SPACES OF MAPS INTO EILENBERG-MACLANE SPACES

VAGN LUNDSGAARD HANSEN

- 1. Introduction. In this note we provide alternative and unified proofs for two theorems on the homotopy groups of spaces of (continuous) maps into Eilenberg-MacLane spaces. The first theorem is due to Thom, and independently Federer, and deals with spaces of maps into Eilenberg-MacLane spaces of type (π, n) for $n \ge 1$ with π abelian. The second theorem is due to Gottlieb and deals with spaces of maps into Eilenberg-MacLane spaces of type $(\pi, 1)$ with π nonabelian. As a main tool we shall use the homotopy sequences for certain fibrations of spaces of maps.
- **2. Basic notation and some preliminary remarks.** For any pair of connected CW-complexes X and Y with base points, we denote by M(X, Y), respectively F(X, Y), the space of free maps, respectively based maps, of X into Y. We assume that all domains in mapping spaces are locally compact, and that all mapping spaces are equipped with the compact-open topology. For any subcomplex A of X, the map $M(X, Y) \rightarrow M(A, Y)$, defined by restricting maps with domain X to A, is a Hurewicz fibration over its image. See e.g. Spanier ([9], Theorem 2, p. 97 and Corollary 2, p. 400). These are the fibrations we need.

Every (path-)component in M(X, Y) contains a based map. In computing homotopy groups $\pi_i(M(X, Y), f)$ of M(X, Y) we need therefore only to consider based maps $f: X \to Y$ as base points in M(X, Y). When base points have been specified they will be omitted in homotopy groups. We shall compute the homotopy groups of M(X, Y) in case Y is an Eilenberg-MacLane space of type (π, n) for $n \ge 1$, i.e., π is a group, abelian for $n \ge 2$, such that $\pi_n(Y) \cong \pi$ and $\pi_i(Y) = 0$ for $i \ne n$.

3. The abelian case. First we consider a theorem of Thom ([10], Theorem 2), and independently Federer ([2], p. 355). See also Dyer ([1], Corollary 8.4). In spirit our proof is closest to that of Thom.

THEOREM 1. Suppose that Y is an Eilenberg-MacLane space of type (π, n) for $n \ge 1$ with π abelian. Then

$$\pi_i(M(X, Y), f) \cong H^{n-i}(X; \pi)$$

for all $i \geq 1$.

Received November 22, 1978.

Proof. Since π is abelian, Y admits the structure of an H-space. Then M(X, Y) inherits an H-space structure with pointwise multiplication of maps as multiplication. Therefore all the components in M(X, Y) have the same homotopy type, and hence it suffices to consider the component $M_0(X, Y)$ of homotopically trivial maps in M(X, Y) with the constant based map $f_0: X \to Y$ as base point. We note that $M_0(X, Y)$ is itself an H-space, such that $\pi_1(M_0(X, Y))$ is abelian.

Evaluation at the base point for X defines a Hurewicz fibration $p_0: M_0(X, Y) \to Y$ with the component $F_0(X, Y)$ of homotopically trivial maps in F(X, Y) as fibre. Since p_0 has a section, namely the section of constant maps, the homotopy sequence for p_0 splits and we get

$$\pi_i(M_0(X, Y)) \cong \pi_i(Y) \oplus \pi_i(F_0(X, Y))$$

for all $i \ge 1$. For n = 1 and i = 1 we use that $\pi_1(M_0(X, Y))$ is abelian. Let \wedge denote smash product, Ω^i the *i*-fold loop space functor, and $\pi(\cdot,\cdot)$ a homotopy set of based maps. With this notation there are canonical isomorphisms

$$\pi_i(F_0(X, Y)) \cong \pi(S^i \wedge X, Y) \cong \pi(X, \Omega^i Y)$$

for all $i \geq 1$.

Observe now that $\Omega^i Y$ is a space of type $(\pi, n-i)$ for $1 \le i \le n-1$, a discrete space for i=n, and a point for i>n. Consequently

$$\pi_i(F_0(X, Y)) \cong \begin{cases} H^{n-i}(X; \pi) & \text{for } 1 \leq i \leq n-1 \\ 0 & \text{for } i \geq n. \end{cases}$$

See e.g. [9], Theorem 10, p. 428. Since

$$\pi_i(Y) \cong \begin{cases} \pi = H^{n-i}(X; \pi) & \text{for } i = n \\ 0 & \text{for } i \neq n, \end{cases}$$

we then get immediately

$$\pi_i(M_0(X, Y)) \cong H^{n-i}(X; \pi)$$

for all $i \ge 1$. This proves Theorem 1.

4. The nonabelian case. Next we consider a theorem, which seems first to have been observed by Gottlieb ([3], Lemma 2).

THEOREM 2. Suppose that Y is an Eilenberg-MacLane space of type $(\pi, 1)$ with π nonabelian. For any based map $f: X \to Y$, consider the induced homomorphism $f_*: \pi_1(X) \to \pi_1(Y)$ and denote by $C(\pi; f)$ the centralizer for $f_*(\pi_1(X))$ in $\pi_1(Y) \cong \pi$. For any finite dimensional CW-complex X we then get

$$\pi_i(M(X, Y), f) \cong \begin{cases} C(\pi; f) & \text{for } i = 1\\ 0 & \text{for } i > 1. \end{cases}$$

Proof. Up to homotopy type X admits a filtration $X^0 \subseteq X^1 \subseteq \ldots \subseteq X^n = X$, where X^0 is a point, X^1 is a wedge of circles, and X^k for $k \ge 2$ is obtained by attaching a number of k-cells to X^{k-1} .

For each k, $1 \le k \le n$, restriction of maps defines a Hurewicz fibration (over its image) $M(X^k, Y) \to M(X^{k-1}, Y)$, the fibre of which is easily seen to have the homotopy type of the product of a number of copies of the space of k-loops $\Omega^k Y$ corresponding to the number of k-cells we attach to X^{k-1} to obtain X^k .

For $k \ge 2$, this fibre is contractible, and hence, if f^1 denotes the restriction of f to X^1 , we get

$$\pi_i(M(X, Y), f) \cong \pi_i(M(X^1, Y), f^1)$$

for all $i \geq 1$.

For k = 1, we have the evaluation fibration $p: M(X^1, Y) \to Y$ with fibre $F(X^1, Y)$. Now X^1 is a wedge of circles, say $X^1 = \bigvee_{\gamma \in \Gamma} S_{\gamma}^1$. Therefore $F(X^1, Y)$ can be identified with the product $\bigvee_{\gamma \in \Gamma} (\Omega^1 Y)_{\gamma}$, and hence

$$\pi_i(F(X^1, Y), f^1) = 0$$
 for all $i \ge 1$.

By the homotopy sequence for p we get then immediately

$$\pi_i(M(X, Y), f) \cong \pi_i(M(X^1, Y), f^1) \cong \pi_i(Y) = 0$$

for all $i \geq 2$.

In dimension 1, p induces a monomorphism

$$p_*: \pi_1(M(X^1, Y), f^1) \to \pi_1(Y).$$

Hence

$$\pi_1(M(X, Y), f) \cong \pi_1(M(X^1, Y), f^1) \cong \text{Image } (p_*).$$

For each $\gamma \in \Gamma$, let α_{γ} denote the generator for $\pi_1(X)$ given by the inclusion of the circle S_{γ^1} into X. Proceeding exactly as in ([7], Proof of Proposition 1), it is easy to see that $\alpha \in \pi_1(Y)$ is in the image for p_* if and only if the Whitehead product $[\alpha, f_*(\alpha_{\gamma})] = 1$ for all $\gamma \in \Gamma$, and therefore if and only if α commutes with every element in the image for $f_*:\pi_1(X) \to \pi_1(Y)$. But this says precisely that Image $(p_*) = C(\pi; f)$, and therefore

$$\pi_1(M(X, Y), f) \cong C(\pi; f)$$

as asserted. This proves Theorem 2.

5. Some applications of theorem 2. For X an aspherical space, i.e., a compact polyhedron which is also an Eilenberg-MacLane space of type $(\pi, 1)$, Theorem 2 applies to the space of self-mappings on X. For 1_X , the identity map on X, observe that $C(\pi, 1_X)$ is equal to the center $C(\pi)$ of π . Hence Theorem 2 has the following

COROLLARY 1. For an aspherical space X with fundamental group $\pi = \pi_1(X)$, the identity component $M_1(X, X)$ in the space of self-mappings on X is an Eilenberg-MacLane space of type $(C(\pi), 1)$.

This result is originally due to Gottlieb ([4], Theorem III.2). In particular we get

COROLLARY 2. Let S be a closed surface, except the sphere, the torus, the projective plane and the Klein bottle. Then the identity component $M_1(S, S)$ in the space of self-mappings on S is contractible.

Corollary 2 follows from Corollary 1, since $\pi_1(S)$ has trivial center, see e.g. [5], Theorem 4.4. More generally, the identity component in the space of self-mappings on a closed Riemannian manifold with strictly negative sectional curvature is contractible, since such a manifold is an aspherical space, where the fundamental group has trivial center. The Riemannian geometry necessary to prove these assertions can be found in e.g. [6], Section 7.2.

Finally we mention that the result in Theorem 2 was used by the author in [8] to give a proof of a theorem of Al'ber on spaces of maps into a manifold, which admits a Riemannian metric with strictly negative sectional curvature. The theorem says that for such spaces of maps a component will alway have the homotopy type of a point, a circle, or the target.

References

- 1. M. Dyer, Two term conditions in π exact couples, Can. J. Math. 19 (1967), 1263-1288.
- 2. H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956), 340-361.
- 3. D. H. Gottlieb, Covering transformations and universal fibrations, Illinois J. Math. 13 (1969), 432-437.
- 4. —— A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- 5. H. B. Griffiths, The fundamental group of a surface, and a theorem of Schreier, Acta Math. 110 (1963), 1-17.
- 6. D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics 55 (Springer, 1968).
- 7. V. L. Hansen, On the fundamental group of a mapping space. An example, Compositio Math. 28 (1974), 33-36.
- 8. On a theorem of Al'ber on spaces of maps, J. Diff. Geom. 12 (1977), 565-566.
- 9. E. H. Spanier, Algebraic topology (McGraw-Hill, 1966).
- 10. R. Thom, L'homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain (1956). Thone, Liège; Masson, Paris, 1957, 29-39.

The Technical University of Denmark, Lyngby, Denmark