Risø National Laboratory.
KEANE, A., AGUIRRE, P.E.O., FERCHLAND, H., CLIVE, P. & GALLACHER, D. 2016 An analytical model

for a full wind turbine wake. J. Phys.: Conf. Ser. 753 (3), 032039.
KRUTOVA, M., PASKYABI, M.B., NIELSEN, F.G. & REUDER, J. 2020 Evaluation of Gaussian wake models

under different atmospheric stability conditions: comparison with large eddy simulation results. J. Phys.:
Conf. Ser. 1669 (1), 012016.

VAN DER LAAN, M.P., GARCÍA-SANTIAGO, O., SØRENSEN, N., TROLDBORG, N., RISCO, J. & BADGER, J.
2023 Simulating wake losses of the Danish Energy Island wind farm cluster. J. Phys.: Conf. Ser. 2505,
012015.

LARSEN, G.C. 1988 A simple wake calculation procedure. Risø-M 2760. Risø National Laboratory, Denmark.
LEE, J.H.-W. & CHU, V.H. 2003 Turbulent Jets and Plumes: A Lagrangian Approach. Springer.
LIEW, J., HECK, K.S. & HOWLAND, M.F. 2024 Unified momentum model for rotor aerodynamics across

operating regimes. Nat. Commun. 15 (1), 6658.
MAAS, O. & RAASCH, S. 2022 Wake properties and power output of very large wind farms for different

meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight.
Wind Energy Sci. 7 (2), 715–739.

NARASIMHAN, G., GAYME, D.F. & MENEVEAU, C. 2024 Analytical wake modeling in atmospheric
boundary layers: accounting for wind veer and thermal stratification. J. Phys.: Conf. Ser. 2767 (9), 092018.

NG, E.W. & GELLER, M. 1969 A table of integrals of the error functions. J. Res. Natl Bur. Stand. 73B.
NIAYIFAR, A. & PORTÉ-AGEL, F. 2015 A new analytical model for wind farm power prediction. J. Phys.:

Conf. Ser. 625 (1), 012039.
OURO, P. & LAZENNEC, M. 2021 Theoretical modelling of the three-dimensional wake of vertical axis

turbines. Flow 1, E3.
PEDERSEN, J.G., SVENSSON, E., POULSEN, L. & NYGAARD, N.G. 2022 Turbulence optimized park model

with Gaussian wake profile. J. Phys.: Conf. Ser. 2265 (2), 022063.
PORTÉ-AGEL, F., BASTANKHAH, M. & SHAMSODDIN, S. 2020 Wind-turbine and wind-farm flows: a review.

Boundary-Layer Meteorol. 174 (1), 1–59.
POSA, A. & BROGLIA, R. 2021 Momentum recovery downstream of an axial-flow hydrokinetic turbine.

Renew. Energy 170, 1275–1291.
PROAKIS, J. 1983 Digital Communications. McGraw-Hill.
ROSENHEINRICH, W. 2017 Tables of Some Indefinite Integral of Bessel Functions of Integer Order. Ernst -

Abbe - Hochschule Jena.
SCHREIBER, J., BALBAA, A. & BOTTASSO, C.L. 2020 Brief communication: a double-Gaussian wake

model. Wind Energy Sci. 5 (1), 237–244.
SHAPIRO, C.R., STARKE, G.M. & GAYME, D.F. 2022 Turbulence and control of wind farms. Annu. Rev.

Control Rob. Auton. Syst. 5, 579–602.
SHAPIRO, C.R., STARKE, G.M., MENEVEAU, C. & GAYME, D.F. 2019 A wake modeling paradigm for wind

farm design and control. Energies 12 (15), 2956.
SØRENSEN, J.N., MIKKELSEN, R., SARMAST, S., IVANELL, S. & HENNINGSON, D. 2014 Determination of

wind turbine near-wake length based on stability analysis. J. Phys.: Conf. Ser. 524 (1), 012155.
SØRENSEN, J.N., MIKKELSEN, R.F., HENNINGSON, D.S., IVANELL, S., SARMAST, S. & ANDERSEN, S.J.

2015 Simulation of wind turbine wakes using the actuator line technique. Phil. Trans. R. Soc. Lond. A
373 (2035), 20140071.

TABIB, M., RASHEED, A. & KVAMSDAL, T. 2015 LES and RANS simulation of onshore Bessaker wind
farm: analysing terrain and wake effects on wind farm performance. J. Phys.: Conf. Ser. 625, 012032.

TAYLOR, G.I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212.
TENNEKES, H. & LUMLEY, J.L. 1972 A First Course in Turbulence. MIT.
TROLDBORG, N., SORENSEN, J.N. & MIKKELSEN, R. 2010 Numerical simulations of wake characteristics

of a wind turbine in uniform inflow. Wind Energy 13 (1), 86–99.
VAHIDI, D. & PORTÉ-AGEL, F. 2022 A physics-based model for wind turbine wake expansion in the

atmospheric boundary layer. J. Fluid Mech. 943, A49.
VERMEULEN, P.J. 1980 An experimental analysis of wind turbine wakes. In Proceedings of the International

Symposium on Wind Energy Systems, Cambridge, UK, September 8–11, pp. 431–450. Cambridge University
Press.

VOUTSINAS, S., RADOS, K. & ZERVOS, A. 1990 On the analysis of wake effects in wind parks. Wind Engng
14 (4), 204–219.

1001 A13-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1077


A diffusion-based wind turbine wake model

WANG, J., FOLEY, S., NANOS, E.M., YU, T., CAMPAGNOLO, F., BOTTASSO, C.L., ZANOTTI, A. &
CROCE, A. 2017 Numerical and experimental study of wake redirection techniques in a boundary layer
wind tunnel. J. Phys.: Conf. Ser. 854 (1), 012048.

ZHAN, L., LETIZIA, S. & IUNGO, G.V. 2020 Optimal tuning of engineering wake models through lidar
measurements. Wind Energy Sci. 5 (4), 1601–1622.

ZHANG, S., GAO, X., MA, W., LU, H., LV, T., XU, S., ZHU, X., SUN, H. & WANG, Y. 2023 Derivation and
verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function.
Renew. Energy 215, 118968.

1001 A13-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1077

	1 Introduction
	2 Wake model based on the diffusion of a passive scalar
	2.1 Expression for wake shape
	2.2 Conservation of linear momentum
	2.3 Far-wake expansion
	2.4 Near-wake treatment
	2.5 Source disk radius
	2.6 Summary of the proposed model

	3 Validation
	4 Discussion
	5 Summary
	Appendix A. Emphasis on the integral in the diffusion equation
	Appendix B. Conservation of linear momentum
	B.1 The integral A1
	B.2 The integral A2
	B.2.1 Approach 1
	B.2.2 Approach 2

	B.3 An expression for the scaling function C

	Appendix C. Review of analytical wake models
	C.1 Gaussian wake
	C.2 Super-Gaussian wake

	Appendix D. Supplementary material
	References

