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Abstract. Inclination-only dependent lunisolar resonances shape the dynamics of MEO (Medium
Earth Orbit) objects over secular time scales (i.e. several decades). Their main effect is to
increase an object’s eccentricity, possibly up to a value where the orbit’s perigee meets the
Earth’s atmosphere and friction will determine the object’s re-entry. Thus, understanding this
mechanism allows the design of low-cost end-of-life disposal strategies which exploit the resonant
dynamics. In this proceeding, we will summarize our results in developing an analytic theory for
lunisolar resonances and the characterization of diffusion properties along them. On this topic,
the techniques proposed are of interest in most problems of secular resonances encountered in
Celestial Mechanics.
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1. Introduction

The MEO (Medium Earth Orbit) region spans from an altitude of 2000 km up to
the Geosynchronous orbit, 35786 km, and is the home of various artificial satellites.
Among those, we have the GNSS (Global Navigation Satellites System) constellations:
the European GALILEO (a∼ 29600 km, i∼ 55◦), the American GPS (a∼ 26560 km,
i∼ 55◦) the Chinese BEIDOU (a∼ 27906 km, i∼ 55◦) and the Russian GLONASS
(a∼ 25510 km, i∼ 64.8◦). As many studies have highlighted, the MEO region is
characterized by the presence of a network of secular lunisolar resonances which gov-
ern the dynamics (see Rosengren et al. (2015), Daquin et al. (2016), Daquin et al.
(2022), Legnaro and Efthymiopoulos (2022) and references therein). A lunisolar secular
resonance occurs whenever

∃�k= (k1, k2, k3)∈Z
3\{0} s. t. k1ω̇+ k2Ω̇ + k3Ω̇L = 0, (1)

where ω and Ω are respectively the argument of perigee and node of the satellite, while
ΩL is the node of the Moon. If k3 = 0, the resulting resonances are independent of a and
e and thus are located at a critical value of the inclination i� found by solving

k1
(
5 cos2 i− 1

)− 2k2 cos i= 0. (2)

So, these resonances are called inclination-only dependent lunisolar resonances (or
ILSRs). The main effect of such resonances is to increase an object’s eccentricity,
potentially up to a value so high that the orbit’s perigee reaches the atmosphere and
then friction determines the re-entry (see Figure 1 and Rossi (2008), Alessi et al.
(2014), Gkolias et al. (2016), Alessi et al. (2016), Armellin and San-Juan (2018) and
Skoulidou et al. (2019)).
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Figure 1. Numerical integration of a satellite at Galileo altitude with A/m = 0.01, a = 29600
km, e = 0.06, i = 57◦, E = 10◦, ω = 160◦, Ω = 300◦. The orbit is propagated using a cartesian
integrator in the EME2000 reference frame. Left: evolution of the Keplerian elements e, i, ω, Ω.
Right: 3D view of the satellite’s orbital plane in cartesian Earth-centered coordinates with axis’
unit in km at time t = 100 years, with initial circular inclined orbit portrayed in orange and
trace showing the orbital position over the previous year, with solid blue line indicating the final
orbit. From an almost circular orbit, in 100 years the satellite’s eccentricity grows to a value
where the satellite’s perigee reaches the Earth’s atmosphere, so that drag starts the satellite’s
decay. The minimum lifetime τ of a satellite in the resonant domain of the 2g + h resonance
approximately follows a logarithmic law, and an object with these initial conditions would have
τ = 168y for e0 = 0.01, τ = 262y for e0 = 0.001, τ = 369y for e0 = 0.0001. More details on this
can be found in Legnaro (2023).

Nevertheless, as highlighted by these numerical studies, the MEO region and grave-
yards of navigation satellites are unstable, meaning that a slight difference in initial
conditions may lead to dramatically different evolutions of the eccentricity.
This is the reason why having an analytic theory that can provide insights into finding

which initial conditions will lead to the re-entry of an object can allow the design of
low-cost end-of-life strategies for navigation satellites and space debris.
This proceeding is structured as follows. In Section 2, we will outline the steps needed to

study a given lunisolar resonance. In Section 3, the Melnikov and Landau-Teller theories
will be presented as a tool to obtain semi-analytical estimates of the speed of chaotic
diffusion for an ensemble of points moving in the domain of a lunisolar resonance. In
addition, such an approach can be useful in most problems encountered in Celestial
Mechanics where a system is driven by the separatrix-like stochastic layers of a secular
resonance, such as the ν6 secular resonance between asteroids and Saturn or secular
resonances in the main belt. Finally, Section 4 will summarize the results presented.

2. Analytic Theory for Secular Lunisolar Resonances

The details of our results on the development of an analytic theory for secular lunisolar
resonances in the MEO region can be found in Daquin et al. (2022) and Legnaro et al.
(2023).

The steps needed to study a given lunisolar resonance are the following. We first derive
a set of resonant variables (JR, uR, JF , uF ) adapted to the particular resonance at hand,
which involves a ‘fast’ and a ‘resonant’ component. This allows to derive a Resonant
Hamiltonian HR(X, Y, JF , uF , A,ΩL), having Poincaré variables X, Y and a dummy
action A conjugated to the node of the Moon ΩL. Finally, by finding a suitable analytic
approximation of the fast component we arrive at an integrable Hamiltonian H which
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• allows us to understand and predict the structures seen in Fast Lyapunov Indicator
(FLI) cartography while changing the initial values of ΩL or of the satellite’s perigee and
node ω, Ω,

• provides insights into the eccentricity growth mechanism, allowing to understand the
different behaviours of the maximum eccentricity reachable along a lunisolar resonance
as a function of the initial phases and eccentricity,

• allows to reliably predict the domain of lunisolar resonances.
In particular, if we define the center manifold as the normally hyperbolic invariant mani-
fold where the motion of circular orbits takes place, it is possible to see that this manifold
has a large measure of invariant tori, and the initial choice of Ω shifts the resonance along
the tori limiting its domain. The initial choice of ΩL changes the shape of the center man-
ifold. We define fast drift plane (FDP) as the locus of points where the fast action JF is
constant. The (i, e) plane is foliated by FDP, and each FDP is associated with an inte-
grable phase portrait which shows the resonance’s separatrix. The combination of the
initial values of ω and Ω defines a scanning direction, and its intersection with the inte-
grable separatrix gives an eccentricity value for that specific fast drift plane. In addition,
for every FDP, the extension of the figure-8 separatrix dictates the theoretical maximum
eccentricity value emax that an object would reach moving along the resonance. This can
explain numerical results that find different behaviours of the maximum eccentricity as
a function of the initial inclination and node, like Alessi et al. (2016).

3. Diffusion along lunisolar resonances

What can be done to characterize the diffusion properties of an ensemble of points
along a lunisolar resonance? In Legnaro et al. (2023), we show how it is possible to
find estimates on the diffusion speed adopting Melnikov or Landau-Teller approaches.
Also, the presented framework can be applied to most secular resonances encountered in
Celestial Mechanics.
The integrable model derived in Section 2 for lunisolar resonances belongs to the

Second Fundamental Model of Resonance (SFM, see Henrard and Lemaitre (1983)). To
illustrate the concepts of the theory, consider the following ‘archetype model’ for lunisolar
resonances

Ha =−S cos 2σ+ S2λ [1 + ε cos(2σ− φ) + ε cos(2σ− φ2)] +AΩ+A2Ω2, (3)

where (A, A2)∈R2, S ≥ 0, σ ∈ S1, and ε,Ω,Ω2 ≥ 0. Consider Poincaré variables X =√
2S sin σ, Y =

√
2S cos σ. In systems like this, which involve a resonant degree of freedom

coupled to oscillators, the evolution of the adiabatic actions is not uniform in time, but
rather proceeds with a sequence of discrete ‘jumps’ (see Figure 2). The adiabatic action
A captures the evolution of the energy of the system over time, thus we wish to model
the diffusion on this variable.
Consider N trajectories Ai(t). If the evolution of the i-th trajectory proceeds as a

sequence of consecutive discrete jumps ΔA
(j)
i with mean period <T >, then there are n=

[t/ < T >] jumps taking place per each trajectory. Setting the initial condition Ai(0) = 0
for all i= 1, . . . , N , we have

Ai(t= n< T >) =

n∑
j=1

ΔA
(j)
i . (4)

If the jumps are not correlated, i.e., the individual jumps ΔA
(j)
i are randomly chosen

from a distribution p(ΔA) with mean μ= 0 and dispersion σΔA, then by the central
limit theorem follows Ai ∼N (0, nσ2

ΔA

)
for n large. Since μ= 0, we have σ2

ΔA =<ΔA2 >.
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Figure 2. Evolution of an orbit with initial conditions (X0, Y0) = (0, 0.3) and (A, A2, φ, φ2) =

(0, 0, 0, 0) under the flow of Hamiltonian (3) with parameters ε = 0.01, λ = 1.2, Ω = 5, Ω2 =
√

5.
The jumps in the adiabatic action A (c) correspond to homoclinic loops in the X, Y variables
(a), and the jumps occur at the top of the loop, as can be seen from the evolution of S(t) (b)
which essentially measures the distance from the center.

Hence, the linear diffusion coefficient for the ensemble satisfies the relation:

D=
nσ2

ΔA

n< T >
=
<ΔA2 >

<T >
(5)

In this way, the task of estimating the diffusion speed reduces to finding an estimate of
<ΔA2 > and <T >. For the first quantity, it is possible to adopt a Melnikov Approach.
Consider Ȧ=−∂H

∂φ =−ελS2 sin(2σ− φ). We approximate S(t), σ(t), as well as φ(t),

φ2(t), with the analytic solution Ŝ(t), σ̂(t), φ̂(t), φ̂2(t) of the separatrix of Ha for ε= 0.
This yields

A(t)≈A(t0)−
∫ t

t0

ελŜ2(u) sin (2σ̂(u)− (φ(t0) +Ωu)) du. (6)

The approximation is based on the idea that the evolution of the resonant variables (X, Y )
(or (S, σ)) for initial conditions close to the separatrix of the integrable model is quite
similar to the full one. Finally, the jump ΔA(φ0) =A(t1)−A(t0) between consecutive
plateaus of A(t) is approximated by the Melnikov integral

ΔA≈ΔAM =−ελ
∫ ∞

−∞
Ŝ2
∞(u) sin (2σ̂∞(u)− (φ0 +Ωu)) du. (7)

In the particular example at hand, since S∞(t), σ∞(t) are odd and even functions of t
respectively, we readily find:

ΔAM (φ0) = ελ sin φ0I1 (8)
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Figure 3. (a) Numerical (grey) histogram of the probability distribution P (ΔA) of the indi-
vidual jumps in the value of the adiabatic action A(t), collected by the data of the complete

ensemble of 10000 simulated trajectories for ε = 0.001, λ = 1.2, Ω = 5, Ω2 =
√

5 with initial X, Y
data in the square [−0.05, 0.05]2, on top of the corresponding histogram by the Melnikov approx-
imation (blue, Eq.((8))). A third estimate of the same histogram (red) is obtained independently
by the stochastic Landau-Teller model. (b) Comparison of the three histograms obtained as in
(a) for the PDF of the periods p(T ). (c) The estimates on the diffusion coefficients with the
assumptions of normal diffusion and uncorrelated phases D =< ΔA2 > /< T > for the numeri-
cal data (black) and by the Melnikov approach (red), as a function of ε. The blue curve shows
the numerical diffusion coefficient as a function of ε obtained by linearly fitting the dispersion.

where

I1 =

∫ ∞

−∞
Ŝ2
∞(u) cos (2σ̂∞(u)−Ωu) du,

which in turn allows to find a theoretical estimate for the probability density function
(PDF) of the jumps, which implies <ΔA2

M >= ε2I21/2. Alternatively, a similar estimate
of the PDF of the jumps can be found adopting what we call a stochastic Landau-Teller
model, which consists of using the Fourier representation of finite-time homoclinic pulses
along with a stochastic process based on random values of the integrable energy obtained
through a suitably defined distribution.
For the mean period, it is possible to estimate the initial width of the chaotic layer

by computing the first subharmonic Melnikov integral, which essentially computes the
displacement between the stable and unstable manifolds of the hyperbolic point. Finally,
it is possible to approximate <T > by considering a uniform distribution of points inside
the estimated chaotic layer and then computing for each point the analytic period.
It is now possible to estimate the diffusion coefficient with DMel =ΔA2

M/ < T >,
which approximates very well the numerically computed Dnum =<ΔA2 > /< T > (see
Figure 3 (a-b)). Still, in these systems, the presence of temporary stability islands and
partial barriers generates long-term correlations of the ‘phases’ due to ‘stickiness’ effects
(see Contopoulos and Harsoula (2010)). This can be addressed by introducing a reduction
factor affecting all estimates on the speed of diffusion of the adiabatic actions given by
the model, as also done in Chirikov (1979) (compare with Figure 3 (c)).

The same framework can be applied in the system of navigation satellites for the semi-
analytical characterization of diffusion properties. We will focus on the 2g+ h resonance
since it is the most interesting for applications. We are interested in the diffusion along
FDPs since they are linked to emax, as discussed in Section 2. By averaging over the
angles uF and ΩL of the resonant Hamiltonian and keeping just the leading terms, we
get the integrable Hamiltonian which belongs to the SFM. Using the Melnikov approach
and estimating the average period by computing the first subharmonic Melnikov integral,
we obtain semi-analytically a diffusion coefficient

D(JF )M :=
〈
ΔJ2

F

〉
/ 〈T 〉 (9)
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Figure 4. (a) Comparison between the semi-analytical diffusion coefficient D(JF )M (red) and
the numerically computed one D(JF )n (black). (b) The value of

〈
ΔJ2

F

〉
is derived using the

Melnikov approach. (c) The value of 〈T 〉 estimated computing the first subharmonic Melnikov
integral.

which can be compared with the numerically computed one D(JF )n found by fitting the
σ2(JF ) curve (see Figure 4).
The semi-analytical prediction works best for higher altitudes. This is to be expected,

since lower altitudes would require additional normalization steps, while at higher alti-
tudes no additional perturbation step would make the remainder smaller and so the
original Hamiltonian is already the optional one.

4. Conclusions

In this proceding, we presented our results in the development of an analytic theory
for secular lunisolar resonances. This allows to understand the dynamics of navigation
satellites and so can be applied to the design of low-cost end-of-life disposal strategies. In
addition, we provided a framework to semi-analytically characterize the diffusion in the
MEO region. Such a framework can be applied to study the diffusion in most systems
with secular resonances encountered in Celestial Mechanics.
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