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Aberration corrected electron microscopy has made Ångstrom resolution imaging routine in labs across 

the world. One of the next frontiers is improving the quantitative reliability of data about materials we 

can extract from aberration-corrected images. We have developed a methodology based on non-rigid 

registration of a series of short exposure time STEM images which we call high precision STEM [1]. 

High precision STEM results in images in which random noise is suppressed well below the scattering 

generated by a single atom, and the position of atomic columns in the image can be determine to within 

<1 pm [1]. Other related approaches yield similar results [2, 3]. This paper presents two applications of 

high precision STEM imaging to the structurally complex materials with a varying number of degrees of 

freedom in the atomic structure. 

 

The first example is high precision STEM imaging of single La vacancies (VLa) in LaMnO3. We treat 

vacancies as defects with known atomic structure, derived from density functional theory calculations. 

As a result, the unknown parameters are the atomic coordinates of the missing La atom. Using high 

precision STEM, we can image VLa both from the reduction in the intensity of the atomic column 

containing the vacancy and from the displacement of the neighboring La-containing columns in toward 

the vacancy. For relatively thin TEM sample, ~10 nm thick, the visibility of a single VLa is well above 

the ~1% intensity uncertainty in high precision STEM for any depth of the vacancy. In three dimensions, 

the neighbor La displacements are 20-30 pm, but only a maximum of 8 pm survives the two dimensional 

projection and probe channeling of the STEM imaging process, and when the VLa is near the exit 

surface, the displacements in the image are nearly zero. Both the visibility and the displacements depend 

on the depth of the VLa through channeling of the electron probe, but the depth dependencies are not the 

same. Therefore, by combining information about the visibility and displacements, we can determine the 

depth of the vacancy, in addition the two dimensional position available directly from the image. 

 

Figure 1 shows an example high precision STEM image of LaMnO3, with the probability of selected 

column containing a vacancy superimposed. The probability is evaluated by comparing the experimental 

visibility and displacements to a library of simulations using a Bayesian model. The library of 

simulations give the probability of observing a particular visibility and set of displacements, given a 

vacancy at a particular depth and an estimate of experimental errors. Bayes’ theorem lets us find the 

inverse probability, the probability that a vacancy exists at a particular depth, given a set of 

observations. 

 

The second example is high precision STEM imaging combined with computational structural 

refinement to solve the structure of nanoparticles. Nanoparticles have many more degrees of freedom, 

due to the need to specify the shape of the particle and the position of atoms on the surface which 

generally do not not occupy exact lattice positions. High precision STEM images provide reliable data 

on the number of atoms in each atomic column and the position of surface columns, but deriving the full 

three dimensional structure from a single projection image is typically not possible. Our approach is to 

combine information from experimental images with a calculation of the total particle energy from an 
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empirical interatomic potential into a cost function C(s) = 2(Is, Ie) + E(s), where s is a structure, 2 is 

the squared difference of the simulated image Is and the experimental image Ie, computed pixel-by-pixel, 

E is the energy of a structure, and  is a scaling parameter. We then minimize C(s) using a genetic 

algorithm [4]. 

 

Figure 2 shows an experimental image of a Au nanoparticle, the derived structure of the particle, and the 

simulated image from the derived structure. The particle is pancake-shaped, not spherical as might be 

expected from the 2D image. The derived structure also finds atoms on the particle surface that are not 

well-localized in the original data, potentially due to beam damage. This structure refinement method 

has been recently generalized to treat alloy particles and tested on Pt-Mo nanocatalysts [5].  
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Figure 1. (left) Example high precision STEM image of LaMnO3. (right) Percentage chance of the 

labeled columns containing a vacancy, according to the Bayesian model. 

 

 
Figure 2. (left) Experimental high-precision STEM image of a Au nanoparticle. (middle) the simulated 

image of the derived structure. (right) the derived structure. 
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