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Averaging Operators and Martingale
Inequalities in Rearrangement Invariant
Function Spaces
Masato Kikuchi

Abstract. We shall study some connection between averaging operators and martingale inequalities in rear-
rangement invariant function spaces. In Section 2 the equivalence between Shimogaki’s theorem and some
martingale inequalities will be established, and in Section 3 the equivalence between Boyd’s theorem and mar-
tingale inequalities with change of probability measure will be established.

1 Introduction and Notation

Recently several authors studied, independently in [1], [11], [15], some martingale inequal-
ities in rearrangement invariant function spaces over the unit interval I. Using the Boyd in-
dices they characterized rearrangement invariant function spaces in which the Burkholder-
Davis-Gundy inequality is valid. In Section 2, we shall prove the equivalence between their
result and Shimogaki’s theorem on the boundedness of averaging operator. In Section 3 we
shall consider some change of probability measure and extend the weighted norm inequal-
ities established by Izumisawa and Kazamaki [10]. We shall investigate also some relations
between Boyd’s theorem and martingale inequalities under a change of probability mea-
sure.

In this note we shall deal with (local) martingales on complete probability spaces, say
(Ω,F, P), endowed with a filtration satisfying the usual conditions (see [7, p. 183]). We
always assume that Ω is not completely atomic, that is, P(Ω \ Ω0) > 0, where Ω0 is the
union of all atoms in Ω. Furthermore, in Section 3 we assume that Ω contains no atom.
Every process X = (Xt )t≥0 is assumed to be adapted to a given filtration, right continuous,
and have left-hand limits. We set X0− = 0 and denote by (MXt )t≥0 the maximal process
of X; MXt = sups≤t |Xs|. We use this notation instead of X∗ in order to reserve “∗” for the
decreasing rearrangement of random variables. If X is a (local) martingale, ([ X , X ] t )t≥0

denotes the quadratic variation process of X. For details of the martingale theory we refer
to Dellacherie and Meyer [8].

Now let f be a random variable on (Ω,F, P). The decreasing rearrangement of f , de-
noted by f ∗, is a right continuous decreasing function on the interval I = [0, 1] such that

P{| f | > λ} = m{s ∈ I : f ∗(s) > λ}, λ > 0,

where m stands for the Lebesgue measure on I. An explicit expression of f ∗ is given by

f ∗(t) = inf{λ > 0 : P{| f | > λ} ≤ t}, t ∈ I.
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For example, if X is a process and T is a stopping time, X∗T denotes the decreasing rear-
rangement of the random variable XT , but not MXT = supt≤T |Xt |. For a function x on I,
x∗ denotes the decreasing rearrangement with respect to the Lebesgue measure.

For two random variables f and g, we write f ≺ g if

∫ t

0
f ∗(s) ds ≤

∫ t

0
g∗(s) ds for all t ∈ I.

A Banach space (B, ‖·‖B) consisting of (equivalence classes) of random variables is called
a rearrangement invariant (r.i.) function space if it has the following properties:

(i) L∞ ↪→ B ↪→ L1;
(ii) | f | ≤ |g|, g ∈ B implies f ∈ B and ‖ f ‖B ≤ ‖g‖B;
(iii) 0 ≤ fn ↑ f , supn ‖ fn‖B <∞ implies f ∈ B and ‖ f ‖B = supn ‖ fn‖B;
(iv) f ∗ = g∗, g ∈ B implies f ∈ B and ‖ f ‖B = ‖g‖B.

If B has properties (i)–(iii) and

(iv’) f ≺ g, g ∈ B implies f ∈ B and ‖ f ‖B ≤ ‖g‖B,

then it is called a universally rearrangement invariant (u.r.i.) function space. Obviously every
u.r.i. function space is r.i., and the converse is true if Ω contains no atom. An important
characterization of r.i. function space is the Luxemburg representation theorem: B is u.r.i.
if and only if there exists a r.i. function space B̂ over I with the Lebesgue measure m such
that

‖ f ‖B = ‖ f ∗‖B̂ for all f ∈ B(1)

(cf. [13, p. 121], [2, p. 90]). Our assumption t0 := P(Ω \ Ω0) > 0 implies that if both
B̂1 and B̂2 satisfy (1), then the norms of these spaces are equivalent. Indeed, if x ∈ B̂2,
then there exists f ∈ B such that f ∗(t) = x∗(t ∧ t0) =: x∗t0

(t), t ∈ I and hence we have
‖x‖B̂1

≤ ‖x∗t0
‖B̂1
= ‖x∗t0

‖B̂2
< ∞. Thus B̂2 ⊂ B̂1, and in the same way B̂1 ⊂ B̂2. The

equivalence of norms of B̂i follows from the closed graph theorem.
Now let B be a r.i. (or u.r.i.) function space. The associate space B ′ of B is the r.i. (u.r.t.)

function space defined by

‖ f ‖B ′ := sup{E[ f g] : g ∈ B, ‖g‖B ≤ 1};

B ′ := { f : ‖ f ‖B ′ <∞}.

The associate space of B ′ is equal to B (cf. [2, p. 10]).
To describe our results, we use the Boyd indices of B introduced by Boyd [5]: let Ds be

the operator defined on L1(I) by

Dsx(t) =

{
x(st) if 0 ≤ t ≤ 1 ∧ s−1,

0 if 1 ∧ s−1 < t ≤ 1,
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and set

αB = αB̂
= inf

t>1

log ‖D1/t‖B̂

log t
= lim

t→∞

log ‖D1/t‖B̂

log t
;

ᾱB = ᾱB̂
= sup

0<t<1

log ‖D1/t‖B̂

log t
= lim

t↓0

log ‖D1/t‖B̂

log t
,

where ‖Ds‖B̂ denotes the norm of Ds as an operator from B̂ into itself. We call αB and ᾱB

the upper and lower Boyd index of B, respectively. Remark that in [1] and [11] the Boyd
indices are taken to be reciprocals of ones we use here.

2 Averaging Operator and Martingale Inequalities

Throughout this section let (Ω,F, P) be a fixed probability space and I be the interval [0, 1]
with the Lebesgue measure m. For a function x on I, Hardy’s averaging operator is defined
by

Px(t) =
1

t

∫ t

0
x(s) ds,

and its adjoint P ′ is given by

P ′x(t) =

∫ 1

t

x(s)

s
ds,

whenever the defining integrals exist a.e. Shimogaki [17] studied the boundedness of these
operators in r.i. function spaces over I. His result, in terms of Boyd indices, is as follows:

Theorem A (Shimogaki [17]; Boyd [5]) Let B̂ be a r.i. function space over I. Then:

(i) P is a bounded linear operator on B̂ into itself if and only if α
B̂
< 1;

(ii) P ′ is a bounded linear operator on B̂ into itself if and only if ᾱ
B̂
> 0.

In this section we shall prove that Shimogaki’s theorem is equivalent to the following
theorem on martingale inequalities.

Theorem B Let B be a u.r.i. function space over Ω. Then:

(i) The inequality

‖MX∞‖B ≤ CB ‖X∞‖B(2)

is valid for every uniformly integrable martingale X = (Xt )t≥0 with respect to an arbi-
trary filtration if and only if αB < 1.

(ii) The inequalities

cB‖[ X , X ] 1/2
∞ ‖B ≤ ‖MX∞‖B ≤ CB‖[ X , X ] 1/2

∞ ‖B(3)

are valid for every martingale X = (Xt )t≥0 with respect to an arbitrary filtration if and
only if ᾱB > 0.
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This theorem is proved independently by Antipa [1], Johnson and Schechtman [11] and
Novikov [15], in the case whereΩ = I.

The following theorem shows that each of Theorems A and B is deduced from the other.

Theorem 1 Let B be a u.r.i. function space over Ω and B̂ be the r.i. function space over I
satisfying (1). Then:

(i) P is a bounded linear operator on B̂ into itself if and only if (2) holds for every uniformly
integrable martingale X = (Xt ) with respect to an arbitrary filtration.

(ii) P ′ is a bounded linear operator on B̂ into itself if and only if (3) holds for every martingale
X = (Xt ) with respect to an arbitrary filtration.

To prove this theorem, we need some preliminaries. For each x ∈ L1(I), we put x# =
Px − x. Then, since PP ′x = Px + P ′x for every x ∈ L1(I), we have

(P ′x)# = Px, x ∈ L1(I).(4)

Furthermore if x# ∈ L1(I) and y# ∈ L∞(I), then

∫ 1

0
x(s)y(s) ds =

∫ 1

0
x#(s)y#(s) ds +

(∫ 1

0
x(s) ds

)(∫ 1

0
y(s) ds

)
.(5)

In fact, this follows from the identity

P ′Px +

∫ 1

0
x(s) ds = Px + P ′x,

which is valid at least for x ∈ L1 such that Px ∈ L1.
Note that, if x# ≤ y# on I, then x#1[0,t]

# ≤ y#1[0,t]
#, and hence from (5) we obtain:

Lemma 2 Let x, y ∈ L1(I) be positive decreasing functions. If x# ≤ y# on I and
∫

I x ds ≤∫
I y ds, then x ≺ y.

Lemma 3 Let B and B̂ be as in Theorem 1 and suppose that P ′ is a bounded operator on B̂
into itself. If Y ∈ L1(Ω) and A = (At )t≥0 is an adapted increasing process satisfying

E
[
A∞ − AT−|FT

]
≤ E
[
Y |FT

]
(6)

for every stopping time T, then ‖A∞‖B ≤ ‖P
′‖B̂ ‖Y‖B, where ‖P ′‖B̂ denotes the norm of P ′.

Recall that a process is called increasing if almost every path is positive and increasing.
If A is predictable and A0 = 0, then (6) can be replaced by

E
[
A∞ − AT |FT

]
≤ E
[
Y |FT

]
.

Proof Setting T = inf{t ≥ 0 : At > λ} for λ > 0, we have by (6),

E
[
(A∞ − λ)1{A∞>λ}

]
≤ E
[
Y 1{A∞>λ}

]
, λ > 0,
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Substituting A∗∞(t) for λ, we have

∫ t

0

(
A∗∞(s)− A∗∞(t)

)
ds ≤ sup{E[Y 1F] : P(F) ≤ t} ≤

∫ t

0
Y ∗(s) ds.

This, together with (4), implies that (A∗∞)#(t) ≤ PY ∗(t) = (P ′Y ∗)#(t) for all t ∈ I. Since
(6) yields that ∫ 1

0
A∗∞(s) ds = E[A∞] ≤ E[Y ] =

∫ 1

0
P ′Y ∗(s) ds,

Lemma 2 gives that A∗∞ ≺ P ′Y ∗. It then follows that

‖A∞‖B = ‖A
∗
∞‖B̂ ≤ ‖P

′Y ∗‖B̂ ≤ ‖P
′‖B̂ ‖Y

∗‖B̂ = ‖P
′‖B̂ ‖Y‖B ,

which completes the proof.
Lemma 3 will be used for the proof of “only if” part of (ii) in Theorem 1. The “if” part

will be proved using the following two lemmas.

Lemma 4 Let B̂ be a r.i. function space over I and 0 < t0 ≤ 1. Then:

(i) If the inequality

‖(Py)1[0,t0[‖B̂ ≤ c ‖y‖B̂(7)

holds for every positive y ∈ L1(I), then P : B̂ → B̂ is bounded, where c is a positive
constant.

(ii) If the inequality

‖(Py)1[0,t0[‖B̂ ≤ c
(
‖y#‖B̂ + ‖y‖1

)
(8)

holds for every y ∈ L1(I), then P ′ : B̂→ B̂ is bounded.

Proof Without loss of generality, we may assume that ‖1‖B̂ = 1. Let x ∈ L1(I). Since
|Px(t)| ≤ t−1

0 ‖x‖1 for every t ∈ [t0, 1], we have by (7)

‖Px‖B̂ ≤ ‖(Px)1[0,t0[‖B̂ + ‖(Px)1[t0,1]‖B̂

≤ c ‖x‖B̂ + t−1
0 ‖x‖1 ≤ C ‖x‖B̂ ,

where the last inequality follows from the fact that B̂ ↪→ L1(I). Thus the operator P : B̂→ B̂
is bounded.

We now pass to the proof of the second statement. It suffices to show that ‖P ′x‖B̂ ≤
C ‖x‖B̂ for every positive x ∈ L1(I). Put y = P ′x − x. Clearly we have y ∈ L1(I) and
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‖y‖1 ≤ ‖P
′x‖1 + ‖x‖1 ≤ 2 ‖x‖1. Since PP ′ = P + P ′, we get Py = P ′x and y# = x. As

|P ′x(t)| ≤ t−1
0 ‖x‖1 for t ∈ [t0, 1], (8) gives that

‖P ′x‖B̂ ≤ ‖(P
′x)1[0,t0[‖B̂ + ‖(P ′x)1[t0,1]‖B̂

≤ ‖(Py)1[0,t0]‖B̂ + t−1
0 ‖x‖1

≤ c
(
‖y#‖B̂ + ‖y‖1

)
+ t−1

0 ‖x‖1

≤ c ‖x‖B̂ + (2c + t−1
0 ) ‖x‖1 ≤ C ‖x‖B̂ ,

which completes the proof.
The following lemma is essential for the proof of “if” part of (i), and (ii) in Theorem 1.

Lemma 5 Let t0 = P(Ω \ Ω0) > 0. Then, for each x ∈ L1(I), there exists a uniformly
integrable martingale X = (Xt )t≥0 satisfying the following conditions:

(i) |X0| ≤ t−1
0 ‖x‖1,

(ii) X∗∞(t) =
(
x1[0,t0[

)∗
(t), t ∈ I,

(iii) {(Px)1[0,t0[}
∗(t) ≤ (MX∞)∗(t), t ∈ I,

(iv) {([ X , X ]∞ − X2
0)1/2}∗(t) = (x#1[0,t0[)∗(t), t ∈ I.

Proof SinceΩ1 = Ω\Ω0 contains no atom, there exists a family of measurable sets {A(t) :
0 ≤ t ≤ t0} satisfying the following conditions:

a) A(t) ⊂ A(s) ⊂ Ω1 if 0 ≤ s ≤ t ≤ t0;
b) P

(
A(t)
)
= t0 − t for every 0 ≤ t ≤ t0.

For the proof, see [6, p. 44]. For each t ≤ t0, let Ft be the σ–field generated by all measur-
able subsets of Ω \ A(t) and P-negligible sets, and for each t ≥ t0, set Ft = Ft0 . Clearly
(Ft )t≥0 satisfies the usual conditions, and for t ≤ t0, A(t) is an Ft -atom.

Now for each ω ∈ Ω, put

T(ω) =

{
sup{s ∈ [0, t0] : ω ∈ A(s)} if ω ∈ A(0),

0 otherwise.

It is easy to see that {T > t} = A(t) a.s. for every t ∈ [0, t0]. Hence T is an (Ft )-stopping
time, and T∗(s) = (t0 − s)+ = (t0 − s) ∨ 0, s ∈ I. Let x ∈ L1(I). Since x(t0 − T)1{T>0} and
x1[0,t0[ have the same distribution, x(t0 − T)1{T>0} is integrable over Ω. Let X = (Xt ) be
the martingale induced by x(t0 − T)1{T>0}, that is,

Xt = E
[
x(t0 − T) | Ft

]
1{T>0} = x(t0 − T)1{0<T≤t} + Px(t0 − t)1{t<T}.(9)

Note that the processes on both sides of (9) are indistinguishable, that is, (9) holds for every
t ≥ 0 on a set Ω ′ of probability one.

We show that X satisfies the required conditions. In fact, (i) and (ii) are straightforward
consequences of the definition: we have |X0| ≤ |Px(t0)| ≤ t−1

0 ‖x‖1 and X∗∞ = {x(t0 −
T)1{T>0}}

∗ = (x1[0,t0[)∗, since T∗(s) = (t0 − s)+.
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It is easy to see from (9) that |Px(t0 − T)|1{T>0} = |XT−| ≤MX∞, which implies (ii).
Now it remains to prove (iv). Again from (9) we see that the path t 7→ Xt (ω) is of

bounded variation on [0,∞[, continuous on [0,T(ω)[ and constant on [T(ω),∞[, pro-
vided thatω ∈ Ω ′. Therefore we have4XT1{T>0} = −x#(t0−T)1{T>0} and the continuous
martingale part Xc of X is equal to zero (cf. [14, p. 267]). This implies that

(
[ X , X ]∞ − X2

0

)1/2
= |x#(t0 − T)|1{T>0}.

Thus (iv) is obtained and the lemma is established.
We are now in a position to prove Theorem 1.

Proof of Theorem 1 (i) Suppose that P : B̂ → B̂ is bounded. By Doob’s inequality we
have

λ ≤ P(MX∞ ≥ λ)−1

∫
{MX∞≥λ}

X∞ dP ≤ PX∗∞
(
P(MX∞ ≥ λ)

)
(10)

for every λ > 0 and every uniformly integrable martingale X = (Xt ), where we have used
Hardy’s inequality

∫
A

f dP ≤

∫ P(A)

0
f ∗(s) ds, f ∈ L1(P), A ∈ F.

Setting λ = (MX∞)∗(t) in (10), we get

(MX∗∞)(t) ≤ PX∗∞(t), t ∈ I,

since P
(
MX∞ ≥ (MX∞)∗(t)

)
≥ t . Hence we have

‖MX∞‖B = ‖(MX∞)∗‖B̂ ≤ ‖PX∗∞‖B̂ ≤ ‖P‖B̂ ‖X
∗
∞‖B̂ ≤ ‖P‖B̂ ‖X∞‖B .

Conversely assume that (2) holds for every uniformly integrable martingale. Let x ∈
L1(I) be a positive function and, using Lemma 5, choose a uniformly integrable martingale
X = (Xt ) so as to satisfy (ii) and (iii) of Lemma 5. Then we have

‖(Px)1[0,t0[‖B̂ ≤ ‖(MX∞)∗‖B̂ = ‖MX∞‖B ≤ CB ‖X∞‖B ≤ CB ‖x‖B̂ .

Lemma 4 (i) shows that P : B̂→ B̂ is bounded. Thus (i) of Theorem 1 is established.
(ii) Suppose that P ′ : B̂→ B̂ is bounded. By Davis’s inequality we have

E
[
MX∞ −MXT− | FT

]
≤ cE
[

[ X , X ] 1/2
∞ | FT

]
;

E
[

[ X , X ] 1/2
∞ − [ X , X ] 1/2

T− | FT

]
≤ cE
[
MX∞ | FT

]
for every stopping time T. For the proof e.g. see [14, p. 349]. Therefore (3) follows from
Lemma 3.
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Next suppose that (3) holds for every martingale. For each x ∈ L1 there exits a mar-
tingale X = (Xt ) which satisfies (i), (iii) and (iv) of Lemma 5. Assuming ‖1‖B = 1 for
simplicity, we have

‖(Px)1[0,t0[‖B̂ ≤ ‖MX∞‖B ≤ CB‖[ X , X ] 1/2
∞ ‖B

≤ CB‖
(

[ X , X ]∞ − X2
0

)1/2
‖B + CB ‖X0‖B

≤ CB ‖x
#1[0,t0[‖B̂ + CBt−1

0 ‖x‖1

≤ CBt−1
0

(
‖x#1[0,t0[‖B̂ + ‖x‖1

)
.

Lemma 4 (ii) implies the boundedness of P ′ : B̂→ B̂. The theorem is established.

3 Change of Probability Measure

In this section we shall prove that there exists a close relation between Boyd’s theorem on
the boundedness of the averaging operators, and some martingale inequalities relative to
some equivalent probability measures. We first recall Boyd’s theorem: for p ≥ 1 define the
operators Pp and P ′p by

Ppx(t) = t−1/p

∫ t

0
x(s)s−1/p ′ ds,

P ′px(t) = t−1/p

∫ 1

t
x(s)s−1/p ′ ds,

whenever the integrals exist, where p ′ stands for the exponent conjugate to p.

Theorem C (Boyd [5]) Let B̂ be a r.i. function space over I. Then Pp (resp. P ′p) is a bounded

linear operator from B̂ into itself if and only if α
B̂
< 1/p (resp. ᾱ

B̂
> 1/p).

We consider equivalent probability measures P and Q on (Ω,F). For the sake of simplic-
ity, we assume that the probability space (Ω,F, P) (or (Ω,F,Q)) is nonatomic throughout
this section.

Let W∞ denote the Radon-Nikodym derivative dQ/dP, and W = (Wt )t≥0 the mar-
tingale Wt = EP[W∞ | Ft ], t ≥ 0, where and in what follows EP and EQ denote the
(conditional) expectations relative to P and Q respectively. We denote by M

(
P, (Ft )

)
the

family of all uniformly integrable martingales on the system
(
Ω,F, (Ft ), P

)
.

Now let 1 < p < ∞. We say that W∞ = dQ/dP satisfies (Ap) with respect to P and
(Ft ) if

(Ap) sup
T
‖EP

[
(WT/W∞)

1
p−1 | FT

]
‖∞ <∞,

where the supremum is taken over all (Ft )-stopping times T. We write W∞ ∈ Ap

(
P, (Ft )

)
when W∞ satisfies (Ap) with respect to P and (Ft ). Condition (Ap) is introduced by Izu-
misawa and Kazamaki [10]. It was proved by Tsuchikura [18] and Uchiyama [19] (also see
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Kazamaki [12, p. 74]) that W∞ ∈ Ap

(
P, (Ft )

)
if and only if

(W p) λpQ(MX∞ ≥ λ) ≤

∫
{MX∞≥λ}

|X∞|
p dQ, λ > 0,

holds for all X ∈M
(
P, (Ft )

)
.

Let B̂ be a r.i. function space over I. We define the space B(Q) by

B(Q) := { f : ‖ f ‖B(Q) <∞};

‖ f ‖B(Q) := ‖ f ∗Q ‖B̂,

where f ∗Q denotes the decreasing rearrangement of f relative to Q. Our main results in this
section are the following.

Theorem 6 Let P, Q, W , B̂ and B(Q) be as above and 1 < p <∞.

(i) If dQ/dP =W∞ ∈ Ap

(
P, (Ft )

)
and α

B̂
< 1/p, then the inequality

‖MX∞‖B(Q) ≤ c ‖X∞‖B(Q)(11)

holds for every X ∈M
(
P, (Ft )

)
.

(ii) If (11) holds for all X ∈ M
(
P, (Ft )

)
whenever dQ/dP = W∞ ∈ Ap

(
P, (Ft )

)
, then

α
B̂
≤ 1/p.

If B̂ = Lq(I), q > p, then (i) of the above theorem yields the weighted norm inequalities
established by Izumisawa and Kazamaki. Theorem 6 will be proved using Theorem C. On
the other hand, we have the following.

Theorem 7 Theorem C is deduced from the assertion of Theorem 6.

Combing this with a result of Doléans-Dade and Meyer, we have the following.

Corollary 8 If α
B̂
≤ 1/p, dQ/dP =W∞ ∈ Ap

(
P, (Ft )

)
and

(S−) WT− ≤ KWT

holds for every (Ft )-stopping time T, where W = (Wt ) denotes the martingale Wt =
EP[W∞ | Ft ], t ≥ 0, then (11) holds for every X ∈M

(
P, (Ft )

)
.

We begin with some lemmas.

Lemma 9 If x is a positive decreasing function on I, then

{∫ t

0
x(s)p ds

}1/p

≤ p−1

∫ t

0
x(s)s−1/p ′ ds for every t ∈ I.(12)

Proof Suppose first that x is of the form

x(t) =
n∑

k=1

ak1[0,tk[(t), ak ≥ 0, 0 ≤ t1 < t2 < · · · < tn ≤ 1.(13)
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Then by Minkowski’s inequality we have

{∫ t

0
x(s)p ds

}1/p

≤
n∑

k=1

ak(t ∧ tk)1/p = p−1

∫ t

0
x(s)s−1/p ′ ds.

For an arbitrary decreasing function x, we can find a sequence of the functions (xn) of the
form (13) such that 0 ≤ xn ↑ x a.e. Hence by the monotone convergence theorem, we
have (12).

Lemma 10 If 1 < p < ∞ and dQ/dP = W∞ ∈ Ap

(
P, (Ft )

)
, then (MX∞)∗Q ≤

p−1Pp(X∞)∗Q on I for every X ∈M
(
P, (Ft )

)
.

Proof Since dQ/dP =W∞ ∈ Ap

(
P, (Ft )

)
, we have by (W p) that

λp ≤ Q(MX∞ ≥ λ)−1

∫
{MX∞≥λ}

|X∞|
p dQ

≤ Q(MX∞ ≥ λ)−1

∫ Q(MX∞≥λ)

0
(X∞)∗Q (s)p ds, λ > 0,

for every X ∈M
(
P, (Ft )

)
. We set λ = (MX∞)∗Q (t). In view of Lemma 9, we obtain that

(MX∞)∗Q (t) ≤

{
1

t

∫ t

0
(X∞)∗p

Q (s) ds

}1/p

≤ p−1Pp(X∞)∗Q (t), t ∈ I.

The following lemma is a key result to the proof of Theorem 6 (ii) and Theorem 7.

Lemma 11 Let 1 < p <∞ be fixed. If q > p and x ∈ L1(I) is positive, then we can construct
equivalent probability measures P and Q, a filtration (Ft )t≥0 and a martingale X = (Xt )t≥0

so that

(i) dQ/dP =W∞ ∈ Aq

(
P, (Ft )

)
,

(ii) (X∞)∗Q = x∗ on I,
(iii) (MX∞)∗Q = p−1Ppx∗ on I.

Proof Let Q be a probability measure such that Ω contains no Q-atom. There exists a
random variable V such that V ∗Q (s) = p−1s−1/p ′ [6, p. 44]. Let P be the probability measure
dP := V dQ. Clearly P and Q are equivalent and Ω contains no P-atom. For each t ∈ I, put

A(t) := {ω ∈ Ω : V (ω) > p−1(1− t)−1/p ′}.

Then A(t) decreases with t and

Q
(
A(t)
)
= 1− t, t ∈ I,(14)

P
(
A(t)
)
= (1− t)1/p, t ∈ I.(15)
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For each t ∈ I, let Ft denote the σ-field generated by the measurable subsets of Ω \ A(t)
and the negligible sets. For t > 1 we set Ft = F1. Then (Ft ) satisfies the usual conditions
(relative to both P and Q).

We now prove that W∞ := 1/V = dQ/dP ∈ Aq

(
P, (Ft )

)
for each q > p. It suffices to

show that
EP

[
(Wt/W∞)

1
q−1 | Ft

]
≤ C a.s.,

for every t ∈ I, since every stopping time is the decreasing limit of a sequence of stopping
times with values in the set of rationals. By (14) and (15) we have

Wt =W∞1Ω\A(t) + P
(
A(t)
)−1

Q
(
A(t)
)

1A(t) =W∞1Ω\A(t) + (1− t)1/p ′1A(t)

for each t ∈ I, and on A(t) we have

EP

[
W
− 1

q−1
∞ | Ft

]
= (1− t)−1/p

∫ 1−t

0
V ∗Q (s)q ′ ds = p−q ′ ·

p ′

p ′ − q ′
(1− t)r,

where r = 1− p−1 − p ′−1q ′ = −{p ′(q− 1)}−1. It then follows that

EP

[
(Wt/W∞)

1
q−1 | Ft

]
= 1Ω\A(t) + p−q ′ ·

p ′

p ′ − q ′
(1− t)r+{p ′(q−1)}−1

1A(t)

≤ p−q ′ ·
p(q− 1)

q− p
,

Thus dQ/dP =W∞ ∈ Aq

(
P, (Ft )

)
.

Now let τ be the random variable defined by

τ (ω) = sup{t ∈ I : ω ∈ A(t)}.

It is easy to see that {τ > t} = A(t), t ∈ I, P-a.s. and Q-a.s., and therefore τ is an (Ft )-
stopping time. Moreover by (14) and (15), we have τ∗P (t) = 1 − t p and τ∗Q (t) = 1 − t for
all t ∈ I. It follows that if y ∈ L1(I), then

∫
A(t)

y(1− τ ) dP =

∫ (1−t)1/p

0
y(sp) ds = p−1

∫ 1−t

0
y(s)s−1/p ′ ds.(16)

Assume that x ∈ L1(I) is positive and let Xt = EP[x∗(1 − τ ) | Ft ], t ≥ 0. Then X = (Xt )
satisfies (ii) and (iii) of the statement. Indeed, (ii) follows immediately from the equality
τ∗Q (t) = 1− t . Hence it remains only to prove (iii). Observe that

Xt = x∗(1− τ )1{t≥τ} + p−1Ppx∗(1− t)1{t<τ},

which follows from (16). This expression shows that each path is increasing on [0, τ (ω)[,
constant on [τ (ω),∞[, and has a jump at τ (ω). Therefore, from the fact that Xτ− =
p−1Ppx∗(1− τ ) ≥ x∗(1− τ ) = Xτ , we obtain

MX∞ = p−1Ppx∗(1− τ )
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As τ∗Q (t) = 1− t , this implies (iii) and the lemma is established.
The last lemma, due to Boyd [4], is for the proof of Theorem 7. The assertion follows

directly from Theorem C. For the proof of Theorem 7, however, we cannot use Theorem C
and must prove the following lemma without using Theorem C.

Lemma 12 Let B̂ be a r.i. function space over I. If 1 < p < ∞ and Pp is a bounded linear
operator from B̂ into itself, then for q > p sufficiently close to p, Pq is a bounded linear operator
from B̂ into itself.

Proof According to Lemma 2 of [4], we have

Pn
px(t) =

1

(n− 1)!

∫ 1

0

(
log

1

s

)n−1
x(st)s−1/p ′ ds, t ∈ I,

where Pn
p stands for the n-th iterate of Pp. From this it follows that

Pqx(t) =
∞∑

n=0

( 1

q ′
−

1

p ′

)n
Pn+1

p x(t)

for q > p and for positive x. Taking q > p so close to p that (1/q ′ − 1/p ′)
∥∥Pp

∥∥
B̂
< 1, we

have

∥∥Pqx
∥∥

B̂
= lim

N→∞

∥∥∥ N∑
n=0

(1/q ′ − 1/p ′)nPn+1
p x
∥∥∥

B̂

≤
∞∑

n=0

(1/q ′ − 1/p ′)n
∥∥Pp

∥∥n+1

B̂
‖x‖B̂ = C ‖x‖B̂ ,

where
∥∥Pp

∥∥
B̂

denotes the norm of Pp : B̂→ B̂. This completes the proof.
Now we give the proof of Theorems 6 and 7, and Corollary 8.

Proof of Theorem 6 (i) Suppose that dQ/dP = W∞ ∈ Ap

(
P, (Ft )

)
and α

B̂
< 1/p.

According to Lemma 10 and Theorem C, we have

‖MX∞‖B(Q) = ‖(MX∞)∗Q‖B̂ ≤ p−1‖Pp(X∞)∗Q‖B̂ ≤ p−1
∥∥Pp

∥∥
B̂
‖X∞‖B(Q)

for every X ∈M
(
P, (Ft )

)
.

(ii) Now assume that (11) holds for every X ∈ M
(
P, (Ft )

)
whenever dQ/dP ∈

Ap

(
P, (Ft )

)
. Let 1 < q < p. By Lemma 11, for each positive x ∈ L1(I) we can find

equivalent measures P,Q and a martingale X = (Xt ) ∈ M
(
P, (Ft )

)
such that dQ/dP ∈

Ap

(
P, (Ft )

)
, (X∞)∗Q = x∗ and (MX∞)∗Q = q−1Pqx∗. Then by hypothesis, we get

q−1
∥∥Pqx

∥∥
B̂
≤ q−1

∥∥Pqx∗
∥∥

B̂
= ‖MX∞‖B(Q) ≤ c ‖X∞‖B(Q) = c ‖x‖B̂ .

Thus Pq : B̂ → B̂ is a bounded linear operator. It follows from Theorem C that α
B̂
< 1/q.

Letting q ↑ p, we obtain α
B̂
≤ 1/p. Theorem 6 is proved.

https://doi.org/10.4153/CMB-1999-038-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-038-7


Martingale Inequalities 333

Proof of Theorem 7 We use Theorem 6. We shall prove the assertion of Theorem C for
Pp only. Suppose that α

B̂
< 1/q < 1/p. Choose P,Q and X = (Xt ) so as to satisfy (i)–(iii)

of Lemma 11 for a given x ≥ 0 in L1(I). Since we have assumed that Theorem 6 is true, we
may use (11) to get

p−1
∥∥Ppx

∥∥
B̂
≤ p−1

∥∥Ppx∗
∥∥

B̂
= p−1 ‖MX∞‖B(Q) ≤ c ‖X∞‖B(Q) = c ‖x‖B̂ .

Thus Pp : B̂→ B̂ is bounded.
Now assume that Pp : B̂ → B̂ is bounded. Then by Lemma 12, there exists q > p such

that Pq is a bounded operator from B̂ into itself. Suppose that dQ/dP ∈ Aq

(
P, (Ft )

)
. Then

Lemma 10 gives that (MX∞)∗Q ≤ q−1Pq(X∞)∗Q ; hence (11) is valid for all X ∈ M
(
P, (Ft )

)
.

Thus we have proved that dQ/dP ∈ Aq

(
P, (Ft )

)
implies (11). From Theorem 6 (ii), we

obtain α
B̂
≤ 1/q < 1/p, which completes the proof.

Proof of Corollary 8 In [9] Doléans-Dade and Meyer proved that if dQ/dP = W∞ ∈
Ap

(
P, (Ft )

)
and W = (Wt ) satisfies (S−), then dQ/dP ∈ Aq

(
P, (Ft )

)
for some q < p.

Hence Theorem 6 gives that (11) is valid for all X ∈M
(
P, (Ft )

)
if α

B̂
≤ 1/p.

Finally we mention the Burkholder-Davis-Gundy type inequality without proof.
Sekiguchi [16] (and independently Bonami and Lépingle [3]) proved that if dQ/dP =
W∞ ∈ Ap

(
P, (Ft )

)
for some p > 1 and W = (Wt ) satisfies

(S) 0 < k ≤WT−/WT ≤ K

with some constants k and K, then

cEQ

[
Φ(MX∞)

]
≤ EQ

[
Φ
(

[ X , X ] 1/2
∞

)]
≤ CEQ

[
Φ(MX∞)

]
hold for all local martingales X = (Xt )t≥0 with respect to P and (Ft ), where Φ is a Young
function satisfying the ∆2-condition. Using this inequality with Φ(t) = t and Lemma 3,
we can prove that if ᾱ

B̂
> 0, then the inequalities

c ‖MX∞‖B(Q) ≤ ‖[ X , X ] 1/2
∞ ‖B(Q) ≤ C ‖MX∞‖B(Q)

holds for all local martingales X = (Xt ) with respect to P and (Ft ), provided dQ/dP ∈
Ap

(
P, (Ft )

)
and W = (Wt ) satisfies (S).
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