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First locate  with  perpendicular to  and  and then
on the line segment  with . Lastly, let  on  be such that

. This point G satisfies .
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108.46 A generalisation of Fuss' theorem

Introduction
Fuss' theorem for bicentric quadrilaterals is a classic theorem of plane

geometry that appeared in the 18th century in the works of Nikolai Fuss, an
assistant of the great Leonhard Euler, see [1, 2, 3]. In [3], Juan Carlos
Salazar gave a very simple and elegant solution to this theorem using only
classical tools. This is an interesting idea, and we have exploited this idea to
give a generalisation of Fuss' theorem. Here we shall propose a ‘weaker’
condition that only the inscribed quadrilateral is enough. The theorem is as
follows:
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Theorem 1
Let  be a convex quadrilateral inscribed in a circle . Let  and

be the centre and radius of , respectively. Assume that bisectors of
and  meet at  lying inside . Let  be the distance from  to the
sides  and . Let  be the distance from  to the sides  and . Let

 be the distance between  and . Let  and , (see
Figure 1). Then,
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FIGURE 1: Illustration for Theorem 1

Remark: When  then  is the incentre of the quadrilateral
. In other words,  is a bicentric quadrilateral and we get Fuss'

theorem
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.

Thus, Fuss' theorem is a particular case of Theorem 1.

Proof of Theorem 1
As mentioned above, in this solution we shall use Juan Carlos Salazar's

idea in [3], but there are some differences as we have omitted the inscribed
centre of the quadrilateral and replaced it with the intersection of the
bisectors of two opposite angles.
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FIGURE 2: Illustration for proof of Theorem 1

Proof (see Figure 2): Let  and  be the second intersections of lines
and  with , respectively. Since,  and  are the bisectors of
and , respectively,  and  lie on the perpendicular bisector of . It
is also true that  is a diameter of  so that  is the midpoint of . By
Apollonius's theorem for the median in a triangle, we have

M N PA
PC ω AP CP ∠DAB
∠DCB M N BD

MN ω O MN

PM2 + PN2 = 2PO2 + 1
2MN2 = 2 (d2 + R2) . (1)

Let  and  be the orthogonal projections of  on the sides  and ,
respectively. We note that  and ,
and obtain
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It follows that
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By the power theorem and since the two chords  and  of  meet at ,AM CN ω P

PA × PM = PC × PN = R2 − OP2 = R2 − d2.
This leads to
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From (1), (2), and (3), we get that
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We notice that  and  are the measures of two opposite angles of the cyclic
quadrilateral , so  or  which results in

. So we have
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Similarly, we have
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By adding the two equations (5) and (6), we obtain
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The trigonometric transformation with the condition  gives usα + γ = 180°
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From (7) and (8), we see that
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Now from (4) and (9), we deduce that
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This completes our proof.
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108.47 Thoughts on the Fermat point of a triangle

Introduction
Much has been written about the Fermat point of a triangle, and here we

provide an alternative arrangement of the existing material which, we
suggest, has certain advantages over the usual developments. First, a little of
the history. According to [1], in 1638 Descartes invited Fermat to
investigate the locus of a point  such that, for a given set  of
distinct points, the sum  of the four distances is
constant. Later, in 1643, Fermat asked Torricelli for the point  which
minimises the sum of the distances  to three given points

 and . Subsequently, Torricelli found several solutions to the problem,
and then, in 1659, his pupil Viviani published a solution. Briefly, there is a
unique point  (now called the Fermat, or Fermat-Torricelli, point of the
triangle ) which minimizes  over all points  in the
plane. In fact,  must lie inside, or on the boundary of,  for otherwise
(by relabelling the triangle if necessary) it would lie on the opposite side of
the line  through  and  to the vertex . Now let  be the reflection of
in the line 	. Then  is given by , and  lies on the same
side of  as  does, namely in ; thus . Since
and  lie on , we have , , so that 

X {A, B, C, D}
XA + XB + XC + XD

X
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QA + QB + QC < PA + PB + PC

which is a contradiction. Thus, as illustrated in Figure 1,  must lie in the
closed triangle . Further, a search through the literature shows that not
only does the Fermat point  exist within the closed triangle , it lies
strictly inside this triangle if each angle of the triangle is less than ;
otherwise, it lies at the vertex with the largest angle.
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