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Abstract

Let Jf?(m;t) be the finite-dimensional odd Hamiltonian superalgebra over a field of prime charac-
teristic. By determining ad-nilpotent elements in the even part, the natural filtration of Jff(m\t) is
proved to be invariant in the following sense: If ip : Jf?(m\t) -* J4?(m'\?) is an isomorphism then
(p(Jf(m\t)j) = Jf (m';£')i for all i > —1. Using the result, we complete the classification of odd Hamil-
tonian superalgebras. Finally, we determine the automorphism group of the restricted odd Hamiltonian
superalgebra and give further properties.

2000 Mathematics subject classification: primary 17B50; secondary 17B40.

As is well known, filtration structures provide useful tools in the research of Lie
algebras and Lie superalgebras. In particular, they play an important role in the clas-
sifications of finite-dimensional simple modular Lie algebras and finite-dimensional
simple Lie superalgebras of characteristic zero respectively (see [2, 5, 7, 21, 17]).
We know that Cartan-type Lie algebras and Lie superalgebras possess natural fil-
tration structures. By means of invariance of filtrations one can characterize intrin-
sic properties of Cartan-type Lie algebras and Lie superalgebras and determine the
automorphism groups (see [22, 16, 24, 26]). In the case of Cartan-type modular
Lie algebras, it is proved in [10] that the filtration of X(m : I) is invariant under
AutX(m : I), where X = W, S, H or K, and the same conclusion is obtained in
[6] for all Cartan-type Lie algebras; by means of ad-nilpotent elements, the natural
filtrations of infinite-dimensional Cartan-type Lie algebras are proved to be invariant
under the automorphism groups (see [4]). In the case of characteristic zero, the natural
filtrations of infinite-dimensional Lie algebras X (m) is invariant, where X = W, S, H
or K (see [14]). In [23] the author discussed the simplicity and restrictiveness of the
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114 Wende Liu and Yongzheng Zhang [2]

four classes of finite-dimensional modular Cartan-type Lie superalgebras. In [24] and
[25], the invariance of natural filtrations of Hamiltonian superalgebras, generalized
Witt superalgebras and special superalgebras are determined by means of image-space
dimensions and ad-nilpotent elements, respectively.

In this paper, we discuss the finite-dimensional odd Hamiltonian superalgebra
Jf(m;i) over a field of positive characteristic. In the case of characteristic zero, the
infinite-dimensional odd Hamiltonian superalgebra Ji?(m,m), which is defined by odd
Hamiltonian differential forms, is even transitive irreducible simple Lie superalgebra
(see [8, Theorem 4.1 ]). This Lie superalgebra was interpreted as the Lie superalgebra
of polyvector fields on an m-dimensional space (see [1]). It was introduced in [11] by
Leites, and was later called Leites superalgebra (see [9]). Paper [12] gave a description
of the outer derivations of this superalgebra.

We denote the natural filtration of Jif{m;t) by {3^(m;t), i > -1) . An isomor-
phism between any two odd Hamiltonian superalgebras is called /"-isomorphism. In
Section 2, we determine the ad-nilpotent elements with certain properties in the even
part of Jif (m;t). The results are used in Section 3 to prove that the filtration of
J f (m; tj is invariant under any f-isomorphisms; that is, if <p : Jtf(m;t) -*• Jt?(m'; f')
is an isomorphism then <p(Jf (m;£),) = J4?(m';r.')/ for all i > —1. As a result, we
complete the classification of odd Hamiltonian superalgebras. In Section 4, we first
prove the automorphism group of the restricted odd Hamiltonian superalgebra Jf is
isomorphic to Aut(^ : Jff), the admissible automorphism group of the base superal-
gebra ^ . Then it is proved that the so-called standard normal series of Aut Jf is sent
to the one of Aut(^ : Jf). More detailed properties of Aut Jf? are also discussed.
The works in this section are motivated by the results and methods involved in Lie
algebras (see [19, 20,4]), and based on [25, Theorem 1].

1. Preliminaries

1.1. Notation and conventions The following notation and conventions are used
throughout this paper:

• F denotes the underlying field of characteristic p > 2, 22 the ring of integers
modulo 2; N and No the positive integer set and nonnegative integer set, respectively.

• Fixm 6 N\{1,2}.
• U(m) denotes the divided power algebra over F with the F-basis (x(o) | a e NJ).
• A(m) denotes the Grassmann superalgebra in m variables xm+l, xm+2,.. .,x2m-
• Denote the tensor product by A(m, m) := U(m) ®r A(WJ).

• We abbreviate g ® / to gf where g € U(m), / € A(/n), and x(Ci) to *,, where
e, := (5,1, 5,2 Sim).

• Setro:={1.2 m], Yx := {m + l , « + 2 2m} and Y :=Y0DYi.
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[3] Finite-dimensional odd Hamiltonian superalgebras 115

• Set Bk := { ( / , , . . . , ik) | m + 1 < i, < i2 < • • • < ik < 2m), B(m) := ULo B*>
where Bo := 0. For u e Bk, put \u\ := A:, {«} := {J'I, . . . , 4}, x" := JC,,X,2 • • • xit,
x0 := 1.

• Obviously, {x'0^" | a e N^1, M 6 B(m)} is an F-basis of A(m, m).
• Define D i , . . . , D2m to be linear transformations of A(m, m) such that

fr(«-£.)r« > g. V.-

\xwdxu/dxi ieYu

where A:̂  := 0 whenever fi £ N^1.
• If deg(;c) occurs in this paper, we always regard x as a 22-homogeneous element

and deg(x) the 22-degree of x.
• Define

• For f = (tu ..., tm) e Mm, put 7r : = (jtu ...,nm) where JT, := p'1 - 1, i € *o,

and A(m; r ) : = {a e NJ" | a, < 7r,, I e y0}-

• Set

I i + m i e Yo;

i — m i e Yu

• Letf : = | f f | + m = E/6iiP'1-

1.2. The construction processes We know that A(m,m) is an associative superal-
gebra with a 22-gradation induced by the trivial 22-gradation of U(m) and the natural
22-gradation of A(m). The following formulae hold in A(m, m):

=XjX(a)^ ( o ) x 7 =XjX(a), a e N J . j e y,.

Clearly, Di, . . . , D2m are superderivations of A(m, m). Let

W(m,m) = a, 6 A(/n, m), / 6 Y \ .

Then W(m, m) is an infinite-dimensional Lie superalgebra (see [23]), which is a
subalgebra of DerF(A(m, m)). We note that W(m, m) is free A(m, m)-module with
a A(m, m)-basis {Di , . . . , D^} .
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The following formula holds in W(m, m):

(1) [aD, bE] = aD(b)E - (-l)d e g ( a D ) d e g ( ' ' £ )fe£(a)D + (-l)deg(D)deg(i)aZ7[D, E].

Consequently,

(1') [aD,, bDj] = aDWDj - ( - l ) * * " 0 ' ) * ^ ) ^ (a)Dt

where a,b e A(m, m), D, E € W(m, m), i,j e Y.
From the definition of A (m; f), we obtain that

A(m, m;t) := spanf{xwx"\a € A(m;t), u e B{m)}

is a finite-dimensional subalgebra of A(/n, m). Set

a, € A(m,m;t), i e Y\ ,

then W(m, m; r) is a finite-dimensional subalgebra of W(m, m) (see [23]).
Define TH(a) = £,e),(-l)'40deg(o)I>,(a)I>,s where a € A(m,m;t). Then TH is

an odd linear mapping from A{m,m;t) to W(w, m;t), that is, TH(A(wi, w; t)g) c
W(m,m;f)fl+T, for6> € Z2- LetJf(m;r) = (TH(a) I a e A(m,m;t)}. Then Jf(m;t)
is a subalgebra of W(m, m; t), which is called odd Hamiltonian superalgebra (see [8,
page 27]). We have the following formula (see [8, page 28]):

(2) [TH(a), TH(o)J = iH(LnW{t>)).

Recall the natural 2-gradations of A(w, m;t) and W(m, m;f):

A(m, m;r) = ^ftA(m, m;£)[,], where
i=0

A(m, WJ;£)[I]
 = spanF{j:(a)^" | | a | + |M| = i, a e A(m;t), u e B(m)};

W(m, m;t) = ^ W(m, wi;£)[,-j, where

W(m,m\t)[i) = sp&nf[ajDj | ctj e A(m,m;t)[i+n,j e Y}.

It is easy to verify that Jff(m;t) is a 2-graded subalgebra of W(m, m;t)

; £)m, where

= Jif(m;t) n

= {TH(a) |aeA(m,m;f)[,+2|).
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[5] Finite-dimensional odd Hamiltonian superalgebras 117

Set W(m,m;t)j = 0 > 2 / W(m,m;t)UhJt:'(m;t)i = (Bj>iJf(m'Dij)- Recall that
{W{m, m;t)it i > —1} and [Jff(m;t)i, i > —1} are said to be the natural nitrations
of W(m, m,t) and Jif (m; t), respectively.

From now on, we frequently abbreviate W(m, m;t) and Jf?(m; t) to W and J$f,
respectively.

2. The ad-nilpotent elements in J£ |

Let L be a Lie superalgebra and 5 a nonempty subset of L. Recall that an element
x of 5 is called ad-nilpotent, if ad x is a nilpotent linear transformation of L. We
denote by nil(S) the set of ad-nilpotent elements in 5.

For Jf(m; t) where m e N \ {1, 2} and t_ e Mm, define

£2 := {£ 6 nil(J^) | (ad£)(J>f) C

r:={E e nil(J^) | (adE)(fl) C ft },

<D := {£ € ^ | (ad E)(J% n J?%) C m\(J?) ) .

Let m' e N \ {1, 2), /' 6 Nm'. For Jf(m';£')> the corresponding sets are denoted by
Q', F" and 4>', respectively.

Proceeding analogously to [18, Theorem 1.3.1] or [3, Theorem 2.1], we may prove
the following lemma.

LEMMA 2.1. Let L be a finite-dimensional Lie superalgebra, and S a Lie subset ofL,
that is, S is closed under the multiplication of L. IfS C nil(L), then spanF 5 C nil(L).

For Z-graded Lie superalgebras we have the following lemma.

LEMMA 2.2. Let L be a Z-graded Lie superalgebra. Suppose that x 6 nil(L).
Then mz(x) € nil(L), where m/(;c) is the nonzero Z-component of x possessing the
minimal Z-degree.

PROOF. See [25, Lemma 2]. •

Now we return to the case of Jif (m; f).

LEMMA 2.3. Suppose that a e A(m, m;tj. Then TH(a) e nil(Jf) if and only if
TH(O) is a nilpotent transformation of A(m,m\t).

PROOF. Let b e A(m, m;t). Applying (2) we obtain by induction on k that

(adTH(a))*(TH(*)) =TH((TH(fl))*(*)) for all k N .

Combining this with the fact KerTH = IF • 1, we obtain the desired result. •

https://doi.org/10.1017/S1446788700009368 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009368


118 Wende Liu and Yongzheng Zhang [6]

Since £? is finite-dimensional, it is clear that 3%{_X] U ^ c nil(Jf). For the
ad-nilpotent elements of ^f0] . we have the following result.

LEMMA 2.4. LetiJ e Y. 77H>/ITH (*,*;) e nil(Jf) if and only if i' j^j.

PROOF. By the definition of TH, we have

(3) THOCIXJ) = (-ir(i)+»^Xj Dv + (-ir^xtDj,.

Clearly, xp
t = x* = 0. Suppose that i' £ j . It is easy to see that (XjDj,)p =

(XiDj'Y — 0. From (T), we have [xjDi<,XiDy'\ = 0. In combination with (3), we
have (JniXiXj))2" = 0. By virtue of Lemma 2.3, we obtain that TH(*,•*;) e m\(Jf),
as desired.

Conversely, assume that TH (*,*/) e n i l ( ^ ) with i' =_/. Without loss of generality,
we may assume that i € Jo- By (3), TH(XiJc,/) = xvDi< — x,D,. Note that

< J H ( x , x j ) ) k ( x e ) = x r f o r a l l keM.

Therefore, TH(*i*,-) is not a nilpotent transformation of A(m, m; 0, which contradicts
Lemma 2.3. •

LEMMA 2.5. Suppose that Em € nil(^f0]) and [Em, Em] = 0. Then Em | £ , e
nil(Jtr) for allEx e Jfi.

PROOF. Clearly, {£[0]} U Jf\ is a Lie subset of Jif, in which all elements are ad-
nilpotent. By Lemma 2.1, spanF({E[o]} U Jf\) c nil(Jif). In particular, £[0] + £ | 6

for all £ , e Jif\. D

We shall prove that £2 C 3%\. First we make the following preparatory remarks.
Consider ^f0]-module J£f_i], and denote by p the corresponding representation,

that is, p(£) = (ad £) 1^.,,, £ € <#f0]- Fix the F-basis {D, , . . . , D^} of ^f_i].
For £ e J2fo)> we identify p(E) with its matrix with respect to the fixed basis. Let
pl(m, m) denote the general linear Lie superalgebra of 2m x 2m matrices over F
(see [15]). Let

B = BT, C = -CT\ .P(w)= | c _AJ\ ep\(m,m)

Then p (m) is a subalgebra of pl(m, m) (see [8, page 16]).
In the following etj denotes the 2m x 2m matrix having 1 in (/', j) position and 0's

elsewhere. The following lemma only needs straightforward verifications, which are
omitted.
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[7] Finite-dimensional odd Hamiltonian superalgebras 119

LEMMA 2.6. The following statements hold:

(i) TH0c?xj) = (-l)^+^^XjDi + (-l)^xeDj., ij e Y.
(ii) p<JH(xrxj)) = (-1)"(% - {-irw«»ej.?, ij € Y.

(iii) p is faithful.
(iv) Im(p) = p (m).
(v) If E e nil(c^foj) then p(E) is a nilpotent matrix.

THEOREM 2.7. Suppose that E e nil (3^) and ad E(Jf) c nilpf) . 77zenE €

PROOF. Decompose £ = £[_i] + £o> where £[_i] e <^f-i] n J ^ , Eo e J%Q. Let
£•[_!] = X îey QT H (J : , ' ) , C, e F. Assume that £[_u ^ 0. Without loss of generality
we may assume that c\ = 1. Applying (2), we obtain

By virtue ofLemma 2.4 and the equation above, we get [E[_i], TH(>:(2£l);ci')] ^ m\{Jf).
Now Lemma 2.2 shows [£\ T H ^ ^ ' ^ I ' ) ] i nil(Jtf), contradicting the assumption.
Hence £[_]] = 0, E = EQ e Jf?o.

Assume that E = Em + Eu where Em e Jfm flif5, £, e J ^ f l / j . By
Lemma 2.6 (iv), p(E[0]) e p (m)o- Thus we may suppose that p(E[0]) = [A _J4T ].

Assume that E[0] ^ 0. According to Lemma 2.6 (iii), A is a nonzero matrix. Put
A = (Cjj)mxm. Suppose that the l-th row is the leading nonzero row and the r-th
column is the leading nonzero column.

We treat two cases separately.

Case (0: / < t.
Let k = max(/ € Yo \ ctj £ 0}. Then I < t < k.
Assume that I = k. Then I = t = k and c;/ ^ 0. Obviously, A is of the following

block form A = [*„" °] , where AH is an I x Z matrix with (/, /)-entry cu ^ 0 and 0
elsewhere. So the matrix p(E[0{) is not nilpotent. By Lemma 2.6 (v), Em is not ad-
nilpotent. Then by Lemma 2.2, E is not ad-nilpotent. This contradicts the assumption
that E € Q C nil(J>H. Thus / < k.

Obviously,

Direct computation shows that

[p(Em), ekl - eV]c\
k m k m

^ dj ekj + Y^ Wii ~ cikew + ̂  Qjeyk, - ^ cikerr.
j=t i=/+l j=l i=/+l
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This matrix possesses the block form [B," J ], where Bu is an / x / matrix in which (7, /)-
element is c(t ^ 0 and the others are all 0. Therefore, the matrix [p(E^), eki — e^]
is not nilpotent. By Lemma 2.6 (ii), ekt — e^ = /o(TH(xjpJt/)), and the matrix
p([(£[0]> THC**'*;)]) is not nilpotent. In combination with Lemma 2.6 (v), we see that
[£[o], TH(**'*/)] is not ad-nilpotent. Now Lemma 2.2 ensures that [E, TH(xjt'*i)] ^
nilC^"). This contradicts the assumption that E e £2.

Case (ii): I > t.
L e t it = m a x { / € YQ | c,, ^ 0 } . T h e n k > l > t , a k t ^ 0 a n d

k mm k mm

p(£[oi) = J2c"eit + 1 2 J2cnev -J2c"e''i{ - H 5Zc#«/'*'•

By Lemma 2.6 (ii), p(Jn(x,'Xk)) = e,k — eVf. Thus

k

— Z^i C''e'k ~~ Ck'e" ~ 2-^1 Ck'e'j ~ 2—1 C''ek''' + Cktet'V

This matrix is of the following form [*0" * ] , where A,, is a t x t matrix whose (t, t)-
entry is — ckt ^ 0 and remaining entries are 0. Proceeding analogously to Case (i), we
may prove that lE,TH(Jc,'JCit)] is not ad-nilpotent, contradicting the assumption that
£efl.

We conclude that £l0) = 0, E = Ex € 3^x. D

3. Natural filtration and classification

For the sake of simplicity, an isomorphism between two odd Hamiltonian superalge-
bras will be called an /"-isomorphism. In this section, we shall prove that the natural fil-
tration of J ^ is invariant under f-isomorphisms, that is, if <p : Jtf(m;t) -> J4?(m'\ f')
is an isomorphism of Lie superaJgebras, then (p{Jf{m;t)i) = Jf(m';f)i for all
i > - 1 , where m,m' e N \{1 ,2} ,£ e Nm,r ' e Nm'.

LEMMA 3.1. Letk,l e Yo. Then TH(xi2£k)x,,) e £1 if and only ifk £ I.

PROOF. Assume that k = I. By (2), [TH(xk,),TH(x(Zek)xk.)] = -TH(xkxk,). By
Lemma 2.4, we have TH(xkxk.) e ni\(Jf). Therefore, TH(xi2ek)xk.) <£ fi.

Conversely, let k ^ I. Let E = £[_u + Eo be an element of Jf?, where £[_u 6
^f_i, , Eo e J%>- Assume that £ M ] = J2ieY c,TH(x,), where c, e F. Put D :=
[£|-n, TH(jc(2f<)j:/')]. Then

(4) D = [a, TH(xt) + c, TH(*,),
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By Lemma 2.4, TH(xkxi>) and TH(x(2ek)) are all ad-nilpotent elements. Applying (2),
we obtain that [TH (***,-), TH(*(2£t))] = 0. So 5 := {0, TH(xkxr), TH(x(2£l))} is a Lie
subset of Jf. By Lemma 2.1 and (4), we have D e ml(Jif). Obviously,

(5) [£, TH(x(^xr)] = D + [£0, TH(x™xe)],

where [£0, T^x^x?)] e •#?. Note that it ^ /. It is easy to verify that [D, D] = 0.
By virtue of Lemma 2.5 and (5), we get [£, TH(xi2£i)x,,)] e nil(Jf). Hence

(2t>xr) ef l . D

PROPOSITION3.2. ^ n j | = r .

PROOF. It is clear that J?{ n Jt% <z ni\(Jf%). By Theorem 2.7, n c ^ n J4%
and therefore, [J^n^Sl] C [Jtf{ n Jf%, J?i n Jf%] C J% n J4% c Q. Thus

To prove the converse inclusion, we suppose that £ e T and decompose £ =
£[_i] + £o, where £[_i] 6 Jf^n, Eo e J ^ . Assume that £ M ] ^ 0 . Since £[_,, e ^ 5 ,
without loss of generality, we may suppose that £[_u = Di + YTj=ici^h where
Cj e F. Direct computation and application of Theorem 2.7 show that

(6) [£ , T H O C ' 2 * ' ' ^ ) ] = THOCUC*) + [Eo, TH(x(2£l)x20] $ Si.

By Lemma 3.1, TH(x(2£l)x2>) e Q. Moreover, (6) implies that £ £ T, which is a
contradiction. So £[_i] = 0, £ = £0 e J#o.

We next decompose £0 = £ = £10] + £ , , where Em e Jfm, Ex € J%\. Assume
that £[o] 7̂  0. Since £10] e ^ , we may assume that £l0] = YLijzYa

 c>j ^aixiXj'),
where c,y 6 F. Put

/ := min{i € Yo \ cijo ^ 0 for some j 0 e Y],

t := mint/ 6 lo I ckj ^ 0 for some i0 e Y).

Case (i): I < t.
Let k := max{/ 6 Yo | c,j ^ 0}. Then I < t < k and clk # 0.
If Z = it, proceeding similarly as in the proof of Theorem 2.7, we may prove that £

is not ad-nilpotent, which gives a contradiction.
If / <k, then

j=t
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Let D := [T^x^x,,), Em]. Then

j=i j=t+\

Therefore,

j=t j=M

By Lemma 2.6 (ii), we have

k m

P([TH(**0, D]) = -cik(eu - en>) + ^ cy (ejk - eej>) - ^ cik(en - evv)-
j=t ;=(+l

This matrix is of the following block form [Ao" * ] , where An is an I x I matrix
whose (/, 2)-entry is — Qk ^ 0, but other entries are 0. Consequently, the matrix
P([THC**') , D]) is not nilpotent. This and Lemma 2.6 (v) show that [THCX*), D]
is not ad-nilpotent. By Lemma 2.2, [TH0c*), [Tn(x(2ek)xi>), E]] is not ad-nilpotent.
Furthermore, we obtain that

(7)

On the other hand, by Lemma 3.1, TH(x(2£k)xr) € £1. Hence (7) implies that E i T,
which is a contradiction.

Case (ii): I > t.
Let it := max{i € Yo | cit £ 0}. Then k > / > t, ck, ^ 0 and

i=/ i=l j=t+\

Put G := [THCX^JC*.) , £[O]]. Using (2) we compute

k

i=l j=t+\

Therefore,

H(*,<). G] = ckt1H(x,Xf) -^CuTniXk-Xi) + ^ ckj
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By Lemma 2.6 (ii),

it m

P([TH(*f'), G]) = ckl(etl - e,r) - ^ cit{eki - en,) + ^ ckj(ejt - e,T).
«=' j = '+ i

This matrix is of the form [*" J ] , where Bn is an / x I matrix whose (/, /)-entry is
ckt ^ 0, but other entries are 0. Similar to (i), we obtain that [TH(x(2£/);tfc0, E] £ £2-
By Lemma 3.1, lH{x{2sl)xkl) e Q. and therefore £ £ F, a contradiction.

Combining (i) and (ii), we conclude that £10] = 0 and E = Ex e J%[. This proves

that r c ^ n ^ . •

PROPOSITION 3.3. JfQ = 0 .

PROOF. The inclusion Jif0 c 4> is clear. So, we need only to prove the converse
inclusion. Assume that E = E[-\] + Eo <= <I>, where Et_ij e Jtf-i], EQ e Jf0. Let
£•[-1] = ^Ziey c> TH(^ I ) . CI

 e f • Assume that £[_u ?t 0. Then there exists some k e Y
such that ck ^ 0. If k e Yu we may let k = V. Put D := [£,_!,, TH(;c(2£l)jtr)]. Then
we have

£> = [c, TH(x,) + cv

Therefore, O ' ( JCI ) = <*vx\ for all / e N. Thus D is not nilpotent as a linear trans-

formation. By Lemma 2.3, D is not ad-nilpotent. Now Lemma 2.2 shows that

[E,TH(x(2ci)xv)] is not ad-nilpotent. Observe that TH(jc(2ei)jci') e ^ n J | . This

contradicts the assumption that E e <J>. Hence £[_u = ^ , e J b c,TH0c,). Without loss

of generality, we may suppose that c{ ^ 0. Let G : = TH(.*iOC2X3 + Jc^ATyjcy). Then

[£"[_,], G] = c, T H ( J : 2 ^ 3 +x2'Xy) - c 2 T H (^ i^3 ' ) + c3TH(xvx2-)-

Therefore,

4 ^ x3) for all t e H.

By Lemma 2.2, [E, G] i nil(Jf). Notice that G e J j n / o . This contradicts the
assumption that £e<t>. Hence £[_u = 0, E e Jf0- So * c J%>, as required. •

Before proving the following main theorem we recall the notation introduced in the
beginning of Section 2.

THEOREM 3.4. The natural filtrations of finite-dimensional odd Hamiltonian su-

peralgebras are invariant under f-isomorphisms.
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PROOF. Le tm,m' e N \ { 1 , 2 } , £ € Nm,£' e Nm'and<p :Jf(m\t) -
an f-isomorphism. Observe that <p preserves 22-gradations. By the definition of fi, it
is clear that <p(£l) = £2'; furthermore, <p(F) — F". By Proposition 3.2 and the definition
of O, <p(4>) = $ ' . This and Proposition 3.3 ensure that <p(JV(m; £)0) = J*?{m'\ r')0.

As

we may prove, by induction on i, that <p(,^f (m; £),) = ^ ( m ' ; £'), for all i > — 1. D

COROLLARY 3.5. The filtration of finite-dimensional odd Hamiltonian superalgebra
Jf is invariant under Aut J4f.

PROOF. This is a direct consequence of Theorem 3.4. •

As a direct application of Theorem 3.4, we establish the following property of
isomorphisms of odd Hamiltonian superalgebras.

By Theorem 3.4, we may easily prove the following

COROLLARY 3.6. Let <j> and <p be f-isomorphisms ofJf(m;t) to Jf(m'\f). Then

<f> = <p if and only if<f>\jg[_l} = <p\jq_,v

Employing Theorem 3.4, we may prove that m and t_ are intrinsic for the odd
Hamiltonian superalgebra Jf(m;t), that is, we may give a classification of odd
Hamiltonian superalgebras. For r, f € Nm, r, f are said to be equivalent and denoted
by l ~ £' if there exists a permutation a e Sm such that taW = t[ for all 16 Jo-

THEOREM3.7. Supposethatm, m' e N \{1 , 2 ) , r e Nm, r' 6 N"1'. ThenJt?(m;t) =
Jt?(m'; £') if and only ifm = m' and t_ ~ r'.

PROOF. Assume that </> : Jf(m;t) —> Jf (m';?') is an isomorphism of Lie super-
algebras. Then Theorem 3.4 ensures that </> induces canonically an isomorphism of
quotient spaces: Jif(m\t)/Jif (m;t)0 -> Jf(m';tJ/Jf(m';O0. Note that

dim(Jf?(m;t)/je'(m;t)0) = dimJff(m;t)i-i] = 2™.

It follows that m — m'.
Without loss of generality, we may suppose that tx > • • • > tm and t[ > • • • > t'm.

Assume on the contrary that t_ ̂  £'. Then we may suppose that for some k e Yo,

(8) tk > t'k but tj — tj for k <j < m (maybe k = m).
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We assert that ^ ( m ; * ) ^ , ^ , 2 <^( w ^V*-2r According to (8) and the definition
of J4?{m\ t), the implication 'D' is clear. Notice that

TH (*<>**>) e Jf(m;t)^_2] but TH

So our assertion holds and therefore, dim Jf(m;t). ,- > dim Jf{m\ r'). ,;_2|. On
the other hand, Theorem 3.4 implies that

(9) <j)(Jf(m;t)i) = #e(m;f)i for all / > - 1 .

From this we see easily that d im^(m; £)[,-] = dimM'im; r/)[,-] for all i > — 1. In
particular, dim JF(m;£)[p'i_21 = dim J f (m;£')(/,<;_2]' contradicting to (9).

The converse implication is automatic. The proof is completed. •

4. The automorphism group of J*¥{m, m; 1)

Recall that a Lie superalgebra L = LQ® LJ over F is called restricted, if the Lie
algebra Ljj is restricted and the Lo-module Lj is restricted (see [13]). The proof of
Lemma 4.1 is analogous to [18, Theorem 4.4.5 (2)] or [23, Theorem 5].

LEMMA 4.1. Jff(m; t) is restricted if and only ift_ = L

Let sf be a finite-dimensional superalgebra over F. Denote by Aut srf the (even)
automorphism group of srf. If a e Aut j / and D 6 Der^", then D" := aDa~l is
again a superderivation of srf. It is easy to see that b : D ~> £)" is an automorphism
of Der ̂ . Suppose that «S is a Lie subsuperalgebra of Der stf'. We call a € Aut J ^
admissible to ^ if cr(^) c =2. Put Aut(^ : .2) := [a € AutJ^ | or(^) C B\.
Then Aut(^ : £?) is a subgroup of AutJ?/, and is referred to as the admissible
automorphism group of srf (to i2). Obviously, <t> : Aut(j^ : ££) -> Aut J2,a i->- a \s

is a homomorphism of groups. In this section, we only deal with the restricted
odd Hamiltonian superalgebra Jf(m;l), and therefore adopt the convention % :—
A ( m , w ; l ) , ^ r : = ^ ( w ; l ) a n d W := W(m,m;l).

The main result of this section is the following theorem.

THEOREM 4.2. Let <t> : Aut(^ : Jtf) -*• AutJV, a h> a\x. Then <t> is an
isomorphism of groups.

To prove it, we need the following lemmas. First we introduce some notation. Let
M2m (^ ) denote the F-algebra consisting of all 2m x 2m matrices over %, pr(0, and pr,
be the projections of ̂  onto^o] = F and %, respectively. For A = (a,̂ ) e M
set pr,0| A := (pr,0,(a,j)) and pr, A := (pr,(aiy)).
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LEMMA 4.3. The following statements hold:

(i) Let A 6 M ^ C ^ ) . Then A is invertible if and only */pr[0] A is invertible matrix
over F.

(ii) Suppose that {Eu...,E2m\ is a <%-basis of W. Then { p r ^ ^ E , ) , . . . ,
pr(_,j(E2m)} is an $-basis of W[_i], where W[-n " the projection of W onto Wj_ij.

(iii) Suppose that <p e Aut Jf? and [G,•• \ i € Y] C Jf is a <%-basis of W. Then
{<t>(Gi) \i e Y] is also a <% -basis of W.

PROOF, (i) Clearly, A = pr(0] A + pr, A. Since every element of % is nilpotent, so
is every 2m x 2m matrix over ^ . From these facts one may easily prove (i).

(ii) Suppose that (£>, , . . . , D2m)T = A(E, E2m)T, A e M ^ C ^ ) . Then
(Dl,...,D2m)T = (pr(0]A)(pr(_1)(£1) pr[_1](£2m))T. Since {D, D^} is
an F-basis of W(_i], so is {pr^Ei), ..., pr^uC^m)}-

(iii) By Corollary 3.5, the natural filtration {J%} is invariant under (p. Thus </>
induces canonically <j> e GL(Jf?/J?o). Denote by G, the image of G, under the
canonical map J4? -> Jf?/Jf0. Then {G, | i € Y) is an F-basis of Jf/Jf?0- Assume
that

)T = A(DU . . . , D^f, A 6 M

Decompose A = pr[0] A + pr, A. We obtain that

= (pr[0] A)(D! ~Dlm)T.

This implies that pr[0] A is invertible. By (i), A is invertible and therefore {</>(G,) |
i € Y] is a ^-bas is of W. •

LEMMA 4.4. Suppose that <j> € AutJf. Then there exist y7 e % with deg(yj) =
ix(j) such that (0(D,))(y/) = Sy + <5/i<5,i for i,j € K. In particular, the matrix

€J' w invertible.

PROOF. Le t ; e K. By Lemma 4.3 (iii), {^(D,) , . . . , < )̂(D2m)} is a <^-basis of W.
Thus we may suppose that 0(TH(JCIJC;-)) = IC^i a ; / ^ ( A ) . where a;/ e ^ . From
Lemma 4.3 (ii), we see easily that a,/ 6 %. Using (1), we obtain that

[ 2m[ 2m "I

0(A), X>j /0(A) =
/=i JOn the other hand, by Lemma 2.6 (i), TH(JCIJC;) = XjDy + i—l^^Dj' and therefore,

(11)
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Comparing (10) and (11), one gets (p{Di)(ajy) = <5y + Sji8n. Put y; := ajV for

j 6 Y. We see that 4>(D,)(.yj) = 8U + SJXSn, yj e % and degty) = deg(a,iO =

jLi(/') + M(l') = /-*-(/)> a s desired. •

PROOF OF THEOREM 4.2. Let a e A u t ( ^ : J f ) . Assume that cr|jr =
We proceed by induction on \a\ + \u\ to show that a(x(a)x") — x(a)x". Note that
W[_i] = J^f-ij. We obtain that

D,x, = «5y = CT(^) = CT(D,X,) = £>;(a(jc,)) = D,(cr(x,)), i,y 6 Y.

This implies that xt — a{xi) e F. Since o{?frx) c ^ 1 , it follows that cr(;c,) = JC(-,
/ € Y. Suppose that |a | + \u\ > 1. Then by induction hypothesis, we obtain

D,(o-(x(oV) - x(a)xu) = a(Di(x(a)xu)) - Di(xia)xu) = 0 for all i € K,

and therefore <T(XWXU)-XWXU e F. ThusCT(x(or)x") =^ ( a ) x " . Consequently^ = 1
and <f> is injective.

We next prove that <t> is surjective. Let 0 6 Aut J$?. By Lemma 4.4 there exists
yj e W, with deg(yy) = /x(j) such that (0(D,))(y;) = 5y + ^i5,-i. Assume that

^y=i flyOj, ay e 9/'. Then we have the matrix equation (4>(Dj)(yj)) =
j) and therefore,

(By +SjlSn) = (4>(Di)(yj)) = prm(<p(Di)(yj)) = pr[o1(cly)pr[O)(D1-)'J-)-

Thus pr(Oj(D,-yj) is invertible. Define the endomorphism a of ^ such that

(12) er(;c,) = >>; for all / 6 Y.

Then CT is even. We claim that a e Aut<&\ From (12) it is easy to see that a leaves
the natural filtration of % invariant, that is, a{%) C % for all i > 0. Therefore,
it induces linear transformations CT, of ^ / ^ + i , i > 0. Note that the matrix of ox

relative to F-basis \xx + %, •• -,x2m + <fy2) is just (pr[0](D,y;)). It follows that CT, is
bijective. Proceeding by induction on i > 1, one may prove that <T, is bijective. Now
our claim follows.

Note that cr(D,)ty) = ( o r A ^ " 1 ) ^ ) = tr(DtXj) = «5y = </>(A)(y;) for all
i,j e Y. Since {yj \ j e Y] generates <%', we conclude that cr(D,) = </>(D,), i e Y.
By induction on it, we may prove that o\#>w = <j>\jt?lt], k > — 1, that is, o\je = <p. The
proof is complete. •

To prove the next theorem, we establish the following lemma.

LEMMA 4.5. The natural filtration offy is invariant under automorphisms o
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PROOF. Since Der <2C = W, we have A u t ^ = Aut("^ : WO- By [25, Theorem 1],
the natural filtration of W is invariant under Aut W. Note that d{aDt) = cr(a)cf,
a 6 A u t ^ , a e %, i e Y, which implies the desired result. •

Following [20], we introduce some notations. For X = °U or 3tf', put

Aut*X = {ae A u t X | <r(Xm) C XU], j e 1);

Aut, X = {a e AutX | (a - 1)(X,) C X,+J, j e I], i > 0.

According to Lemma 4.5 and Corollary 3.5, the natural filtration of X is invariant
under AutX. Thus Aut* X < AutX and Aut, X < AutX, i > 0. We call AutoX >
Aut] X > Aut2 X > • • • the standard normal series of AutX.

Set Aut*C2f : Jf) = A u t * ^ D A u t ( ^ : Jif) and A u t , ( ^ : Jf) = Aut, ^ n
A u t ( ^ : J4?). We call Aut*(^ : J4?) the homogeneous admissible automorphism
group of <&\ and Auto(^ : JV) > AutiC^C : Jf?) > • • • the standard normal series

THEOREM 4.6. Suppose that <t> is defined as in Theorem 4.2. Then

(i) <t>(Aut,(^ : Jff)) = Aut, Jf, i > 0;
(ii) <t>(Aut*(^ : Jf)) = Aut* Jif;

(iii) Auti Jf is a solvable normal subgroup of Aut Jif;
(iv) Aut Jf = Aut, Jif xi Aut* Jf.

PROOF, (i) We first prove the inclusion ' c ' . Let a e Aut,(^ : Jf). Then
a"1 e Aut,(^ : Jf). York e Noand/ e %, we may suppose that o~xf =f + / ' ,
/ ' e $r,+4,cr(D;/) = Djf +f"J" € ^-+ 4_,. By Lemma 4.5, a (Djf) e %+k_x.
Note that

a(Dj)(f)=aDj<r-l(f) = aDj(f

= a(Djf +Djf) = Djf +f"+a(Djf).

We obtain that CT(D;)/ = £>;/ (mod ^ + l l _ i ) . This implies that o(Dj) = Dj
(mod W,_i), ; € K. Notice that o(aDj) = a ( a ) a ( D ; ) , j e Y, a e %. We
may obtain that a(aDj) = aDj (mod W,+;_i). Therefore CT 6 Aut, W. Thus cr G
Aut, W n Aut Jff c Aut, ^T, and O(Aut , (^ : MO) C Aut, W.

To prove the converse inclusion, suppose that <p € Aut, Jif, i > 0 and set
a := $-'(<?). Given; e Y, pick it e Y\j'. By Lemma 2.6 (i), TH(xk,xj) =

Dk + {-\yVxnDy. Then

( 1 3 ) j

— <p(TH(xklxj))

( i ' ) ( k ' ) < j ) < J ) r ( m o d Jfd-
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Noticing that <p e Aut, Jff and W(_i] = «#f_i], we have

(14) <p(Dk) = Dk + Eu <p(Dj.) = Dr + E2, where £ , , E2 e .*?_,.

ByLemma4.5, it is easy to see that a(XJ)EX, a(x*,)£2 e Wt. Thus we obtain from
(13) and (14),

-Xj)Dk + ( - D ^ W t , ) - **-)£>,. = 0 (mod W,).

Since k ^ j ' , we obtain cr(x;) == Xj (mod ^ + i ) . Now using induction on \a\ + |u|,

one may prove that o(x(a)x") = x(a)xu (mod %a\+M+i). This means a e Aut, ^

and therefore a e Au t , ( ^ : Jff). Hence 4>(Aut(-C2C : Jif)) D Aut, J f .

(ii) The proof is completely analogous to (i), therefore is omitted.

(iii) Using the invariance of the natural filtration (see Corollary 3.5), one may

verify directly that [Aut, J f , Aut,- Jff] C Aut,-+J- Jt?, i,j > 0 (see [19, page 210]).

From this we see that the normal series Auti Jf? > Aut2 Jf > • • • is abelian (that

is, Aut, Jf/ Auti+i Jf? are abelian groups, for all i > 1), and reaches 0. Therefore

Au^ Jf is solvable.

(iv) Let <p e Aut Jf. Then there exists <p0, <px e Romf(Jf, Jtf) such that <p = <p0 +

<px and (po(Jf[j]) C J^j], <Pi(J?j) C Jfj+uj > - 1 . As the filtration of Jf is invariant

under AutJff, we have <p0 e A u t * ^ . Therefore, <PQX(J> = 1 + <PQX<P\ e Auti Jtff.

Hence (iv) holds. •
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