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Abstract

Let J#(m;1) be the finite-dimensional odd Hamiltonian superalgebra over a field of prime charac-
teristic. By determining ad-nilpotent elements in the even part, the natural filtration of J# (m;1) is
proved to be invariant in the following sense: If ¢ : J€(m:f) — F€(m';¢') is an isomorphism then
(I (m; D) = F(m'; ') forall i > —1. Using the result, we complete the classification of odd Hamil-
tonian superalgebras. Finally, we determine the automorphism group of the restricted odd Hamiltonian
superalgebra and give further properties.

2000 Mathematics subject classification: primary 17B50; secondary 17B40.

As is well known, filtration structures provide useful tools in the research of Lie
algebras and Lie superalgebras. In particular, they play an important role in the clas-
sifications of finite-dimensional simple modular Lie algebras and finite-dimensional
simple Lie superalgebras of characteristic zero respectively (see [2, 5, 7, 21, 17]).
We know that Cartan-type Lie algebras and Lie superalgebras possess natural fil-
tration structures. By means of invariance of filtrations one can characterize intrin-
sic properties of Cartan-type Lie algebras and Lie superalgebras and determine the
automorphism groups (see [22, 16, 24, 26]). In the case of Cartan-type modular
Lie algebras, it is proved in [10] that the filtration of X (m : 1) is invariant under
AutX(m : 1), where X = W, §, H or K, and the same conclusion is obtained in
{6] for all Cartan-type Lie algebras; by means of ad-nilpotent elements, the natural
filtrations of infinite-dimensional Cartan-type Lie algebras are proved to be invariant
under the automorphism groups (see [4]). In the case of characteristic zero, the natural
filtrations of infinite-dimensional Lie algebras X (m) is invariant, where X = W, S, H
or K (see [14]). In [23] the author discussed the simplicity and restrictiveness of the
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four classes of finite-dimensional modular Cartan-type Lie superalgebras. In [24] and
[25], the invariance of natural filtrations of Hamiltonian superalgebras, generalized
Witt superalgebras and special superalgebras are determined by means of image-space
dimensions and ad-nilpotent elements, respectively.

In this paper, we discuss the finite-dimensional odd Hamiltonian superalgebra
% (m; ) over a field of positive characteristic. In the case of characteristic zero, the
infinite-dimensional odd Hamiltonian superalgebra 5% (m, m), which is defined by odd
Hamiltonian differential forms, is even transitive irreducible simple Lie superalgebra
(see [8, Theorem 4.11). This Lie superalgebra was interpreted as the Lie superalgebra
of polyvector fields on an m-dimensional space (see [1]). It was introduced in [11] by
Leites, and was later called Léites superalgebra (see [9]). Paper [12] gave a description
of the outer derivations of this superalgebra.

We denote the natural filtration of J# (m;t) by {# (m;t),i > —1}. An isomor-
phism between any two odd Hamiltonian superalgebras is called f-isomorphism. In
Section 2, we determine the ad-nilpotent elements with certain properties in the even
part of 5 (m;t). The results are used in Section 3 to prove that the filtration of
A (m; 1) is invariant under any f-isomorphisms; that is, if ¢ : J2(m;t) - F#(m’;t)
is an isomorphism then @(J (m;1);) = F(m’;t’'); for all i > —1. As a result, we
complete the classification of odd Hamiltonian superalgebras. In Section 4, we first
prove the automorphism group of the restricted odd Hamiltonian superalgebra J# is
isomorphic to Aut(%Z : 5), the admissible automorphism group of the base superal-
gebra % . Then it is proved that the so-called standard normal series of Aut J# is sent
to the one of Aut(% : ). More detailed properties of Aut # are also discussed.
The works in this section are motivated by the results and methods involved in Lie
algebras (see [19, 20, 4]), and based on {25, Theorem 1].

1. Preliminaries

1.1. Notation and conventions The following notation and conventions are used
throughout this paper:

e [ denotes the underlying field of characteristic p > 2, Z, the ring of integers
modulo 2; N and Ny the positive integer set and nonnegative integer set, respectively.
Fixm € N\ {1, 2}.
U(m) denotes the divided power algebra over F with the F-basis {x® | @ € N7}.
A(m) denotes the Grassmann superalgebra in m variables X4, Xm42, . . -, X2m-
Denote the tensor product by A(m, m) := U(m) ®¢ A(m).
We abbreviate g ® f to gf where g € U(m), f € A(m), and x" to x;, where
g = (8”, 8,’2, e 8,-,").

o SetYo:={1.2,....m}Y;:={m+1,m+2,...,2m}and Y :=YyNY,.
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o SetBy:={(i1,....0) Im+1=<i<ip<-<iy <2m}, B(m) :=J;_ B
where By := @. For u € By, put |u| := k, {u} := {iy, ..., ik}, x* 1= x4X; -+ Xy,
x? =1

e Obviously, {x®x* | @ € N”, u € B(m)} is an F-basis of A(m, m).

e Define Dy, ..., Dy, to be linear transformations of A (m, m) such that

x@—edyu ieY

Di x(a)x" =
( ) [x(“)ax“/ax,- ieh,

where x? := 0 whenever 8 ¢ NI

e If deg(x) occurs in this paper, we always regard x as a Z,-homogeneous element
and deg(x) the Z,-degree of x.

e Define
o 0 ie Xy
[ :i=1_
H 1 iel.
o Fort=(,...,tn) € N", putmw := (my,...,m,) where m; := p“ —~ 1,i € Y,
and A(m; 1) :={e e NJ |a; < m;, i € ).
e Set

/o i+m i€Vl
i—m iel.

o Leté i =|n|+m= Zieyop"’.

1.2. The construction processes We know that A (m, m) is an associative superal-
gebra with a Z,-gradation induced by the trivial Z,-gradation of U(m) and the natural
Z,-gradation of A(m). The following formulae hold in A(m, m):

o+
x@x® = ( ﬁ)x(“+ﬂ), a, B e Ny;
a

XiXj = —X;X;, i,j €1
x@x; = xx @, a e N7, jen.
Clearly, Dy, ..., D,, are superderivations of A(m, m). Let
W(m, m) = {Za,-Di ai€ A(m,m), ieY}.
icY

Then W(m, m) is an infinite-dimensional Lie superalgebra (see [23]), which is a
subalgebra of Derg(A(m, m)). We note that W(m, m) is free A(m, m)-module with
a A(m, m)-basis {Dy, ..., Dy, }.
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The following formula holds in W(m, m):

(1) [aD, bE] = aD(b)E — (—1)*eeD B hp(g) D 4 (—1)%EP b gD E).

Consequently,

1) [aD;, bD;] = aDi(b)D; — (—1)*8P)4e2)p D, (a) D,

wherea,be A(m,m), D,E € W(m,m),i,j € Y.
From the definition of A (m; t), we obtain that

A(m, m;t) := spang{x “x“|a € A(m;1), u € B(m)}

is a finite-dimensional subalgebra of A(m, m). Set

W(m, m;t) = [Za,Di a;, € AN(m,m;p), i € Y],
ieY
then W(m, m; ) is a finite-dimensional subalgebra of W{m, m) (see [23]).

Define Ty(a) = Y, ,(—1)*D*@D,(a)D;, where a € A(m, m;1). Then Ty is
an odd linear mapping from A(m, m;t) to W(m, m;¢), that is, Ty(A(m, m;1)y) C
W(m, m;t)y,1.for8 € Z,. Let #(m;t) = {Tu(a) | a € A(m, m;1)}. Then 3 (m; 1)
is a subalgebra of W(m, m; ), which is called odd Hamiltonian superalgebra (see [8,
page 27]). We have the following formula (see [8, page 28]):

(2 [Tu(a), Tu(b)] = Tu(Tu(a)(®)).

Recall the natural Z-gradations of A(m, m;t) and W(m, m; 1)

&
Am,m;t) = @A(m, m; ), Wwhere

=0
A(m, m; D)y, = spang (x “x“ | || + |u| = i, @ € A(m; 1), u € B(m)};
£-1
W(im,m;t) = EB W(m, m;t);;, where

i=—1

W(m, m;L)m = spanm{aj Dj ] a; € A(m, m;L)[m],j € Y}

It is easy to verify that 7 (m; ) is a Z-graded subalgebra of W(m, m; )

§-2
H(m;t) = @%"(m;g)m, where

i=-1

H(m; Dy = H(m; ) N Wim, m; Dy
= {Tu(a) | a € A(m, m; Dy}
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Set W(m, m;1); = €;,; W(m, m; ), 5 (m; 1) = @;»; 7 (m; 1)y;). Recall that
{W(m,m;1);,i > —1} and {5#(m;1);,i > —1} are said to be the natural filtrations
of W(m, m; t) and 5¢ (m; 1), respectively.

From now on, we frequently abbreviate W(m, m;t) and 5 (m;t) to W and 57,
respectively.

2. The ad-nilpotent elements in J%5

Let L be a Lie superalgebra and S a nonempty subset of L. Recall that an element
x of S is called ad-nilpotent, if adx is a nilpotent linear transformation of L. We
denote by nil(S) the set of ad-nilpotent elements in S.

For ## (m;t) where m € N\ {1, 2} and ¢ € N™, define

Q= (E € nil(J%) | (ad E)(2F) C nil(HF)},
I :={E enil(s%) | (adE)(Q) C Q},
¢ :={E € 5 | (ad E)(J4 N HF) C nil(SF) }.

Letm’ € N\ {1,2)},¢ € N™. For £ (m'; t'), the corresponding sets are denoted by
', I'" and @', respectively.

Proceeding analogously to [18, Theorem 1.3.1] or [3, Theorem 2.1}, we may prove
the following lemma.

LEMMA 2.1. Let L be a finite-dimensional Lie superalgebra, and S a Lie subset of L,
that is, S is closed under the multiplication of L. If S C nil(L), then spang § C nil(L).

For Z-graded Lie superalgebras we have the following lemma.

LEMMA 2.2, Let L be a Z-graded Lie superalgebra. Suppose that x € nil(L).
Then mz(x) € nil(L), where mz(x) is the nonzero Z-component of x possessing the
minimal Z-degree.

PROOF. See [25, Lemma 2]. (I}
Now we return to the case of J#(m; 1).

LEMMA 2.3. Suppose that a € A(m, m;t). Then Ty(a) € nil(J#) if and only if
Tu(a) is a nilpotent transformation of A(m, m; ).

PROOF. Let b € A(m, m;t). Applying (2) we obtain by induction on k that
(ad Tu(@))*(Tu(®)) = T ((Tu(@)“®)) forall k € N.

Combining this with the fact Ker Ty = [F - 1, we obtain the desired result. O
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Since 47 is finite-dimensional, it is clear that J4_;; U J# C nil(¢). For the
ad-nilpotent elements of ), we have the following result.

LEMMA 2.4. Let i,j € Y. Then Ty(x;x;) € nil(J) ifand only if i’ # j.
PROOF. By the definition of Ty, we have
?3) Tu(xx;) = (=DFOO0y; D, 4 (—1)*Dx; D;..

Clearly, x! = xj’-’ = 0. Suppose that i’ # j. Itis easy to see that (x; D;)P =
(x;Dj:)? = 0. From (1'), we have [x; Dy, x;D;;] = 0. In combination with (3), we
have (Ty(xx; ))? = 0. By virtue of Lemma 2.3, we obtain that Tu(xixj) € nil(HF),
as desired.

Conversely, assume that Ty (x;x;) € nil(J#) with i’ = j. Without loss of generality,
we may assume that i € Y. By (3), Tu(x;xy) = x+ Dy — x;D;. Note that

(Tu(xix;)*(xs) =x; forall k e N,

Therefore, Ty (x;x;) is not a nilpotent transformation of A (m, m; t), which contradicts
Lemma 2.3. O

LEMMA 2.5. Suppose that E[o] € nil(.}fim) and [E[o], E[O]] = 0. Then E[o] + E, €
nil(J%) for all E; € J4.

PROOF. Clearly, {E|q} U 4 is a Lie subset of 5, in which all elements are ad-
nilpotent. By Lemma 2.1, spang({ Ejo)} U ##]) C nil(5¢). In particular, Ey + E; €
nil(J€) for all E, € J4. O

We shall prove that Q@ C J#. First we make the following preparatory remarks.

Consider ##{,-module J_,;, and denote by p the corresponding representation,
that is, p(E) = (ad E) |s_,, E € H. Fix the F-basis {Dy, ..., Dam} of H{_y.
For E € /), we identify p(E) with its matrix with respect to the fixed basis. Let
pl(m, m) denote the general linear Lie superalgebra of 2m x 2m matrices over [
(see [15]). Let

p(m) = [[‘é —iT] € pl(m, m) ‘ B=B"C= —CT}.

Then p (m) is a subalgebra of pl(m, m) (see [8, page 16])).

In the following e; denotes the 2m x 2m matrix having 1 in (i, j ) position and 0’s
elsewhere. The following lemma only needs straightforward verifications, which are
omitted.

https://doi.org/10.1017/51446788700009368 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009368

7 Finite-dimensional odd Hamiltonian superalgebras 119

LEMMA 2.6. The following statements hold:
() Tulxpx;) = (=DHOOROY D + (=1)*Dx, Dy, i, j € Y.
(i) p(Tuxix;)) = (—D*Pe; — (=1)*OrDe¢;y, i, j € Y.
(iii) p is faithful.
(iv) Im(p) = p(m).
(v) If E € nil(#y)) then p(E) is a nilpotent matrix.

THEOREM 2.7. Suppose that E € nil(94) and ad E(J€) C nil(J¢). Then E € 54,
that is, Q@ C I N 5.

PROOF. Decompose E = E|_) + E,, where E_y; € J4_;) N G, Ey € H5. Let
E_y = ):,.Eyo ¢; Tu(xy), ¢; € F. Assume that Ej_; 7 0. Without loss of generality
we may assume that ¢, = 1. Applying (2), we obtain

[E-, TG ®Vx1)] = = Tulxixy).

By virtue of Lemma 2.4 and the equation above, we get [E|_y}, Tu(x ®*Vx,))] ¢ nil(5#).
Now Lemma 2.2 shows [E, Ty (x®Vx,. )] ¢ nil(J¥), contradicting the assumption.
Hence E|_;; =0, E = Ej € J4,.

Assume that E = Ey + E;, where Ey) € 8y N 35, E; € 54 N . By
Lemma 2.6 (iv), p(E|q)) € p (m)g. Thus we may suppose that p(Eg)) = [" 4T ]

Assume that Ejg) # 0. According to Lemma 2.6 (iii), A is a nonzero matrix. Put
A = (¢j)mxm- Suppose that the I-th row is the leading nonzero row and the ¢-th
column is the leading nonzero column.

We treat two cases separately.

Case(i): l<t.

Letk=max{j € Yo |c; #0}. Thenl <t < k.

Assume that I = k. Thenl = t = k and ¢;; # 0. Obviously, A is of the following
block form A = ["" °] where Ay is an ! x [ matrix with (I, )-entry ¢; # 0 and 0
elsewhere. So the matrix p(E(g) is not nilpotent. By Lemma 2.6 (v), E) is not ad-
nilpotent. Then by Lemma 2.2, E is not ad-nilpotent. This contradicts the assumption
that E € Q C nil(J#). Thus! < k.

Obviously,

k
p(Ey) = ZQJ e + Z ZCIJ € — ZCU € — Z Zcu Cjrir
i=l+1 j=t i=l+1 j=t

Direct computation shows that

[P(E[ol) €k — el’k’]

= cuey — E cjey + E Cik€it — Ceepr + E cjejpy — E Cix€ri-

i=l+1 i=l+1
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This matrix possesses the block form [B" °] where By, is an [ x [ matrix in which (I, [)-
element is ¢, # 0 and the others are all 0. Therefore, the matrix [p(E(q)), e — erx]
is not nilpotent. By Lemma 2.6 (ii), ey — ey = p(Ty(xpx;)), and the matrix
P([(Eo), Tu(xxx;)]) is not nilpotent. In combination with Lemma 2.6 (v), we see that
[Ei0), Tu(xpx;)] is not ad-nilpotent. Now Lemma 2.2 ensures that [E, Ty (xpx;)] ¢
nil(J¥). This contradicts the assumption that E € Q.

Case (ii): 1> 1.
Letk =max{i € Yy|c;, #0}). Thenk>1>t, a,, #0and

p(E[O]) = Zcueu + Z chjel] chez’ - Z Zcij €jrjre

J=t+1 i=l J=t+1 i=l

By Lemma 2.6 (ii), p(Tu(x,xt)) = ey — epp. Thus
[P (E), p(Tu(xpxi))]

k
= E Cit€ik — Ckt€yr — E Cyj €y — E Cislpy - Ciepp + E Cij €jry.
i=l

j=t+1 j=t+1

This matrix is of the following form [Ao" :], where A,, is a ¢t X ¢t matrix whose (¢, 1)-

entry is —c, # 0 and remaining entries are 0. Proceeding analogously to Case (i), we
may prove that [E, Ty(x,x,)] is not ad-nilpotent, contradicting the assumption that
E € Q.

We conclude that Egy =0, E = E, € J£. O

3. Natural filtration and classification

For the sake of simplicity, an isomorphism between two odd Hamiltonian superalge-
bras will be called an f-isomorphism. In this section, we shall prove that the natural fil-
tration of % is invariant under f-isomorphisms, that is, if ¢ : S (m; 1) — I (m'; 1)
is an isomorphism of Lie superalgebras, then ¢(5¢(m;t);) = F#(m’; '), for all
i>—1,wherem,m e N\ {1,2},t e N", ¢ e N™.

LEMMA 3.1. Let k,l € Y. Then Ty(x*¥x,) € Q ifand only ifk # 1.

PROOF. Assume that k = [. By (2), [Tu(xx), Tu(x®Yx;)] = — Tu(xixy). By
Lemma 2.4, we have Ty(xxp) € nil(5#). Therefore, Ty (x®9x,) ¢ Q.

Conversely, let k # I. Let E = E_;) + E, be an element of J#, where E|_;, €

-1, Eo € 5. Assume that E_;; = )., ¢ Tu(x;), where ¢; € F. Put D :=
[E(-1}» Tu(x*x;)]. Then

(4 D =[ce Tu@xe) + a Tulx), Tux®xp)] = —cp Tuxexe) + ¢ Tu(x ).

ieY
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By Lemma 2.4, Ty(x;x;) and Ty (x ) are all ad-nilpotent elements. Applying (2),
we obtain that [Ty (xx;), Tu(x®¥)] = 0. So S := {0, Tu(xexr), Ta(x®*)} is a Lie
subset of #. By Lemma 2.1 and (4), we have D € nil(4#). Obviously,

&) [E, Tu(x®*x,)] = D + [Eo, Tu(x**x,)],

where [Ey, Ty(x®¥x,)] € 7. Note that k # L. It is easy to verify that [D, D] = 0.
By virtue of Lemma 2.5 and (5), we get [E, Tu(x*Yx;)] € nil(s#). Hence
Tu(x®9x,) € Q. |

PROPOSITION 3.2. AN J%E =T.

PROOF. 1t is clear that 5 N s C nil(#5). By Theorem 2.7, Q C 44 N %5
and therefore, [ N 575, Q] C [ N I3, 74 N G C 56 N 55 C Q. Thus
HANHCT.

To prove the converse inclusion, we suppose that E € " and decompose E =
E[_]]+Eo, where E[-]] € jf[’_”, Ey € '}ﬁ). Assume that E[_” ;é 0. Since E[-]] € %,
without loss of generality, we may suppose that E_;; = D; + E;"zz ¢; Dy, where
¢; € F. Direct computation and application of Theorem 2.7 show that

(6) [E, Tu(x®'x2)] = Tulaixz) + [Eo, Tu(x®Vx2)] ¢ Q.

By Lemma 3.1, Ty(x®"xy) € Q. Moreover, (6) implies that E ¢ T, which is a
contradiction. So E[_;; =0, E = E, € J%.

We next decompose Ey = E = Eo + E,, where Ejo) € ), E\ € J#. Assume
that Eq # 0. Since Ep € J€, we may assume that Ejg) = ) ¢y Tulxix;j),
where ¢; € F. Put

i,jEYo

l:=min{i € ¥, | ¢;j, # 0 forsome j, € Y},
t:=min{j € ¥, | ¢;,; # 0 forsome i, € Y}.

Case (i): l<t.

Letk:=max{j € Yo | c; #0}. Then! <t <kand ¢y #0.

If | = k, proceeding similarly as in the proof of Theorem 2.7, we may prove that E
is not ad-nilpotent, which gives a contradiction.

If | < k, then

k

Ey = Z cj Tulxix;) + Z Z ¢ij Tulxix;:).

j=t j=l+1 j=t
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Let D := [TH(X(ZC")X(/), E[o]]. Then

D = [xyxy Dy — x*) Dy, Eg)]

k m
= cy Tulxxpxy) — Z ey Tu(x®9x;)) + Z Cik T (xexpx;).

j=t j=l+1

Therefore,

k m
[Tu(xe), D) = —cue Tulxrxs) + ) oy Tulxixy) — Y ca Tulerxy).

j=t Jj=l+1
By Lemma 2.6 (ii), we have
k m
P([Tu(xp), DY) = —culey — ey) + Z cj(ejx — ewj) — Z ciclen — enr).
=t j=ix1

This matrix is of the following block form Ao" :], where Ay i1s an [ x [ matrix

whose (I, l})-entry is —cy;, # O, but other entries are 0. Consequently, the matrix
P ([Tu(xy), D]) is not nilpotent. This and Lemma 2.6 (v) show that [Ty(xs), D]
is not ad-nilpotent. By Lemma 2.2, [Ty(xy), [Tu(x*¥x;), E]] is not ad-nilpotent.
Furthermore, we obtain that

N [TuG®9x), E] ¢ Q.

On the other hand, by Lemma 3.1, Ty(x*¥x,) € Q. Hence (7) implies that E ¢ T,
which is a contradiction.

Case (ii): 1> t.
Letk :=max{i € Yy ] ¢, #20}). Thenk >1 > ¢, ¢;; # 0 and

k m m
Eoy =Y cuTulxixe) + Y Y cj Tulxx;).
i=l

i=l j=t+1

Put G := [Ty(x*’xy), Eo;]. Using (2) we compute

k m
2, 2%
G= E it Tu(xxex;) = i Tu(x ®x,) ~ E Cyj Tu(x! ’)xj')-
i=1 j=t+1

Therefore,

k m
[T(x,), G = s Tu(xxs) = D ¢ Tulxex) + Y cy Tulxx;).

i=l J=t+1
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By Lemma 2.6 (ii),

k m
p(Tulxr), Gl) = culen — epr) — Z cir(eri — erw) + Z Ckj (ejt - er’j’)-

i=l J=t+1

This matrix is of the form [";‘ 2], where By is an [ x | matrix whose (I, [)-entry is
¢ # 0, but other entries are 0. Similar to (i), we obtain that [Ty (x®’x,), E] ¢ Q.
By Lemma 3.1, Ty (x®9x,) € Q and therefore E ¢ T, a contradiction.

Combining (i) and (ii), we conclude that Ejg) = 0 and E = E, € J#. This proves

that ' C 54 N 4. a
PROPOSITION 3.3, J% = .

PROOF. The inclusion 74 C @ is clear. So, we need only to prove the converse
inclusion. Assume that E = E_;; + Ey € ®, where E;_y; € Sy, Ey € H5. Let
E =Y iy ¢iTulx), ¢; € F. Assume that E;_;; # 0. Then there exists some k € Y
such that ¢, # 0. If k € Y, we may let k = 1. Put D := [E;_yj, Tu(x“*"x)]. Then
we have

D = [c; Tu(x1) + ¢ Tulxr), Tu(x®Vxy)]

= ¢, Ta(x®?) — ¢ Tu(x1x1)

= XDy — cp(xy Dy — x Dy).
Therefore, D'(x;) = cix; for all | € N. Thus D is not nilpotent as a linear trans-
formation. By Lemma 2.3, D is not ad-nilpotent. Now Lemma 2.2 shows that
[E, Ty(x®Vx))] is not ad-nilpotent. Observe that Ty(x®Vx,) € S N %. This
contradicts the assumption that E € . Hence E|_;; = ZieYo ¢; Ty(x;). Without loss
of generality, we may suppose that ¢; # 0. Let G := Tyu(x;x2x3 + x;x2x3). Then

[Ecyy G = o Tuxoxs + x2x3) — ¢ Tu(xpxy) + c3 Tulxpxa).
Therefore,
@d[E|-1y, GD*(Tu(xz2 + x3)) = ¢} Tu(x2 +x3) forallt € N.

By Lemma 2.2, [E, G] ¢ nil(5#). Notice that G € 54 N 5%. This contradicts the
assumption that £ € ®. Hence E_;; =0, E € J%. So & C J%, as required. O

Before proving the following main theorem we recall the notation introduced in the
beginning of Section 2.

THEOREM 3.4. The natural filtrations of finite-dimensional odd Hamiltonian su-
peralgebras are invariant under f-isomorphisms.
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PROOF. Letm, m’ € N\ {1,2},t e N", ¢ e N"and ¢ : 3 (m;1) - £ (m';1') be
an f-isomorphism. Observe that ¢ preserves Z,-gradations. By the definition of £, it
is clear that ¢(Q2) = €'; furthermore, ¢(I") = I'". By Proposition 3.2 and the definition
of &, (P) = &'. This and Proposition 3.3 ensure that ¢ (I (m; t)y) = I (m'; ).

As

JC={(EeM_|adE) CH_), i=>1,
we may prove, by induction on i, that (5 (m;1);) = € (m’;t'); forall i > —1. O

COROLLARY 3.5. The filtration of finite-dimensional odd Hamiltonian superalgebra
H is invariant under Aut %,

PROOF. This is a direct consequence of Theorem 3.4. 0

As a direct application of Theorem 3.4, we establish the following property of
isomorphisms of odd Hamiltonian superalgebras.
By Theorem 3.4, we may easily prove the following

COROLLARY 3.6. Let ¢ and ¢ be f-isomorphisms of 5 (m;t) to 7 (m';t’). Then
¢ = ¢ ifand only if $los_, = ¢l

Employing Theorem 3.4, we may prove that m and ¢ are intrinsic for the odd
Hamiltonian superalgebra J#(m;1), that is, we may give a classification of odd
Hamiltonian superalgebras. For ¢, ¥ € N™, ¢, ¢ are said to be equivalent and denoted
by t ~ ¢’ if there exists a permutation o € S,, such that ¢, ;) = ¢/ forall i € ¥,.

THEOREM 3.7. Suppose thatm, m’ € N\(1,2},t € N™, ¢ € N™. Then 7 (m; 1) =
%(ml;!) ifand only 1fm =m andi ~ L’_

PROOF. Assume that ¢ : 5 (m;1) — S (m’;t') is an isomorphism of Lie super-
algebras. Then Theorem 3.4 ensures that ¢ induces canonically an isomorphism of
quotient spaces: J€(m; 1)/ (m; 1) —> F(m'; 1)/ (m';1')e. Note that

dim( (m; 1)/ 2 (m; 1)9) = dim H(m; D)1y = 2m.
It follows that m = m’.
Without loss of generality, we may suppose that t; > --- > ¢, and t; > --- > 1.

Assume on the contrary that ¢ # ¢’. Then we may suppose that for some k € Y,

® n>1t but 4 =1 for k <j <m (maybe k =m).
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We assert that & (m; D) 2 m;t ph—a)- According to (8) and the definition
of #(m; 1), the implication ‘D’ is clear. Notice that

Tu (x@"f“) € HmD u_y but Ty (x@"m) ¢ A1) sy

So our assertion holds and therefore, dim 5% (m; 1)[p On

the other hand, Theorem 3.4 implies that

H Y
by > dlmjf(m,g)[p,;_zr

)] ¢ (m; 1)) = (m;t); forall i > —1.

From this we see easily that dim J#(m; 1);;; = dim S (m; ), for all i > —1. In
particular, dim J#(m; 1) -z = dim I (m; )4y contradicting to (9).
The converse implication is automatic. The proof is completed. O

4. The automorphism group of S (m, m; 1)

Recall that a Lie superalgebra L = Lg @ Lt over F is called restricted, if the Lie
algebra Lg is restricted and the Lz-module L7y is restricted (see [13]). The proof of
Lemma 4.1 is analogous to [18, Theorem 4.4.5 (2)] or [23, Theorem 5].

LEMMA 4.1. F#(m; 1) is restricted if and only if t = 1.

Let & be a finite-dimensional superalgebra over F. Denote by Aut & the (even)
automorphism group of &. If 0 € Aut& and D € Der &, then D° := c Do~ is
again a superderivation of 7. It is easy to see that 6 : D — D is an automorphism
of Der &/. Suppose that 2 is a Lie subsuperalgebra of Der &. We call 0 € Aut.o&/
admissible to 2 if 6(2) C 2. Put Aut(e/ : Q) = {0 € Aut% | 6(2) C 2}.
Then Aut(« : 2) is a subgroup of Aut%/, and is referred to as the admissible
automorphism group of &7 (t0 2). Obviously, & : Aut(f : 2) — Aut 2,0 > Glg
is a homomorphism of groups. In this section, we only deal with the restricted
odd Hamiltonian superalgebra ¢ (m; 1), and therefore adopt the convention % :=
Alm,m; 1), 3 = H#(m; ) and W := W(m, m; 1.

The main result of this section is the following theorem.

THEOREM 4.2. Let ¢ : Aut(% : ) — AutIH, 0 — &lx. Then & is an
isomorphism of groups.

To prove it, we need the following lemmas. First we introduce some notation. Let
M., (% ) denote the F-algebra consisting of all 2m x 2m matrices over % , pr,, and pr,
be the projections of % onto %e) = F and %), respectively. For A = (a;) € My (%),
set prig A 1= (prigj(a;)) and pr, A := (pr, (a;)).
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LEMMA 4.3. The following statements hold:

(1) Let A € Myu(%). Then A is invertible if and only if pry, A is invertible matrix
over F.
(i) Suppose that (E,, ..., E;,} is a % -basis of W. Then {pr;_,,(E),...,
Pr_1)(Ezm)} is an F-basis of Wi_y), where pr_,, is the projection of W onto W|_,,.
(iii) Suppose that ¢ € Awt ¥ and (G; | i € Y} C F is a U -basis of W. Then
{¢(G)) | i € Y} is also a % -basis of W.

PROOF. (i) Clearly, A = prp; A + pr, A. Since every element of % is nilpotent, so
is every 2m x 2m matrix over %,. From these facts one may easily prove (i).

(i) Suppose that (D, ..., D;,)" = A(Ei, ..., Emm)", A € My, (%). Then
(Dy,..., D))" = (prw]A)(pr[_”(El), ...,pr[_,](Ez,,,))T. Since (D, ..., Dy,} is
an [-basis of W_y}, so is {pr_y(E1, ..., pri_gy(E2n) )

(iii) By Corollary 3.5, the natural filtration {7} is invariant under ¢. Thus ¢
induces canonically ¢ € GL(J#/5%). Denote by G; the image of G; under the
canonical map ¥ — #/5%. Then {G; | i € Y} is an F-basis of 5 /%. Assume
that

@(GD), ..., 0(Gon))" = A(Dy, ..., D), A € Myu(%).

Decompose A = prj;; A + pr; A. We obtain that

@(G)),.... (G = (@(GY), ..., #(G2m))" = (priy A)(Dy, ..., D2n)".

This implies that Prio A is invertible. By (i), A is invertible and therefore {¢(G)) |
i € Y}is a % -basis of W. ||

LEMMA 4.4. Suppose that ¢ € Aut H. Then there exist y; € % with deg(y;) =
w() such that (¢(D))(y;) = 8; + 8;,8;1 for i,j € Y. In particular, the matrix
((@(D))(¥))ijey is invertible.

PROOF. Letj € Y. By Lemma 4.3 (iii), {¢(D1), ..., ¢(D3n,)} is a % -basis of W.
Thus we may suppose that ¢ (Tu(xx;)) = 2,2:, a;9(Dy), where a;; € %. From
Lemma 4.3 (ii), we see easily that a;; € %,. Using (1), we obtain that

2m 2m
(10)  ¢([D;, Tu(xix))]) = [¢(D.-), Za,m(D,)] =) (¢(D)(a;)$(Dy).

=1 =1

On the other hand, by Lemma 2.6 (i), Ty (x,x;) = x; Dy + (—1)#Yx, D;. and therefore,

(1D ¢ (D, Tu(x1x))]) = 8;¢(Dy) + (=1)*V8,¢(D;).
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Comparing (10) and (11), one gets ¢(D)(a;y) = 8; + 6;:64. Put y; := a;y for
Jj € Y. We see that ¢(D;)(y;) = 8; + 818, y; € % and deg(y;) = deg(a;y) =
w( "y + wu(l’) = w(j), as desired. O

PROOF OF THEOREM 4.2. Let 0 € Aut{(% : 5#). Assume that Gl = 1|x.
We proceed by induction on || + |u| to show that o (x@x*) = x®x*. Note that
W1 = #4-1). We obtain that

Dijx; =68y =0(8;) =0(Djx;) = D] (0 (x;)) = Dj(0(x;)), 1i,j €Y.

This implies that x; — o(x;) € F. Since 0(%;) C %, it follows that o (x;) = x;,
i € Y. Suppose that |a| + [u]| > 1. Then by induction hypothesis, we obtain

Di(c(x®x") —x@x*) = 6(D;(x“x")) — D;(x¥x*) =0 forall i eV,

and therefore o (x@x*) —x@x* € F. Thus 0 (x@x*) = x®x*. Consequently, 0 = 1
and & is injective.

We next prove that @ is surjective. Let ¢ € Aut.##. By Lemma 4.4 there exists
y; € %, with deg(y;) = 1(j) such that (¢(D;))(y;) = 8; + 8;16i. Assume that
¢(D;) = 21221 a;Dj, a; € %. Then we have the matrix equation (¢(D)(y;)) =
(a; )(D;y;) and therefore,

(5 +8;180) = (#(D)(y;)) = prig)(@(D:)(¥;)) = prigy(cy) Prigy(Diy;)-
Thus pri;(D;y;) is invertible. Define the endomorphism o of % such that
(12) o(x;)=y; forall ie?Y.

Then o is even. We claim that o € Aut% . From (12) it is easy to see that o leaves
the natural filtration of % invariant, that is, 6(%;) C %, for all i > 0. Therefore,
it induces linear transformations o; of %; /%1, i > 0. Note that the matrix of o,
relative to F-basis {x; + %, ..., Xom + %} is just (pri;(D;y;))- It follows that o is
bijective. Proceeding by induction on i > 1, one may prove that o; is bijective. Now
our claim follows.

Note that 6(D,)(y;) = (6D;o7)(y;) = o(Dix;) = 8; = ¢(D;)(y;) for all
i,j €Y. Since {y; | j € Y} generates %, we conclude that 6 (D;) = ¢(D;), i € Y.
By induction on k, we may prove that 5|, = ¢|.g,, Kk = —1,thatis, 5| = ¢. The
proof is complete. O

To prove the next theorem, we establish the following lemma.

LEMMA 4.5. The natural filtration of % is invariant under automorphisms of % .
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PROOF. Since Der % = W, we have Aut%Z = Aut(%Z : W). By [25, Theorem 1],
the natural filtration of W is invariant under Aut W. Note that 6 (aD;) = o (a)J,
oc€Aut%,a e ,i e Y, which implies the desired result. O

Following [20], we introduce some notations. For X = % or 5, put

Aut* X ={o € AutX | o (X)) C Xy, J € 2Z);
Au; X ={oc e AutX | (o — 1)(X;) C Xy, j €2}, i=0.

According to Lemma 4.5 and Corollary 3.5, the natural filtration of X is invariant
under Aut X. Thus Aut* X < AutX and Aut; X < AutX, i > 0. We call Auty X >
Aut; X > Auty X > - - the standard normal series of Aut X.

Set Aut"(Z : ) = Aut*Z NAu(Z : 5) and Aut(Z : ) = Au,; % N
Aut(% : ). We call Aut*(% : ) the homogeneous admissible automorphism
group of %, and Auty(% : ) > Auty(% : ##) > --- the standard normal series
of Aut(% : 3%).

THEOREM 4.6. Suppose that © is defined as in Theorem 4.2. Then
(i) PAW(Z : ) =Au; I, i > 0;

(ii) P(Aut™(Z : ) = Aut* 7

(iii) Auty FZ is a solvable normal subgroup of Aut ¢,

(iv) Aut s = Aut; 3 X Aut* 7.

PROOF. (i) We first prove the inclusion ‘C’. Let 0 € Aut,(% : 5#). Then
o' € Aut,(% : 5#). Fork € Npand f € %, we may suppose thato~'f = f + f',
f' €U, 0(Dif)=Dif +f".f" € Usx-1. ByLemma 4.5, 0(D;f’) € Ua1-
Note that

&(D)(f)=0Djo™ ' (f) =oD;(f +f)
=o(D;f +Dif")y=D;f +f"+a(D;f").

We obtain that 6(D;)f = D;f (mod %;«-1). This implies that 6(D;) = D;
(mod W;_;), j € Y. Notice that 6(aD;) = o(a)6(D;), j € Y, a € %. We
may obtain that 6(aD;) = aD; (mod W,_,). Therefore ¢ € Aut; W. Thus ¢ €
Aut; WN Aut 57 C Aut; IZ, and O (Aut(%Z : W)) C Aut; W.

To prove the converse inclusion, suppose that ¢ € Aut; 5%, { > 0 and set
o = & (p). Givenj € Y, pick k € Y\ j’. By Lemma 2.6 (i), Tuxex;) =
(_l)u(k’)+u(k’)u(j)xj D, + (—1)“0)xk:Djr. Then

(13) (= rE*eER0g () (9 DY) + (=10 (xi) (9 D;1)

= @(Tulxwx;))
= (_l)u(k’)+u(k')u(j)xj Dy + (— 1)#U)xk,Dj, (mod F%).
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Noticing that ¢ € Aut; 5# and W) = J_,), we have
(14)  o(Dy) = Dy + E,, ¢(D;))= D+ E,, where E,, E; € ;.

By Lemma 4.5, it is easy to see that o (x;) E, 0 (xp) E; € W;. Thus we obtain from
(13) and (14),

(= EERD (G (x)) — x;) Di + (= D*P (0 (xe) = x)D;j =0 (mod Wy).

Since k # j', we obtain o (x;) = x; (mod %,,;). Now using induction on || + |ul,
one may prove that o(x®x*) = x®x* (mod Zai+u+:)- This means o € Aut; %
and therefore o € Aut,(% : 5#). Hence ®(Aut,(% : 3¥)) D Aut, F#.

(ii) The proof is completely analogous to (i), therefore is omitted.

(iii) Using the invariance of the natural filtration (see Corollary 3.5), one may
verify directly that [Aut; 7, Aut; €] C Autyy; 5, i, j > 0 (see [19, page 210]).

From this we see that the normal series Aut; 7 > Aut, # > --- is abelian (that
is, Aut; 7/ Aut;, £ are abelian groups, for all i > 1), and reaches 0. Therefore
Aut, S is solvable.

(iv) Let ¢ € Aut 5. Then there exists ¢y, ¢, € Homg (5%, 5#) such that ¢ = @+
@1 and @o(I%;)) C H1, ¢1(IE) C I 41, j = —1. As the filtration of S is invariant
under Aut %, we have g, € Aut* S#. Therefore, ¢;'¢ = 1 + @5 '@ € Aut, 7.
Hence (iv) holds. ]
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