ABSTRACTS OF THESES

P.J. Lorimer, A Study of T₂-Groups, McGill University (Supervisor: H.W.E. Schwerdtfeger).

In the past few years, the literature has contained a number of group-theoretic characterisations of the groups PLF(2,F), of Moebius transformations over a finite field F. The concept of a T₂-group, defined by Professor H. W. E. Schwerdtfeger, gives a characterisation which is simpler than those previously given.

A group G is called a T2-group if it contains a subgroup H and

- (i) $a \notin H$, $bab^{-1} \notin H$, and $a^2 \neq 1 \Rightarrow \exists$ unique $h \in H \Rightarrow bah^{-1} = bab^{-1}$.
- (ii) $a \notin H$, $bab^{-1} \notin H$, and $a^2 = 1 \Rightarrow \exists$ exactly two elements $h_1, h_2 \in H \Rightarrow h_1 a h_1^{-1} = h_2 a h_2^{-1} = bab^{-1}$.

A T_2 -group G is called an S_2 -group if G - H contains an involution, i.e. condition (ii) is not empty.

The following are S2-groups:

- (1) $G = (0,1)^{\alpha}$ where (0,1) is the group with two elements, and α is any cardinal number. H is any subgroup of G which is isomorphic to (0,1).
- (2) H is any Abelian group with exactly one involution and G is obtained from H by adjoining an element t which obeys the laws, $t^2 = 1$; tht⁻¹ = h⁻¹ for all h \in H.
- (3) G = PLF(2, F), where F is a field of characteristic $\neq 2$, and H is the subgroup of all similarities $z \rightarrow \frac{az+b}{d}$.

The following theorems are proved:

THEOREM 1. If G is an S2-group, and either

- (i) The subgroup H is normal in G, or
- (ii) The centre of G is non-trivial,

then G and H are the group and subgroup of either (1) or (2).

THEOREM 2. If G is a finite S2-group and either

- (i) The subgroup H is not normal in G, or
- (ii) The centre of G is trivial,

then G and H are the group and subgroup of (3).

Thus all finite S_2 -groups are known; they are given by (1), (2), or (3), and Theorem 2 gives a characterisation of the groups PLF(2,F), when F is finite and the characteristic of F is not equal to F.