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Partial Differential Equations

1.1 Introduction

Most physical as well as engineering systems one encounters in real life can be
mathematically modeled using a system of partial differential equations subject to
appropriate boundary conditions. These partial differential equations are coupled as
well as nonlinear in nature. Owing to their nonlinearity, systems of partial differential
equations that represent physical and engineering phenomena do not have closed-
form or analytical solutions. Thus, the only alternative available to a scientist or a
engineer is to seek a numerical solution for the aforementioned systems of partial
differential equations.

There are countless examples of the manifestation of partial differential equations
with appropriate boundary conditions in various fields of physics, including
magnetism, optics, statistical physics, general relativity, superconductivity, liquid
crystals, turbulent flow in plasma and solitons. Furthermore, diverse fields such as
fluid mechanics, atmospheric physics, and ocean physics have rich and exhaustive
examples of partial differential equations. In this book an effort has been made to
familiarize the readers to a general introduction of partial differential equations as
well as equations of fluid motion before acquainting them with the various numerical
methods. The well-known method of finite differences is introduced and important
aspects such as consistency and stability are discussed while applying the above
method to standard partial differential equations of the parabolic, hyperbolic, and
elliptic types. The method of finite differences is then applied to equations of motion
of the atmosphere and oceans. The book also introduces the readers to advanced
numerical methods such as semi-Lagrangian methods, spectral method, finite volume,
and finite element methods and provides for the application of the above methods to
the equations of motion of the atmosphere and oceans.
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2 Numerical Methods for Atmospheric and Oceanic Sciences

Towards this end, it is important to introduce partial differential equations (PDE)
and the various numerical methods that can be employed to solve PDEs numerically.
A PDE is an equation that represents a relationship between an unknown function
of two or more independent variables and the partial derivatives of this unknown
function with respect to the independent variables. Although the independent
variables are either space (x,y,z) or space and time (x,y,z, t) related, the nature of the
unknown function depends on the physical/engineering problem being modeled.

The function f (x) is defined as a linear function of x if f (x) can be expressed as
f (x) = mx+ b, where m and b are constants. The order of a PDE is determined by the
highest-order derivative that appears in the PDE.

If u(x,y) is a dependent variable, which is a function of two independent variables
x and y, then the general second-order PDE can be written as

A
∂ 2u
∂x2 + B

∂ 2u
∂x∂y

+ C
∂ 2u
∂y2 + F

(
x,y,u,

∂u
∂x

,
∂u
∂y

)
+ G(x,y) = 0, (1.1)

where A,B,C are functions of x,y,u, ∂u
∂x ,

∂u
∂y , F may be a nonlinear function, and G may

be a function of x and y. In such cases, Equation (1.1) is known as a second-order
quasilinear PDE. A quasilinear PDE is a PDE that is linear in the highest derivative. A
partial differential equation is called a quasilinear PDE if all the terms with the highest-
order derivatives of dependent variables are linear. The coefficients of the highest-
order derivative terms in the PDE are functions of only the lower order derivatives of
the dependent variables. However, for the quasilinear PDE, the terms in the PDE with
lower order derivatives can occur in any manner.

A partial differential equation is called a semilinear PDE if all the terms with
the highest-order derivatives of dependent variables are functions of independent
variables only. In such cases, the coefficients of the highest-order derivative terms
in the PDE are functions of only the independent variables. Equation (1.1) is known
as a second-order semilinear PDE if A,B, and C are functions of x and y only.

If the dependent variable and all its partial derivatives appear linearly in any PDE,
i.e., there are no terms in the PDE that involve the product of the dependent variables
with itself or with its derivatives, then such an equation is called a linear PDE. If F is
a linear function, and A,B, and C are functions of only x and y, then Equation (1.1) is
called a linear PDE.

If all the terms of a PDE contain the dependent variable or its partial derivatives,
then such a PDE is called a homogeneous partial differential equation.
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Partial Differential Equations 3

If function F involves the dependent variable u and its derivatives ∂u
∂x ,

∂u
∂y and also

G = 0, the Equation (1.1) is called a homogeneous PDE; if G 6= 0, then Equation (1.1) is
called a nonhomogeneous PDE.

Equation (1.1) can also be written in the following form known as the implicit form

f (x,y,u,ux,uy,uxx,uxy,uyy) = 0 (1.2)

If f is a linear function of u and its derivatives, then the PDE is said to be linear. It is
necessary to classify PDE, as different types of PDE arise naturally in very different
physical problems; dissimilar types of PDE have different nature of conditions
(boundary/initial) to be satisfied and hence, dissimilar types of PDE need to employ
different numerical methods for their solution.

It is known that the general solution of ordinary differential equations (ODEs)
involve arbitrary constants of integration; in contrast, the general solution of PDEs
involves arbitrary functions. Consider, for example, the equation

∂ 2u
∂x∂y

= 0. (1.3)

Integrating Equation (1.3) with respect to y, one gets ∂u/∂x = F(x), where F(x) is an
arbitrary function of x. Integrating the equation once again with respect to x, one gets

u(x,y) = f (x)+g(y), (1.4)

where f (x) =
∫

F(x)dx and g(y) are arbitrary functions of x and y respectively. To
obtain f (x) and g(y), one needs to have additional information, for example, the initial
conditions (if time is one of the independent variables) and/or boundary conditions.

To be specific, suppose that one were to find u(x,y) satisfying Equation (1.4) in the
region x≥ 0,y≥ 0 and that one is given the following boundary conditions u = x, when
y = 0 and u = y, when x = 0. Then, the surface u(x,y) must intersect the plane x = 0 in
the line u = y and the plane y = 0 in the line u = x. The functions f (x) and g(y) in
Equation (1.4) are determined in the following manner. As u(x,0) = f (x) + g(0) = x
and u(0,y) = f (0)+ g(y) = y, it follows that u(x,y) = f (x)+ g(y) = x−g(0)+ y− f (0) =
x+y−g(0)− f (0). The only way this can satisfy the PDE and the boundary conditions
are if f (0) and g(0) are both zero, which implies u(x,y) = x+ y.

It can be easily verified that the equation satisfies the PDE and the two boundary
conditions. The aforementioned example clearly illustrates the importance of the
boundary conditions in obtaining the solution of the PDE. For an ordinary differential
equation of the second-order, it is known that two conditions are required to obtain an
unique solution. It is clear that depending on the nature of the PDE, the sufficient set
of boundary conditions that are required for a meaningful solution may vary.
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4 Numerical Methods for Atmospheric and Oceanic Sciences

The question that is posed is as follows: what is a sufficient set of boundary
conditions for a given PDE? The answer to this question depends on the type of PDE,
the latter in turn, depending on the nature of the associated physical problem. Two
different types of boundary conditions applied to the same PDE, will invariably lead
to two different types of solution. Hence, methods of solution of PDEs will depend on
the nature and type of the boundary conditions.

One expects that a given PDE subject to suitable boundary conditions will possess
an unique solution. Any physical or engineering problem defined by Equation (1.1) in
a given two-dimensional domain is said to be “well-posed” if

1. there exists at least one solution (existence)

2. there exists atmost one solution (uniqueness)

3. the solution is stable.

Three types of PDEs arise when one classifies PDE and these are (i) parabolic type, (ii)
elliptic type, and (iii) hyperbolic type. Examples of the parabolic type of PDEs are the
diffusion equation whereas examples of elliptic and hyperbolic PDEs are the Laplace
equation and wave equation, respectively.

1.2 Diffusion Equation

The most common form of diffusion equation is as follows:

∂c
∂ t

= D∇
2c, (1.5)

where c is the concentration, which is in general a function of space and time, D is the
diffusion coefficient, and ∇2 is the Laplacian operator, which in Cartesian coordinates
is

∇
2 ≡ ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 .

By definition, a flux J is a movement of particles (or other quantities) through a unit
measure (point, length, area) per unit time. From Ficks’ law of diffusion, it follows
that flux J is related to concentration c through the following equation

J = −D∇c, (1.6)

where ∇ is the gradient operator. The negative sign signifies that the flux is always in
the direction opposite to the gradient operator. The direction of the gradient operator,
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Partial Differential Equations 5

also known as the “ascendant,” is in the maximum rate of change of ‘c’ and is always
directed from low values to high values of c. Hence Equation (1.6) clearly shows that
the direction of flux is always directed from high values to low values of c.

For a normal diffusion process, particles cannot be created or destroyed. This
implies that the flux of particles into one region must be the sum of the particle flux
flowing out of the surrounding regions. The aforementioned statement can be easily
expressed mathematically by the continuity equation given by

∂c
∂ t

+ ∇ · J = 0. (1.7)

Using Equation (1.7) in Equation (1.6), one gets

∂c
∂ t
− ∇ · (D∇c) = 0. (1.8)

If the diffusion coefficient D is a constant, then Equation (1.8) becomes the diffusion
equation (1.5). The diffusion equation can be applied to solving problems in mass
diffusion, momentum diffusion, and heat diffusion. It is clear that under different
situations, the diffusion equation assumes different forms. For example, in the case of
heat diffusion, c will be the temperature T whereas D will become the coefficient of
thermal diffusivity α . Equation (1.5) for the case of heat diffusion is also known as the
heat conduction equation, whose one-dimensional form is given by

∂T
∂ t

= α
∂ 2T
∂x2 , (1.9)

where T is the temperature of a heated rod, α is the coefficient of thermal conductivity,
x is the distance along the rod, and t is the time. In Figure 1.1, the heated rod extends
from x = 0 to x = a with T (x, t) being the temperature of the rod at location x, the
distance from the end x = 0 and time t.

f1

x = 0 T(x, t) x x = a

Figure 1.1 Temperature distribution of a heated rod of length a.

It is extremely helpful to picturize the solution of a PDE. In the case of Equation
(1.9), the solution can be expressed as a surface, z= T (x, t) in a three-dimensional space
(x, t,z), as shown in Fig 1.2. The domain of the solution, Ω, is the region 0≤ t < ∞ and
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6 Numerical Methods for Atmospheric and Oceanic Sciences

0 ≤ x ≤ a. The temperature distribution at some time to > 0 is the curve z = T (x, to),
where the plane t = to intersects the solution curve. The curve z = T (x,0) is the initial
temperature distribution that is assumed to be given. Equation (1.9) states that at any
point (i.e., at any point x, t) in the solution surface, the slope of the surface in the t-
direction is related locally to the rate of change of the slope in the x-direction. It is
abundantly clear that in order to obtain a unique solution, there is a need to prescribe
the nature of the solution (the behaviour of the surface) at the edges of the solution
domain: at t = 0 and at x = 0, and x = a. It makes sense to expect, on the basis of
physical reasoning, that in order to predict the future evolution of the temperature, one
needs to have knowledge of the initial state, i.e., the initial temperature distribution in
the rod, T (x,0). In a similar manner, it makes sense to expect that the temperature
values at the ends of the rod at any particular time would affect the temperature
distribution in the rod.

Solution domain (0 < x < a, t > 0)

x = a

x = 0
t = 0

z = T(x, 0)

z = T(x, t )0

t

Plane t = t0

z = T(x, t)

z

t0

Figure 1.2 Solution surface and solution domain, Ω, for Equation (1.9).

1.3 First-order Equations

One of the most important first-order PDE is the one-dimensional advection equation,

∂ρ

∂ t
+ u

∂ρ

∂x
= 0 (1.10)
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Partial Differential Equations 7

where ρ is the air density, u is a constant velocity, t is the time, and x is space coordinate.
Equation (1.10) expresses the statement that the rate of change of air density of an air
parcel with respect to time is zero following the motion, i.e., the air density of an air
parcel is constant following the motion. Alternatively, Equation (1.10) states that the
total or substantive derivative of air density is zero, following the motion. A fluid
flow is said to be incompressible if the fractional change in density of an air parcel,
associated with a change in pressure, following the motion is very small. In effect,
incompressible fluid flow is one for which the rate of change of air density of an air
parcel with respect to time is zero, following the motion. Hence, Equation (1.10) is
valid for an incompressible fluid flow.

Consider a one-dimensional flow of an incompressible fluid. The continuity
equation that expresses the principle of conservation of mass for a one-dimensional
flow of density ρ(x, t) for an incompressible fluid is expressed as

dρ

dt
= 0, (1.11)

where dρ/dt signifies the rate of change of density ρ(x, t) following the motion as
expressed in the Lagrangian description of fluid motion. Its equivalent expression
in the Eulerian description of motion is given by (1.10), where u is the nonzero
constant velocity component in the x direction. The aforementioned equation called
the advection equation can also be easily derived from the following consideration

Consider a one-dimensional flow of an incompressible fluid. Assuming that the
fluid density ρ(x, t) changes only due to convective/advective processes, one can write
the following

ρ(x, t +∆t) = ρ(x−u∆t, t).

If ∆t is sufficiently small, one can expand both sides of the equation by Taylor series
expansion and retain only up to the linear term

ρ(x, t)+∆t
∂ρ(x, t)

∂ t
= ρ(x, t)−u∆t

∂ρ(x, t)
∂x

or canceling of ∆t on both sides, one gets the one-dimensional advection equation

∂ρ

∂ t
+ u

∂ρ

∂x
= 0.

From this discussion it is clear that the exact solution of Equation (1.10) is given as

ρ(x, t) = F(x−ut), (1.12)
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8 Numerical Methods for Atmospheric and Oceanic Sciences

where the initial condition ρ(x,0) = F(x). Equation (1.12) defines a right-traveling
wave that propagates (i.e., convects or advects) the initial property (density)
distribution to the right at the convection/advection velocity u. The aforementioned
analytical solution indicates that the initial property (density) profile ρ(x,0) = F(x)
simply propagates (i.e., convects/advects) to the right with the constant velocity u, its
shape and magnitude is unchanged.

x

tz

z = F(x)

x0

x = x + ut0 

Figure 1.3 Solution surface for Equation (1.10).

If one moves with the solution point x(t) = xo +ut, Equation (1.10) tells us that the
rate of change of ρ is zero, i.e., in other words, ρ is a constant along a line x = xo +ut.
Figure 1.3 shows the solution surface in the (x, t,z)-space. It is clear from Figure 1.3
that the lines x = xo+ut are a family of parallel lines in the plane z = 0 that intersect the
plane t = 0 at x = 0. The equation says that the height of the solution surface is always
the same along such a line, i.e., the intersection of this solution surface with the plane
t = constant is a curve that is identical with the curve z = F(x) at t = 0, but displaced
in the x-direction by a distance ut. Thus, the solution represents a disturbance with
arbitrary shape F(x) translating uniformly with speed u in the positive x-direction if
u > 0, or in the negative x-direction if u < 0.

It is clear that “information” about the initial distribution of ρ “propagates” or
is “carried along” the lines x = xo + ut in the plane z = 0. These lines are called the
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Partial Differential Equations 9

characteristic curves, or simply the characteristics of the equation. The characteristic
equation is then given as

dx
dt

= u. (1.13)

Integrating Equation (1.13) provides us the characteristic curves. The solution of the
ODE Equation (1.13) involves one integration constant that determines where the
characteristic curves intersect the x axis. Subsequently one needs to construct the
solution surface that has the same value F(x) along each characteristic in the x–t plane
as that in the initial plane, t = 0.

Consider a general first-order partial differential equation as follows:

a
∂u
∂x

+ b
∂u
∂y

= c. (1.14)

If a,b, and c are functions of x,y, and u, then Equation (1.14) is called a quasilinear PDE.
If a and b are functions of x and y while c is a function of x,y and u, then Equation (1.14)
is called a semilinear PDE. If a,b, and c are functions of x and y only, then Equation
(1.14) is called a linear PDE. Quasilinear PDE is one in which the highest-order terms
are linear.

1.4 First-order Equations: Method of Characteristics

Consider the simplest case of the following first-order linear partial differential
equation

a(x,y)
∂u
∂x

+ b(x,y)
∂u
∂y

= c(x,y). (1.15)

Assume that one can find a solution u(x,y). Consider the function S = {x,y,u(x,y)}.
If u(x,y) is a solution of Equation (1.15), at each point (x,y), it is possible to express
Equation (1.15) as the dot product

[a(x,y), b(x,y), c(x,y)] · [ux(x,y), uy(x,y),−1] = 0. (1.16)

From calculus, the normal to the surface S = {x,y,u(x,y)} at the point [x,y,u(x,y)] is
given by

N(x,y) = [ux(x,y), uy(x,y),−1] .

It is thus clear that if the vector [a,b,c] is perpendicular to [ux, uy,−1], then the vector
[a,b,c] lies in the tangent plane to S. Hence, to obtain a solution to Equation (1.15),
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10 Numerical Methods for Atmospheric and Oceanic Sciences

one needs to find a surface S such that at each point (x,y,u) on S, the vector [a,b,c] lies
in the tangent plane. To construct such a surface, one first obtains a curve that lies in
S. It is clear that the vector [a,b,c] need to lie in the tangent plane to the surface S at
each point (x,y,u) on the surface. Let there be a curve C parameterized by s such that
at each point on the curve C, the vector [a,b,c] will be tangent to the curve. That is, for
a curve C parameterized as C = {(x(s),y(s),u(s)}, the following three conditions need
to be satisfied

dx
ds

= a(x(s),y(s)) (1.17)

dy
ds

= b(x(s),y(s)) (1.18)

du
ds

= c(x(s),y(s)) (1.19)

Such a curve when it exists is called an integral curve for the vector field [a,b,c]. For
solving a PDE of the form given in Equation (1.15), we need to find the integral curves
for the vector field V = [a(x,y),b(x,y),c(x,y)] associated with the PDE. These integral
curves are known as characteristic curves. The aforementioned characteristic curves are
obtained by solving the system of ordinary differential equations (1.17)-(1.19)(ODE).

Once the characteristic curves for Equation (1.15) are obtained, one needs to
construct a solution of Equation (1.15) by forming a surface S as a union of these
characteristic curves. Such a surface S = x,y,u for which the vector field V =

[a(x,y),b(x,y),c(x,y)] lies in the tangent plane to S at each point (x,y,u) on S is known as
the integral surface. Through the introduction of characteristic equations, the original
PDE (Equation (1.15)) can be reduced to a system of ODEs. The concept is to solve the
characteristic equations, obtain an union of the so-called characteristic curves to form
a surface that would provide for the solution of the PDE (Equation (1.15)).

1.5 Second-order Quasilinear PDEs: Classification Using
Method of Characteristics

The general quasilinear second-order nonhomogeneous PDE in two independent
variables x and y are given as

a
∂ 2u
∂x2 + b

∂ 2u
∂x∂y

+ c
∂ 2u
∂y2 + d

∂u
∂x

+ e
∂u
∂y

+ f u = g. (1.20)
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Partial Differential Equations 11

The classification of PDEs to parabolic, elliptic, and hyperbolic PDEs are analogous
to the classification of conic section. For example, conics are generally described by the
second-order algebraic equation

Ax2 +Bxy+Cy2 +Dx+Ey+F = 0. (1.21)

The conics as described by Equation (1.21) are classified as parabolic, elliptic, and
hyperbola based on the sign of the discriminant, B2− 4AC, (B2− 4AC = 0 is defined
as a parabola, B2− 4AC < 0 is defined as an elliptic and B2− 4AC > 0 is defined as
a hyperbola). In exactly the same way, the second-order quasilinear PDE (Equation
(1.20)) is classified based on the sign of the discriminant b2 − 4ac, where a,b, and
c refer to the coefficients of the highest (second-order) derivative; b2 − 4ac = 0 is
referred to as a parabolic partial differential equation, b2− 4ac < 0 is referred to as
an elliptic partial differential equation, and b2− 4ac > 0 is referred to as hyperbolic
partial differential equation. In this section, the classification of Equation (1.20) using
the characteristics is examined. Earlier it was shown that the characteristic curves for
the one-dimensional advection equation [Equation (1.10)] are the lines x= xo+ut in the
plane z = 0. The solution for Equation (1.10) represents a disturbance with arbitrary
shape F(x) translating uniformly with speed u in the positive x-direction if u > 0, or in
the negative x-direction if u < 0, i.e., “information” about the initial distribution of ρ

“propagates” or is “carried along” the characteristic curves.
As discontinuities in the derivatives of the solution, if they exist, must propagate

along the characteristics, it is possible to utilize the characteristics themselves to
classify the second-order quasilinear PDEs. The following question is posed. Are there
any curves in the solution domain passing through a general point P along which the
highest-order derivatives [in the case of Equation (1.20)], the second-order derivatives
of u(x,y), i.e., uxx, uxy, and uyy, are multi-valued or discontinuous? Such curves, if they
exist, are the paths of information propagation. One equation that relates the three
second-order derivatives of u(x,y) is the PDE [Equation (1.20)] itself. One can obtain
two more such equations as follows:

d
(

∂u
∂x

)
=

∂ 2u
∂x2 dx +

∂ 2u
∂y∂x

dy; (1.22)

d
(

∂u
∂y

)
=

∂ 2u
∂x∂y

dx +
∂ 2u
∂y2 dy. (1.23)

Equations (1.20), (1.22) and (1.23) can be written in matrix form with the second-order
derivatives as unknown. If the determinant of the coefficient matrix vanishes,
the second-order derivatives of u(x,y) are indeterminate and thus, multi-valued or
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12 Numerical Methods for Atmospheric and Oceanic Sciences

discontinuous. Setting the determinant of the coefficient matrix to zero, yields a(dy)2−
b(dy)(dx)+ c(dx)2 = 0, whose solution is obtained from the quadratic formula

dy
dx

=
−b±

√
b2−4ac

2a
. (1.24)

Equation (1.24) is the ordinary differential equation for the two families of
characteristic curves in the x,y plane, corresponding to the ± signs. The two families
of characteristic curves, if they exist, may either be real and repeated, complex, or real
and distinct. This requirement is equivalent to the discriminant b2−4ac = 0, b2−4ac <
0, and b2 − 4ac > 0, i.e., the original PDE being either parabolic PDE, elliptic PDE,
or hyperbolic PDE. Hence, while elliptic PDEs do not have any real characteristics,
parabolic PDEs have one real and repeated characteristic, and hyperbolic PDEs have
two real and distinct characteristic curves.

The existence of characteristic curves in the solution domain provides for the
introduction of concepts such as domain of dependence and range of influence. The
domain of dependence of a point P(x,y) in the solution domain is defined as the
region of the solution domain upon which the solution at point P(x,y) depends. In
other words, the solution at any point P depends on the solution over the domain
of dependence. The range of influence of a point P(x,y) in the solution domain is
defined as the region of the solution domain in which the solution is influenced by
the solution at point P(x,y). That is, the solution at a point P influences the solution
over the range of influence. As parabolic and hyperbolic PDEs have real characteristic
curves, they will have a definite domain of dependence and range of influence in the
real domain. However, elliptic PDEs do not have real characteristic curves. Hence,
elliptic PDEs do not have a definite domain of dependence and range of influence in
the real domain; thus, the entire solution domain of an elliptic PDE is both its domain
of dependence and range of influence of every point in the solution domain. In order
to further understand the concept of domain of dependence and range of influence,
let us consider specific examples of (i) parabolic, (ii) hyperbolic, and (iii) elliptic PDEs.

The one-dimensional linear heat conduction equation is an example of a parabolic
PDE,

∂T
∂ t

= α
∂ 2T
∂x2 . (1.25)
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Partial Differential Equations 13

Two other equations that can relate the second-order derivatives are as follows:

d
(

∂T
∂x

)
=

∂ 2T
∂x2 dx +

∂ 2T
∂x∂ t

dt (1.26)

d
(

∂T
∂ t

)
=

∂ 2T
∂ t∂x

dx +
∂ 2T
∂ t2 dt (1.27)

The characteristic differential equation is found by setting the determinant of the
coefficient matrix to zero. This yields α[dt]2 = 0, which when integrated provides for
time being equal to a constant for the characteristic paths. An example of a hyperbolic
PDE is the second-order linear wave equation given by

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 , (1.28)

Two other equations that can relate the second-order derivatives are as follows:

d
(

∂u
∂x

)
=

∂ 2u
∂x2 dx +

∂ 2u
∂x∂ t

dt (1.29)

d
(

∂u
∂ t

)
=

∂ 2u
∂ t∂x

dx +
∂ 2u
∂ t2 dt. (1.30)

The characteristic differential equation is found by setting the determinant of the
coefficient matrix to zero. This yields c2[dt]2 = [dx]2, which consequently yields

dt
dx

= ±1
c
,

indicating that two distinct and real families of characteristic paths exist for a
hyperbolic PDE.

An example of an elliptic PDE is the second-order linear Laplace equation given by

∂ 2φ

∂x2 +
∂ 2φ

∂y2 = 0. (1.31)

Two other equations that can relate the second-order derivatives are as follows:

d
(

∂φ

∂x

)
=

∂ 2φ

∂x2 dx +
∂ 2φ

∂x∂y
dy (1.32)

d
(

∂φ

∂y

)
=

∂ 2φ

∂y∂x
dx +

∂ 2φ

∂y2 dy (1.33)
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14 Numerical Methods for Atmospheric and Oceanic Sciences

The characteristic differential equation is found by setting the determinant of the
coefficient matrix to zero. This yields [dy]2 =−[dx]2, which subsequently yields

dy
dx

= ±i

indicating that the characteristic curves for an elliptic PDE do not lie in the real
domain. The aforementioned concepts of domain of dependence and range of
influence are illustrated for each of the aforementioned second-order linear PDE in
Figure 1.4 (a) for a parabolic PDE, Figure 1.4(b) for a hyperbolic PDE and Figure 1.4
(c) for an elliptic PDE.

( (c

y
(b)

x

t

(a)
x

t

x

Figure 1.4 Domain of dependence (horizontal hatching) and range of influence (vertical
hatching) for (a) parabolic, (b) hyperbolic, and (c) elliptic PDEs.

One can employ a similar strategy to classify the first-order quasilinear PDE.
Consider classification of the first-order quasilinear PDE

a
∂u
∂ t

+ b
∂u
∂x

= c. (1.34)

One additional equation that relates the first-order derivative is as follows:

d(u) =
∂u
∂ t

dt +
∂u
∂x

dx (1.35)
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Partial Differential Equations 15

The characteristic differential equation is found by setting the determinant of the
coefficient matrix to zero. This yields adx−bdt = 0. Solving for dx/dt gives

dx
dt

=
b
a
. (1.36)

Equation (1.36) is the differential equation for a family of characteristic curves in the
solution domain along which the first derivatives of u may be discontinuous or multi-
valued. As a and b are real functions, the characteristic curves always exist and they
are real characteristic curves. Hence, a single quasilinear first-order PDE is always a
hyperbolic PDE. The one-dimensional first-order advection equation is an example of
a hyperbolic PDE.

1.6 Wave Equation

In this section, we derive the one-dimensional wave equation, which is the simplest
form of the wave equation for an idealized string. The following assumptions on the
physical string are presumed to hold. Assume that a flexible string of length L is
tightly stretched along the x-axis with one of its end point at x = 0 and the other end
point at x = L. It is further assumed that the tension force on the string is the only
dominant force, whereas all other forces acting on the string are negligible. Moreover,
it is assumed that no external forces are applied to the string. Furthermore, it is
assumed that the weight of the string is negligible and that the damping forces can
also be neglected. Considering the string to be flexible, it follows that at each point,
the tension force has constant magnitude; moreover, it has the direction of the tangent
line to the string. It is also assumed that each point of the string moves only vertically.
Let u(x, t) denote the vertical displacement at time t of the point x on the string. At a
fixed initial time, t = to, the shape of the string is given by the known function u(x, to).
The objective is to find the shape of the string at all points x and at time t, i.e., u(x, t).
To find the shape of the string at all points at a later time, one needs to solve the one-
dimensional wave equation with associated initial and boundary conditions.

Consider a small element of the string between the points x and x+∆x (∆x > 0 is
assumed small; moreover, it is assumed that this element moves vertically). The total
force to which this element is subject to is the tension force exerted at the left end T (x, t)
and the tension force exerted at the right end T (x+∆x, t) by the rest of the string. These
forces have the same constant magnitude T . Let θ(x, t) be the angle between T (x, t) and
the x-axis and θ(x+∆x, t) be the angle between T (x+∆x, t) and the x-axis. It is assumed
that these angles are between 0 and π . As we are assuming that we are dealing with
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16 Numerical Methods for Atmospheric and Oceanic Sciences

x x + Dx

(x + Dx, t)q

q (x, t)

T(x, t)
Æ

T(x + Dx, t)
Æ

Figure 1.5 String element at time t subject to tension forces.

small vibrations, then either θ is close to 0 (at location (x + ∆x, t)) or close to π (at
location (x, t)).

The total vertical force acting on the element is given by F = vertical component of
tension force at (x, t) plus vertical component of tension force at (x+∆x, t), i.e.,

F = T (x+∆x, t)sin[θ(x+∆x, t)] + T (x, t)sin[θ(x, t)] = T{sin[θ(x+∆x, t)] + sinθ(x, t)}.
(1.37)

For θ close to zero, sinθ ∼ tanθ ∼ θ , whereas for θ close to π , sinθ ∼ − tanθ ∼ π −θ .
Moreover, the shape of the string at a fixed time t is given as the graph of the function
u(x, t) (t fixed and x varies); slope of the tangent line at location xo is given by tanθo,
where θo is the inclination angle. It follows then that

tanθ(x, t) =
∂u(x, t)

∂x
and tanθ(x+∆x, t) =

∂u(x+∆x, t)
∂x

. (1.38)

Substituting Equation (1.38) in Equation (1.37), one obtains the total vertical force
acting on the element as

F = T (x, t)
(

∂u(x+∆x, t)
∂x

− ∂u(x, t)
∂x

)
. (1.39)

Using Newton’s second law of motion, F = ∆ma, where ∆m is the mass of the element
and a is the acceleration of the element at time t. The mass of the element ∆m = ρ∆x,
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Partial Differential Equations 17

where ρ is the density of the string material. The acceleration of the element at time t
can be written as

a =
∂ 2u
∂ t2 . (1.40)

Using the expressions for ∆m and a, Newton’s second law of motion becomes

ρ
∂ 2u
∂ t2 =

T
∆x

(
∂u(x+∆x, t)

∂x
− ∂u(x, t)

∂x

)
(1.41)

In the limit when ∆x→ 0, Equation (1.41) becomes

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 , (1.42)

where c2 = T/ρ is the square of the speed of the wave. Equation (1.42) is known as the
one-dimensional wave equation.

1.7 Linear Advection Equation

The wave equation is closely related to the so-called advection equation, which in one
dimension takes the form

∂u
∂ t

+ v
∂u
∂x

= 0. (1.43)

The aforementioned equation describes the passive advection of some scalar field u
carried along by a flow of constant speed v. Let the initial condition be u(x,0) = uo.
Based on the method of characteristics discussed in Section 1.4, it follows that the
characteristic equations are

dt
ds

= 1; with t(0) = 0;

this implies t = s;

dx
ds

= v; with x(0) = xo;

this implies that x = xo + vs and x = xo + vt→ xo = x− vt. Furthermore,

du
ds

= 0; with s(0) = uo(xo).
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18 Numerical Methods for Atmospheric and Oceanic Sciences

The unique solution of the advection equation is

u(x, t) = uo(x− vt). (1.44)

The solution (Equation (1.44)) is just an initial condition uo shifted by vt to the right
(for v > 0) or to the left (v < 0), which remains constant along the characteristic curves,
du/ds = 0.

1.8 Laplace Equation

Consider a thin plate having some width w and some length l; it also has a very
small thickness t. The faces of this plate are insulated to ensure that no heat flows
in the direction of the thickness t. Assume that the top edge of the plate is
maintained at a higher temperature while the other three edges are maintained at
a same lower temperature. In this situation, heat flows into the plate through the
top edge and out of the plate through the other three edges. Assume that there
are no mechanism/processes for generation of internal energy within the plate. In
the aforementioned circumstance, one is interested in obtaining the temperature (T )
distribution within the plate. The temperature within the plate will vary within the
horizontal plane in terms of x (width-wise coordinate) and y (length-wise coordinate)
and the temperature distribution within the plate T (x,y) will be governed by the
following two-dimensional Laplace equation:

∂ 2T
∂x2 +

∂ 2T
∂y2 = 0 (1.45)

The non-homogeneous (right-hand side is a known function of space) form of the
Laplace equation is called Poisson equation. Solving Equation (1.45) subject to the
boundary conditions (specified temperature on all the four edges) will determine
the temperature distribution T (x,y) within the plate. The Laplace equation arises
in several problems in ideal fluid flow, heat diffusion, mass diffusion, and in
electrostatics. As time does not appear in the Laplace equation, and the prescribed
temperature on all the four edges is also independent of time, the solution of the
Laplace equation (temperature distribution within the plate) will also not depend on
time. Such problems in which time does not appear in the governing equations are
known as equilibrium problems.

Equation (1.45) can be solved by the method of separation of variables in which it is
assumed that the equation has a solution of the form

T (x,y) = X(x)Y (y). (1.46)

https://doi.org/10.1017/9781009119238.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009119238.003


i
i

“main” — 2022/1/6 — 10:26 — page 19 — #19 i
i

i
i

i
i

Partial Differential Equations 19

Substituting Equation (1.46) in Equation (1.45), one obtains after dividing by XY , the
following

1
X

d2X
dx2 = − 1

Y
d2Y
dy2 = −k2. (1.47)

As the first term and second terms of Equation (1.47) depend only on x and y,
respectively, each of them should depend on a constant, say−k2. The solution is then a
product of X(x) = c1 sin(kx)+c2 cos(kx) and Y (y) = c3 sinh(ky)+c4 cosh(ky). It is possible
to reduce the number of constants from 5 to 4. For example, if c1c3 6= 0, it is possible to
redefine c1c3 = A; c2/c1 = B; c4/c3 =C; and write the solution as

T (x,y) = A [sin(kx)+Bcos(kx)] [sinh(ky)+C cosh(ky)] . (1.48)

The constants A,B,C, and k are to be determined from the given initial and boundary
conditions.

1.9 Method of Separation of Variables for the
One-dimensional Heat Equation

In this section, the method of separation of variables is used to solve the one-
dimensional heat equation

∂u
∂ t

= α
∂ 2u
∂x2 . (1.49)

In this method, the solution is assumed to be of the form

u(x, t) = X(x)T (t). (1.50)

Substituting Equation (1.50) in Equation (1.49) and dividing by XT , one gets

1
X

d2X
dx2 =

1
αT

dT
dt

= −k2 (1.51)

As the first term and second terms of Equation (1.51) depend only on x and t,
respectively, each of them should depend on a constant, say −k2. The solution is then
a product of

X(x) = c1 cos(kx)+ c2 sin(kx) and T (t) = c3e−αk2t given by

u(x, t) = e−αk2t [c1 cos(kx)+ c2 sin(kx)] , (1.52)
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20 Numerical Methods for Atmospheric and Oceanic Sciences

where c3 is assumed to be unity without any loss of generality. With boundary
conditions u(x = 0, t) = 0 and u(x = L, t) = 0, one gets c1 = 0 and k = n(π/L); the solution
is as follows:

un(x, t) = bne−α( nπ
L )

2
t sin

nπx
L

for n = 1, 2, · · · (1.53)

Satisfying the initial condition u(x, t = 0) = f (x), one gets the solution of the heat
equation as

u(x, t) =
∞

∑
n=1

bne−α( nπ
L )

2
t sin

nπx
L

(1.54)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx.

1.10 Method of Separation of Variables for the
One-dimensional Wave Equation

In this section, the method of separation of variables is used to solve the one-
dimensional wave equation

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 . (1.55)

As in the case of the heat equation, the solution is assumed to be of the form

u(x, t) = X(x)T (t). (1.56)

Substituting Equation (1.56) in Equation (1.55) and dividing by XT , one obtains

1
X

d2X
dx2 =

1
c2T

d2T
dt2 = −k2. (1.57)

As the first term and second terms of Equation (1.57) depend only on x and t,
respectively, each of them should depend on a constant, say −k2. The solution is then
a product of

X(x) = c1 cos(kx)+ c2 sin(kx) and T (t) = c3 cos(kct)+ c4 sin(kct) given by

u(x, t) = [c1 cos(kx)+ c2 sin(kx)] [c3 cos(kct)+ c4 sin(kct)] . (1.58)
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Partial Differential Equations 21

With boundary conditions u(x = 0, t) = 0 and u(x = L, t) = 0, one gets c1 = 0 and k =

n(π/L); solution is as follows:

un(x, t) =
(

αn cos
nπct

L
+ βn sin

nπct
L

)
sin

nπx
L

for n = 1, 2, · · · (1.59)

Satisfying the initial conditions u(x,0) = f (x) and ut(x,0) = g(x); one gets the solution
of the wave equation

u(x, t) =
∞

∑
n=1

(αn cosωnt + βn sinωnt)sinknx, (1.60)

where

ωn =
nπc

L
, kn =

nπ

L
,

αn =
2
L

∫ L

0
f (x) sinknxdx, and

βn =
2

nπc

∫ L

0
g(x) sinknxdx.

Exercises 1a (Question and answer)

1. Find the type (linear, semilinear, quasilinear, or nonlinear) of the following partial differential

equations:

(a) x
∂ z
∂x

+ y
∂ z
∂y

= z

(b) x
∂ z
∂x

+ y
∂ z
∂y

= z3

(c) (x+ y)
∂ z
∂x

+ (x− y)
∂ z
∂y

= xy

(d) z
∂ z
∂x

+ y
∂ z
∂y

= z

(e) x
(

∂ z
∂x

)2

+ y
(

∂ z
∂y

)2

= z

Answer: (a) Linear (b) Semilinear (c) Linear (d) Quasilinear (e) Nonlinear
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22 Numerical Methods for Atmospheric and Oceanic Sciences

Exercises 1b (Questions only)

1. Find the general integral of the first-order partial differential equation

x
∂ z
∂x

+ y
∂ z
∂y

= z.

Answer: F(x/y, z/y) = 0

2. Given the first-order partial differential equation

y
∂ z
∂x
− x

∂ z
∂y

= 0,

find the nature of the characteristic curves.

Answer: The characteristic curves are a family of circles passing through the origin.

3. Given the first-order partial differential equation

a
∂ z
∂x

+ b
∂ z
∂y

= 0,

where a and b are constants. Find the general solution.

Answer: z = f (ay−bx)

4. Given the first-order partial differential equation

a
∂ z
∂x

+ b
∂ z
∂y

= c,

where a, b, and c are constants, find the general solution.

Answer: z = f (ay−bx)+(c/a)x

5. Solve the first-order partial differential equation

x
∂ z
∂x
− y

∂ z
∂y

= z,

with initial conditions z = x2 on y = x; 1≤ y≤ 2.

Answer: z(x,y) = x
√

xy

6. Solve the first-order partial differential equation

x(y− z)
∂ z
∂x

+ y(x+ z)
∂ z
∂y

= (x+ y)z,

with initial conditions z = x2 +1 on y = x.
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Partial Differential Equations 23

Answer:
xy
u

=
x+u− y−1

x+u− y

7. Show that the following second-order partial differential equation of the form

A
∂ 2u
∂x2 + B

∂ 2u
∂x∂y

+ C
∂ 2u
∂y2 + D

∂u
∂x

+ E
∂u
∂y

+ Fu + G = 0, (E1.1)

subject to the following transformation of independent variables from x and y to ξ and η ,

where A, B, C, D, E, F , and G are functions of x and y only, which can be put in the

canonical or normal form. Show that the transformed equations are of the following form

A(ξx,ξy)
∂ 2u
∂ξ 2 + B(ξx,ξy,ηx,ηy)

∂ 2u
∂ξ ∂η

+C(ηx,ηy)
∂ 2u
∂η2 = F [ξ ,η ,u(ξ ,η),uξ (ξ ,η),uη(ξ ,η)]

(E1.2)

where

A(ξx,ξy) = Aξ
2
x + Bξxξy + Cξ

2
y ,

B(ξx,ξy,ηx,ηy) = 2Aξxηx + B(ξxηy +ξyηx) + 2Cξyηy,

C(ηx,ηy) = Aη
2
x + Bηxηy + Cη

2
y .

In the aforementioned set of equations, the subscripts indicate partial derivatives.

8. Moreover, show that for the aforementioned second-order partial differential equation (E1.1),

the following relation can be obtained

B2−4AC = (ξxηy−ξyηx)
2(B2−4AC).

9. For the hyperbolic case, where B2−4AC > 0, show that Equation (E1.2) will be transformed

and result in the following simple, canonical form given by

∂ 2u
∂ξ ∂η

= φ(ξ ,η ,u,uξ ,uη)

10. For the parabolic case, where B2−4AC = 0, show that Equation (E1.2) will be transformed

and result in the following simple, canonical form given by

∂ 2u
∂η2 = φ(ξ ,η ,u,uξ ,uη)
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24 Numerical Methods for Atmospheric and Oceanic Sciences

11. For the elliptical case, where B2−4AC < 0, show that Equation (E1.2) will be transformed

and result in the following simple, real canonical form given by

∂ 2u
∂α2 +

∂ 2u
∂β 2 = ψ[α,β ,u,uα(α,β ),uβ (α,β )],

where

α =
1
2
(ξ +η) and β =

1
2
(ξ −η).

12. Reduce the following second-order partial differential equation

∂ 2u
∂x2 = x2 ∂ 2u

∂y2

to its canonical form.

Answer: uξ η =
1

4(ξ −η)
(uξ −uη)

13. Reduce the following second-order partial differential equation

∂ 2u
∂x2 + 2

∂ 2u
∂x∂y

+
∂ 2u
∂y2 = 0

to its canonical form.

Answer: uηη = 0

14. Reduce the following second-order partial differential equation

∂ 2u
∂x2 + x2 ∂ 2u

∂y2 = 0

to its canonical form.

Answer: uαα +uββ =− 1
2α

uα

https://doi.org/10.1017/9781009119238.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009119238.003

