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Introduction

This chapter provides an introduction to the subject known as gradient-index optics.
Section 1.1 provides a historical perspective on this subject before introducing the
essential concepts needed in later chapters. Section 1.2 is devoted to various types
of refractive-index profiles that are employed for making gradient-index devices,
with particular emphasis to the parabolic index profile because of its practical
importance. In Section 1.3, we discuss the relevant properties of such devices such
as optical losses, chromatic dispersion, and intensity dependence of the refractive
index occurring at high power levels. The focus of Section 1.4 is on the materials
and the techniques used for fabricating gradient-index devices in the form of a rod
or a thin fiber. Section 1.5 provides an overview of how the book is organized for
presenting a wide body of research carried out during the last 50 years in the area of
gradient-index optics.

1.1 Historical Perspective

Propagation of electromagnetic radiation in any medium is affected by its refractive
index, denoted as n(r,ω) because of its dependence on the frequency ω of the
radiation and on the location r within the medium. In the case of a homogeneous
material with uniform density, the dependence of n(r,ω) on r can be ignored.
However, the r dependence of the refractive index must be considered when density
variations occur, either naturally (such as in air) or are introduced artificially by
grading the refractive index of a material in some fashion. As an example, the
phenomenon of mirage results from an index gradient formed in air on a hot day.
Such index gradients change with time because of changes in air’s temperature and
pressure. When density variations in a medium are static (time independent), the
medium is referred to as a graded-index (GRIN) medium. We only consider static
density variations in this book.
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2 1 Introduction

Figure 1.1 Schematic illustration of the GRIN lenses proposed by (a) Maxwell
and (b) Luneberg. In both cases, refractive index is the largest at the center and
decreases radially toward’s the sphere’s surface.

Historically, Maxwell proposed more than 160 years ago the concept of a GRIN
device, known as the fisheye lens, even before he developed his celebrated equations
[1]. The refractive index for such a lens exhibits spherical symmetry and depends
on the magnitude of the vector r, but not on its direction. Similar ideas were used
by Wood [2] in 1906, and by Luneberg in 1954, for imaging applications [3]. Figure
1.1 shows schematically how optical rays bend because of changes in the refractive
index inside the GRIN lenses proposed by Maxwell and Luneberg. In both cases,
optical rays follow curved paths to come to focus at a point on the sphere’s surface.

With advances in glass technology, GRIN glasses could be fabricated by 1970 in
which the refractive index varied in a cylindrically symmetric fashion in the plane
normal to the direction of propagation. Such GRIN glasses were used either in a
rod form [4] or drawn into a fiber form [5], depending on the application. At the
same time, planar waveguides were developed in which the refractive index n(x)
varied only in one direction normal to the direction of propagation [6–8]. Two books
published around 1977 provided a comprehensive account of such GRIN devices
[9, 10].

The GRIN fibers were developed during the 1970s and their properties studied
extensively in view of their potential applications in the emerging area of optical
communications [11]. Indeed, by the year 1980, GRIN fibers were used for the
first generation of such systems [12]. Even though telecommunication systems
began using single-mode, step-index fibers by 1985, the development of new GRIN
materials and devices remained an active area of research. For example, plastic-
based GRIN fibers are used routinely for data-transfer applications [13]. One can
get a good idea of the intense activity during the 1980s and 1990s by consulting
several special issues of the Applied Optics journal [14]. Two books also describe
the progress realized during this period [15, 16].
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Figure 1.2 Schematic illustration of the refractive-index gradient along a GRIN
device.

Starting around 2010, the advent of space-division multiplexing for modern
telecommunication systems led to a renewed interest in the use of glass-based GRIN
fibers [12, 17, 18]. Since then, the investigation of nonlinear optical phenomena
in GRIN fibers has led to major advances. Among these are the topics such as
spatiotemporal modulation instability, GRIN solitons, and spatial beam cleanup
[19–21]. This book is intended to cover recent research advances and to provide, at
the same time, comprehensive coverage of electromagnetic wave propagation inside
a GRIN medium.

1.2 Refractive-Index Profiles

The focus of this book is on a GRIN medium whose refractive index varies in a
plane normal to the direction of propagation (commonly taken to be the z axis) in a
cylindrically symmetric fashion. Figure 1.2 shows schematically how the refractive
index varies in such a GRIN rod around its central axis, chosen to be the z axis of
the coordinate system. For practical reasons, the refractive index is the largest at the
central axis and decreases gradually in all radial directions moving away from the
center. In its most general form, the refractive index varies with the radial distance
ρ =

√
x2 + y2 as [22–24]

n2(ρ) =
{

n2
0[1− 21f (ρ/a)] (0 ≤ ρ ≤ a)

n2
0(1− 21) = n2

c (ρ ≥ a),
(1.2.1)

where n0 is the maximum value of the refractive index at the center and nc is its
minimum value at ρ = a, which is the radius of the cylindrical core enclosing the
GRIN region. The function f (x) governs shape of the index profile such that its
value is 1 for x = 1.

The parameter 1 can be deduced from Eq. (1.2.1) and has the form

1 =
n2

0 − n2
c

2n2
0

≈
n0 − nc

n0
. (1.2.2)
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4 1 Introduction

where the approximate form holds when nc differs from n0 by at most a few percent
so that 1 � 1. This is often the case in practice for most GRIN devices. Using
1� 1, the refractive index in Eq. (1.2.1) can be approximated as

n(ρ) ≈
{

n0[1−1f (ρ/a)] (0 ≤ ρ ≤ a)
n0(1−1) = nc (ρ > a).

(1.2.3)

This equation shows that n(ρ) decreases as one moves away from the central axis up
to a distance ρ = a in a fashion dictated by the function f (ρ) and takes minimum
value nc in the cladding region ρ > a. The GRIN region of radius a constitutes the
core of such a GRIN device. The parameter 1, given in Eq. (1.2.2), represents the
fractional decrease in the refractive index across the core and its value is a design
parameter for GRIN devices.

The function f (x) governs the shape of the index profile for a GRIN device. This
shape depends on the application for which the device is fabricated for and can vary
over a wide range. In the case of planar waveguides, even an error function has been
used for the shape [8]. In the case of GRIN rods and fibers, it is common to employ
a power-law index profile with f (x) = xp, where the exponent p governs the shape
of the GRIN region. In this case, the refractive index in the core region varies as
[22–24]

n2(ρ) = n2
0

[
1− 21

(ρ
a

)p]
(ρ ≤ a). (1.2.4)

Figure 1.3 shows how the refractive-index profile changes when p is varied in the
range 1–10 using n0 = 1.5 and1 = 0.06. The case p = 2 corresponds to a parabolic
shape of the index profile. Note that the shape becomes closer to a step function for
a large value of p such that n remains close to n0 until one approaches the region
near ρ = a, where it decreases rapidly and takes the value nc. A step-index profile,
occurring in the limit p→∞, is used routinely for making step-index fibers. Its
use confines light within the core of a step-index fiber through the phenomenon of
total internal reflection.

A parabolic index profile, realized for the choice p = 2 in Eq. (1.2.4), plays
an important role in the literature on GRIN media, and many GRIN devices are
designed with such a profile. In this case, we can write Eq. (1.2.4) in the simple
form

n2(ρ) = n2
0(1− b2ρ2), b =

√
21/a. (1.2.5)

The parameter b is a measure of the index gradient such that its larger values indicate
a faster reduction in the refractive index as ρ is increased. This parameter will play
a prominent role in later chapters. As seen from the definition of b in Eq. (1.2.5), its
value depends both on the core’s radius a and the relative index difference 1.

Depending on the application, numerical values of the three parameters, a, n0,
and 1, associated with a GRIN device can vary over a wide range. We classify
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Figure 1.3 Refractive index n(ρ) plotted as a function of the ratio ρ/a for several
values of the parameter p. The vertical dotted line at ρ = a separates the core and
cladding regions of such GRIN devices.

GRIN devices into two broad groups based on the core’s radius a. The value of a
exceeds 1 mm for GRIN rods used to make lenses and similar optical elements. In
contrast, a is restricted to much smaller values in the range of 10–30 µm for GRIN
fibers used for telecommunication applications, among other things. The parameter
1 also varies for these two groups of GRIN devices. Its typical value is around 0.01
for GRIN fibers but can exceed 0.05 for GRIN rods. The value of n0 depends on the
material used for making a GRIN device. In the case of silica glass, n0 is about 1.45.
For plastics, n0 is closer to 1.5.

We can estimate the value of the parameter b for GRIN rods and fibers from
Eq. (1.2.5) by using the values of a and 1. For GRIN rods, typical values of b are
near 0.3 mm−1. In contrast, b is around 5 mm−1 for GRIN fibers. Another relevant
parameter of a GRIN device is its numerical aperture (NA). As indicated in Section
3.1, it depends on the values of n0 and 1 as NA = n0

√
21. The NA of a GRIN rod

is close to 0.5 when n0 = 1.5 and 1 = 0.05. It is lower for GRIN fibers and has
values of 0.2 or less.

1.3 Relevant Optical Processes

All materials affect the electromagnetic radiation propagating through them. The
most relevant effects are (i) loss of power with distance owing to absorption and
scattering, (ii) chromatic dispersion or a frequency-dependent refractive index, and
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6 1 Introduction

(iii) intensity-dependent changes in the refractive index of the material. All three
are discussed in this section.

1.3.1 Power-Loss Mechanisms

Under quite general conditions, changes in the average power P of an optical beam
propagating through a GRIN medium are governed by the Beer–Lambert law [25]:

dP

dz
= −αP, (1.3.1)

where α is called the attenuation coefficient. It includes not only absorption of
power by the material but also other sources of power attenuation such as Rayleigh
scattering. If Pin is the power launched inside a GRIN medium of length L, the
output power Pout is found by integrating Eq. (1.3.1) to be

Pout = Pin exp(−αL). (1.3.2)

It is customary to express α in the decibel units using the relation [12]

α (dB/m) = −
10

L
log10

(
Pout

Pin

)
≈ 4.343α. (1.3.3)

Numerical values of the attenuation coefficient α depend both on the material
used to make a GRIN device and the wavelength of light launched into it. Figure
1.4 compares the wavelength dependence of measured loss in silica-glass fibers to
losses in two types of plastic fibers [26]. As seen there, plastic fibers exhibit much
larger losses (> 10 dB/km) compared to those of silica fibers, whose losses can be
reduced to below 0.2 dB/km in the wavelength region near 1550 nm. Absorption by
the plastic material is the source of high losses in plastic GRIN fibers.

In the case of optical glasses, absorption by the material of the glass is relatively
small in the visible and near-infrared regions. However, even small amounts of
impurities can increase this loss considerably. In the case of silica fibers, losses can
be reduced to below 1 dB/km by eliminating all impurities. For such fibers, the
dominant contribution to α arises from Rayleigh scattering, which is a fundamental
loss mechanism arising from local microscopic fluctuations in the density of glass
used to make the fiber. Glass molecules move randomly in the molten state and
freeze in place during cooling. Resulting density fluctuations produce random
fluctuations in the refractive index on a scale smaller than the optical wavelength λ.
These fluctuations are the source of Rayleigh scattering, whose cross section varies
as λ−4 [25]. As seen in Figure 1.4, silica’s loss resulting from Rayleigh scattering
exceeds 1 dB/km in the visible region but is reduced to below 0.2 dB/km in the
infrared region near 1550 nm used for modern optical communication systems.
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Figure 1.4 Wavelength dependence of the loss in silica fibers and losses in two
types of plastic fibers. Note the logarithmic scale in units of dB/km. (After Ref. [26];
c©2014 IOP.)

1.3.2 Chromatic Dispersion

In the case of a GRIN medium, the refractive index n(ρ,ω) depends both on the
spatial location ρ and the frequency ω. Chromatic dispersion has its origin in the
frequency dependence of the refractive index. As we shall see in Section 2.1, it is the
frequency dependence of the propagation constant, defined as β(ω) = n(ω)(ω/c),
where c is the speed of light in vacuum, that governs the dispersive properties of any
material. When the spectrum of incident light is narrower compared to its central
frequency ω0, we can expand β(ω) in a Taylor series as

β(ω) = β0 + β1(1ω)+ 1
2β2(1ω)2

+ . . . , (1.3.4)

where 1ω = ω − ω0 and βm = (dmβ/dωm)ω=ω0 .
In Eq. (1.3.4), β1 is related inversely to the group velocity vg and is responsible

for the group delay, τg = β1L, over a length L. The parameter β2, representing the
second derivative of β, is called the group-velocity dispersion (GVD) parameter.
This parameter will play an important role in chapters dealing with the propagation
of optical pulses inside a GRIN medium. For pulses shorter than 1 ps, it is sometimes
necessary to consider the cubic term containing β3 in the Taylor series in Eq. (1.3.4).
This parameter is referred to as the third-order dispersion parameter.

The dispersion parameter β1 can be calculated for any GRIN medium by taking
the frequency derivative of β as

β1 =
dβ

dω
=

ng

c
, ng = n+ ω

dn

dω
, (1.3.5)
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8 1 Introduction

where ng is called the group index. It can be employed to calculate the GVD
parameter in the form

β2 =
dβ1

dω
=

1

c

dng

dω
. (1.3.6)

The sign of β2 depends on the sign of the derivative dng/dω and can be positive or
negative in different spectral regions for glasses used to make a GRIN device. A
related dispersion parameter D is also used for GVD; it is defined as

D =
dβ1

dλ
= −

λ

c

d2n

dλ2
. (1.3.7)

It is easy to show that D is related to β2 by the relation D = −(2πc/λ2)β2 and its
sign is opposite to that of β2.

On a fundamental level, the origin of dispersion is related to the atomic resonance
frequencies at which a material absorbs electromagnetic radiation. Far from such
resonances, the refractive index is well approximated by the Sellmeier equation [27],

n2(ω) = 1+
M∑

j=1

Bjω
2
j

ω2
j − ω

2
, (1.3.8)

where ωj is the resonance frequency and Bj is the oscillator strength. The parameters
Bj and ωj are obtained empirically by fitting the measured dispersion curve to
Eq. (1.3.8) with M = 3. For pure silica glass, these parameters are found to be
[27] B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043 µm,
λ2 = 0.1162414 µm, and λ3 = 9.896161 µm, where λj = 2πc/ωj for j = 1 to 3.

We can use Eq. (1.3.8) to calculate the frequency dependence of n and ng for
the silica glass without an index gradient. Figure 1.5 shows this dependence in
the wavelength range 0.6–1.6 µm. The group-delay parameter is obtained using
β1 = ng/c. Even though n decreases monotonically with λ in the entire wavelength
range, β1 exhibits a shallow minimum for silica glass at the specific wavelength,
λ = 1.276 µm, marked by the dotted vertical line in Figure 1.5. This wavelength is
called the zero-dispersion wavelength (denoted by λZD) because the GVD parameter
β2 vanishes at this wavelength.

Figure 1.6 shows how the dispersion parameters β2 and D vary with wavelength
λ for silica glass (no index gradient) using Eqs. (1.3.6) and (1.3.7). As expected,
both β2 and D vanish at λZD near 1.27 µm and change sign for longer wavelengths.
It is common to refer to negative values of β2 as the GVD being anomalous. The
curve marked d12 shows the differential group delay, d12 = β1(λ1)− β1(λ2), using
a reference wavelength λ2 = 0.8 µm. It shows the relative delay of a pulse as its
central wavelength λ1 is varied.
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Figure 1.5 Variation of refractive index n and group index ng with wavelength for
fused silica. The dotted line indicates the zero-dispersion wavelength.

Figure 1.6 Wavelength dependence of β2, D, and d12 for silica glass.

The situation changes considerably when silica glass is used to make a GRIN
device. It will be seen in Chapter 2, that the propagation constant β, and hence
all dispersion parameters, become mode-dependent for any GRIN medium. In
particular, one must consider the intermodal group delay resulting from different
values of β1 for different modes. This topic is covered in Sections 2.4 and 4.1 in the
context of optical pulses.
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10 1 Introduction

1.3.3 Intensity Dependence of Refractive Index

The response of any dielectric to electromagnetic radiation becomes nonlinear for
intense electric fields, and materials used for making GRIN devices are no exception.
Several common nonlinear effects have their origin in the Kerr effect. According to
it, the refractive index of any material increases at high intensities such that [28]

n(I) = n0 + n2I , (1.3.9)

where I is the local intensity and n0 is the low-intensity value of the refractive index.
The parameter n2 is called the Kerr coefficient. Its numerical value depends on the
material used to make a GRIN device and is about 3× 10−20 m2/W for silica glass.

Adding the nonlinear contribution, the refractive index of a GRIN medium has
the form

n(r,ω, I) = n0(ω)[1−1f (r)]+ n2I(r), (1.3.10)

where the dependence on all three variables is shown explicitly. The maximum value
of the nonlinear contribution, δn = n2I(r), occurs at the location where the intensity
peaks. Denoting this peak value with I0 = P0/Ae, where P0 is the peak power and
Ae is the effective beam area, δn = n2P0/Ae. As an example, if we use Ae = 1 cm2

and n2 = 3 × 10−20 m2/W, δn = 3 × 10−13 even at a relatively high peak power
of P0 = 1 kW. This value is too small to have any impact when a CW beam is
launched inside a GRIN rod.

There are two ways to enhance the nonlinear effects inside a GRIN medium. First,
the beam’s effective area Ae is reduced considerably when GRIN fibers are used
with a core radius close to 10 µm. Second, if a beam containing a train of short
optical pulses is used, the peak power P0 of the pulse can exceed 1 MW. Using
Ae = 10−10 m2 for a GRIN fiber, the nonlinear contribution to the refractive index
(about 3× 10−4) is much smaller than 1, indicating that it is not likely to affect the
GRIN-induced self-imaging phenomenon discussed in Chapter 3. However, if the
GRIN fiber is long enough, the nonlinear contribution can affect both the temporal
and spectral features of a pulsed beam. As noted in Chapter 5, it also produces novel
spatiotemporal features that have been studied extensively in recent years [19–21].

The intensity dependence of the refractive index leads to several nonlinear effects;
the two most common ones are known as self-focusing and self-phase modulation
(SPM). The phenomenon of self-focusing is relevant for GRIN media because it can
compress an optical beam and compete with the GRIN-induced focusing. Moreover,
it leads to a beam’s collapse above a certain critical power level [28].

SPM is relevant only for pulsed optical beams. It produces a self-induced phase
shift that is different for different parts of the same pulse because of its intensity
dependence. Its magnitude can be obtained from Eq. (1.3.10). After a distance L,
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the nonlinear phase shift is given by

φNL(r, t) = (n2k0L)I(r, t), k0 = 2π/λ. (1.3.11)

The phase shift depends both on the spatial location r and t because the intensity of
a pulsed beam varies with time. This feature is called SPM because a pulse modifies
its own phase. The spatial dependence produces a curved wavefront and leads to
self-focusing when n2 > 0 and self-defocusing when n2 < 0. The time dependence
produces spectral broadening of a pulsed beam [20]. It can also lead to the formation
of optical solitons in the anomalous-GVD region of a GRIN fiber [29].

A related nonlinear phenomenon, known as cross-phase modulation (XPM),
refers to the nonlinear phase shift of an optical field induced by another field having
a different wavelength or state of polarization. Its origin can be understood by noting
that the total electric field, in the case of two fields of different wavelengths but the
same state of polarization, is given by

E(r, t) = x̂Re[E1 exp(−iω1t)+ E2 exp(−iω2t)]. (1.3.12)

In this situation, the nonlinear phase shift at the frequency ω1 is found to be [20]

φNL = n2(ω1/c)L(|E1|
2
+ 2|E2|

2). (1.3.13)

The first term is the SPM term seen in Eq. (1.3.11). The second term is due to
XPM because it represents a phase shift induced by another beam at a different
wavelength. The Kerr effect also leads to four-wave mixing when a phase-matching
condition is satisfied [20].

1.4 GRIN Materials and Fabrication

Both glasses and plastics are used for making GRIN devices, which are divided into
two broad categories based on their transverse dimensions – GRIN rods and GRIN
fibers. The radius a of the cylindrical region over which n(ρ) varies exceeds 1 mm
for GRIN rods. In contrast, a is restricted to values in the range of 10–30 µm for
GRIN fibers. Silica glass is commonly used for making GRIN fibers, but GRIN rods
can be made with other materials as well.

In spit of the amorphous nature of glass, its refractive index can be treated as
being constant over lengths longer than a wavelength. Thus, glass in its natural
state is a homogeneous medium. The important question is how one can modify
the refractive index of a glass such that it varies in a prescribed manner with the
distance ρ from the central axis. From a fundamental perspective, the refractive
index of a material depends on its density and can only be changed by making its
density nonuniform. As early as 1980, a review of the GRIN materials listed six
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Figure 1.7 Schematic of the ion-exchange process used to make GRIN rods. (After
Ref. [33]; c©2021 CC BY.)

different techniques developed for this purpose [30]. In one approach, a boron-rich
glass rod is bombarded with neutrons. As neutrons enter the glass, its refractive
index decreases because neutrons change the boron’s concentration. The decrease is
the largest in the outer region of the glass rod and becomes negligible near the rod’s
center, resulting in a gradient in the glass’s refractive index.

Another common method is known as the ion-exchange technique [31–33]. In
this approach, shown schematically in Figure 1.7, a base glass with heavier ions
(such as K+) is immersed into a molten salt bath containing lighter alkali ions. At a
suitable temperature, lighter ions diffuse into the glass and replace the heavy ions
present within the glass [4]. This ionic exchange creates a gradient in the refractive
index of the glass because fewer and fewer ions are replaced as one moves from
the outer surface toward the central region of the glass. Diffusion of ions into the
glass is affected by several factors, such as the strength of bonds that hold the glass
ions in their lattice sites and the relative mobilities of various ions inside the glass
network. As the mobility of ions depends on temperature, a higher temperature
helps in practice. An external electric field is also used to speed up the ion-exchange
process and to control the shape of the resulting refractive-index profile [34].

An ion-stuffing technique has also been used for making GRIN devices. In this
case, a special glass is chosen whose structure (or phase) changes when heated
suitably. The changed part is soluble in a specific acid. When the glass is immersed
in this acid, the diffusion of acid into the glass removes less and less material from
the inner regions of the glass, resulting in the formation of an index gradient. The
main issue with this technique is that very few glasses exist that exhibit phase
separation, and the phase separation is not always uniform.

A different technique, known as chemical vapor deposition (CVD), is employed

https://doi.org/10.1017/9781009282086.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009282086.002


1.4 GRIN Materials and Fabrication 13

Figure 1.8 Schematic of the direct laser writing scheme used for making GRIN
devices. (After Ref. [38]; c©2020 CC BY.)

for making GRIN fibers [35]. The fabrication of such fibers involves two stages. First,
a cylindrical rod of about 2 cm diameter is produced with the desired refractive-index
profile by depositing silica, layer by layer, inside of a silica tube. An index-increasing
dopant material (such as germania) is added to each layer such that the density of
dopants varies from one layer to another and is larger in the central region of the
tube [36]. The resulting structure is called a preform, which is drawn into the form
of a GRIN fiber using a draw tower. Both fabrication stages involve sophisticated
technology to ensure the uniformity of the index profile within the fiber’s core.
A polymerization technique can also be used when a plastic material is used for
making GRIN fibers [13]. In this approach, the monomer of an organic material is
differentially changed into a polymer by irradiation of ultraviolet radiation.

A technique called direct laser writing has been developed in recent years [37–
39]. As shown in Figure 1.8, it uses point-by-point exposure of a plastic material to
intense laser pulses to change its local refractive index through polymerization. The
exposure dose is varied during scanning by varying the laser’s power to produce an
index gradient. This technique employs a lithographic approach in the sense that
an arbitrary refractive-index profile can be created by using a photoresist that is
exposed to laser pulses, which modify the refractive index through a multiphoton
polymerization process [39].

A nanoscale engineering technique was used in 2018 for making GRIN fibers
[40]. In this approach, the core of the preform is made by combining two types of
glass rods, made of pure silica and Ge-doped silica, in such a fashion that the density
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Figure 1.9 SEM images at three magnification levels of a GRIN finer made with
the nanoscale engineering technique. (After Ref. [40]; c©2018 CC BY.)

of Ge-doped rods is the largest near the core’s center and decreases gradually as
the radial distance increases. As a result, the refractive index is effectively graded
inside the fiber’s core when the preform is drawn into a thin fiber. This technique
was used to produce a GRIN fiber with a parabolic index profile. A preform was
first made by stacking more than 2100 rods with a core diameter of 0.45 mm inside
a tube of silica glass (see Figure 10.8 of Chapter 10). The fiber was drawn using
this preform until the diameter of each rod was reduced to nearly 190 nm. Figure
1.9 shows images of this fiber’s cross section at three magnification levels that were
obtained with a scanning electron microscope (SEM). Part (a) shows the whole fiber,
part (b) shows its core, and part (c) shows individual nanosize rods within the core.
Such a nanostructure-based technique is not limited to the circular geometry and is
flexible enough to produce GRIN fibers with any index profile.

1.5 Overview of Book’s Contents

This book provides a comprehensive coverage of the physics of optical phenomena
inside a GRIN medium and uses it for understanding the operation of engineered
devices such as GRIN lenses, sensors, endoscopes, and tweezers. The first chapter
begins with a historical perspective and introduces different refractive-index profiles
that can be employed for making a GRIN device. It also focuses on the relevant
properties of a GRIN medium, such as power loss, chromatic dispersion, and
intensity dependence of the refractive index at high power levels, which may affect
the operation of practical devices. The techniques used to fabricate GRIN devices
are also discussed in this chapter.

Chapter 2 starts with Maxwell’s equations and uses them to obtain the wave
equation that must be solved to understand the propagation of optical waves inside
a GRIN medium. This equation is solved in Section 2.2 to obtain the modes of a
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GRIN medium for a parabolic index profile. Non-parabolic profiles are considered
in Section 2.3. When an optical beam is launched into a GRIN medium, it excites
different modes with different efficiencies. This issue is discussed in Section 2.4,
where we also consider multimode interference and intermodal dispersion. Sec-
tion 2.5 describes several non-modal techniques that can be used for studying wave
propagation in GRIN media.

The focus of Chapter 3 is on the focusing and self-imaging of optical beams
inside a GRIN medium. Section 3.1 provides a geometrical-optics perspective and
shows why optical rays follow a curved path inside a GRIN medium. The modal
expansion is used in Section 3.2 to obtain a propagation kernel that can be used
for beams of any spatial shape. It is used to discuss the self-imaging phenomenon.
It is also used to study the propagation of Gaussian beams launched on-axis, or
offset from the central axis of a GRIN medium. Section 3.3 is devoted to studying
how a GRIN rod can be used as a flat lens to focus or to collimate a beam. Imaging
characteristics of such a lens are also studied in this section. Several important
applications of GRIN devices are discussed in Section 3.4.

Chapter 4 is devoted to the study of the dispersive effects that affect a pulsed
beam propagating inside a GRIN medium. In Section 4.1, an equation governing
the evolution of optical pulses is obtained. The dispersion parameters appearing in
this equation change, depending on which mode is being considered. Section 4.2
focuses on the distortion of optical pulses resulting from differential group delay
and group-velocity dispersion. Section 4.3 deals with the effects of linear coupling
among the modes occurring because of random variations in the core’s shape and
size along the fiber’s length. A non-modal approach is developed in Section 4.4
for short optical pulses propagating inside a GRIN medium. Section 4.5 describes
important applications such as optical communications and biomedical imaging.

The focus of Chapter 5 is on the intensity dependence of the refractive index that
leads to a variety of interesting nonlinear effects in the case of GRIN fibers. We
consider in Section 5.1 the self-focusing of a CW beam inside a GRIN medium.
The pulsed beams are considered in Section 5.2, where we discuss the phenomena
of self- and cross-phase modulations. Section 5.3 is devoted to the modulation
instability and the formation of multimode solitons. Intermodal nonlinear effects
are described in Section 5.4 with emphasis on four-wave mixing and stimulated
Raman scattering. Applications such as supercontinuum generation and spatial
beam cleanup are discussed in Section 5.5.

Chapter 6 is devoted to the effects related to the presence of loss or gain inside a
GRIN medium. Loss is considered in Section 6.1. Except for a reduced power level,
its effects are found to be relatively minor. We discuss in Section 6.2 the mechanisms
used for providing optical gain inside an active GRIN medium. Section 6.3 is devoted
to Raman amplifiers and lasers, built with GRIN fibers and pumped suitably to
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provide the optical gain. Parametric amplifiers are discussed in Section 6.4, together
with the phase matching required for four-wave mixing to occur inside them. The
focus of Section 6.5 is on amplifiers and lasers made by doping a GRIN fiber with
rare-earth ions. Section 6.6 includes the nonlinear effects and describes how spatial
solitons and similaritons can form under suitable conditions inside an active GRIN
medium.

Chapter 7 focuses on a nonuniform GRIN fiber, tapered to induce variations in
the refractive index along its length, in addition to the transverse radial variations.
Section 7.1 describes the ray-optics and wave-optics techniques that can be used
for studying propagation of optical beams inside such a medium. Section 7.2
discusses the impact of tapering on the periodic self-imaging for several different
tapering profiles. The analogy between a GRIN medium and a harmonic oscillator is
exploited in Section 7.3, where we discuss several quantum-mechanical techniques.
Section 7.4 is devoted to the case of periodic axial variations, induced by changing
the core’s radius in a periodic fashion.

Chapter 8 is devoted to the formation of optical vortices inside a GRIN medium.
After discussing important polarization concepts in Section 8.1, we use in Section 8.2
specific combinations of the modes that act as vortices with different states of
polarizations. Cylindrical vector beams with radial or azimuthal polarization are
also discussed. In Section 8.3, we present the techniques used for generating different
types of vortex beams. Section 8.4 shows that vortex beams also exhibit the self-
imaging property during their propagation inside a GRIN medium. The impact of
random mode-coupling is also discussed in this section. Vortex-based applications
of GRIN fibers are covered in Section 8.5.

The focus of Chapter 9 is on photonic spin-orbit coupling occurring inside a
GRIN medium. Section 9.1 describes two physical mechanisms that can produce
changes in the states of polarization of an optical beam. The exact wave equation
with the term involving the index gradient is solved in Section 9.2 to introduce the
path-dependent geometrical phase to discuss the photonic analog of the spin-Hall
effect and conversion between the spin and orbital angular momenta. Section 9.3
considers how the scalar LPlm modes change when the index-gradient term is taken
into account. A quantum approach is employed in Section 9.4 to find the exact
vector modes of a GRIN medium.

Chapter 10 is devoted to two research areas that have attracted considerable
attention in recent years – photonic crystals and metamaterials. Both are artificial
structures made by combining two or more materials on a subwavelength scale.
They can also be used to make GRIN devices with a spatially varying refractive
index. Section 10.1 introduces the basic concepts needed to understand the physics
behind the photonic crystal and metamaterials. Section 10.2 is devoted to the
engineering of GRIN structures based on photonic crystals. Section 10.3 deals
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with the metamaterial-based GRIN devices, while the GRIN devices based on
metasurfaces are discussed in Section 10.4.

The focus of Chapter 11 is on studying the impact of fluctuations in the amplitude
or phase of an optical beam propagating inside a GRIN medium. Such beams are
called partially coherent. Section 11.1 introduces the basic concepts related to the
topic of partial coherence. Section 11.2 considers how the self-imaging phenomenon
is affected by the partial coherence of an incoming beam. The evolution of a partially
coherent beam inside a GRIN medium is studied in Section 11.3 using its cross-
spectral density. The general result is used to discuss changes in the intensity, optical
spectrum, and the degree of spatial coherence. The focus of Section 11.4 is on
the polarization effects associated with a partially coherent beam. The concept of
polarization matrix is used to discuss periodic changes occurring both in the state of
polarization and the degree of polarization.
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