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Abstract. The lattice problem for models of Peano Arithmetic
(PA) is to determine which lattices can be represented as lattices
of elementary submodels of a model of PA, or, in greater gener-
ality, for a given model M, which lattices can be represented as
interstructure lattices of elementary submodels K of an elemen-
tary extension N such that M 4 K 4 N . The problem has been
studied for the last 60 years and the results and their proofs show
an interesting interplay between the model theory of PA, Ramsey
style combinatorics, lattice representation theory, and elementary
number theory. We present a survey of the most important re-
sults together with a detailed analysis of some special cases to
explain and motivate a technique developed by James Schmerl for
constructing elementary extensions with prescribed interstructure
lattices. The last section is devoted to a discussion of lesser-known
results about lattices of elementary submodels of countable recur-
sively saturated models of PA.

1. Introduction

This paper concerns the study of substructure and interstructure
lattices of models of PA (Peano Arithmetic). All models will be models
of PA. We use M, N , K. . . for models, and M , N , K, . . . for their
domains. We writeM 4 N ifM is an elementary submodel of N and
M ≺ N if M is a proper elementary submodel of N (i.e., if M 4 N
and M 6= N ).

For a subset X of the domain of a model N , SclN (X) denotes the
Skolem closure of X in N . Thanks to the provability of the least
number principle in PA, the Skolem closure of X in N is the same
as its definable closure, i.e., the closure of X under all parameter-free
definable functions. For M ≺ N and a ∈ N \ M , we will denote
SclN (M ∪ {a}) by M(a) and, for emphasis, we will denote SclN (0) by
Nmin. Nmin is the prime model of the complete theory of N , which we
denote by Th(N ).

We will discuss two types of lattices, namely substructure lattices
and interstructure lattices. Given M 4 N , the interstructure lattice,
denoted Lt(N /M), consists of all models K such that M 4 K 4 N
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2 ATHAR ABDUL-QUADER AND ROMAN KOSSAK

ordered by inclusion. Clearly M and N are the minimum and the
maximum elements of Lt(N /M), respectively.

Lt(N /M) is a complete lattice. The meet of any set of elementary
submodels of N is the intersection of all the models in the set, and the
join is the Skolem closure of their union.

The substructure lattice of N , denoted Lt(N ), is Lt(N /Nmin), i.e.,
it is the lattice of all elementary submodels of N .

The systematic study of substructure and interstructure lattices of
models of PA begins with Haim Gaifman’s seminal paper [6]. Gaif-
man introduced a powerful technique of end-extensional and minimal
types, which he applied to construct models with some specific sub-
structure and interstructure lattices. In particular, he proved that for
every set I, every model M has an elementary extension N such that
Lt(N /M) is isomorphic to the Boolean algebra of all subsets of I.
Soon after [6] appeared, Schmerl [20] confirmed Gaifman’s conjecture
that for every finite distributive lattice D, every model M has an el-
ementary end extension N such that Lt(N /M) is isomorphic to D.
Recall that a lattice D is distributive if the operations of join and meet
in D distribute over each other, i.e., x∧ (y ∨ z) = (x∧ y)∨ (x∧ z) and
x∨ (y ∧ z) = (x∨ y)∧ (x∨ z). By well-known representation theorems
of Stone and Priestley, a lattice D is distributive if for some set X, D
is isomorphic to a sublattice of the Boolean algebra of all subsets of X.

George Mills [17] extended Gaifman’s technique to types with ar-
bitrary sets of variables and completely characterized all distributive
lattices that can be represented as Lt(N /M). Almost at the same
time, Paris [19] and Alex Wilkie [32] applied different techniques to
give examples of finite nondistributive substructure and interstructure
lattices. We will give precise statements of all these results in Section
4.

The work on substructure and interstructure lattices of models of
PA has turned out to be intimately connected with problems in lattice
theory, Ramsey style combinatorics, and even some elementary number
theory. Chapter 4 of [13] gives a comprehensive account of the main
results obtained prior to 2005. Our goal is to give a brief survey of the
area, to review the main lattice representation technique introduced by
James Schmerl in [21], and to report on some more recent results. The
paper ends with a list of open problems. For now, let us just mention
the most outstanding one.

Problem 1. Can every finite lattice be represented as Lt(N ) for some
model N of PA?
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The paper is organized as follows. Preliminaries in Section 2, along
with introduction of the terminology and notation, contains a more
detailed discussion of two particular examples that are included to il-
lustrate basic concepts and to motivate more general results that follow.

The study of substructure and interstructure lattices of models of PA
splits into two distinct areas: the distributive and nondistributive cases.
This is reflected by splitting the brief overview of some major results
into two sections 3 and 4 in which each case is discussed separately.

The next two sections are devoted to an introduction of Schmerl’s
method of CPP-representations. In Section 5 we introduce basic def-
initions and illustrate them with a simple example. The purpose is
not only to show how the method works, but also why it might be
necessary. Section 6 proceeds in a similar fashion; a variant of the
CPP-representations method is applied to lattices enriched by a rank
function.

Section 7 is about substructure and interstructure lattices that are
enriched further by adding the isomorphism relation between substruc-
tures. The idea leads to the concept of diverse models and diverse
extensions that are illustrated by examples.

Section 8 is motivated by the interesting fact that the pentagon lat-
tice can be realized by interstructure lattices of end extensions of count-
able models, but none of those extensions is conservative. This leads to
the problem: what are possible sets of subsets of a model that are coded
in elementary end extensions with prescribed interstructure lattices?

Section 9 is devoted to lattices of elementary submodels of countable
recursively saturated models of PA, and to one particular theorem that
shows that for a large class of such models the isomorphism type of
each model in the class is determined by its complete theory and its
lattice of elementary substructures.

We end in Section 10 with some open questions.

2. Preliminaries

This section presents all basic notions and results that will be needed
for the discussion that follows. Some concepts are illustrated by simple
examples and some preliminary results. A full introduction to the
model theory of PA is Richard Kaye’s [9] and all details directly related
to the lattice problem can be found in [13, Chapter 4].

Let L be the language of PA. Given an expansion L′ of L, PA∗ is the
theory consisting of the axioms of PA along with the induction schema
for all formulas in L′. That is, PA∗ is not a single theory, but many, one
for each such expansion. With one notable exception [30, Theorems 3
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and 4], all results about models of PA in this article also hold for PA∗ in
any countable language. This also applies to the last section in which
we discuss recursively saturated models, but there we need to add the
assumption that the language is computable.

A model K in Lt(N /M) is finitely generated if K = SclN (M ∪ A),
for some finite A ⊆ N . Each finite tuple in a model of PA is coded by
a single element; hence, if M ≺ N , for every finitely generated over
M model K in Lt(N /M) there is an a ∈ N such that K =M(a).

Let L be a lattice. An element x ∈ L is called compact if whenever
x ≤

∨
X for X ⊆ L, then x ≤

∨
X ′ for some finite X ′ ⊆ X. It is

easy to verify that the compact elements of Lt(N /M) are the finitely
generated over M elementary submodels.

The set of compact elements of Lt(N /M) forms a join-semilattice,
which we denote as Lt0(N /M) and Lt0(N ) will denote Lt0(N /Nmin).
For a, b ∈ N , M(a) ∨ M(b) = M(〈a, b〉), where 〈x, y〉 is Cantor’s
pairing function. It is not obvious that the intersection of two finitely
generated models may not be finitely generated. Various examples can
be shown, one is given shortly below.

A complete lattice L is algebraic if each element of L is the supremum
of a set of compact elements. A lattice is κ-algebraic if it is algebraic
and each compact element has less than κ many compact elements
below it. The domain of any K ∈ Lt(N /M) is the union of the domains
of all models M(a), for a ∈ K; thus K is the supremum of the set of
compact elements below it in the lattice.

It follows from the remarks above that for any M |= PA, Lt(M) is
ℵ1-algebraic, and for anyM andN , ifM≺ N then Lt(N /M) is |M |+-
algebraic. Moreover, if Lt0(N /M) ∼= Lt0(N1/M1), then Lt(N /M) ∼=
Lt(N1/M1). Thus, in order to realize a lattice as an interstructure
lattice, we need only to ensure that we have control over the com-
pact elements. Of course, if Lt(N /M) is finite, all elements of it are
compact.

2.1. Extensions. A model N is a cofinal extension ofM, if for every
b ∈ N there is an a ∈M such that b < a. N is an end extension ofM
if for every a ∈M and b ∈ N \M , N |= a < b. We writeM≺cofN if N
is a cofinal elementary extension, andM≺endN if N is an elementary
end extension.

If M 4 N , then we say that X ⊆ N is M-definable if it is defined
in N by an L(M)-formula. If X ⊆M isM-definable, we just say that
it is definable.

If M 4 N , then N is a conservative extension of M, if for every
definable X ⊆ N , X ∩M is M-definable.
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If N is a conservative extension of M, then for each c ∈ N , A =
{x ∈ M : x < c} is M-definable. If c < a for some a ∈ M , then A,
as a bounded definable subset of M, must have a maximum element
and it is easy to see that that maximum element is c; hence c ∈ M .
Therefore, all conservative extensions are end extensions.

Let us note that Lt(N ) may be uncountable even if N is finitely
generated, i.e., it is finitely generated over Nmin. To see this, let M
be a countable model with an uncountable substructure lattice (as an
example, take M to be a countable, recursively saturated model). By
[13, Theorem 2.1.12], every countable model M has a superminimal
elementary end extension, i.e., an elementary end extension N such
that N = Scl(b) for every b ∈ N \M .

For any completion T of PA, starting with a prime model of T , we
can build an ω1-chain of superminimal elementary end extensions. The
union of this chainN has no proper elementary uncountable submodels
and Lt0(N ) is isomorphic to (ω1,≤). The existence of such models was
proved independently by Julia Knight [10] and Jeff Paris [18].

Example 1. We can use the technique of superminimal extension to
provide an example showing that the intersection of two finitely gener-
ated submodels might not be finitely generated.

As mentioned above, every countable model has a superminimal ele-
mentary end extension. Moreover, ifM is countable, nonstandard, and
is generated by a bounded set of generators, then it has a superminimal
cofinal extension ([13, Exercise 2.5.2]). Suppose M is countable, non-
standard, and has a bounded, but not finite, set of generators. Such a
model can be obtained as the union of an ω-chain of elementary cofinal
extensions of a nonstandard finitely generated modelM, such that, for
some fixed a in M , each next model in the chain is a cofinal extension of
the previous one generated over the previous model by a new element
added below a. Let N1 be a superminimal elementary end extension of
M, N2 a superminimal cofinal extension of M, and let N = Scl(a, b),
where a ∈ N1 \M and b ∈ N2 \M (by superminimality, any such a
and b will work). Then, in Lt(N), N1 and N2 are compact (finitely
generated), but their intersection is M, not finitely generated.

2.2. Ranked lattices. The following result is known as Gaifman’s
Splitting Theorem.

Theorem 2. If M 4 N , then there is a unique K such that M 4cof

K 4end N . The domain of K is {x ∈ N : ∃y ∈M N |= (x ≤ y)}.

Thanks to Gaifman’s Splitting Theorem, for each K in Lt(N /M),
we can define the rank of K, ρ(K), as the unique K such that K 4cof
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K 4end N . The set of ranks of all models in Lt(N /M), called the
rankset, is linearly ordered by inclusion. It is easy to see that for K0,
K1 in Lt(N /M), if K0 ≺ K1, then

• K0 4cof K1 if and only if ρ(K0) = ρ(K1), and
• K0 4end K1 if and only if K0 = ρ(K0) ∩ K1.

Ranked lattices were introduced by Schmerl in [21]. Here is a modified
definition from [13]: A ranked lattice (L, ρ) is a lattice L equipped with
a function ρ : L −→ L such that for all x and y in L we have

(1) x ≤ ρ(x);
(2) ρ(ρ(x)) = ρ(x);
(3) ρ(x) ≤ ρ(y) or ρ(y) ≤ ρ(x);
(4) ρ(x ∨ y) = ρ(x) ∨ ρ(y).

The rankset of a ranked lattice (L, ρ) is {ρ(x) : x ∈ L}.
Lt(N /M) equipped with the rank function defined above is a ranked

lattice, denoted by Ltr(N /M).
A lattice can have many expansions to a ranked lattice. To be rep-

resented as rank functions in interstructure lattices of models of arith-
metic those expansion have to satisfy certain additional conditions.

Andreas Blass [1] showed that the intersection of two finitely gener-
ated cofinal submodels of a model M must be cofinal in M.1 Thus,
if M ≺ N , and (L, ρ) is isomorphic to Ltr(N /M), then (L, ρ) must
satisfy the Blass Condition: for all compact x, y ∈ L, if ρ(x) = ρ(y),
then ρ(x) = ρ(x ∧ y).

Less perspicuous is the Gaifman Condition: for all x, y, z ∈ L, if x <
y < x∨ z, z = ρ(z), and x∧ z = y∧ z, then x = y. See [13, Proposition
4.2.12]. In the next section, we explain how these conditions are used to
show that some finite lattices cannot be represented by interstructure
lattices given by end extensions.

2.3. End-extensional and minimal types. This subsection is a brief
summary of some of the results from [6]. The results are interesting
on their own. They found many applications in the model theory of
PA and the notion of definable type became standard in general model
theory. Here we will just list some definitions and results that play a
major role in the solution to the lattice problem for distributive lattices
that is the subject of the next section.

Let T be a completion of PA and let MT be the prime model of
T . When we say that p(x) is a type of T , we mean that p(x) is in

1Blass’ theorem is about models of full arithmetic, i.e., PA∗ in the language with
function and relation symbols for all functions and relations on ω, but its proof
works for models of PA as well.
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the language of T and it is consistent with T . A type p(x) of T is
unbounded if t < x is in p(x) for each constant Skolem term t of T .

For a model M, by L(M) we will denote L with added constant
symbols for all elements of M . An L(M)-type is a type in L(M) that
is finitely realizable in M. Thanks to the availability of a definable
pairing function, for most of the results we will discuss, it is enough to
consider 1-types.

An L(M)-type is unbounded if (a < x) ∈ p(x) for all a ∈ M . So,
for a completion T of PA, an L-type p(x) is unbounded if it is an
unbounded L(MT )-type.

For every model M |= T , every unbounded type of T extends to an
unbounded L(M)-type [6, Proposition 2.7].

Definition 3 ([6]). For a modelM, an L(M)-type p(x) is definable if
for every L-formula ϕ(x, y) there exists an L-formula σϕ(y) such that
for all a ∈M ,

ϕ(x, a) ∈ p(x) iff M |= σϕ(a).

A type of a completion T is definable if it is a definable L(MT )-type.

It is easy to see that N is a conservative extension ofM if and only
if for every a ∈ N \M , tp(a/M) is definable. If p(x) is a complete
L(M)-type then by M(p) we denote the unique up to isomorphism
Skolem closure of M ∪ {b} in an elementary extension of M in which
b realizes p(x).

Definition 4 ([6]). Let T be a completion of PA, and let p(x) be a
type of T . Then,

(1) p(x) is end-extensional if for every M |= T and every un-
bounded complete L(M)-type q(x), if p(x) ⊆ q(x), then M(q)
is an end extension of M.

(2) p(x) minimal if for every q(x) as above, M(q) is a minimal
extension of M, i.e., Lt(M(q)/M) has exactly two elements:
bottom M and top M(q).

Gaifman proved that every minimal type is end-extensional, that
every end-extensional type is definable, and that minimal and end-
extensional types exist in abundance: for every completion T of PA
there are continuum many independent minimal types of T .2 If p and
q are such types, then for all M, M(p) and M(q) are not isomorphic.
From the existence of minimal types for every completion of PA it

2A type p(x) depends on a type q(x) if for some Skolem term t(x), for all formulas
ϕ(x) in p(x), ϕ(t(x)) is in q(x). Two types are independent if neither depends on
the other.
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follows that every model of PA has a minimal (conservative) elementary
end extension.

Example 5. Let p(x) be a minimal type of T . For M |= T , let
N =M(a)(b)(c) =M(〈a, b, c〉), where a, b, c all realize p(x). Let K be
the supremum of M(a) in M(〈a, c〉).

K︷ ︸︸ ︷
−−−−−) == a ==)−− b−−)︸ ︷︷ ︸

M(b)\M

M(〈a,c〉)\K︷ ︸︸ ︷
== c ==)

Then, it follows from the facts about minimal types proved in [6] that
Lt(N /M)∼= (P({a, b, c}),⊆), tp(〈a, b〉) = tp(〈a, c〉), and both types
are definable. The example shows that there are definable types which
are not end-extensional. In particular, tp(〈a, b〉) is such a type, because
M(b)(〈a, c〉) is not an end extension of M(b).

The technique of minimal and end-extensional types uses infinitary
combinatorics of unbounded definable sets in models of PA and does
not apply to cofinal extensions. Cofinal extensions are obtained by
realizing bounded types for which combinatorial arguments about un-
bounded definable sets are replaced by their analogs involving bounded
definable sets satisfying suitable notions of largeness. This makes a
difference. For example, while we know that every model M has a
minimal elementary end extension, we can only prove that that every
countable nonstandard model has a minimal cofinal extension. This
was proved by Blass (see [13, Corollary 2.1.6]). It is a long-standing
open question whether every model of PA has a minimal cofinal exten-
sion.

The example of minimal extensions shows that a lattice—in this
example the two element lattice L = {0L,1L}—can be realized as
Lt(N /M) in two much different ways. For a countable nonstandard
M, N can be either an elementary end extension or elementary cofi-
nal extension (by Gaifman’s splitting theorem, it cannot be a mixed
extension).

3. Distributive lattices

Two of the main results about the lattice problem from Gaifman’s
[6] are:

(1) For any set I, every model M has a (conservative) elemen-
tary end extension N such that Lt(N /M) is isomorphic to the
Boolean algebra of all subsets of I [6, Theorem 4.10].
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(2) For every countable linearly ordered set (J,<), every model
M has a (conservative) elementary end extension N such that
Lt0(N /M) is isomorphic to (J,<) [6, Corollary 5.3].

The proof of (1) uses an iteration of elementary end extensions gener-
ated by a minimal type, as we showed in Example 5 above. The result
in (2) is a corollary of a theorem about the existence of a particular
end-extensional type that is used to get an extension of N in one step.
The proof of that theorem is difficult and it takes 15 pages. Gaifman
stresses that in both results one gets a uniform operator that produces
the required extension N in a uniform way. Notice that in both cases
the interstructure lattice is distributive.

Soon after [6] appeared, Mills managed to generalize Gaifman’s re-
sults by extending the notions of end-extensional and minimal types to
types with infinitely many variables. His main result is the following
theorem.

Theorem 6 ([17]). Let D be a distributive lattice. Then the following
are equivalent.

(1) There exists a model M such that Lt(M) is isomorphic to D.
(2) Every modelM has an elementary extension N such that Lt(N /M)

is isomorphic to D.
(3) D is ℵ1-algebraic.

The equivalence of (1) and (3) was proved independently by Paris
[18]. The proof of Mills’ theorem is difficult and it involves many
technical details.

In [17], Mills follows the statement of Theorem 6 with an instructive
example. Let L be the ordered unit interval ([0, 1],≤). L is a complete
distributive lattice, but it is not ℵ1-algebraic. Every element of L is
compact; hence for every nonzero element, there are continuum many
compact elements below it. Let L′ be the closely related lattice of initial
segments in the set of rational numbers in [0,1] ordered by inclusion. In
L′, the compact elements are closed intervals [0, p]. Because each [0, p]
contains only countably many compact segments, by Mills’ theorem,
L′ is isomorphic to a substructure lattice.

All results about end-extensional types and their applications to the
lattice problem in [6] hold for PA∗ in a countable language. Gaifman
asked if they hold for uncountable languages as well. In response, Mills
gave a construction of a model of PA∗ in a language with ℵ1 function
symbols that has no elementary end extension [16].

In terminology of Mills [17], a definable type p(x) of T produces a
lattice L if for every modelM of T , Lt(M(p)/M) is isomorphic to L.
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For example, minimal types produce the two element lattice. It is a
special feature of Gaifman’s technique that his special types produce
prescribed lattices for all models of T , not just the countable ones. This
is reminiscent of the MacDowell-Specker theorem, which says that every
model of PA has an elementary end extension. The proof of this fact
for countable models follows by a relatively straightforward omitting
types argument. The types that produce M(p) given M and p(x) do
it for all models M regardless of the cardinality of their domains.

Gaifman conjectured that for every completion T of PA and every
finite distributive lattice that has a unique atom, there is an end-
extensional type p(x) of T that produces D. The conjecture was con-
firmed by Schmerl [20] and by a different construction by Mills [17].
Mills also proved the following variant of Theorem 6 that fully charac-
terizes all distributive lattices that can be produced by end-extensional
types.

Theorem 7. Let T be a completion of PA∗ in a countable language and
let D be a distributive lattice. Then the following are equivalent:

(1) There is a definable (end-extensional) type p(x) of T which pro-
duces D.

(2) D is ℵ1-algebraic,
∨
D is compact (and for any nonzero α, β ∈

D, α ∧ β is nonzero).

In conclusion, for every model M and every distributive lattice D
that can be realized as an interstructure lattice, D can be realized as
Lt(N /M), where N is an elementary conservative end extension of
M. This completely solves the general representation problem for the
distributive lattices, but one can still ask more specific questions about
the extension N for which Lt(N /M) is isomorphic to a given lattice
D. In the distributive case this adds more depth to the subject. In
the nondistributive case it turns out to be necessary, because there are
nondistributive lattices which cannot be realized as Lt(N /M), where
N is an end, or even mixed, extension of M.

4. Nondistributive lattices

By Bn we denote the Boolean algebra of all subsets of an n-element
set. For every n, Bn is distributive and so are all of its sublattices.
The following are examples of nondistsibutive lattices: for all n > 2,
Mn which is the lattice with n+ 2 elements that has a top, a bottom,
and n incomparable elements in between, the pentagon lattice N5, and
the hexagon lattice H. Dedekind proved that a lattice is distributive if
and only if it has no sublattice that is isomorphic to either M3 or N5

(for a proof, see [7, Theorem 102]).
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Figure 1. The lattices B2 and M3.
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Figure 2. The lattices N5 and H.

All lattices Bn, as well as M3, N5 and H can be represented as in-
terstructure lattices, but the general results about how this is achieved
are strikingly different. Here they are:

(1) (Gaifman [6]) For each n, every model M has an elementary
end extension N such that Lt(N /M)∼= Bn;

(2) (Wilkie [32]) Every countable modelM has an elementary end
extension N such that Lt(N /M)∼= N5.

(3) (Schmerl [21]) Let L be either M3 or H. Then every countable
nonstandard model M has an elementary cofinal extension N
such that Lt(N /M)∼= L.

Independently, Gaifman [6] and Paris [18] showed that if M ≺end N
then Lt(N /M) is not isomorphic to M3. Here is a short proof. Let
L = M3, and let ρ be a rank on L that satisfies the Blass Condition.
We will show that ρ(0L) = ρ(1L). Suppose a, b, c are the three in-
comparable elements of L. Because the rankset of a ranked lattice is
linearly ordered, only one of these elements can be in the rankset of
(L, ρ). Suppose it is c. Then, by condition (1) in the definition of rank,
ρ(a) = ρ(b) = 1L. By the Blass Condition, ρ(a) = ρ(a ∧ b) = ρ(0L);
hence ρ(0L) = ρ(1L). Thus, if M3 is represented as Lt(N /M), then
M≺cof N .

Wilkie [32] proved that if M≺end N then Lt(N /M) is not isomor-
phic to the hexagon lattice H. A short argument, due to Schmerl,
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using both the Blass and Gaifman conditions is given in [13, Proposi-
tion 4.2.13].

It is shown in [13, Theorem 4.6.5] that if Lt(N /M) is isomorphic to
N5, then N is not a conservative extension of M. Because there are
uncountable models all of whose elementary end extensions are conser-
vative (the rather classless models), this shows that Wilkie’s theorem
about N5 cannot be generalized to the uncountable case.

In the positive direction, much of what is known today about lattices
that can be represented as Lt(N /M) rests on applications of a powerful
technique of representations of lattices introduced by Schmerl in [21].
Section 5 is devoted to such representations. Here let us just note that
for all lattices Mq+1, where q = pk for a prime p and 1 ≤ k, every
nonstandard countable model M has a cofinal extension N such that
L is isomorphic to Lt(N /M). Using this and other results about finite
lattice representations, it can be shown that the smallest number n for
which Mn is not known to have an interstructure lattice representation
is 16 [13, page 134].

The results above show that certain finite lattices can only be rep-
resented as Lt(N /M) only when N is a cofinal extension of M. The
following theorem shows that there are no finite lattices that can only
be represented by interstructure lattices of end extensions.

Theorem 8 ([21]). If a finite lattice L can be represented as Lt(N /M),
for some M and N , then every countable nonstandard model M′ that
is elementarily equivalent to M has a cofinal extension N ′ such that
Lt(N ′/M′) is isomorphic to L.

4.1. The mysterious N5. Let us take a closer look at representations
of N5 as interstructure lattices.

From Wilkie’s and Schmerl’s theorems it follows that every nonstan-
dard countable modelM has a cofinal extension extension N such that
Lt(N /M) is isomorphic to N5.

Suppose now that Lt(N /M) is a representation of N5 andM is not
cofinal in N . Let F : N5 −→ Lt(N /M) be an isomorphism. Using
the labeling in Figure 2, let F (r) =Mr, and let ρ be a rank function
of N5. Applying the Gaifman condition with x = a and y = b we get
that ρ(c) = 1, hence Mc≺cofN .

Because ρ(0) < 1 and c ∧ b = 0, by the Blass condition ρ(b) = b.
Hence Mb≺endN . Finally, by [13, Theorem 4.6.1], ρ(0) 6= b, and we
get that ρ(0) must be either 0 or a. In the first case we get that either
M≺endMa≺endMb or M≺endMa≺cofMb. As observed by Schmerl
in [30], Wilkie’s proof shows that both these scenarios can be realized.
If ρ(0) = a, N is a mixed extension of M. This case is surprisingly
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ruled out by the main result of [30]. Thus N is not a mixed extension
of M.3

ForM≺ N , Cod(N /M) is the set of all intersections M ∩X, where
X ranges over all definable subsets of N . In the short proof of [13, The-
orem 4.6.5], a contradiction is derived from the assumptions that the
extension M≺endN is conservative and that Lt(N /M) is isomorphic
to N5, but we do not get any information about the undefinable subsets
of M that end up in Cod(N /M).

In a recent paper [30], Schmerl adds more mystery the story of repre-
sentations of N5. As we mentioned earlier, model-theoretic techniques
developed for models of PA often apply to models of PA∗ in countable
languages. It turns out to be not so in the case of N5. Schmerl proves
that every countable recursively saturated model M of PA can be ex-
panded to a model M∗ of PA∗ by adding countably many new sets so
that M∗ has a mixed elementary extension N ∗ such that Lt(N ∗/M∗)
is isomorphic to N5.

4.2. Infinite nondistributive lattices. In [26], after brief remarks
about the lattice problem for finite lattices, Schmerl writes “Even less
is known about infinite lattices; only in the case of distributive lat-
tices had there been any significant results.” Then he proceeds with
an extended introduction to the main results in the paper that ex-
tend Theorem 6 and its earlier version dues to Paris [18], which—as
corollaries—provide examples of infinite nondistributive interstructure
lattices. In particular the main theorem quoted below shows that there
is a model M for which Lt(M) is infinite and finitely generated.

Theorem 9 ([26]). Let L be an algebraic bounded lattice with at most
countably many compact elements. Then every countable nonstandard
model M has a cofinal extension N such that Lt(N /M)∼= L.

The theorems are formulated in lattice theoretic terms that take a
good few pages to introduce. We will only quote the following from
[2]. It can be taken as a definition: A finite lattice L is bounded if and
only if it is in the smallest class containing the one element lattice and
closed under the doubling of intervals. For example, N5 is bounded,
but M3 is not. A lattice is bounded if each of its finitely generated
sublattices is bounded. See [26] for definitions of all terms above.

The proofs heavily depend on major results in lattice representation
theory that we will introduce in the next section.

3Section 4.6 of [13] is devoted to representations of N5. The claim there that
it can be shown that N5 can be realized as an interstructure lattice of a mixed
extension turned out to be erroneous.
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5. Representations

Over the last 40 years, in several papers, Schmerl developed a spe-
cial technique of constructing elementary extensions with prescribed
interstructure lattices. It is based on particular representations of lat-
tices as lattices of equivalence relations. In this section, we give basic
definitions and motivate them with examples.

Definition 10. Let A be any set and L a finite lattice.

(1) The set Eq(A) is the set of all equivalence relations on A. This
set forms a lattice under inclusion, with 0A being the discrete
relation {(a, a) : a ∈ A}, and 1A the trivial relation A× A.

(2) Let L be a finite lattice and A a set. Then α : L −→ Eq(A) is
a pseudo-representation of L if:
• α(0L) = 1A, (α(0L) is trivial)
• α(1L) = 0A, (α(1L) is discrete) and
• α(x ∨ y) = α(x) ∧ α(y).

(3) α is a representation if it is a pseudo-representation and is one-
to-one.

Oftentimes, realizing a particular finite lattice as an interstructure
lattice requires choosing an appropriate representation of the lattice
and proving some combinatorial lemmas about this representation.
Before describing important properties of representations that are in-
volved in these kinds of constructions, let us examine a motivating
example.

Example 11. Let M |= PA and M ≺ N such that Lt(N /M) ∼= B2.
Then there are a, b ∈ N such that N =M(〈a, b〉) and M(a) 6=M(b)
(see Figure 1). Let π1 and π2 be the projection functions, so that

PA ` ∀x∀y(π1(〈x, y〉) = x ∧ π2(〈x, y〉) = y).

Then for any c ∈ N , there is an M-definable f : N −→ N such that
N |= f(〈a, b〉) = c. Let us fix such c and f and define a subset of M
as follows. There are four possibilities:

• c ∈ M . In this case, let X = {〈x, y〉 : M |= f(〈x, y〉) = c}.
Clearly, M |= ∀n,m ∈ X(f(n) = f(m)).
• c ∈ M(a) \M. In this case, there are M-definable g1, g2 such

that

N |= g1(a) = c ∧ g2(c) = a.

Let X = {〈x, y〉 : M |= f(〈x, y〉) = g1(x) ∧ g2(f(〈x, y〉)) =
x}. Notice that M |= ∀n,m ∈ X(f(n) = f(m) ⇐⇒ π1(n) =
π1(m)).
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• c ∈M(b)\M. Similarly, there areM-definable g1, g2 such that

N |= g1(b) = c ∧ g2(c) = b.

Let X = {〈x, y〉 : M |= f(〈x, y〉) = g1(y) ∧ g2(f(〈x, y〉)) = y}.
Again, one observes that M |= ∀n,m ∈ X(f(n) = f(m) ⇐⇒
π2(n) = π2(m)).
• c ∈ N \ (M(a) ∪M(b)). In this case, there is M-definable g

such that
N |= g(c) = 〈a, b〉.

Let X = {〈x, y〉 :M |= g(f(〈x, y〉)) = 〈x, y〉}. Here we observe
that M |= ∀n,m ∈ X(f(n) = f(m) ⇐⇒ n = m); that is, f is
one to one on X.

In each of these cases, X is an infinite, M-definable, set and N |=
〈a, b〉 ∈ X. Let us refer to an infinite,M-definable X such that 〈a, b〉 ∈
XN as large.

Given any set X, we define the pseudo-representation αX : B2 −→
Eq(X):

• αX(0) is trivial,
• (n,m) ∈ αX(a) iff π1(n) = π1(m),
• (n,m) ∈ αX(b) iff π2(n) = π2(m), and
• αX(1) is discrete.

Notice that whenever f is anM-definable function, we can find r ∈ B2

and a large set X such that

M |= ∀n,m ∈ X(f(n) = f(m)⇐⇒ (n,m) ∈ αX(r)).

We summarize the above as follows. Suppose p(x) = tp(〈a, b〉/M)
and let f be an M-definable function. Then there is φ(x) ∈ L(M)
defining a “large” set X and r ∈ B2 such that φ(x) ∈ p(x) and

M |= ∀x, y[(φ(x) ∧ φ(y)) =⇒ (f(x) = f(y)⇐⇒ (x, y) ∈ αX(r))].

Examples like this one provide the motivation for the following def-
initions. They were first introduced by Schmerl in [21], and they have
been refined over the years.

Definition 12. Let L be a finite lattice, X a set, and α : L −→ Eq(X)
a representation.

(1) Let Y ⊆ X. Then α|Y : L −→ Eq(Y ) is the pseudo-representation
given by (α|Y )(r) = α(r) ∩ Y 2 for each r ∈ L.

(2) Let β : L −→ Eq(Y ) be a pseudo-representation. Then α ∼= β
(α is isomorphic to β) if there is a bijection f : X −→ Y such
that for each r ∈ L, (x, y) ∈ α(r) if and only if (f(x), f(y)) ∈
β(r).
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(3) Let Θ ∈ Eq(X). Θ is canonical for α if there is r ∈ L such that
for all x, y ∈ X, (x, y) ∈ Θ if and only if (x, y) ∈ α(r).

(4) α has the 0-canonical partition property, or is 0-CPP, if for each
r ∈ L, α(r) does not have exactly two classes.

(5) α is (n + 1)-CPP if, for each Θ ∈ Eq(X) there is Y ⊆ X such
that α|Y is an n-CPP representation and Θ ∩ Y 2 is canonical
for α|Y .

Using these definitions, let us examine Example 11 once more from
the other direction. Let M |= PA and X = [M ]2 = {〈x, y〉 : x < y}.
Then the representation α : B2 −→ Eq(X) given in Example 11 is
n-CPP for each n ∈ ω. To see this, first recall the Canonical Ramsey
Theorem for pairs (CRT2): for every f : [ω]2 −→ ω, there is an infinite
X ⊆ ω such that f is canonical on [X]2. That is, one of the following
holds:

• f is one to one on [X]2,
• f is constant on [X]2,
• for all 〈x1, y1〉, 〈x2, y2〉 ∈ [X]2, f(x1, y1) = f(x2, y2) if and only

if x1 = x2, or
• for all 〈x1, y1〉, 〈x2, y2〉 ∈ [X]2, f(x1, y1) = f(x2, y2) if and only

if y1 = y2.

This result is due to Erdős and Rado [5], and is a consequence of
Ramsey’s Theorem for 4-tuples. One can formalize this result in PA∗,
so that if M |= PA and f : [M ]2 −→ M is M-definable, there is an
M-definable, unbounded Y such that f is canonical on [Y ]2. Notice,
then, that for such a set Y , α|[Y ]2 ∼= α.

Clearly, α is 0-CPP. Moreover, if α is n-CPP, then by CRT2, for
each Θ ∈ Eq(X), there is Y ⊆ X such that α ∼= α|Y and Θ ∩ Y 2 is
canonical for α|Y . Since α|Y ∼= α, then α|Y is n-CPP, and therefore
α is (n+ 1)-CPP.

Given this α, one can construct an elementary extension N of M
such that Lt(N /M) ∼= B2. The idea is to construct a type p(x) en-
suring that, for each M-definable function f , there is some definable
Y ⊆ X such that the equivalence relation induced by f is canonical for
α on Y , and that the defining formula for Y is in p(x).

To construct this type, we will construct an infinite descending se-
quence of “large” sets. Let X0 = [M ]2. Enumerate the M-definable
equivalence relations Θ0,Θ1, . . .. Given α|Xi and Θi, we use CRT2 to
find Xi+1 ⊆ Xi such that α|Xi1

∼= α|Xi and Θi is canonical for α|Xi+1.
Finally, we let p(x) be the type

{φ(x) ∈ L(M) : there is i ∈ ω such that M |= ∀x(x ∈ Xi → φ(x))}.
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We show that that p(x) is a complete type. This is, essentially, due to
the fact that each α|Xi is 0-CPP. That is, given φ(x) ∈ L(M), consider
the equivalence relation Θ given by (x, y) ∈ Θ iffM |= φ(x)⇐⇒ φ(y).
Let Θ = Θi, and notice that since Θ is canonical for α|Xi+1 and Θ has
at most two equivalence classes, it must be the case that Θ ∩ X2

i+1 is
trivial.

Let c realize p(x). We show why Lt(M(c)/M) ∼= B2. Because the
pairing function is one to one, there are a and b such that M(c) |=
c = 〈a, b〉. We use the same names as in the lattice B2 (see Figure
1) suggestively. For each d ∈ M(c), let f be an M-definable function
such that M(c) |= f(c) = d, and let Θ be the equivalence relation
induced by f . Then there is a simple argument that exactly one of the
following must hold:

• M(d) =M,
• M(d) =M(a),
• M(d) =M(b), or
• M(d) =M(c).

This is proved case by case by finding r and i such that Θ∩X2
i = α(r)∩

X2
i (by canonicity). Moreover, it is clear that M ≺ M(a),M(b) ≺
M(c). One checks that M(a) ∩M(b) =M.

The definitions used above relativize to a model M |= PA. Suppose
X ⊆M isM-definable and α : L −→ Eq(X) is a representation. Then
α is an M-representation if α is M-definable. If X ∈ Def(M), then
by EqM(X) we mean the lattice of M-definable equivalence relations
on X. Similarly, the notion of n-CPP representations formalizes in LPA

as well; in such cases, one only considers representations overM-finite
sets, and we quantify over the equivalence relations Θ ∈ EqM(X). That
is, there is an LPA-formula cppL(x) asserting that L has an (M-finite)
x-CPP representation.

In the construction of the type p(x) above, the two important ingre-
dients needed at each step are:

• ensure that each α|Xi is 0-CPP, and
• ensure that each Θi is canonical for α|Xi+1.

This observation naturally leads to the following definitions and results
in [30] by James Schmerl, further refining the technique.

Definition 13 ([30, Definition 1.3]). Let M |= PA and L a finite
lattice. C is an M-correct set of representations of L if each C is
a nonempty set of 0-CPP M-representations of L and whenever α :
L −→ Eq(X) ∈ C and Θ ∈ EqM(X), there is Y ⊆ X such that
α|Y ∈ C and Θ ∩ Y 2 is canonical for α|Y .
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Returning to Example 11, we notice that if C is the collection of
α|Y such that Y is infinite, M-definable and α|Y ∼= α, then C is an
M-correct set of representations of B2. Additionally, one observes that
PA ` cppB2(n) for each n ∈ ω. IfM |= PA is nonstandard, by overspill
there is a nonstandard c such thatM |= cppB2(c). Then the collection
of all M-representations of B2 that are x-CPP for some nonstandard
x is also M-correct.

Theorem 14 ([30, Theorem 1.4]). Let M |= PA and L be a finite
lattice. Then:

(1) If there is N such that M≺ N and Lt(N /M) ∼= L, then there
is an M-correct set of representations of L.

(2) If M is countable and there is an M-correct set of representa-
tions of L, then there is N �M such that Lt(N /M) ∼= L.

6. Representations of Ranked Lattices

In this section, we extend the definition of M-correct sets of repre-
sentations of a lattice to ranked lattices as in Section 2.2. Let us first
consider Example 11 in the context of ranked lattices.

Let M ≺ N be such that Lt(N /M) ∼= B2, and let a, b ∈ N be
such that Lt(N /M) = {M,M(a),M(b),M(a, b) = N} (as we did
previously, we use a and b suggestively to correspond with a, b ∈ B2).
Because the rankset is linearly ordered, it must be the case that either
M(a) ≺cof N orM(b) ≺cof N . Without loss of generality, assume that
M(b) ≺cof N . Therefore, the possible ranksets of Lt(N /M) are:

• {N} (if M≺cof N ),
• {M,M(a),N} (if M≺endM(a) ≺end N ), or,
• {M(a),N} (if M≺cofM(a) ≺end N ).

To study an example of a mixed extension, we consider the case
where M ≺cof M(a) ≺end N , and M(b) ≺cof N . Recall that we
referred to a set X as large if it is infinite, M-definable, and 〈a, b〉 ∈
XN . We look for properties to motivate a notion of “largeness” in a
mixed extension.

Let X = {〈x, y〉 : x < y} and αX be as defined in Example 11. That
is, αX : B2 → Eq(A) is defined so that αX(a) is the equivalence relation
induced by π1 (the projection onto the first coordinate, i.e., 〈x, y〉 7→ x),
and αX(b) is the equivalence relation induced by π2 (projection onto
the second coordinate). Then there is an infinite, M-definable Y ⊆ A
such that, letting αY be αX |Y :

(1) There is a bounded set of representatives of the collection of all
αY (a)-classes.
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(2) There is an unbounded αY (a)-class (that is, a class which con-
tains unboundedly many αY (1)-classes).

(3) Every αY (b)-class is M-finite.

To see these, notice that since M ≺cof M(a), then there is m ∈ M
such that M |= a < m. Let Y = {〈x, y〉 : x < m and x < y}. The
following statements are easily verified:

• There are (exactly) m αY (a)-classes (one for each x < m),
• each αY (a)-class is unbounded, and,
• each αY (b)-class has at most m elements.

Moreover, since N |= a < m and a < b, then N |= 〈a, b〉 ∈ Y N .
Similarly to Example 11, if we define a set Y to be large if it is M-
definable, satisfies properties (1) − (3) and N |= 〈a, b〉 ∈ Y N , then
whenever Y is large and Θ ∈ EqM(Y ), there is large Z ⊆ Y such that
Θ is canonical for αZ .

We point out here some specific features of this representation that
follow from properties (1)-(3). These features, it turns out, need to be
present for any representation of the ranked lattice (B2, ρ), where the
rankset of ρ is {a, 1}. First, 0 < a = ρ(0). In every representation,
α(0) is trivial. In this case, notice that, in a sense, the lone αY (0)-
class (Y ) splits into boundedly many αY (a)-classes; we will make this
notion more precise in the below definition. It is easy to see that each
αY (a)-class is of the form {〈x, y〉 : x < y} for some fixed x ∈ M such
that M |= x < m and that Y is the union of all of these classes.

Secondly, 0 < b but b 6< ρ(0). Notice now that Y is not the union
of an M-bounded set of αY (b)-classes. Again, we can see this because
each αY (b)-class is of the form {〈x, y〉 : x < y} for some fixed y ∈M .

Lastly, b < 1 = ρ(b); again, see that each αY (b)-class splits into
boundedly many αY (1)-classes; in other words, each αY (b)-class isM-
finite.

Definition 15 ([30, Definition 1.6]). Let M |= PA and (L, ρ) a finite
ranked lattice.

(1) If A ∈ Def(M) and Θ ∈ Eq(A) is M-definable, a set E of Θ
classes is M-bounded if there is a bounded I ∈ Def(M) such
that I ∩X 6= ∅ for each X ∈ E .

(2) α : L → Eq(A) is an M-representation of (L, ρ) if α is an M-
representation of L (that is, α is M-definable) and whenever
r ≤ s ∈ L, s ≤ ρ(r) if and only if every α(r)-class is the union
of an M-bounded set of α(s)-classes.
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(3) C is an M-correct set of representations of (L, ρ) if C is an
M-correct set of representations of L and each α ∈ C is an
M-correct representation of (L, ρ).

Notice that in the above example, whenever X ⊆ A is large, αX is
an M-representation of (B2, ρ), where ρ is the ranking whose rankset
is {a, 1}.

Theorem 16 ([30, Theorem 1.7]). Suppose M |= PA and (L, ρ) is a
finite ranked lattice.

(1) If there is N such that M≺ N and Ltr(N /M) ∼= (L, ρ), then
there is an M-correct set of representations of (L, ρ).

(2) If M is countable and there is an M-correct set of representa-
tions of (L, ρ), then there is N � M such that Ltr(N /M) ∼=
(L, ρ).

We turn now to an example of an M-correct set of representations
of M3 (see Figure 1). First we define a representation α : M3 → Eq(3),
where 3 is the set {0, 1, 2}. Define this representation as follows:

• the equivalence classes of α(a) are {0} and {1, 2},
• the equivalence classes of α(b) are {0, 2} and {1}, and,
• the equivalence classes of α(c) are {0, 1} and {2}.

LetM be a countable, nonstandard model and m ∈M (standard or
nonstandard). Let 3m refer to the set of (codes of)M-finite sequences
s whose length is m and, for each i < m, (s)i ∈ {0, 1, 2}. Define
αm : M3 → Eq(3m) by letting (s, t) ∈ αm(r) if and only if ((s)i, (t)i) ∈
α(r) for each i < m. Notice that each of these representations is a
representation of (M3, ρ) where ρ(r) = 1 for each r ∈ M3 (that is,
there are M-boundedly many αm(a) classes, each one is M-bounded,
etc).

It turns out that the set of αm when m is nonstandard forms an
M-correct set of representations of (M3, ρ). This is not obvious: one
appeals to a generalization of the Hales-Jewett Theorem due to Prömel
and Voigt. In fact, this phenomenon can be generalized to any finite
lattice L which can be represented as a congruence lattice of a finite
algebra.

6.1. Congruence Lattices. An algebra is a structure of the form
(A, 〈fi : i ∈ I〉), where A is a set, I is an index set, and for each
i ∈ I, there is some n ∈ ω such that fi : An → A (we allow for n to be
0, in which case such an fi is a constant).

If A = (A, 〈fi : i ∈ I〉) is an algebra, then a congruence is an
equivalence relation θ on A which commutes with all of the fi. That
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is, for each i ∈ I, if fi : An → A and ā, b̄ are tuples of length n such
that (aj, bj) ∈ θ for all j < n, then (fi(ā), fi(b̄)) ∈ θ. The set of all
congruences on an algebra A is denoted Cg(A), and forms a sublattice
of Eq(A).

In the definition below, for a lattice L, we let Ld be its dual, i.e., L
with its ordering reversed.

Definition 17. [13, Definition 4.5.7] Let L be a finite lattice and α :
L→ Eq(A) a representation. α is a congruence representation if there
is an algebra A such that α is an isomorphism of L and Cg(A)d.

Every algebraic lattice is isomorphic to a congruence algebra [8].
It is a well-known open question in universal algebra whether every
finite lattice has a finite congruence representation; that is, if it can be
represented as Cg(A) for a finite algebra A. This problem is referred
to as the finite lattice representation problem. In conjunction with the
next result due to Schmerl ([22]), a positive result to the finite lattice
representation problem implies a positive result for the restriction of
the lattice problem for models of PA to finite lattices.

Theorem 18. Let L be a finite lattice which has a finite congruence
representation. Then every countable nonstandard M |= PA has a
cofinal elementary extension N such that Lt(N /M) ∼= L.

As mentioned before, the proof of this is a generalization of the result
for M3 given above. For details, see [13, Section 4.5], and, in particular,
[13, Theorem 4.5.27 and Corollary 4.5.28].

7. Diversity

The early results of Gaifman and Mills mentioned in Section 3 relied
heavily on applications of minimal and end-extensional types. For a
givenM, if N is generated overM by a set A of elements realizing the
same minimal L(M)-type, then Lt(N /M) is isomorphic to the Boolean
algebra of subsets of A and the isomorphism type overM of each model
in Lt(N /M) is determined by the cardinality of its set of generators.
In particular, if A is finite of cardinality n, then there are exactly n+ 1
isomorphism types of models in Lt(N /M). If N is generated over
M by a finite set of elements realizing mutually independent minimal
types, then no pair of distinct models in Lt(N /M) are isomorphic.

In [23] Schmerl asked if there is more that can be said about the
diversity of isomorphism types in Lt(N /M). He called a model diverse
if no two of its elementary submodels are isomorphic, and called an
extensionN ofM diverse if no two models in Lt(N /M) are isomorphic
over M.
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In [23], Schmerl observes that M is diverse if and only if no two
distinct elements have the same type. For such structures (for any
language) Ali Enayat coined the name Leibnizian. His article [4] is
devoted to Leibnizian models of set theory.

All results in the rest of this section are from [23]. Schmerl notes
that the first theorem suggests that constructing models that are not
diverse is more difficult than constructing diverse ones.

Theorem 19. (1) IfM is not an elementary extension of the stan-
dard model and Lt(M) is finite, then there is a diverse N such
that M≡ N and Lt(M) ∼= Lt(N ).

(2) Let L be a finite lattice. If M is nonstandard and has an ele-
mentary extension N such that Lt(N /M)∼= L, then M has a
cofinal diverse extension N such that Lt(N /M)∼= L.

Because a model is diverse just in case it is a diverse extension of
its prime elementary submodel, (1) above is an easy consequence of
the second. The proof of (2) involves the full power of the CPP-
representations theory, invoking at one point a canonical partition the-
orem of Prömel and Voigt (see [13, page 118] for the statement of the
theorem).

If E is an equivalence relation on a lattice L, then (L,E) is called
an equivalenced lattice. By Lt+(M) we denote (Lt(N ), E), where E is
the isomorphism relation, and Lt+(N /M) is (Lt(N /M), E), where E
is the isomorphism relation for the isomorphisms that fix M pointwise.
With this notation, the basic lattice problem gets generalized to

Problem 2. For which finite equivalenced lattices (L,E) are there mod-
els M such that Lt+(M)∼= (L,E) and for which finite equivalenced
lattices L are there models M and N such that Lt+(N /M)∼= (L,E)?

Right from the start one can see that some equivalenced lattices
cannot be represented as substructure and interstructure lattices for
obvious reasons. For example if L is N5 and (b, c) ∈ E (Figure 2),
then, as Schmerl writes: “it would not be at all reasonable to expect
such models.” This leads to the definition of reasonable equivalenced
lattice.

Before stating the definition, let us observe that each model of the
form M(a) is rigid over M. This is a consequence of Ehrenfeucht’s
lemma [3] (see [13, Theorem 1.7.2]), which says that for all b ∈ M(a),
if tp(a/M) = tp(b/M) then a = b. It follows that ifM(a1) andM(a2)
in Lt(N /M) are isomorphic over M and tp(a1/M) = tp(a2/M), then
there is a unique isomorphism F :M(a1) −→M(a2) such that F (a1) =
a2.
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If (L,E) is a finite equivalenced lattice and F : L −→ Lt+(N /M)
is an isomorphism, then we can define a linear order C of L as follows.
For each r ∈ L select a generator ar of F (r) over M so that for all r
and s, if (r, s) ∈ E, then tp(ar/M) = tp(as/M) and define r C s iff
ar < as.

Schmerl calls an equivalenced lattice (L,E) reasonable if there is a
linear ordering C on L such that whenever (a, b) ∈ E and I and J are
the principal ideals of L generated by a and b respectively, then there is
an isomorphism f : (I,C ∩ I2) −→ (J,C ∩ J2) such that (x, f(x)) ∈ E
for all x ∈ I. One can directly check that if Lt(N /M) is finite, then
Lt+(N /M) is reasonable.

The definition given above is from the later Schmerl’s paper [25].
Under a less restrictive definition given in [23], Schmerl proves that
for every reasonable equivalenced Boolean lattice (Bn, E), every non-
standard model M has a cofinal extension such that Lt+(N /M) is
isomorphic to (Bn, E). In [25] this is generalized to: under the revised
definition given above, for every reasonable equivalenced distributive
lattice (L,E), every nonstandard model M has a cofinal extension N
such that Lt+(N /M) is isomorphic to (L,E).

Among many open problems about diversity, this is probably the
simplest:

Problem 3. Let M be countable and nonstandard. Is there a non-
diverse extension N such that either Lt(N /M) = N5 or Lt(N /M)
= M3?

8. Coded sets and distributive lattices

Recall that if N is an end extension of M, then Cod(N /M) is
{X ∩M : X ∈ Def(N )}. We referred to this as the family of coded sets
in the extension. Schmerl [28] characterized exactly which families
of subsets of a model of PA (of arbitrary cardinality) can appear as
Cod(N /M) when N is a minimal elementary end extension of M;
i.e., an extension where Lt(N /M) ∼= 2.

Theorem 20 ([28, Theorem 3]). If M |= PA and X ⊆ P(M), the
following are equivalent:

(1) There is a countably generated extension N �end M such that
Cod(N /M) = X and every set that is Π0

1-definable in (M,X)
is the union of countably many Σ0

1-definable sets.
(2) There is a minimal extension N �endM such that Cod(N /M) =

X.
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Previously, Schmerl [27] characterized the families of sets that can
appear as Cod(N /M) in any countably generated elementary end ex-
tension N of a modelM, so this result completes the picture for min-
imal extensions.

A simple construction4 shows that the same characterization of those
coded sets holds for any finite distributive lattice D. That is:

Proposition 21. Let M |= PA and X ⊆ P(M). The following are
equivalent:

(1) There is a minimal elementary end extension N ofM such that
Cod(N /M) = X.

(2) For any finite distributive lattice D, there is N �end M such
that Lt(N /M) ∼= D and Cod(N /M) = X.

Before we describe Schmerl’s proof of this result, we need the follow-
ing facts about finite distributive lattices (see [13, Section 4.3]). Let L
be a lattice and a ∈ L. The a-doubling extension of L is the sublattice
L′ of L × 2 (ordered lexicographically; i.e., (r, i) ≤ (s, j) iff r ≤ s and
i ≤ j) defined as {(r, i) ∈ L × 2 : i = 0 or r ≥ a}. [13, Theorem
4.3.6] states that a finite lattice L is distributive if and only if there is
sequence L0, . . . , Ln of lattices such that L0 is the one-element lattice,
Ln
∼= L, and each Li+1 is a doubling extension of Li.

Proof. (2) =⇒ (1) is clear since 2 is a finite distributive lattice, so
assume that M ≺ N is a minimal elementary end extension and D
is a finite distributive lattice. Then let L0, . . . , Ln

∼= D be the finite
sequence of doubling extensions as stated above.

We show that whenever M1 ≺end M2 is such that Lt(M2/M1)
is finite, then for any K ∈ Lt(M2/M1), M2 has an elementary end
extension N ′ such that Lt(N ′/M1) is isomorphic to the K-doubling ex-
tension of Lt(M2/M1). The conclusion to (2) follows, since ifM1 ≺end

M2 ≺end N ′, then Cod(N ′/M1) = Cod(M2/M1).
To find such an N ′, first notice that since Lt(M2/M1) is finite, then
K = M1(a) for some a ∈ K. Let M0 = Scl(a). By [13, Theorem
4.3.2], since M0 is countable, M2 has an elementary end extension
N ′ such that Lt(N ′) is isomorphic to the M0-doubling extension of
Lt(M2). This N ′ is as required; that is, Lt(N ′/M1) is isomorphic to
the K-doubling extension of Lt(M2/M1). This follows immediately
because M0 ∨M1 = K. �

Note that ifM is countable and X = Def(M), the conclusion to (1)
holds since every countable model has conservative minimal elementary

4Schmerl (2017) via private communication
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end extensions. Since the pentagon lattice N5 cannot be realized as the
interstructure lattice of a conservative end extension, we do not have
the same characterization for non-distributive lattices.

9. Countable recursively saturated models

Up to this point, this survey was about the the problem of finding, for
a given lattice L, a substructure or interstructure lattice representation
of L with or without some additional properties. In this section we will
briefly discuss a dual problem for a particular class of models. Given
a countable recursively saturated model, what can we say about its
substructure lattice?

A modelM is recursively saturated if it is saturated with the respect
to computable types with finite numbers of parameters. The standard
system of a model M, SSy(M), is the set of standard parts of the
definable subsets of M, i.e., SSy(M) = Cod(M/N), where N is the
standard model. It is not difficult to prove that any two countable
recursively saturated models are isomorphic if and only if they are
elementarily equivalent and they have the same standard system.

For the rest of this section, let M be countable and recur-
sively saturated.

The lattice Lt(M) is immense. If the domain of a model K in Lt(M)
is an initial segment of M we call K an elementary cut. Henryk Kot-
larski proved that the set of elementary cuts of M ordered by inclu-
sion is isomorphic to 2ω with the lexicographic ordering. Moreover,
he proved that the set of elementary cuts that are recursively satu-
rated is uncountable, dense, and is closed under infinite unions but not
under infinite intersections [15]. All recursively saturated elementary
cuts have the same standard system; hence, they are isomorphic to one
another. Yet, there are continuum many first-order theories of pairs
(M, K), where K is a recursively saturated elementary cut [31].

An elementary cut ofM is not recursively saturated if and only if it
is a closure under initial segment of the Skolem closure of single element
of M . Every recursively saturated model realizes countably many mu-
tually independent minimal types. It follows that there are countably
many isomorphism types of elementary cuts that are not recursively
saturated. Moreover, each cut that is not recursively saturated, except
for the closure under initial segment of Scl(0), has countably many au-
tomorphic images; hence the isomorphism relation of Lt(M) restricted
to such cuts has countably many countable equivalence classes.
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Elementary cuts are linearly ordered by inclusion; hence they form a
distributive sublattice of Lt(M). To show that Lt(M) is not distribu-
tive we will use some facts about cofinal extensions.

In [24], Schmerl calls the extension M≺ N almost minimal if N is
an end extension and for every K, ifM≺ K ≺ N , then K≺cofN . For
a lattice L, 2⊕L is the extension of L obtained by adding with a new 0
element appended below 0L. By the Blass condition, if N is an almost
minimal extension of K and Lt(N /K) is finite, then Lt(N /L) ∼= 2⊕L
for some finite lattice L. The following is an abridged version of [24,
Corollary 3.3].

Theorem 22. Let K be a countable model of PA and let L be a finite
lattice. The following are equivalent.

(1) K has an elementary extension N such that Lt(N /K) ∼= 2⊕L.
(2) K has an elementary almost minimal extension N such that

Lt(N /K) ∼= 2⊕ L.

For our discussion here it is important that ifN is an almost minimal
extension of a nonstandard K then SSy(K) = SSy(N ). In particular, if
K and N are countable and recursively saturated, then K ∼= N , which
shows that 2⊕ L in (2) embeds into Lt(K).

We are going back to our countable recursively saturated modelM.
Let S be an inductive partial satisfaction class onM (see [13, Definition
1.9.1]) and let M∗ be (M, S). Let L be a finite lattice satisfying (1)
in the PA∗ version of Theorem 22, i.e., for K = M∗, and let N ∗ be
an almost minimal extension of M∗ given by (2). By the remarks
following the theorem, we get that 2⊕L embeds into Lt(N ∗), hence it
also embeds into Lt(N ). Applying this to L = M3, we get the following
corollary.

Corollary 23. Lattices of elementary substructures of recursively sat-
urated models of PA are not distributive.

It seems that the argument given above to prove Corollary 23 is
an overkill. More directly, one can construct a type p(x) ∈ SSy(M),
formalizing [13, Theorem 4.5.21], such that if a ∈M realizes p(x), then
Lt(Scl(a)) ∼= 2⊕M3.

Much more can be said about cofinal submodels of M. Here is a
sample. It follows from [14, Theorem 7.1] that there is a set C of
continuum many cofinal submodels of M such that for all K ∈ C:

• K is isomorphic to M;
• Lt(M/K) is the three-element lattice 3;
• for each pair of distinct K1, K2 in C, Th(M, K1) 6= Th(M, K2).
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In the recent paper [29], after much work, Schmerl improves this by
replacing 3 by 2, i.e., for each K, M is a minimal extension of K.

At the end of [15], Kotlarski posed a general problem to describe
the structure of Lt(M) for countable recursively saturated M. In
particular, he asked whether Lt(M) depends on M.

A partial answer to Kotlarski’s question is given in [11, Section 5]. It
solves the problem for arithmetically saturated models. A recursively
saturated model of PA is arithmetically saturated if its standard system
is closed under arithmetic comprehension. It is shown in [11] that if
M and N are countable arithmetically saturated models of the same
completion of PA, thenM∼= N if and only if Lt(M) ∼= Lt(N ). For the
proof, Schmerl introduced a family of countably infinite, distributive
lattices D(X), one for each set of natural numbers X, such that:

(1) if X and Y are distinct then D(X) and D(Y ) are not isomor-
phic;

(2) if M is arithmetically saturated and there is b ∈ M such that
D(X) ∼= Lt(Scl(b)), then X ∈ SSy(M);

(3) if M is recursively saturated and X is in the standard system
of M, then there is b ∈M such that D(X) ∼= Lt(Scl(b)).

This proves the following theorem.

Theorem 24. Let T be a completion of PA and let M and N be
countable arithmetically saturated models of T . Then Lt(M) ∼= Lt(N )
if and only if M∼= N .

For arithmetically saturated models, (2) and (3) above could be
stated as an equivalence. The reason for their separation is that while
the proof of (2) is relatively easy, it seems to require the full strength
of arithmetic saturation. The fact (3) above holds for all recursively
saturated models, but its proof heavily depends on the methods devel-
oped by Schmerl in [21] and [22] and is not easy. It is an open question
whether Theorem 24 holds for all recursively saturated models.

In another direction, it is observed in [14, Lemma 7.2] that for all N
and K, if K≺cofN , then Lt0(N /K) is interpretable in (N , K). This
follows from the fact that cofinal Skolem closures over K of single el-
ements of N have a particularly simple definition. For all a, b in N ,
a ∈ K(b) if and only if a = (u)b for some u ∈ K.5 Let m ∈ K be such
that b < m and suppose that for a Skolem term t(x), a = t(b). Let
u ∈ K be such that for all x < m, (u)x = t(x). Then (u)b = a. This
shows that the relation {〈x, y〉 : K(x) 4 K(y)} is definable in (N , K).

5This notation refers to arithmetic coding of finite sequences: (u)x is the x-th
term of the sequence coded by u.
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It follows that if for i = 1, 2, Ki≺cofNi, and (N1, K1) and (N2, K2) are
elementarily equivalent, then Lt0(N1/K1) and Lt0(N2/K2) are elemen-
tarily equivalent, and it was asked in [14] if in this statement Lt0 can
be replaced by Lt. It turns out that it can not. A counterexample,
in which Lt0(N1,K1) is an (ω + 1)-chain and (N2,K2) is a recursively
saturated pair elementarily equivalent to (N1, K1), is given in [24].

It follows from Theorem 24 and the main result of [12] that if M
and N are countable arithmetically saturated models of PA, then

Lt(M) ∼= Lt(N ) if and only if Aut(M) ∼= Aut(N ). (∗)

In the proof of Theorem 24, it is shown that the left part of the equiv-
alence in (∗) is equivalent to SSy(M) = SSy(N), and in the proof of
the main theorem of [12] the corresponding equivalence for the auto-
morphism groups is shown to hold for the right part of (∗). This leads
to the following problem.

Problem 4. In the case of countable arithmetically saturated models
of PA (or perhaps in greater generality), can any of the two directions
of the equivalence Lt(M) ∼= Lt(N ) iff Aut(M) ∼= Aut(N ) be proven
directly, without any reference to the standard systems of the models?

10. Open Questions

There are many questions which remain open about the lattice prob-
lem. The following selection is due to Schmerl via private communica-
tion. All relevant definitions can be found in [13, Chapter 4].

(1) Is every finite lattice L which can appear as an interstructure
lattice the congruence lattice of some finite algebra? That is,
if L is a finite lattice for which there are M ≺ N such that
Lt(N /M) ∼= L, is L a congruence lattice of a finite algebra?

(2) Is there a finite lattice L for which there are countable, non-
standard M0 and M1 for which there is N0 � M0 such that
Lt(N0/M0) ∼= L, but for no N1 �M1 is Lt(N1/M1) ∼= L?

(3) It is known that if L is a finite lattice that is the congruence
lattice of a finite algebra, then so is its dual Ld. Does the same
result hold for finite lattices L such that there are M ≺ N
where Lt(N /M) ∼= L? That is, if L is a finite interstructure
lattice, is its dual also an interstructure lattice?

(4) Every finite lattice in the variety generated by M3 is the con-
gruence lattice of a finite algebra. For every ℵ0-algebraic lattice
L in this variety and every countable, nonstandardM, is there
N �M such that Lt(N /M) ∼= L?
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(5) For countable M, what are the possible X ⊆ P(M) for which
there is an elementary end extension N such that Lt(N /M) ∼=
N5 and Cod(N /M) = X?

(6) Is the set of finite lattices for which given (some, all, or a spe-
cific) countable, nonstandard M, there is N � M such that
Lt(N /M) ∼= L computable?
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[5] P. Erdős and R. Rado. A combinatorial theorem. J. London Math. Soc., 25:249–
255, 1950.

[6] Haim Gaifman. Models and types of Peano’s arithmetic. Ann. Math. Logic,
9(3):223–306, 1976.

[7] George Grätzer. Lattice theory: foundation. Birkhäuser/Springer Basel AG,
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