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SPACES OF MAPS INTO EILENBERG-MACLANE
SPACES

VAGN LUNDSGAARD HANSEN

1. Introduction. In this note we provide alternative and unified proofs
for two theorems on the homotopy groups of spaces of (continuous) maps
into Eilenberg-MaclLane spaces. The first theorem is due to Thom, and
independently Federer, and deals with spaces of maps into Eilenberg-
MacLane spaces of type (w, #) for » = 1 with = abelian. The second
theorem is due to Gottlieb and deals with spaces of maps into Eilenberg—
MacLane spaces of type (w, 1) with = nonabelian. As a main tool we shall
use the homotopy sequences for certain fibrations of spaces of maps.

2. Basic notation and some preliminary remarks. For any pair of
connected CW-complexes X and ¥V with base points, we denote by
M(X, Y), respectively F(X, Y), the space of free maps, respectively
based maps, of X into Y. We assume that all domains in mapping spaces
are locally compact, and that all mapping spaces are equipped with the
compact-open topology. For any subcomplex 4 of X, the map M (X, V)
— M(A4, V), defined by restricting maps with domain X to 4, is a
Hurewicz fibration over its image. See e.g. Spanier ([9], Theorem 2,
p. 97 and Corollary 2, p. 400). These are the fibrations we need.

Every (path-)component in M (X, Y) contains a based map. In com-
puting homotopy groups m,(M(X, V), f) of M(X, V) we need therefore
only to consider based maps f:X — V as base points in M(X, Y).
When base points have been specified they will be omitted in homotopy
groups. We shall compute the homotopy groups of M (X, Y) in case ¥ is
an Eilenberg-MacLane space of type (w, #) for n = 1, i.e., 7 is a group,
abelian for # = 2, such that n,(Y) =7 and »,(¥Y) = 0 for 7 # n.

3. The abelian case. First we consider a theorem of Thom ([10],
Theorem 2), and independently Federer ([2], p. 355). See also Dyer
([1], Corollary 8.4). In spirit our proof is closest to that of Thom.

THEOREM 1. Suppose that YV is an Eilenberg—MacLane space of type
(m, n) for n = 1 with = abelian. Then

r(MX,YV),f) = H-YX; )

foralli = 1.
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Proof. Since = is abelian, ¥ admits the structure of an H-space. Then
M (X, Y) inherits an H-space structure with pointwise multiplication of
maps as multiplication. Therefore all the components in M (X, ¥) have
the same homotopy type, and hence it suffices to consider the component
M,(X, ¥) of homotopically trivial maps in M (X, Y) with the constant
based map fo: X — Y as base point. We note that My(X, V) is itself an
H-space, such that =, (M,(X, Y)) is abelian.

Evaluation at the base point for X defines a Hurewicz fibration
po: Mo(X, ¥) — ¥ with the component Fy(X, ¥) of homotopically tri-
vial maps in F(X, Y) as fibre. Since p, has a section, namely the section
of constant maps, the homotopy sequence for p, splits and we get

‘II'{(M()(X, Y)) gﬂ'i(Y) @ Wi(Fo(X, Y))

foralli = 1. For » = 1 and 7 = 1 we use that =, (M (X, Y)) is abelian.

Let A denote smash product, Q¢ the i-fold loop space functor, and
7(+,) a homotopy set of based maps. With this notation there are
canonical isomorphisms

Ti(Fo(X, V) =x(S'AX,Y)=r(X, Q7)

forallz = 1.
Observe now that Q'Y is a space of type (m,n — 7) for1 £ 71 < n — 1,
a discrete space for ¢ = #n, and a point for 2 > n. Consequently

H"™Y(X; ) forl<i<n-—1

Tt(Fo(Xy Y)) g{o fori g n.

See e.g. [9], Theorem 10, p. 428. Since

YT =H"'X; ") fori =mn
m«(¥) 2{0 fori # n,

we then get immediately
mi(Mo(X, ¥)) = H'(X; )

for all © = 1. This proves Theorem 1.
4. The nonabelian case. Next we consider a theorem, which seems
first to have been observed by Gottlieb ([3], Lemma 2).

THEOREM 2. Suppose that YV is an Eilenberg-MacLane space of type
(w, 1) with = nonabelian. For any based map f:X — Y, consider the
induced homomorphism fy:m1(X) — 71(Y) and denote by C(w;f) the cen-
tralizer for fu(r1(X)) 1n m1(Y) = 7. For any finite dimensional CW-complex
X we then get

m (M, 1), f) = {g(rtf) fori =1

fori> 1.
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Proof. Up to homotopy type X admits a filtration X° C X1 C ...
C X" = X, where X° is a point, X! is a wedge of circles, and X* for
k = 2 is obtained by attaching a number of k-cells to X*~1.

For each k, 1 £ k £ n, restriction of maps defines a Hurewicz fibra-
tion (over its image) M(X*, V) — M(X*1, V), the fibre of which is
easily seen to have the homotopy type of the product of a number of
copies of the space of k-loops @*Y corresponding to the number of k-cells
we attach to X*~! to obtain X*.

For k& = 2, this fibre is contractible, and hence, if f! denotes the
restriction of f to X!, we get

m(M(X, Y), f) = m(MEX', V), f)

forall 7 = 1.

For k = 1, we have the evaluation fibration p: M (X!, V) — ¥ with
fibre F(X!, V). Now X! is a wedge of circles, say X! = V,er S,!. There-
fore F(X!, Y) can be identified with the product X,cr (2'Y),, and hence

7 (F(XY V), f1) =0 forall7 = 1.
By the homotopy sequence for p we get then immediately
r(MX, V), s, (MX,Y), H=2r(Y) =0
for all = = 2.
In dimension 1, » induces a monomorphism
px:m (M (X, Y), f1) = m(Y).
Hence
m(MX, V), f) = m (MY, Y), f') = Image (p«).

For each v € T, let a, denote the generator for m;(X) given by the
inclusion of the circle S,! into X. Proceeding exactly as in ([7], Proof of
Proposition 1), it is easy to see that @ € 71 (V) is in the image for py if
and only if the Whitehead product [e, fe(ay)] = 1 for all ¥ € T, and
therefore if and only if @ commutes with every element in the image for
feimi(X) — 7, (V). But this says precisely that Image (p«) = C(7; f),
and therefore

m(M(X, Y), f) = C(x; f)

as asserted. This proves Theorem 2.

5. Some applications of theorem 2. For X an aspherical space, i.e.,
a compact polyhedron which is also an Eilenberg-MacLane space of
type (m, 1), Theorem 2 applies to the space of self-mappings on X.
For 1y, the identity map on X, observe that C(w, lyx) is equal to the
center C(w) of =. Hence Theorem 2 has the following
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COROLLARY 1. For an aspherical space X with fundamental group
7 = w(X), the identity component M(X, X) in the space of self-mappings
on X 1is an Eilenberg— MacLane space of type (C(w), 1).

This result is originally due to Gottlieb ([4], Theorem II1.2). In par-
ticular we get

COROLLARY 2. Let S be a closed surface, except the sphere, the torus, the
projective plane and the Klein bottle. Then the identity component M,(S, S)
in the space of self-mappings on S is contractible.

Corollary 2 follows from Corollary 1, since 7;(S) has trivial center, see
e.g. [5], Theorem 4.4. More generally, the identity component in the
space of self-mappings on a closed Riemannian manifold with strictly
negative sectional curvature is contractible, since such a manifold is an
aspherical space, where the fundamental group has trivial center. The
Riemannian geometry necessary to prove these assertions can be found
in e.g. [6], Section 7.2.

Finally we mention that the result in Theorem 2 was used by the
author in [8] to give a proof of a theorem of Al'ber on spaces of maps into
a manifold, which admits a Riemannian metric with strictly negative
sectional curvature. The theorem says that for such spaces of maps a
component will alway have the homotopy type of a point, a circle, or
the target.
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