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SPACES OF MAPS INTO EILENBERG-MACLANE 
SPACES 

VAGN LUNDSGAARD HANSEN 

1. Introduction. In this note we provide alternative and unified proofs 
for two theorems on the homotopy groups of spaces of (continuous) maps 
into Eilenberg-MacLane spaces. The first theorem is due to Thorn, and 
independently Fédérer, and deals with spaces of maps into Eilenberg-
MacLane spaces of type (71-, n) for n ^ 1 with T abelian. The second 
theorem is due to Gottlieb and deals with spaces of maps into Eilenberg-
MacLane spaces of type (w, 1) with -K nonabelian. As a main tool we shall 
use the homotopy sequences for certain fibrations of spaces of maps. 

2. Basic notation and some preliminary remarks. For any pair of 
connected CW-complexes X and F with base points, we denote by 
M(X, F), respectively F(X, F), the space of free maps, respectively 
based maps, of X into Y. We assume that all domains in mapping spaces 
are locally compact, and that all mapping spaces are equipped with the 
compact-open topology. For any subcomplex A of X, the map M(X, Y) 
—» M {A, F), defined by restricting maps with domain J to ^ , is a 
Hurewicz fibration over its image. See e.g. Spanier ([9], Theorem 2, 
p. 97 and Corollary 2, p. 400). These are the fibrations we need. 

Every (path-)component in M(X, F) contains a based map. In com­
puting homotopy groups iri{M{Xi F), / ) of M(X, Y) we need therefore 
only to consider based maps f:X —> F as base points in M(X, F). 
When base points have been specified they will be omitted in homotopy 
groups. We shall compute the homotopy groups of M(X, F) in case F is 
an Eilenberg-MacLane space of type (TT, n) for n ^ 1, i.e., TT is a group, 
abelian for n ^ 2, such that irn(Y) ~ -K and -Ki(Y) = 0 for i 9^ n. 

3. The abelian case. First we consider a theorem of Thorn ([10], 
Theorem 2), and independently Fédérer ([2], p. 355). See also Dyer 
([1], Corollary 8.4). In spirit our proof is closest to that of Thorn. 

THEOREM 1. Suppose that Y is an Eilenberg-MacLane space of type 
(w, n) for n ^ 1 with w abelian. Then 

*t(M(X, Y),f)^Hn-i(X;ir) 

for all i ^ 1. 
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Proof. Since TT is abelian, F admits the structure of an i7-space. Then 
M(X, F) inherits an iJ-space structure with pointwise multiplication of 
maps as multiplication. Therefore all the components in M(X, Y) have 
the same homotopy type, and hence it suffices to consider the component 
M0(X, Y) of homotopically trivial maps in M(X, Y) with the constant 
based mapfo'.X —> Y as base point. We note that M0(X, Y) is itself an 
iJ-space, such that in(Mo(X, Y)) is abelian. 

Evaluation at the base point for X defines a Hurewicz fibration 
p0:Mo(X, Y) —» F with the component F0(X, Y) of homotopically tri­
vial maps in F(X, Y) as fibre. Since p0 has a section, namely the section 
of constant maps, the homotopy sequence for po splits and we get 

7T,(Mo(Z, Y))^Tt(Y) 0 TtiFoiX, Y)) 

for all i ^ 1. For n = 1 and i = 1 we use that wi(Mo(X, Y)) is abelian. 
Let A denote smash product, Œ* the i-fold loop space functor, and 

7r(-,-) a homotopy set of based maps. With this notation there are 
canonical isomorphisms 

7rt(Fo(X, Y)) ^ TT(S' A X, Y) ^ T(X, Q*Y) 

for all i ^ 1. 
Observe now that 12 * Y is a space of type (71-, n — i) for 1 ^ i ^ n — 1, 

a discrete space for i = n, and a point for i > w. Consequently 

x (F (X V\) ~ / # " " ' ( * : *) for 1 g » ^ » - 1 7 r i ( F „ ( X , F ) ) = | 0 forte». 

See e.g. [9], Theorem 10, p. 428. Since 

iT=Hn~i(X;r) iori = n 
X*Y> = \0 iori^n, 

we then get immediately 

TfiiMoiX, Y^^H^iX;*) 

for all i ^ 1. This proves Theorem 1. 

4. The nonabelian case. Next we consider a theorem, which seems 
first to have been observed by Gottlieb ([3], Lemma 2). 

THEOREM 2. Suppose that Y is an Eilenberg-MacLane space of type 
(TT, 1) with IT nonabelian. For any based map f:X-+ F, consider the 
induced homomorphism f^:iri(X) —>7n(F) and denote by C(ir;f) the cen-
tralizer for /* (71-1 (X) ) in ?n ( F) == T. For any finite dimensional CW-complex 
X we then get 
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Proof. Up to homotopy type X admits a filtration X° C X1 C . . . 
Ç P = I , where X° is a point, X1 is a wedge of circles, and Xk for 
k ^ 2 is obtained by attaching a number of &-cells to Xk~l. 

For each k, 1 ^ & ^ w, restriction of maps defines a Hurewicz fibra-
tion (over its image) ikf(X*, F) —> M(Xk~\ F), the fibre of which is 
easily seen to have the homotopy type of the product of a number of 
copies of the space of &-loops £2* F corresponding to the number of &-cells 
we attach to Xk~l to obtain Xk. 

For k ^ 2, this fibre is contractible, and hence, if f1 denotes the 
restriction of/ to X1, we get 

7rt(M(X, Y)1f)^Ti(M(X\ Y),f) 

for all i ^ 1. 
For k = 1, we have the evaluation fibration p\M(Xl, Y) —> F with 

fibre ^(X1 , F). Now X1 is a wedge of circles, say X1 = V7<=r S7
1. There­

fore FCX1, F) can be identified with the product X7er (01F)7 , and hence 

Tn(F{X\ F), J1) = 0 for all i ^ 1. 

By the homotopy sequence for p we get then immediately 

*t(M(X, F), / ) ^ in(M(X\ F), J1) ^ TT,(F) = 0 

for all i è 2. 
In dimension 1, p induces a monomorphism 

^ ^ ( i ^ X 1 , F) , / 1 ) ->7T 1 (F) . 

Hence 

T I ( M ( X , F), / ) S T I ( M ( X » , K), / ' ) S Image (£*). 

For each 7 £ I\ let aT denote the generator for ir\(X) given by the 
inclusion of the circle Sy

l into X. Proceeding exactly as in ([7], Proof of 
Proposition 1), it is easy to see that a £ 7Ti(F) is in the image for p* if 
and only if the Whitehead product [a, /*(a7)] = 1 for all 7 Ç I\ and 
therefore if and only if a commutes with every element in the image for 
f*'.TCi{X) —>7ri(F). But this says precisely that Image (p*) = C{ir\ / ) , 
and therefore 

*i{M{X, Y),f)^C(r;f) 

as asserted. This proves Theorem 2. 

5. Some applications of theorem 2. For X an aspherical space, i.e., 
a compact polyhedron which is also an Eilenberg-MacLane space of 
type (71-, 1), Theorem 2 applies to the space of self-mappings on X. 
For l x , the identity map on X, observe that C(7r, 1X) is equal to the 
center C(TT) of w. Hence Theorem 2 has the following 
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COROLLARY 1. For an aspherical space X with fundamental group 
7T = 7riPO, the identity component Mi(Xf X) in the space of self-mappings 
on X is an Eilenberg-MacLane space of type (C(w), 1). 

This result is originally due to Gottlieb ([4], Theorem 111.2). In par­
ticular we get 

COROLLARY 2. Let S be a closed surface, except the sphere, the torus, the 
projective plane and the Klein bottle. Then the identity component M\ (S, S) 
in the space of self-mappings on S is contractible. 

Corollary 2 follows from Corollary 1, since TTI(S) has trivial center, see 
e.g. [5], Theorem 4.4. More generally, the identity component in the 
space of self-mappings on a closed Riemannian manifold with strictly 
negative sectional curvature is contractible, since such a manifold is an 
aspherical space, where the fundamental group has trivial center. The 
Riemannian geometry necessary to prove these assertions can be found 
in e.g. [6], Section 7.2. 

Finally we mention that the result in Theorem 2 was used by the 
author in [8] to give a proof of a theorem of Al'ber on spaces of maps into 
a manifold, which admits a Riemannian metric with strictly negative 
sectional curvature. The theorem says that for such spaces of maps a 
component will alway have the homotopy type of a point, a circle, or 
the target. 
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