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When large achievement tests are conducted regularly, items need to be calibrated before being used
as operational items in a test. Methods have been developed to optimally assign pretest items to examinees
based on their abilities. Most of these methods, however, are intended for situations where examinees
arrive sequentially to be assigned to calibration items. In several calibration tests, examinees take the test
simultaneously or in parallel. In this article, we develop an optimal calibration design tailored for such
parallel test setups. Our objective is both to investigate the efficiency gain of the method as well as to
demonstrate that this method can be implemented in real calibration scenarios. For the latter, we have
employed this method to calibrate items for the Swedish national tests in Mathematics. In this case study,
like in many real test situations, items are of mixed format and the optimal design method needs to handle
that. The method we propose works for mixed-format tests and accounts for varying expected response
times. Our investigations show that the proposed method considerably enhances calibration efficiency.
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Many achievement tests are conducted regularly, such as international large-scale tests like
the Programme for International Student Assessment (PISA) or the Trends in International Math-
ematics and Science Study (TIMSS). Regularly conducted tests are also common on a national
level, e.g., for knowledge assessments in school or qualification tests for university. It is crucial
to pretest items before they can be used in an operational test. An important part of pretesting is
to determine item characteristics, like the probability to correctly solve the item for examinees
with different abilities. The process of pretesting to learn about the item characteristics is called
item calibration.

To achieve high quality in the item calibration, a large number of examinees and considerable
time and resources are required. It is therefore wise to investigate if calibration can be optimized
in order to extract as much information as possible about the items given restricted resources. We
propose a method that allocates pretest items to examinees based on their anticipated knowledge.
In essence, we will match examinees to pretest items according to their (estimated) abilities. This
can be seen as stratified sampling, using ability as the stratification variable.

Calibration can be conducted in various contexts. One approach is to incorporate pretest
items into an operational test, which can be a computerized adaptive test. If knowledge about
the examinees’ abilities from operational items’ results is available, one can utilize these and
assign the pretest items based on the abilities in an optimal way. van der Linden and Ren (2015)
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and Ren et al. (2017) have proposed and investigated such an optimal calibration design for a
test with dichotomous items. He and Chen (2020) conducted a comparative analysis of different
calibration designs for dichotomous items. Zheng (2016) describes an optimal calibration design
for polytomous items using the generalized partial credit model.

The calibration designs investigated by Zheng (2016), van der Linden and Ren (2015), Ren
et al. (2017), and He and Chen (2020) optimize the allocation of the pretest item for an individual
examinee based on the accumulated data from all pretest items and the examinee’s ability. These
designs are applied sequentially, meaning that whenever an examinee is due to receive a pretest
item, optimization is performed to determine the single item that would benefit the most from
calibration for that particular examinee. Ren et al. (2017) compared approaches for handling
cases where small groups (batches) of examinees receive pretest items simultaneously; this is
achieved by sequentially going through the batch and applying sequential optimization. In certain
real testing situations, pretest item parameters can be updated batch-wise for small groups of
examinees and it makes sense to optimize the allocation of items for the subsequent small group
of examinees. For instance, tests which include a pretest section and are offered many or most
days of a year, are suitable for such a sequential optimization. Examples of tests that possess
suitable settings for sequential optimization are the Graduate Record Examinations (GRE) test in
the US and the Swedish driving license test, although they do not currently make use of this type
of optimal calibration.

On the other hand, some calibration tests are instead conducted in parallel (simultaneously)
for a large number of examinees. Instead of going through all examinees sequentially to determine
optimally their pretest items, a design optimization performed for the entire calibration test at once
offers more flexibility and allows for a superior design selection. Examples of tests in which many
examinees take pretest items in parallel are the Scholastic Aptitude Test (SAT) in the US and the
Swedish SAT. The US SAT is offered a few times a year and may include a calibration section. For
the Swedish SAT40,000 to 60,000 examinees undertake the operational test and its calibration part
on a single day during each term. Our proposed methodology is especially suitable for scenarios
where many examinees take pretest items in parallel.

While focus is often put on pretesting items having the same format and being analyzed with
the same statistical model, mixed-format tests are important in some contexts and the rationale for
their usage has been discussed (Lin, 2012) . When items with different formats are used in the
same calibration test, the analysis of the results should also allow for the use of different models.
Mao et al. (2022) have investigated designs aimed at optimizing operational tests containing
multidimensional mixed-format items. However, investigations of optimal calibration designs
have so far predominantly concentrated on a single item format.

The objective of this article is to elaborate an optimized calibration design for a mixed-format
test administered in parallel for all examinees. Since our method can be seen as stratified sampling
and since the stratification variable ability is related to the outcome of interest, it is expected that
the efficiency increases compared to randomly assigning items to examinees. However, it is not
known whether the efficacy gain is large enough to justify the use of this optimized stratified
sampling. Additionally, some optimized methods are challenging to apply in real situations and
our aim is to develop a design which is also practical to use in a real-world calibration scenario.
Consequently, the scientific questions in this research are: (1)Does the developed optimized design
yield a sufficiently enhanced efficiency compared to randomly allocating items to examinees? (2)
Is the developed design feasible to implement in a real calibration situation?

The outline of the article is as follows. In Sect. 1, we describe the case study focusing on the
calibration of the Swedish national test in Mathematics. Section2 defines the IRT models for the
different item formats and gives the details of the proposed optimal design method for calibration.
In Sect. 3, we provide results for three cases; a theoretical case, an idealized yet more realistic
case, as well as our national test case study. The article concludes with a summarizing discussion.
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1. Case Study: Swedish National Tests

National tests are administered in Swedish schools during Grades 3, 6, 9, and once between
Grades 10 and 12, covering subjects such as Swedish, English, andMathematics. Throughout these
grade levels, the pupils receive items of varying format, including short answer (correct/incorrect)
items, multiple choice items, and graded response items. Currently, the tests are still performed
as paper-and-pencil tests, but work is ongoing to computerize the tests in the future.

Due to the importance of the national test for the individual examinee, and the potential
distraction an additional pretest item might pose, concurrent calibration alongside operational
tests is avoided. Instead, voluntary teachers participate with their pupils in separate calibration
tests some weeks after the operational tests have been evaluated. Typically, addition of pretest
items to operational tests offers the advantage of ensuring consistent motivation among examinees
(Zheng, 2014) . However, in this situation, teachers have the opportunity to motivate their pupils
by emphasizing that all tests contribute to the final grading. Therefore we judge the risk of
random responders due to the test being percieved as low-stakes (Van Laar & Braeken, 2022)
to be relatively low in this context. Consequently, it was decided to conduct the calibration at
a separate occasion. It is important to note that the utilization of a stand-alone calibration test
with voluntary participants, as seen in our case study, might not be advisable in other contexts.
Employing a stand-alone calibration test is however not a requirement to implement the method
discussed in this paper. In general, our method is applicable even when pretest items are integrated
into an operational test.

As a specific case study, we are using the Swedish national test in Mathematics for Grade
6. Previously, various test versions with sets of pretest items were compiled and then randomly
assigned to classes. Usually, each itemwas included in exactly one version, and each version could
be sent to several classes. Since the calibration test for Mathematics items in Grade 6 was now
computerized for the first time, it was feasible to assign distinct versions to individual examinees
even within class.

2. Optimal Design Method

2.1. Models for Items and Examinee Population

We assume that n items are to be calibrated. The items can be of mixed format; some can
be dichotomous being graded as 0 or 1 point, and others can be polytomous items graded as
0, 1, . . . ,mi points, where mi is the maximum number of points for item i (i = 1, . . . n). We
assume that each item can be described by an item response theory (IRT) model. If item i is
dichotomous, the model is described by the probability to correctly answer item i , pi (θ) =
pi (θ,β i ). Here, θ ∈ IR is the ability of an examinee and β i is the vector of item parameters
which we want to estimate in this calibration. Examples of dichotomous IRT models are the
two-parameter logistic (2PL) or the three-parameter logistic (3PL) model; the latter is described
by

pi (θ) = ci + (1 − ci )/[1 + exp{−ai (θ − bi )}], β i = (ai , bi , ci )
T ,

and setting ci = 0 yields the 2PL model. The parameter ai is called discrimination, bi difficulty,
and ci the (pseudo-)guessing parameter of item i .

If item i is a polytomous, graded response item, the probability for an examinee with ability
θ ∈ IR to receive k ∈ {0, 1, . . . ,mi } points for item i is pik(θ) = P(Yi = k|θ,β i ), where Yi
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Figure 1.
Response functions for an example GPCM for a 2-point item with βi = (ai , bi1, bi2) = (1, −1, 1).

is the score on item i . An example of a polytomous IRT model is the generalized partial credit
model (GPCM; Muraki, 1992; 1993), which can be described by

pik(θ) =
exp

{∑k
j=0 ai

(
θ − bi j

)}

∑mi
g=0 exp

{∑g
j=0 ai

(
θ − bi j

)} , β i = (ai , bi1, . . . , bimi )
T ,

where
∑0

j=0 ai
(
θ − bi j

) = 0. For this formulation of the item category response function pik(θ)

the probability of receiving score k is modeled as a function of the step difficulty parameters
bi j , interpreted as the difficulty in receiving score k given that one has reached the previous step
k − 1. The step difficulties are the points on θ where two consecutive item response functions
intersect, see Fig. 1. There exist different formulations of the GPCM in the literature; see, e.g.,
Heinen (1993) and Nering and Ostini (2011) for alternative parameterizations and details about
how this model relates to others.

In this paper, we assume that we have a population of voluntary examinees (in situations
like our case study, usually there are, 1000–2000 examinees available). The population’s ability
distribution can be described with a density g(θ); a reasonable assumption is often that g is the
standard normal density.

2.2. Test Versions

In real situations, the number of items (i.e., n) to be calibrated is typically large, such that only
a smaller fraction of them can be allocated to a single examinee. Usually a certain number of test
versions (i.e., V ) are created, each containing a subset of the items. Each of the n items should be
contained in at least one version, but could be included in several as well. A simple approach is to
randomly divide the population into V subpopulations of approximately equal size and to assign
each subpopulation to one test version. In contrast, the idea in this paper is that we assign the test
versions to the examinees in an ability-dependent way. The first test version will be assigned to
all examinees with ability smaller than some ability-bound θ1, the second to all examinees with
ability from θ1 to below θ2 and so on. Hence, all examinees with ability θ ∈ [θv−1, θv) will be
assigned to version v, v = 1, . . . , V with θ0 = −∞, θV = ∞. This means that versions with
lower number will be assigned to examinees with lower ability. We assume here that the number
of versions V is fixed (too large of a number might not be feasible) and that the ability boundaries
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θv, v = 1, . . . , V − 1 are chosen in advance. Nevertheless, we will also investigate the impact of
the choice of V in Sect. 3.2 and 3.3.

2.3. The Calibration Design

The design of our calibration involves describing which items are included in which version.
Formally, an n × V -matrix (div) of 0’s and 1’s defines the design:

div =
{
1, if item i is used in version v,

0, otherwise.

The versions have to fulfill certain restrictions, e.g. such that the test length is adequate.

2.3.1. Fixed Length Versions One reasonable design restriction is to limit the number of items
in each version by d items:

n∑
i=1

div ≤ d for all v = 1, . . . , V . (1)

2.3.2. Versions with Target Time While the above restriction might be meaningful in cases
where all items are of similar structure, it is often desired to calibrate items which require different
response times until solved (Ali & Chang, 2014; He et al., 2021). Therefore, we introduce ti as
the expected response time for item i , given in some time unit. A design restriction is then

n∑
i=1

divti ≤ T, (2)

where T is the target time for the test. Note that the case (1) with a fixed length version is a special
case of this case if we set t1 = · · · = tn = 1 and T = d.

In real situations, there could be further design restrictions, e.g., that the number of items
with a specific content is restricted. While these restrictions can easily be incorporated, we do not
extend the notation here for the sake of simplicity. Also, our case study which we will come back
to in Sect. 3.3 only had restrictions of type (2).

2.4. Information

In the context of calibration tests, we have not unrestricted access to voluntary examinees
with desired ability levels. Therefore, application of traditional optimal designmethodology is not
possible, as pointed out, e.g., by Zheng (2014) and van der Linden and Ren (2015). Due to this,
we use optimal design theory based on finite population sampling (Wynn, 1982) as described by
Ul Hassan and Miller (2019). The available finite population of voluntary test takers is described
by a probability density g(θ). Let hi (θ) be the sub-density describing the volunteers allocated to
item i . With the notation introduced before, the sub-density is

hi (θ) =
V∑

v=1

div1{θv−1 ≤ θ < θv}g(θ),
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where 1{. . . } is the indicator function being 1 if the condition in brackets is fulfilled and 0
otherwise.

The information matrix for β i for a dichotomous item i is then

Mi =
∫

pi (θ){1 − pi (θ)}
(

∂ηi (θ)

∂βi

)(
∂ηi (θ)

∂βi

)T

hi (θ) dθ, (3)

where ηi (θ) = log [pi (θ)/{1 − pi (θ)}] , seeUlHassan andMiller (2019). The informationmatrix
for the 2PL and 3PL model has been elaborated before; see, e.g., Ul Hassan and Miller (2019)
and Ul Hassan and Miller (2021), respectively.

For polytomous items, the structure of the information matrix under various models is given
in Holman and Berger (2001) and for the nominal response model in Berger et al. (2000). In
general, with examinees distributed according to hi (θ), it has the following format

Mi =
∫ (

∂li (θ)

∂β i

)(
∂li (θ)

∂β i

)T

hi (θ) dθ, (4)

where li (θ) = ∑mi
k=0 log pik(θ). An example of the 3 × 3 GPCM information matrix for a three

categories item with the element details worked out, is given in Appendix A1.
We are interested in estimating not just one, but all of the item parameter-vectors β i with good

precision. This means that the parameter-vector of interest is β = (βT
1 , . . . ,βT

n )T . We assume
local independence of the items and therefore, the total informationmatrix forβ is block-diagonal:
M = diag (M1, . . . , Mn) .

We highlight that the information in this article is the information about item parameters,
only. We do not include information about ability parameters, which is necessary, for example, in
computerized adaptive tests where items are selected with the purpose to maximize information
about the examinees’ abilities.We consider only a calibration test or only the pretest itemswithin a
larger test. We estimate the item parameters of pretest items while assuming that ability estimates
are based on operational items, only.

2.5. Design Optimization

The desire in optimal design is to maximize the information. Since we have an information
matrix, we need to choose an optimization criterion (Atkinsson et al., 2007) . We have chosen
here D-optimality, which optimizes the determinant of the information matrix and has several
good properties (Atkinsson et al., 2007) . For this criterion, we have

det(M) =
n∏

i=1

det(Mi ).

If only very few examinees would calibrate one of the items, one factor in the product would be
very small, thus making the product small. Therefore, the product structure ensures that sufficient
emphasis is placed on each item.

The IRT models considered here are nonlinear models. A typical issue with optimal designs
for such models is that the information matrix depends on the parameters β to be estimated. One
way of dealing with this is to determine the optimal design when setting the unknown parameter
in the information matrix to an anticipated (best guess) value β(0). This approach is called local
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optimality. For our case study, this approach was reasonable since anticipated values for the
parameters exist, see further the discussion in Sect. 3.3.

To compute optimal designs numerically, we maximize det(M) over all n × V -0-1-matrices
which fulfill the required restrictions. Combinatorial optimization algorithms (see, e.g., Givens
& Hoeting, 2012, Chapter 3) can be used for that. For the results shown in Sects. 3.2 and 3.3, we
applied a simulated annealing algorithm.

2.6. Random Design and Efficiency

The quality of the derived optimal designs will be compared against that of a random design,
which allocates the items randomly to the examinees, independent of their abilities. Formally, the
random design is characterized by a density hR which is a constant fraction of the population
density g for each item. In case of a fixed length design, each item has probability d/n to be
allocated and hR(θ) = g(θ)·d/n. If versionswith target time T are used, each item has probability
T/

∑n
i=1 ti to be allocated and hR(θ) = g(θ) · T/

∑n
i=1 ti .

The relative D-efficiency of a design with information matrix M versus the random design
with information matrix MR is defined as

RED =
(

det(M)

det(MR)

)1/p

(5)

where p is the total number of parameters for all items (Berger and Wong, 2009) . If RED > 1,
the random design needs (RED − 1) ∗ 100 percent more examinees than the compared design
to obtain estimates with similar precision. We will also compute relative D-efficiencies RED,i =
(
det(Mi )/det(MR

i )
)1/pi for an individual item i . Note that RED =

(∏n
i=1 RE

pi
D,i

)1/p
; RED is

equal to a weighted geometric mean of the RED,i , weighted with the number of parameters in
each sub-model.

Note that we only consider designs for optimisation where the items are administered in V
versions and that we do not allow full flexibility. In contrast, we do not have this requirement for
the random design and it might not be possible to create V versions of the random design which
fulfill the restrictions and ensure that each item has the same probability of selection. Therefore,
the efficiency of the optimal design compared with the random design for V versions can be worse
in some cases, RED < 1, especially if V is small.

2.7. Unrestricted Design Optimization

In order to explain the results which we will obtain for our described optimization method,
we will first consider the case of traditional, unrestricted design optimization. For this, we pretend
that we have access to an arbitrary number of examinees with every possible ability. A design is
then the intention to calibrate item i with examinees having abilities θi1, . . . , θi,ni for ni ability-
levels (called “design points”). The proportion of examinees at θi j is wi j with wi j ≥ 0 and∑ni

j=1 wi j = 1. The design can then be summarized as

ξi =
(

θi1 . . . θi,ni
wi1 . . . wi,ni

)
.

Instead of (3), the information matrix for β i for a dichotomous item i is then:

Mi = Mi (ξi ) =
ni∑
j=1

pi (θi j ){1 − pi (θi j )}
(

∂ηi (θi j )

∂βi

)(
∂ηi (θi j )

∂βi

)T

wi j .
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Similarly, the information matrix for a polytomous item becomes a sum instead of (4). The D-
optimal design determines ni , θi1, . . . , θi,ni , wi1, . . . wi,ni such that
det(M) = det{diag (M1, . . . , Mn)} = ∏n

i=1 det(Mi ) is maximized.

3. Results

In Sect. 3.1, we start by showing the unrestricted D-optimal designs for the 2PL, 3PL, and
GPCM models for three categories. Next, we take the restriction by the available population into
account in Sect. 3.2. Here, we assume idealized situations with one (or two) item-type(s) and
uniformly spread item difficulties. The results show a meaningful structure corresponding to the
results for unrestricted optimal designs. In Sect. 3.3 we demonstrate that our approach can also
handle complicatedmixed-type situations.We apply the design optimization for themixed-format
pretest items in the Swedish national test in Mathematics. This illustrates how the results from
the idealized situations generalize to a realistic case.

3.1. Theoretical Results for the Unrestricted Design Case

Asmentioned previously, the optimal designs for nonlinear models depend on the parameters
and we adopt locally optimal designs here. Nevertheless, when we consider unrestricted design
optimization, there is no need to investigate all combinations of parameter values. We can without
loss of generality fix (one of) the difficulty parameter(s). For other values of this parameter, the
D-optimal designs are shifted. We can therefore restrict us to bi = 0 in the 2PL- and 3PL-model
and to bi1 + bi2 = 0 in the GPCM for three categories. Further, we can also just consider the
discrimination parameter as ai = 1 in all models (models with other parameter values can then be
obtained by scaling). This shifting and scaling is possible due to the invariance of the D-optimality
criterion, see Idais and Schwabe (2021) for more background.

3.1.1. 2PL-Model For estimating the discrimination (slope), it is intuitively reasonable that
information should be collected from examinees which have abilities somewhat below and some-
what above the difficulty of the item. Indeed, the D-optimal design is to include examinees with
ability θ1 = bi −1.543/ai and with ability θ2 = bi +1.543/ai (two design points) and to include
equally many for each ability. This design is well known, see Abdelbasit and Plackett (1983).

3.1.2. 3PL-Model Stocking (1990) investigates which examinees are most informative for
estimating each of the three parameters in the 3PL model; see, e.g., her discussion on page
474. Low ability examinees are needed for estimating the guessing parameter well and again
examinees somewhat below and above the difficulty are needed for estimating the difficulty and
the discrimination. For the D-optimal design, it can be shown that the locally D-optimal design
has one design point in θ = −∞ which has the purpose to estimate the guessing parameter. For
each guessing parameter, the optimal design has three design points and the other two depend on
the guessing parameter value. Since a three point design is minimally supported (with less than
three points, the parameters are not estimable), the weights in the design points have to be equal,
i.e., they are 1/3, see Silvey (1980).

3.1.3. GPCM with Three Categories Here, we present results for unrestricted D-optimal
designs for the GPCM with three categories. These illustrate how the number of design points
depend on the parameters. To the best of our knowledge, these results have not been reported in
the literature before.
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Due to symmetry reasons, the D-optimal design is symmetrical around (bi1+bi2)/2. Numer-
ical results for optimal design points depending on bi2 − bi1 are shown in Appendix A2. These
results show that a two-point design is optimal for ai (bi2 − bi1) ≤ 1.51, a three-point design is
optimal for 1.51 < ai (bi2 − bi1) ≤ 5.25 and a four-point design for larger values. In the case of
an optimal two-point design, it is minimally supported, and both points have equal weight 0.5.

3.2. Results for Idealized Situations with a Single Type of Items and a Mixed-Format Test

To investigate the properties of the optimal design, we first consider a set of simplified settings
starting with situations with a single type of item. We assume for illustration that n = 60 items
have to be calibrated and V = 40 test versions can be created. Each version should be allocated
to 2.5% of the examinees. Assuming standard normal distributed abilities, the ability limits are
quantiles of the standard normal distribution:

θ1 = z0.025, θ2 = z0.05, . . . , θ39 = z0.975. (6)

A fixed length restriction (1) is required allowing for d = 9 items per version.
For the items, we consider three models:

• All items followa2PLmodel andwewant to estimate these twoparameters. The anticipated
item parameters are in this situation: Difficulty parameters equidistantly between –2 (Item
1) and 2 (Item 60); the discrimination parameter is 1 for all items. These anticipations are
used to calculate the optimal design, but the true item parameters are still unknown and
need to be estimated.

• All items follow a 3PL model with anticipated difficulty and discrimination parameters as
before and an anticipated guessing parameter of 0.2 for all items.

• All items follow a GPCM for categories 0, 1, and 2. The anticipated discrimination param-
eter is 1 for all items; the anticipated parameter bi1 is equidistantly between −1.5 (Item 1)
and 2 (Item 60) and bi2 = bi1 − 0.5 for each item.

Note that the anticipated difficulty parameter(s) are increasing from Item 1 to Item 60 in all three
situations. Therefore, our anticipation which we use for computation of the optimal design is that
the items are sorted by difficulty.

Figure2 shows the computed optimal designs for the three situations respectively. As men-
tioned before, a design is represented by an n × V -matrix of 0’s and 1’s. We show the optimal
design as figure where a dot is shown if and only if the item was used in the version. We see for
all models that the examinees with low ability (low number versions) receive easier items (low
number items) and high ability examinees receive more difficult items.

Fixing an arbitrary item in the 2PLmodel (left panel in Fig. 2), we see that usually two groups
of examinees are chosen: a lower ability and a higher ability group. E.g., Item 1 is allocated
to Version 1 (examinees with θ < z0.025 = −1.96) and to Version 20-23 (examinees with
z0.475 = −0.06 ≤ θ < z0.575 = 0.19). That two groups are needed corresponds to our theoretical
result for the unrestricted case (Sect. 3.1). Now, fixing an item in the 3PL model (middle panel in
Fig. 2), we see that three groups of examinees are chosen for most items in accordance with the
theoretical results for the unrestricted case. Finally, fixing an item in the GPCM (right panel in
Fig. 2), two groups of examinees are usually chosen. Also this is in accordance with the theory
in Sect. 3.2, since ai (bi2 − bi1) = −0.5 < 1.51 in our model. In Appendix A3, we present
two additional scenarios using parameter sets that yield three or four groups of examinees. Note,
however, that these parameter sets are more theoretical in nature.

We now compare the information obtained by the optimal design and a random design.
Figure3 shows the relative efficiency, the ratio of the criterion values det(Mi )/ det(MR

i ), for each
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Figure 2.
Optimal design for 2PL model (left, red), 3PL model (middle, green), and GPCM (right, blue), 40 versions, and 9 items
per version.

of the 60 items (easy left, difficult right) in each of the three models. For the 3PL and GPCM, we
see that the optimal design especially improves the precision of the easy and difficult items. The
precision gain is not as significant for items with moderate difficulty; for the 3PL model, there is
even a precision loss for items with moderate difficulty. For the 2PL model, we notice a general
improvement in precision across all items. However, in this case, the distinction between easy and
difficult items is not as prominent as observed in other models. When examining similar plots for
scenarios involving 20 or 60 versions, a consistent trend emerges: easy and difficult items show
greater efficacy gains from the optimal design. Detailed figures for these cases are provided in
the supplementary material S1.

In Appendix A4, we show the relative efficiencies for the item parameters across all items.
While the GPCM shows an efficiency gain for all item parameters, both efficiency loss and gain
are observed for the 2PL and 3PL models. It is important to note that the optimal design was
computed to maximize the determinant of the information matrix. If our focus is specifically on
the performance of two or three item parameters, a more tailored criterion like A-optimality might
be preferred.

In this article, our emphasis lies on the information matrix and the efficiencies derived from
it. The information matrix provides asymptotic information concerning standard errors, partic-
ularly in the context of large sample sizes. Asymptotically, biases are eliminated. However, for
finite sample sizes, biases can affect estimates for the models under consideration. Therefore, we
conducted a simulation study for the 2PL and 3PL models to explore biases for all item param-
eters, see supplementary material S3. We see some bias in all item parameter estimates, yet the
D-optimal design demonstrates its ability to reduce the bias observed with a random design. The
optimal design’s selection of examinees, aimed at minimizing the asymptotic variance of esti-
mates, ensures the acquisition of sufficient information about the parameters, thereby avoiding
extreme estimates or non-convergence issues.

The relative D-efficiency based on all 60 items via Formula (5) for the 2PL, 3PL, and GPCM
are 1.22, 1.04, and 1.25, respectively. In Table 1, we show how the averaged relative efficiency
depends on the number of versions. A larger number of versions gives more flexibility and can
therefore increase the relative efficiency. On the other hand, the development of toomany versions
might pose challenges in development and administration. We see here that the relative efficiency
is not much affected by V for the 2PL and GPCM. In contrast, it is highly depending on V for
the 3PL model. For V ≤ 30, the random design is even better than the optimal design since the
random design is not applied version-wise.

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 06:41:39, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


F. MILLER, E. FACKLE-FORNIUS 913

Figure 3.
Relative efficiencies for 2PL (first panel), 3PL (middle panel), and GPCM (last panel) model, 40 versions, and 9 items
per version. Optimal versus random design.

To comprehend why the performance of the optimal design for the 3PL model relies heavily
on V , we illustrate the optimal designs for V = 20, 30, 60 in Fig. 4. A larger V implies higher
flexibility; hence, we consider V = 60 as our benchmark. When V is smaller, our aim is to
allocate similar groups of examinees to the items, though achieving this comprehensively is not
fully possible. Let us take Item 29 as an example: The optimal design for V = 60 suggests
assigning this item to versions 4, 23 to 27, and 53 to 55. This allocation entails including a group
of low-ability examinees (1/60 of the total population), a middle-ability group (5/60), and a high-
ability group (3/60). Upon reducing the number of versions to V = 20, we still require three
distinct groups of examinees with varying abilities to maintain reasonable efficiency. However,
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Table 1.
Relative efficiency of optimal design versus random design depending on model (2PL, 3PL, or GPCM) and number of
versions (V = 12, 15, 20, 30, 40, 60, 100), averaged over all 60 items.

V =
Model 12 15 20 30 40 60 100

2PL 0.86 1.14 1.20 1.22 1.22 1.22 1.22
3PL 0.27 0.47 0.77 0.96 1.04 1.11 1.15
GPCM 1.11 1.22 1.23 1.24 1.25 1.25 1.25

Figure 4.
Optimal design for the 3PL model and V = 20, 30, 60 versions (left, middle, right, respectively), and 9 items per version.

we can usually have only three versions per item. Therefore, we must oversample the low-ability
group (1/20 instead of 1/60) and undersample the middle-ability group (1/20 instead of 5/60).
Since we have to approximate the V = 60-design with a considerably different V = 20-design,
there is a high impact on efficiency.

Finally, we consider a test of mixed format consisting of each 30 2PL- and 3PL-items. The
discrimination parameter is 1 and the guessing parameter 0.2 for the 3PL-items. Difficulty is
equidistant between -2 and 2 for each model. We consider the case of 20 versions which appeared
to be challenging for the 3PL-model. It would be misleading to assume that in this mixed-format
test, only the 2PL-items and not the 3PL-items will benefit from the optimal design. For the
random design, the 2PL-items have higher information (higher det(Mi )) compared to the 3PL-
items. In order to optimize the overall information det(M), the optimal design puts more effort
on the 3PL-items leading to increased efficiencies for those items while the efficiencies of the
2PL-items are similar for both designs, see Fig. 5. The dependency of relative efficiencies on the
number of versions used is shown in Table 2.

3.3. Results for the Calibration for Swedish National Test in Mathematics

A set of 85 items was selected for calibration inMay and June 2022 where voluntary teachers
and their classes with a total of around 1600 pupils, agreed to participate in a calibration test. All
pupils had participated in their ordinary national test inMathematics and the teachers reported their
total points from the national tests. The 85 itemswere a subset of items pretested in a calibration test
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Figure 5.
Optimal design (left panel) and item information (right panel). Red � = 2PL items, green + = 3PL items. Right panel:
colored without joining lines for optimal design, black with joining lines for random design. Mixed-format test with 2PL
and 3PL items. 20 versions and 9 items per version.

Table 2.
Relative efficiency of optimal design versus random design for mixed 2PL and 3PL model depending on number of
versions (V = 12, 15, 20, 30, 40, 60, 100), averaged over all 60 items (first row) or all 30 2PL or 30 3PL items in second
and third row.

V =
Item type 12 15 20 30 40 60 100

All items (2&3PL) 0.54 0.93 1.08 1.18 1.21 1.24 1.26
2PL-items 0.37 0.72 0.78 0.93 0.96 1.02 1.03
3PL-items 0.70 1.09 1.34 1.38 1.42 1.41 1.43

in Spring 2021. The results from the pretest had been analyzedwith IRT analysis and consequently
estimates of item parameters were available for all items. The estimated parameter values are
shown in Table 5 in Appendix 5. Each of these pretest items was pretested by on average 229
pupils (range from 189 to 259).

The 85 items were of mixed format such that both 2PL-models (for short answer,
correct/incorrect-items), 3PL-models (for multiple choice items), and GPCM (for items where 2
points could be achieved) were used. Some of the items consisted of Part a and b or Part a, b,
and c of a question and had to be included together in the same version. We refer to these as item
groups. The models used for the 63 item groups are summarized in Table 3; for details, we refer
to Appendix-table 5.

Since it was anticipated that different item groups will have different response time, the test
developers estimated the average response time for each item group, using also the experience
from the pretesting. These times ti , i = 1, . . . 63, were between 2 and 8min. The target time for a
whole calibration test was set to T = 40 minutes, and design restriction (2) was used. It has been
highlighted, e.g., by He et al. (2021) that it is important to take the expected response time into
account when optimizing item calibration. He et al. (2021) explicitly define a D-optimality crite-
rion per time unit in their situation of continuous online calibration which they call DT-optimality.
In our situation of parallel testing of pretest items only, we can optimize using D-optimality and
achieve information by time since the optimization tries to collect as much information as possible
given a time constraint T for the test versions.
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Table 3.
Item types in the calibration test for Swedish national test in Mathematics.

Item group type Model used Number

Single, short answer (correct/incorrect) 2PL 22
Single, multiple choice 3PL 9
Pair, short answer (correct/incorrect) 2PL+2PL 10
Triple, short answer (correct/incorrect) 2PL+2PL+2PL 6
Single, graded response (0, 1, or 2 points) GPCM 16
Sum 63

Figure 6.
Swedish national test in Mathematics: Results from Grade 6 in 2022 of the pupils who participated in the calibration test;
red vertical lines: division into groups for the V = 20 calibration versions.

Figure6 shows a histogram of the total results (raw scores) in the ordinary national test of
the around 1600 pupils who participated in the calibration test. In order to transform these raw
scores to an ability scale, we normalized them based on the percentiles such that the normalized
scores follow a standard normal distribution; see, e.g., Kolen and Brennan (2014), Section 9.5.2.;
according to Petersen et al. (1989), this is an often-used transformation. It was decided to create
V = 20 versions with 5% of the pupils allocated to each version, i.e. using the limits θ1 =
z0.05, θ2 = z0.1, . . . , θ19 = z0.95 between the versions. Transferring these limits back to the raw
scores, the red vertical dashed lines in Fig. 6 indicate the limits between the 20 versions.

Figure7 shows the optimized design and item efficiencies. The 63 item groups were sorted
by difficulty. For this figure, we defined the difficulty of the different item (group) types via the
b-parameters in the following way: Difficulty for a group of 2PL-items was defined as average
of the bi -parameters, difficulty of a 3PL-item was defined as bi , which is the ability where the
probability of a correct result is (1+ci )/2, and difficulty of a GPCM-item was defined as average
of the two big-parameters, i.e. the ability which has an expected result of one out of two points.
When we focus on 2PL- and GPCM-items, we see roughly again (as in Sect. 3.2) two ability
intervals of pupils allocated to many of those items, and that both intervals shift to higher abilities
with more difficult item groups. Note that the estimated item parameters for the GPCM-items
have b2i − b1i < 0 except of one item which has ai (bi2 − bi1) = 0.65 < 1.51 and from a
theoretical perspective, we expect two ability intervals allocated to the items. When we focus on
the 3PL-items, we see that most of them are included in Version 1 or 2 for efficient estimation of
the guessing parameter. The relative efficiencies of the items (optimal versus random design) are
larger than 1 for themajority of the items and they tend to be higher for the easier items. The reason
why we do not see increased relative efficiency for the most difficult item is that there were not so
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Table 4.
Calibration test for Swedish national test in Mathematics: Relative efficiency of optimal design versus random design
(V = 12, 15, 20, 30, 40, 60, 100), averaged over all items (first row) or all 2PL, all 3PL, and all GPCM items in other
rows.

V =
Item type 12 15 20 30 40 60 100

All items 1.31 1.40 1.44 1.47 1.47 1.48 1.48
2PL-items 1.29 1.46 1.52 1.55 1.56 1.59 1.58
3PL-items 1.94 1.90 1.93 1.92 1.86 1.85 1.87
GPCM-items 1.10 1.08 1.06 1.10 1.12 1.09 1.10

Figure 7.
Calibration test for Swedish national test in Mathematics: Optimal design (left) and relative item efficiencies (right).
Symbols and colors: red � for 2PL item groups, green + for 3PL items, blue × for GPCM items. Size of symbols in right
panel: small � = single 2PL item, medium � = group of two 2PL items; large � = group of three 2PL items.

many very difficult items included in this calibration. The comparison of the item-efficiencies is
here more complicated since different items have different expected response times. It is possible
to place more 2-minute items in a version compared to items with longer response time. More
information can be collected if more of the shorter items are used. Therefore, the shorter items
are used in more versions than the longer items (see the supplementary material S2). Since the
GPCM items tend to require longer time, some of them are used in only a few versions and their
efficiency is lower compared to other items (see also the supplementary material S2).

Averaging over the relative efficiencies using the geometric mean gave an averaged relative
efficiency of optimal design versus random design of 1.44. This means that roughly 44% more
pupils would be necessary if the random design would have been used instead of the optimal
design, or roughly 2300 instead of 1600 pupils.

4. Discussion

Both our case study and investigations of various idealized situations demonstrated that the
total efficiency of parameter estimates can be substantially improved when an optimal calibration
design is used. This optimal design can be applied in a parallel, non-sequential setting. To be
able to use this type of optimal design it is necessary that information about the examinees’
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ability is available. This ability information can be sourced from prior test results stored within a
database. Alternatively, it can originate from preceding items within a test, where pretest items are
integratedwith operational ones. Also, preliminary information about item parameters is required,
derived either from previous calibrations (like in our case study) or through expert judgements.
If no information is available about the examinees’ abilities or the item parameters, the methods
discussed herein cannot be used and random allocation of items to examinees should be done
instead.

When calibration tests are repeatedly conducted, each administered in parallel for a larger
number of examinees with known ability information, our method can be implemented as fol-
lows: In the initial calibration test conducted without prior item parameter information, items
are randomly allocated. After this test, the results undergo analysis; some items are discontinued
due to unfavorable properties, while others are directly chosen for inclusion in the item bank for
future use as operational items. Certain items are selected for further pretesting in subsequent cal-
ibration tests; the parameter estimates of these items can be used to compute the optimal design
for the subsequent calibration study. New items introduced for the second calibration test are
randomly distributed among examinees. After the second calibration test, an analysis is done and
item parameters are updated again for those items to be used in the third calibration. The updated
parameters are used for a new optimal design calculation for the third calibration test, and we
continue with this process. It is important to note that recalculating the optimal design for each
new test is necessary for two reasons: Firstly, the anticipated item parameters change from one
test to the next. Additionally, even if these parameters would not change, the optimal design for
an individual item depends on the other items which belong to the calibration pool.

Through our case study on the Swedish national test in Mathematics, we demonstrated that
it is possible to implement the design in a real calibration setting. Practical requirements like
different expected response times and the necessity to keep specific items together in a group
could be implemented as well. Creating a number of versions made it possible to check if a
specific combination of itemswould be strange. If this would have happened, another optimization
avoiding such combinations could havebeen run.Adifference compared to the usual setting,where
versions are randomly distributed to classes, the teachers had to report the results of the pupils
from their national tests in advance. This was an extra burden, but was considered acceptable. In
future, it might be possible to think about ways to collect this information in a more automated
manner. When the test administration is fully digitized there may be technical solutions available.

Using a random design is especially negative for very easy and very difficult items. The
optimal design can clearly improve the quality of the estimates for these items. This was true for
all models considered in this research.

In this article, we used locally optimal designs, which require an initial guess of the parameter
values and are optimal if the true parameter values are equal to the guessed values. An alternative to
locally optimal designs is Bayesian designs and He and Chen (2020) point out that “the Bayesian
optimal designs outperform the locally optimal designswhen the initial item parameters are poorly
estimated.” They observed further in their online calibration setting that locally optimal designs
were better than Bayesian optimal designs when the initial estimation of item parameters was
based on at least 30 examinees. In the Swedish national tests in Mathematics calibration, the item
parameters were based on results of a pretesting from around 230 pupils. Hence, it seems justified
to rely on locally optimal designs in our case. Nevertheless, a critical reflection about the quality
of the initial parameter estimates is advisable in a general situation. Bayesian optimal designs can
be considered if robustness to poor initial estimates is desired.

One of the important decisions in the planning phase of the calibration test is how many test
version should be prepared. We investigated the influence of the number of versions on efficiency
in this article. The highest efficiency can of course be attained if we allow that each examinee
receives an own version. This might be possible making use of the computer-based administration
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of the items. However, in some cases it might be not desirable from a practical perspective. First,
in some cases, versions might need to be created with some manual effort implying an upper
bound for the number of versions. Second, it might be good to check if the combination of items
in a version make sense. Third, after conduction the test, it can be good to look at results also
separately per version, for this we need a not too low number of examinees per version. We
recommend to investigate the efficiencies depending on the number of versions. If there is not
much gain from increasing the number, one might be satisfied with a lower number, considering
the advantages mentioned before.

More andmore of the larger achievement tests are administered at the computer. The response
time which the examinee used for each item is often collected as well. This was the case also for
both the pretesting and the calibration tests considered in this article. For the use of the item in
future operational tests, the information about the item response time is also important alongside
with other item characteristics like difficulty. Therefore, an interesting option for future research
is to also optimize the precision in the estimate for the response time. A basis for optimizing that
is to use statistical models for these timings; see, e.g., van der Linden (2007), De Boeck and Jeon
(2019), and Sinharay and van Rijn (2020).
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Appendix

A1: Information Matrix for the GPCM

Following Holman and Berger (2001), we express the GPCM in terms of fik(θ) to facilitate
different parameterizations

pik(θ) = exp { fik(θ)}∑mi
g=0 exp

{
fig(θ)

} ,
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and the log likelihood terms as

li (θ) =
mi∑
k=0

log pik(θ) =
mi∑
k=0

⎡
⎣log{exp( fik)} − log

⎧⎨
⎩

mi∑
g=0

exp( fig)

⎫⎬
⎭

⎤
⎦ .

Consider the alternative parameterization of the GPCMwith fik = ai ·k ·θ +cik . For this version
of the model there are the following four types of partial derivatives and corresponding elements
of the information matrix

Ia2i
= −E

(
∂2li (θ)

∂a2i

)
= miθ

2

⎡
⎢⎣

mi∑
g=1

g2 · pig(θ) −
⎧⎨
⎩

mi∑
g=1

g · pig(θ)

⎫⎬
⎭

2
⎤
⎥⎦ ,

Iai ,cik = −E

(
∂2li (θ)

∂ai cik

)
= miθ

⎡
⎣k · pik(θ) − pik(θ)

⎧
⎨
⎩

mi∑
g=1

g · pig(θ)

⎫
⎬
⎭

⎤
⎦ ,

Ic2ik
= −E

(
∂2li (θ)

∂c2ik

)
= mi pik(θ) {1 − pik(θ)} ,

Icik ,cih = −E

(
∂2li (θ)

∂cikcih

)
= −mi pik(θ)pih(θ).

Example: 2-Point Item

For a 2-point item with three response categories we have k ∈ {0, 1, 2}, discrimination parameter
ai and location parameters ci = (ci0, ci1, ci2). Setting ci0 = 0 for identifiability leaves p = 3
parameters to estimate. The information matrix is then given by

Mi =
∫

�

⎡
⎢⎣

Ia2i
Iai ,ci1 Iai ,ci2

Iai ,ci1 Ic2i1
Ici1,ci2

Iai ,ci2 Ici1,ci2 Ic2i2

⎤
⎥⎦ hi (θ)dθ

with

Ia2i
= 2θ2

[
pi1(θ) + 4pi2(θ) − {pi1(θ) + 2pi2(θ)}2

]
,

Iai ,ci1 = 2θ [pi1(θ) − pi1(θ) {pi1(θ) + 2pi2(θ)}] ,
Iai ,ci2 = 2θ [2pi2(θ) − pi2(θ) {pi1(θ) + 2pi2(θ)}] ,
Ic2i1

= 2pi1(θ){1 − pi1(θ)},
Ic2i2

= 2pi2(θ){1 − pi2(θ)},
Ici1,ci2 = −2pi1(θ)pi2(θ).

Since D-optimality is invariant with respect to non-singular reparametrisations (Dette & O’Brien,
1999), we can use the information matrix shown above as basis for optimisation after having
transformed the parameters bi1, bi2 from the pretesting in 2021 to this parametrisation via ci1 =
−aibi1, ci2 = −ai (bi1 + bi2).

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 06:41:39, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


F. MILLER, E. FACKLE-FORNIUS 921

Figure 8.
Locally D-optimal unrestricted designs for GPCM with three categories (0, 1, or 2 points) for a = 1 and b1 + b2 = 0
depending on b2 − b1. Black solid lines: ability values for design points; red dashed line: weight on largest and smallest
design points, where the remaining weight is on the middle or equally divided between the two middle design points;
dotted vertical reference lines: b2 − b1-values for change between two-, three-, and four-point designs (approximately at
1.51 and 5.25).

A2: Locally D-Optimal Designs for GPCM with Three Categories

For the numerical optimization in the case a = 1, b1 + b2 = 0 and a fixed b2 − b1, we considered
a symmetrical four-point design

ξ =
(−x2 −x1 x1 x2

w 1/2 − w 1/2 − w w

)
,

with 0 ≤ x1 ≤ x2 and 0 ≤ w ≤ 1/2. Three-dimensional optimization over (x1, x2, w) was
done using the BFGS quasi-Newton algorithm with box-restricted boundaries. When one or two
parameters where optimal with a value at the boundary (w = 0, w = 1/2, x1 = 0, or x1 = x2),
it corresponds to a three- or two-point design. The optimal values for x1, x2, and w are shown
in Fig. 8. The optimality of the resulting design was verified with an equivalence theorem by
checking the maximum of the directional derivative, see Atkinsson et al. (2007) or Ul Hassan and
Miller (2019).
For a general parameter a, a scaling argument says that we obtain the same picture, if we have
a(b2 − b1) on the x-axis and divide the values on the y-axis by a.

A3: GPCM Items with Parameters Such That the Optimal Design has More Than Two Regions
of Support

We consider two simplified situations with items having GPCM type. We assume again n = 60
items and V = 40 test versions, and standard normal distributed abilities. The ability limits θi are
the same as in (6). A fixed length restriction (1) is required allowing for d = 9 items per version.
In both situations, all items follow aGPCMfor categories 0, 1, and 2with discrimination parameter
ai = 3.5.
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Figure 9.
Locally D-optimal designs for GPCM items with bi1 equidistantly between -2 and 1, bi2 = bi1 + 1 (left panel) or with
bi1 equidistantly between -2 and 0, bi2 = bi1 + 2 (right panel). ai = 3.5, 40 versions, 60 items.

• The first situation assumes bi1 equidistantly between –2 (Item 1) and 1 (Item 60) and
parameter bi2 = bi1 + 1. Hence, ai (bi2 − bi1) = 3.5 for all i .

• The second situation assumes bi1 equidistantly between –2 (Item 1) and 0 (Item 60) and
parameter bi2 = bi1 + 2. Hence, ai (bi2 − bi1) = 7 for all i .

Fig. 9 shows the computed optimal designs for the two situations, respectively.
Especially the second situation is of rather theoretical interest only, since it might be hard to create
items with both a sharp discrimination of 3.5 between the responses and ICC-cutpoints with two
units difference between bi2 and bi1.

A4: Relative Efficiencies for Item Parameters

In Fig. 10, we show the efficiencies of the individual item parameters for the three situations of
D-optimal designs in Sect. 3.2 (shown in Fig. 2). While the optimal design improves precision of
all item parameters in the GPCM, certain parameters in the 2PL and 3PL models show a decrease
in efficiency.
It is important to note that the optimization of the D-criterion considers the interplay between
parameters (since it optimizes the determinant of the information matrix) and does not singularly
optimize two or three parameter estimates independently. The D-criterion has favorable charac-
teristics, including scale invariance and optimality for predicting the item characteristic curve.
However, if our primary concern lies in the specific performance of the item parameter estimates,
choosing a more tailored criterion, such as A-optimality, might be more suitable.

A5: Calibration Test for Swedish National Test in Mathematics: Item Characteristics

The item parameters for the 85 items used in the calibration were estimated in a pretest one year
prior based on 189 to 269 pupils each (average 229 pupils). Table 5 gives the item parameter
estimates and their standard errors from the pretesting. Item 65 and 66 had estimated a larger
than 5 (8.660 and 12.288, respectively), which was judged unreasonable high and the maximum
likelihood estimation was used with an upper bound of 5. Item 13, 24, and 28 were slightly
modified which made them easier after pretesting and their difficulty parameters were therefore
reduced with 0.3 units. No examinee hat 1 point for the GPCM-Item 41 and the cut-point of the
item curves for 0 and 2 points was estimated to be at 0.773. Since a probability of 3-5% for getting
1 point was judged to be reasonable, a restriction of b2 − b1 ≥ −2 was introduced.
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