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1. One View ofBayes' Theorem 

There is one sense in which Bayes' theorem, and its use in statistics andin scien
tific inference, is clearly uncontroversial. lt is an authentic, certified, theorem of the 
probability calculus, and even the founders of classical statistical inference, Fisher, 
Neyman and Pearson, were explicit about seeing no difficulty in the use of Bayes' 
theorem when the conditions for its application were satisfied. For example, Fisher 
writes, "When there really is exact knowledge a priori Bayes' method is available" 
(1971, p. 194). 

What are these conditions? Why, simply that a joint distribution be known that 
supports the inference from a sample distribution to a posterior distribution for the hy
potheses in question. Let me give a very brief example of a context in which every
one would seem to be in happy agreement, though their descriptions would vary as a 
function of their views of probability. 

We have an experiment in which we choose one of two ums, um-1 and um-2, with 
each having equal chance of being chosen, and then choose a ball from the um, each 
ball having the same chance of being chosen. Urn-1 contains two balls, one white 
and one black; um-2 contains three balls, one white and two black. Clearly the cho
sen ball gives us some knowledge about which um we have chosen, if we don't al
ready know. 

The joint distribution can be computed easily enough: p(l&B)=p(l&W) = 1/4; 
p(2&B) = 2/6; p(2&W) = 1/6. The prior probability associated with each um is a 
half. When we draw a black ball, the conditional probabilities become p(llB) = 
p(l&B)/(p(l&B) + p(2&B)) = (1/4)/(1/4 + 2/6) = 3n, and p(21B) = 4n. These proba
bilities represent the posterior distribution. 

All this may hold however you construe probability. A frequentist will say that 
what we are describing are the long run properties of a repeatable experiment: 3nths 
of the time, when you do an experiment of this sort and get a black ball, you will have 
chosen um-1. A logical theorist will say that in the language in which the experiment 
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has been described, the appropriate measures on the sentences are such that the condi
tional logical probability of um-1, given a black ball, is 3{7ths. A subjectivist will say 
that my opinions made coherent yield this measure. 

lt is important to see that in the example 1 have just described, so far as 1 know, ev
eryone will agree that the prior probabilities exist, that the posterior probabilities have 
the values 1 attribute to them, and that the mechanism for getting to the posterior 
probabilities is Bayes' theorem. 

What is controversial about this example is whether the probability is to be at
tributed only to the dass of trials (actual or hypothetical) of this experiment, or 
whether it makes sense to attribute the probability to having chosen um-1 on a partic
ular occasion-say the trial of this experiment occurring at 11 :00 AM on Friday, 
October 1, 1992. The serious frequentist, as 1 interpret him, will deny the latter possi
bility: probability makes sense only when attributed to general classes or properties. 
This is a view that, in comrnon with Colin Howson and Peter Urbach (1989), 1 think 
mistaken; it leads to a variety of difficulties that have been noted repeatedly in the lit
erature on the foundations of statistics, particularly by writers of Bayesian persuasion. 

lt is worth noting, however, that even from this (mistaken) point of view, the appli
cation of Bayes' theofel!l can be generalized to some degree. Let me begin by stating 
the classical form a bit more generally: We have a probability distribution over a 
space consisting of a number of hypotheses (the two ums in our first example) and 
outcomes of experiments (drawing a ball and noting the color in that example). 
Given the outcome Üj of an experiment, we compute the probability of one of these 
hypotheses as follows: 

P(HilOj) = P(Hj)P(OjlHi) /P{Oj), 

where P(Oj) can be expanded as 

the sumrnation extending over all the hypotheses. 

In many cases we may not know the prior distribution over the hypotheses exactly 
but nevertheless be willing to put constraints on that distribution. In our example, we 
may not be willing to say that the chance of picking each um is exactly a half, but 
only that (say) it is at least 0.2 for each um. Initially, that is to say, we do not endorse 
a single point valued distribution, but a set of them, P, which represents what we take 
ourselves to know about the experiment. Note that this is not clasically "Bayesian" 
since we are employing a set of distributions rather than a single distribution. We can 
still use Bayes' theorem however. 

As the result of conditionalization, we will not get a single distribution, but a new 
set of distributions. If the original joint distribution is the farnily P{H,O), then the 
prior distribution for the hypotheses H is the marginalization, 

P(H) = {P(H): P(H) = 1: Q(H&O) & Q E P}, 

where the summation extends over all 0 consistent with H, and the new family indi
cated by the evidence is 

P(HIO) = {P(HIO): p E p & P(O) * 0 } . 
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lt is worth mentioning this natural and simple extension of the relatively uncontro
versial form of Bayes theorem for two reasons: First, some classical statisticians, for 
example Fisher, do not regard it as legitimate. Fisher claims that Bayes theorem can 
be applied only when you have an exact prior distribution. Second, and more impor
tant, is the fact that so-called robust inference of this form makes it easier to believe 
that Bayesian inference can be extended more widely in scientific reasoning than 
some conservatives might think. 

1 leave aside the question here of the structure of the set P. Some writers, for ex
ample Levi (1974), suggest that the set should be convex. lt has been argued (Kyburg 
and Pittarelli 1992) that this constraint leads to difficulties, in view of the fact that the 
convex combination of distributions embodying independence need no longer exhibit 
independence. 

2. Prior Probabilities 

We noted above that in a certain sense the move to sets of distributions as the input 
for Bayes' theorem is not really Bayesian in the prograrnmatic sense of the word. In 
the view of most logical or subjectivistic Bayesians, what the individual should start 
with is a single coherent probability distribution, though logical shortcornings may 
make this difficult. As Howson points out, it is exactly this that ensures consistency 
in the sense that the set of fair odds representing the individuals beliefs is really fair. 
1 propose now to exarnine the feasibility and plausibility of an assignment of proba
bility to sentences or propositions in this classical sense: that an individual has exactly 
one such probability distribution. But !et us keep in mind the application of Bayes' 
theorem to sets of probability distributions for two reasons: First, it is often desirable 
to represent the opinions of groups of individuals; and second, it may be an option 
that alleviates the difficulty of pinpointing degrees of belief for an individual. 

There are a number of ways of thinking of the assignment of a priori probabilities. 
They may be construed as subjective ; they may be construed as logical measures on 
the sentences of a formal language; they may be construed as logical measures on the 
sets of worlds corresponding to propositions; they may be construed as relative to a 
set of answers to a question or problem, as 1 take it the maximum entropy approach 
proposes. And of course, as l noted earlier, they may be taken to be solidly based on 
our knowledge of frequencies or chances in the actual world. 

1 will assume that the objects to which we assign probabilities are sentences of a 
formal first order Ianguage. This language may mirror a fragment of ordinary 
English, so that you can think of probabilities as being assigned to sentences in 
English, if you prefer. 

The first problem we face is that if the language purports to be at all global-or to 
be the factual fragment ofEnglish-there are a great many sentences-surely a denu
merable number. While a formal language may be restricted to embodying a finite 
number of Iogically distinct sentences, such a language can hardly interest us in the 
general context of scientific reasoning. To avoid focussing on the peculiarities of a 
particular language, !et us focus on the models of that language. There are, then, a de
numerable number of distinct models in the intended interpretation of the language 
with which we are concemed. 

Our first problem is that there seems to be no feasible way in which to assign 
probabilities to those models. Of course we can assign probabilities to certain sets of 
those models. 1 assign the probability 1/2 to the set of models of L in which the sen-
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tence "the next toss of a coin 1 perform will come up heads" is true. But the general 
view requires us to be able to assign measures to any sentence at all, and this clearly 
requires that we assign measures to the individual models of our language. 

Now it would not be reasonable to demand of someone that he or she make a de
numerable number of specifications all at once. That would be hard work, even for 
the physically fit. But one should be able to approach this. But as Gilbert Harman 
(1986) argues, it is hard to do this even in very simple and artificial cases. "If one is 
to be prepared for various possible conditionalizations, then for every proposition P 
one wants to update, one must already have assigned probabilities to various conjunc
tions of P together with one or more of the possible evidence propositions and/or their 
denials. Unhappily this leads to a combinatorial explosion, since the number of such 
conjunctions is an exponential function of the number of possibly relevant evidence 
propositions .... For thirty evidence propositions, a billion probabilities are needed, 
and so on" (p. 26). Even in a limited way, the direct approach seems not feasible, 
even leaving to one side the difficulty of ensuring that the assignments are consistent. 

lt is clear, then, why many writers have opted for systematic assignments of proba
bility to the models of a language (or to sets of models). The classical views of 
Carnap (1950), Hintikka (1966), and others provide for the assignment ofprobabili
ties to the sentences of a language based on a canonical procedure. As Howson points 
out, such procedures are not without arbitrariness. In particular, the richer such a lan
guage is taken to be, the more parameters are involved in characterizing the "logical 
measure function," and the more apparent it is that some kind of personal judgment is 
playing a role. 

lt is playing a role in two distinct ways. One is in the selection of the values of the 
parameters that will go to generate the measure function. The other is in the selection 
of the language itself. This is a feature of any theory according to which the sen
tences of a language can bear probabilities. lt is obscured by simply writing in one's 
native tongue as though that were not a language, but reflection reveals that it is, after 
all, the sentences of that language whose probabilities one is discussing. 

Another approach is to look at matters more locally. Harman's argument suggests 
that it is implausible, even in a very limited local context, to assign probabilities pure
ly arbitrarily, but there are suggestions according to which we can assign probabilities 
systematically in limited contexts. One such is the suggestion of E. T. Jaynes (1958) 
that we should assign prior probabilities in such a way as to minimize information (or 
to maximize entropy). Again, as Howson points out, this is an assignment of proba
bility, and one which is arbitrary in the sense that another might have been made. lt is 
not forced on us. 

There is another consideration. Many subjectivists find the principle of countable ad
ditivity-the principle that the probability to be assigned to a countable union of exclu
sive propositions should be the countable sum of the probabilities assigned to the indi
vidual propositions-unacceptable. Given a countable number of exclusive alternatives, 
then, they will insist that no more than a finite number can receive positive (bounded by 
8) probability. Applied to the models of the language, that means that no more than a fi
nite number of models may carry bounded probability. This does not answer Harman, 
since the finite number can get very !arge very fast, but it does at least provide an "in 
principle" argument: in principle a finite number of assignments will suffice. 

Unfortunately, thi.s solution clashes with another subjectivistic principle The sub
jectivist (Colin Howson, to pick a non-random example) argues against accep-
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tance-against assigning full belief, probability 1, to any non-datum sentence. (We'll 
worry about data Iater.) In particular, he argues that it is absurd to suppose that we 
"accept" the result of a statistical test because that means we would be assigning a 
probability of one to it, and surely we must allow for the possibility of being wrong. 
In general, the argument against an inductive logic that Ieads to the acceptance of hy
potheses, as distinct from one which assigns probabilities to hypotheses, is exactly 
that we should never assign a probability of one to a hypothesis that might be wrang. 

If we assign positive probability to only finitely many models, we must assign 0 
probability to each of the denumerable remainder, and thus to every proposition that 
may be identified with a set of these models. But to assign 0 to a proposition is to as
sign l to its denial. This clearly conflicts with the injunction to eschew "acceptance" 
or the assignment of probability l to contingent statements. 

3. Direct lnference 

Direct inference is the principle that allows you to pass from knowledge of a 
chance or frequency of a property (half the tosses land heads; the chance of a head is 
a half) to the probability that a specific instance (the next toss, the last toss) will have 
that property. Obviously this principle must be hedged around with conditions in 
order to be applied with consistent results. For example, suppose that Tom is a miner 
and a Baptist; we know that the chance that a miner survives for a year is .917; we 
know that the frequency with which Baptist miners survive for a year is .950. We 
cannot have the probability that Tom survives for a year be both .917 and .950, 
though Tom is an instance of each of the reference classes mentioned, or altematively 
is subject to both chances. We must adopt some conditions that will allow us to use 
our knowledge of chances and frequencies consistently. 

In the classical tradition of the early twentieth century, direct inference was the in
ference to the probability distribution of characteristics of a sample, from the statisti
cal premise that gave the distribution in the population. For example, from the 
premise that the characteristic function of heads is binomially distributed in the set of 
coin-tosses, we may infer that Xn, the number ofheads on n tosses, is approximately 
normally distributed with a mean of a half. 

Direct inference was contrasted with "inverse inference,"2 which was regarded as sus
pect, and involved the inductive inference from the characteristics of a sarnple to the char
acteristics of the population from which the sample was drawn. For example, to exarnine 
an initial segment of a sequence of coin tosses, and infer something about the distribution 
of heads in the whole sequence. Bayes' theorem would allow us to do this if we had a 
prior distribution over the distributions that heads might have. But where could this come 
from? Or how can we apply Bayes' theorem without it? In the early part ofthis century, 
statisticians wrestled with this problem of "inverse inference"-a combat from which R. 
A. Fisher (1924, 1930) and then Neyman and Pearson (1928) rescued them by arguing 
that inverse inference was unnecessary. Recently we are being told that inverse inference 
is the right way to go after all, for that is just the Bayesian Doctrine. 

Direct inference has seemed relatively uncontroversial until recently. Since 1959 1 
have argued that direct inference, though more complicated than people have thought, 
is all we need. Camap (1971), more recently, has taken it to represent an irnportant 
principle. David Miller discussed the principle in 1967, and argued that in a Camapian 
frarnework it leads to inconsistency. David Lewis (1980)has baptised it the "Principal 
Principle" and argued that it is the glue that ties objective probability and subjective 
probability together. Howson claims that this principle is central to Scientific 
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Reasoning, and that it would be a "disaster" if it were, as Miller claims, inconsistent. 3 

Lewis 's fonnulation, like that of David Miller, can be put this way: 

P(FalGa&Chance(F,G) = r) = r. 

Let us call this the stark version of the principle. Stated thus the principle is essential
ly vacuous. lt is quite true that if "all I know" is that a is G, and that the chance (al
ternatively, frequency) of a G being an Fis r, then the probability forme that a is F 
should be r . But of course that is not "all I know" and can't be "all I know." 

While it may be logically possible that my corpus of knowledge contains exactly 
"Ga&Chance(F,G) = r," it is surely not epistemically possible. Even if it were to be 
epistemically possible, it would not apply to us. We know, always, a lot more than 
that. In order for the principle to serve its purpose, it must be expressed thus: 

P(FalGa&Chance(F,G) = r&K) = r, 

where K represents the other stuff that we know. Stated thus, it becomes clear that we 
need a proviso: that K not contain anything relevant to "Fa," other than 
"Ga&Chance(F,G) = r." To spell out what this means is exactly to spell out criteria 
for the choice of a reference class or the choice of a chance set-up, or general epis
temic criteria of relevance, or something analogous. 

To see this, we need merely note that the constant "a" in the principle is generally in
stantiated by a definite description (the next toss of the coin, the next sample of n to be 
chosen, the result of the coin toss performed at (time,place), ... A proper name gives us 
no handle, unless we have a definite description to single out its referent. But as soon as 
we have a definite description, we have a lot of information that must be taken account of. 

To spell out conditions of relevance is, as those of us who have been ·working on 
the problem know only too weil, very difficult. A complete discussion of direct infer
ence would not be appropriate here. But it will be illustrative to exhibit several con
straints on direct inference that will show how non-trivial these constraints are. 

(1) Suppose that we know that a belongs to B, and to B n C, and that the propor
tion of B's that are T is .3, and the proportion of B n C that are T is .6. Clearly the 
appropriate probability, other things being equal, is 0.6. This is entailed by Hans 
Reichenbach's principle: always select the narrowest reference dass about which 
you have statistics. 

(2) Suppose that we know that a is selected from B, which in turn is selected from 
B and that for every B; in 8, the proportion of Ts is P;. and that there are n mem
bers of B. We may also know that the frequency of Ts among the whole union of 
B;'s is q. lt is clear that l/n times the sum of the Pi is tobe preferred to q. 

(3) Suppose the proportion of black balls in an um is known tobe p, but that we 
have selected a !arge number of balls from the um, and have good reason to be
lieve that the long run frequency of black balls among balls selected is q, rather 
than p. Clearly q is tobe prefe.rred. 

( 4) Consider the hypothesis H that 20% of the draws of balls from an um yield a 
black. ball. We take a sample of draws, and 22% are black. Relative to this infor
mation, the probability of H may be quite high. Now we continue our sampling. 
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Of the total sample, we find that 30% are black. Relative to this information the 
probability of H may be quite low. Clearly the second probability is the one to be 
preferred, even though our original evidence is still part of qur body of knowledge. 

These are the sorts of problems that make the formulation of a consistent principle 
of direct inference difficult. They are avoided by stating the principle in relation to a 
body of evidence that contains only one statistical or chance statement, and a state
ment to the effect that a given individual belongs to the reference dass the chance 
Statement concerns. What has been common in the literature is to pass from the plau
sible defense of the stark principle of direct inference to the mushy "if there is nothing 
eise in the body of knowledge that bears on the result..." 

But this transition is exactly what makes the selection of a reference dass difficult. 
lt is exactly what calls for careful and thoughtful analysis. 

4. Subjectivity: Convergence 

The most common complaint about Subjective Bayesianism is that it is subjective. 
There are three general responses to this charge, which we shall consider in turn. The 
fust is that the subjectivity involved becomes diminished as evidence accumulates; 
the second is that subjectivity infects everything anyway; and the third is that al
though the input to Bayesian inference is subjective, the process of inference itself is 
perfectly objective. 

lt was de Finetti (1937) who first made subjective Bayesianism statistically re
spectable by showing that opinions converge as evidence mounts. What was shown 
originally was that if you have an exchangeable sequence of events, each of which 
has or Jacks a property P, two people with differing non-extreme opinions about the 
probability that the next event will have P, will differ less and less as they condition 
their beliefs on a longer and longer initial segment ofthe sequence. "Non-extreme" 
opinions are those which (i) assign a probability other than 0 or 1 to P, and (ii) do not 
assume that the events are independent (eise conditionalization would not change the 
original belief state). 

In addition it is required that the sequence be exchangeable with respect to P, ac
cording to both parties. For the sequence to be exchangeable according to an opinion, 
is for the probability of any sequence of n occurrences of P and not-P to depend only 
on the number of P's and the number of not-P's. Example: if Heads is exchangeable in 
a sequence of coin tosses, HHHlfITIT will have the same probability as HHTffITHT. 

More generally, if a sequence is exchangeable with respect to a random quantity 
Q-a function that takes on a numerical value for each member of the sequence-ac
cording to two non-extreme subjective opinions, then as these opinions are condi
tioned on a longer and longer initial segment of the the sequence, they will come to be 
doser and doser together. This result can be generalized in yet further ways, so that 
the sequence need not be fully exchangeable, but only partially exchangeable. 

This result is used to argue that subjectivity in initial opinions is unimportant be
cause differences of opinion will be wiped out by increasing evidence. There are a 
number of gaps between the premise and the condusion. 

The theoretical results concem sequences of a special sort: not opinions in general. 
To support the argument that differences of opinion are unimportant, we would need 
to be convinced that all differences of opinion, and not just those concerning ex-
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changeable sequences, will tend to be reduced by the accumulation of evidence. lt is 
not at all clear that this is the case. 

The technical results require that the two opinions whose convergence we are con
cemed about both agree that the sequence in question is exchangeable: fifty heads fol
lowed by fifty tails must be exactly as probable as any other order of fifty heads and 
fifty tails. 

While it is not hard to agree that stubbom opinions that assign 0 or 1 to a proposi
tion are going to be hard to alter (but recall section 3 in which we showed that most 
opinions must be 0 or 1 ), it is not so clear that judgments of independence are to be 
eschewed: if we are to leam from experience by conditionalization, we are prohibited 
from supposing that the outcomes oftwo coin tosses are independent. But many ofus 
would be surer about this than about a lot of other things. 

Let us assume that it is true, though it is difficult to see how it could be shown, 
that opinions in general converge with increasing evidence. More precisely, let us 
suppose that it is true that for any ö and any proposition S, ifneither P 1 (opinion1) 
nor P 2 (opinion 2) assigns 0 or 1 to the probability of S, then there is some body of 
evidence E, neither entailing S nor entailing -S, such that IP 1 (SIE) -P2(SlE)I < ö. 
Does this remove the sting of subjectivity? 

No, because 1 must agree with my friend on a course of action right now. We can
not wait to acquire enough evidence that our conditional probabilities are in agree
ment to the extent required to yield the same decision. Convergence in the indefinite 
future does not assuage the difficulties of our subjective differences now. In the long 
run, as Keynes said .... 

Furthermore, it is easy to change the order of quantification, and say, with equal 
conviction, that for any A and any proposition S, and any body of evidence E, there 
exist prior opinions P 1 and P 2 such that neither is extreme, and yet such that IP 1 (SIE) -
P 2(SIE)I > A. To see this, simply note that 

P1(SlE) = P1(S)/(P1(S) + k1(l-P1(S))) and 

P2(SIE) = P2(S)/(P2(S) + k1(1-P2(S))). 

The constants k1 and ki represent likelihood ratios: P;(EIS)/P1{El-S) . These ratios 
can have any value between 0 and infinity, and thus the difference in the conditional 
probabilities can be made !arger than A. The convergence arguments do not seem to 
carry as much weight as some people suppose. 

5. Subjectivity: Pervasiveness 

The second sort of argument in defense of the subjectivism of subjective 
Bayesianism claims that subjectivism infects any other approach as weil. For exam
ple, in the theory of testing statistical hypotheses, the choice of a particular test, or of a 
particular test level, may be seen as arbitrary. lt has been argued (for example by 
Howson, p. 196) that no objective defense of a shortest confidence interval is possible, 
since what is shortest fort need not be shortest for/(t). In short, it is claimed that sub
jectivism is inevitable. (p.289) "No prior distribution reflects only factual data un
mixed with anybody's opinions." To the suggestion that some assumptions are gratu
itous (e.g., that the laws of nature are wildly different in remote parts of the universe), 
while others are not, Howson replies (p. 289) " ... any assumption imports knowledge." 
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lt is difficult to approach the question of whether or not subjectivism is inevitable 
in a cool and calm manner, since Subjective Relativity in All Things seems to be the 
current politically correct watchword. But here we are concerned only about science, 
and there is certainly a common feeling that science, at least, is ·objective: science 
should follow where the evidence points, and be independent of political, moral, and 
subjective constraints. 

Does scientific inference contain an irreducible and inevitable subjectivistic ele
ment? This is not an easy question to answer. Consider statistics. Savage showed 
(1962) that in deciding between two simple hypotheses, the choice of power and size 
of a statistical test corresponded exactly to choosing a prior probability. As Howson 
convincingly argues (pp 189ft) much of classical statistical inference is subject to 
many of the same complaints that Bayesian statistics is subject to. But the state of 
current statistical theory does not present a picture of clarity and agreement. There 
are many controversies in the foundations of statistics that are unresolved right now. 

Here is just one example. Suppose you know that the quantity Q is distributed 
normally, with an unknown mean µ, and a known variance cr2 = 1.0. Draw a sample 
of one, and observe the value x of Q. Since µ -x has a known distribution-it is 
Normal(O,l}-we can simply Iook up in a table the probability that lµ-x 1 exceeds 
any given amount. Thus ifwe observe thatx = 10, we can (by careful direct infer
ence!) conclude that the probability that 9 $ µ $ l l is 0.68. We have used statistical 
knowledge, of course-the knowledge concerning the distribution of Q-but it is not 
at all clear that we have used any knowledge concerning the prior distribution of µ. 

This is, in fact, an illustration of what R. A. Fisher called 'fiducial inference.' lt 
has been discussed by Bayesian statisticians, who claim that there is a prior distribu
tion of µ taken for granted, namely, a uniform distribution. The reason that the use of 
this prior distribution has escaped the attention of some of us is that it is the improper 
uniform distribution that takes every interval of equal size of possible values for µ to 
be equally probable a priori. And sure enough, if you take that as the prior probability 
distribution for µ, and perforrn a Bayesian analysis, you get the same results. 

But does this really show that a prior distribution is taken for granted in this piece 
of statistical inference? Not to my way of thinking, though of course it opens up that 
possibility. There is no reason, in this example, to introduce a prior distribution at all. 
The inference can perfectly weil be constructed as a simple case of direct inference, in 
which case it is not clear where the "subjective" element enters in. lt is clearly not in 
the assumption of the norrnality of the distribution of Q, or its variance, since we as
sumed those to be objective facts . These assumptions could be wrong, of course., but 
they purport to be objective. That is another question, and does not underrnine their' 
objectivity of these alleged facts. 

Note, in fact, that this is almost a touchstone of objectivity: the possibility of error. 
There is no way 1 can be in error in my prior distribution for µ-unless I make a Jogi
cal error-whether I take it to be the improper uniform prior or any other coherent 
prior. lt is that very fact that makes this prior distribution perniciously subjective. lt 
represents an assumption that has consequences, but cannot be corrected by criticism 
or further evidence. 

6. Subjectivy: Inference 

The third defense against charges that Bayesianism embodies too much subjectivi
ty is (so far as I know) unique to Colin Howson. lt is that there is no subjectivity in 
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the Bayesian approach. (This does seem to constitute a pragmatic contradiction of the 
defense, also offered by Howson, that everyone eise is subjective, too.) Howson 
speaks of the "constraints imposed on [probabilities] by the condition of consistency," 
and says " ... there is nothing subjective in the Bayesian theory as a theory of infer
ence: its canons of inductive reasoning are quite impartial and objective." (p. 296) 

As a theory of inference, the calculus of probability-which is what embodies the 
"canons of inductive reasoning" on the Bayesian view-is, like any other piece of 
mathematics, a purely deductive system. lt thus is surely objective, and embodies 
nothing controversial. lt is the role it is to play in scientific reasoning that matters. 

Howson takes classical statistics to task for leaping to conclusions, in, for exam
ple, rejecting a null hypothesis on the basis given evidence, on the argument that such 
rejections will rarely be mistaken. " ... we regard such inductions as unwarranted, and 
the supporting argument as fallacious." (p. 190) That is because no conclusion in
ferred from a statistical test, no confidence interval, is immune from further testing, or 
from retraction in the face of new evidence. 

Of course this is just to say that conclusions about matters of fact are corrigible. lt 
is not to say that there may not be computational and epistemic advantages to accept
ing such conclusions. This is eminently clear in the writings of Fisher, who regarded 
hypothesis testing as a preliminary stage of scientific investigation. First we reject the 
null hypothesis that the treatrnent has no effect; and then we buckle down to work in 
our laboratory (or our fields) to discover what the effect is and how it is produced. 
We do so, however, fully recognizing that our initial rejection may have been wrong. 
This hardly conforrns to the caricature of classical statistics according to which the re
jection ofa hypothesis is (or ought tobe) etemal. 

lt is perfectly consistent to take "Inductive logic [tobe] ... the theory of inference 
from some exogenous given data and prior distribution of belief to a posterior distri
bution." (p. 290) lt does leave us with the puzzling Bayesian treatment of data: data 
can be accepted, but conclusions on the basis of data cannot. Howson waffles on this 
issue: " ... we say nothing about whether it is correct to accept the data." Since any 
scientific data that I can imagine and take seriously (by which I mean to exclude such 
data as "I am now being appeared to redly," which I do not take to be a paradigm of 
'scientific data') is corrigible, it seems to me that the same strictures should apply to 
'exogenous given data' as apply to conclusions. 

Leaving to one side the treatrnent of data, there seems to be no reason that one 
can't treat inductive inference in the way that Bayesians suggest. But not everyone 
agrees that this is the appropriate treatrnent for scientific or inductive or (for that mat
ter) practical inference. There are a variety of forrnalisms that are being explored in 
philosophy and in computer science that are designed exactly to provide a way of ar
riving at conclusions that are tobe regarded as corrigible. The various species of non
monotonic logic, default logic, logics of defeasible reasoning, and probabilistic infer
ence in my sense, in which high probability warrants acceptance, are all logics de
signed to characterize what, in classical terrns, must be regarded as 'invalid' infer
ence. All of these approaches represent alternatives to the Bayesian approach . 

That is exactly the problem, in the view of many Bayesians: Why should one en
dorse a method of inference that is invalid, which can lead from true premises to a false 
conclusion? No one would dream of endorsing a methodology incorporating principles 
of invalid inference in mathematics or in theology; why should one do so in science? 
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There are reasons. As Salmen argued in 1968, one reason is to provide the materials 
for the classical covering law view of explanation. To use a classical illustration, sup
pose the explanation for my broken car radiator is that there was no antifreeze in the 
water, that the temperature went down to 20 degrees last night, and that water expands 
on freezing, causing stresses that cannot be contained by automobile radiators. Tue cov
ering laws involved here are that water freezes at 20 degrees, and that water expands on 
freezing. If we cannot accept these generalizations, we cannot accept the explanation. 

There is no way to substitute a degree of belief for acceptance, and still have a cov
ering law model of explanation. 1 may have a high degree of belief that water freezes at 
20 degrees, but from this nothing follows about the water in my radiator. lt is perfectly 
consistent with this belief that the water in my radiator does not freeze at 20 degrees. 

Of course we can reject the covering law model of explanation, and replace it by 
Bayesian explanation: 1 have high degrees of belief about the propositions comprising 
the story, including a high degree of belief in its conclusion, that my radiator broke. 
We might be able to show that the assumption of high degrees of belief in the premis
es of the story entailed a high degree of belief in its conclusion. But this does not 
conform to the usual view of explanation. 

Another difficulty with eschewing any form of inductive (i.e., risky) acceptance 
would be to explain engineering handbooks, which are far from being compendia of 
assertions about degrees of belief. Another is to do justice to the ordinary scientist 
who does not at all regard everything that he regards as corrigible as 'merely proba
ble.' Thus if 1 am doing a computation that involves the mass of a proton, I'll look up 
the value in the latest handbook, and use the interval 1 am given there as if the mass 
were certain to fall in that interval. At the same time, 1 will not be shocked or dis
mayed if the next edition of the handbook contains a different value. 

1 take a natural and realistic view of science to allow for the acceptance of corrigi
ble statements, both in the form of data andin the form of laws and hypotheses. 
Indeed, this is such a natural view that it is hard to see what motivates the Bayesian 
who wants to replace the fabric of science, already complicated enough, with a vastly 
more complicated representation in which each statement of science is accompanied 
by its probability, for each of us. Worse, all but a finite number of the empirical State
ments of our scientific language, as we have seen, must bear probabilities of 0 or 1, 
and thus cannot be corrected by the only procedure alleged tobe warranted, Bayes ' 
theorem. This appears to be a denial of even Bayesian corrigibility. 

Tue reason, 1 think, that Bayesians have talked themselves into this odd position is 
that, like Hume, they seek a guarantee of correctness. They reject invalid forms of in
ference, and thus forms of inference that are inductive or nonmonotonic-that go be
yond their premises in content Probabilities, of course, are safe: no future experience 
can contravene a (subjective) probability statement We cannot be mistaken about prob
abilities so long as they are subjective. We run no risk at all of being shown in error. 

Tue history of inductive logic is in !arge part the history of attempts to convert in
duction to deduction. From Mill's methods on, inductive argument has sought validity. 
Russen (1948), Keynes (1921), and others have offered "postulates" which function to 
support inductive argument in the sense that they convert it to deduction. (Of course 
the postulate need not be detenninistic; it can be phrased in terms of frequencies, and 
lead to conferring frequency or chance probability on inductive conclusions. Suchar
gument is no less deductive than one employing deterministic a priori principles.) 
Arthur Burks and others have supported a view of induction according to which it rests 
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on "presuppositions"-a presupposition being nothing more or less than a bare faced 
assumption that allows us to convert an inductive argument into a deductive one.5 

In the 1950's there was a general attempt to duck the problems of induction by 
talking instead about material 'rules of inference.' This may indeed bear the closest 
relation to the Bayesian proposal. According to this view (endorsed in various forms 
by Stephen Toulmin (1953, 1961), Gilbert Ryle (1937,1957), Peter Strawson (1952, 
1959), and others), scientific reasoning is justified if it conforms to the norms for sci
entific inference. These norms embody various rules for making inferences that are 
material in the sense that whether the conclusions to which they lead are true or not 
depend on more than the truth of the prernises-it depends on the nature of the world. 
For example, from the exarnination of a !arge and varied sample of crows, all of 
whom are black, we infer that all crows are black. We do Mt make use of any postu
late to the effect that if we find that all the members of a !arge and varied sample of a 
population have property P, then all members of the population do. Such a postulate 
would require defense (and anyway, would be false). We just follow the rule. 

This revolutionary approach to logic won few converts from philosophy in the 
long run. lt was severely criticized (for example, by Cooley (1959)), on the grounds 
that replacing the conditional in the argument: 

If Pthen Q, 
f. 
:. Q 

by a rule of inference, 'From P, Q may be inferred,' to obtain 
f.. 
:. Q 

doesn't really change the questions we can ask or the semantic justifications we 
can hope for. 

None of these efforts to convert induction to deduction has succeeded. Nor could 
it. What we need is the analysis of the grounds on which we can reasonably leap be
yond the data, not with any guarantee of success, nor even any guarantee of frequent 
success, but with confidence that our leap is rationally defensible. Postulates and pre
suppositions have been no help, for a variety of reasons, but not least for the reason 
that one man 's presupposition is another man 's fairy tale. Material rules of inference 
are no help, for if they are subject to criticism, they must be defensible, and if they are 
not, they are no better than presuppositions. If you and 1 disagree about the strength 
of a girder, 1 will not be convinced by being told your presuppositions. 

7. Conclusion 

Bayesianism in science is yet another effort to convert induction to deduction-to 
get plausible sounding conclusions that cannot be irnpugned by future events: to 
achieve validity for scientific inference. lf 1 have a high degree of belief in h, relative 
to the evidence e, that conclusion is not impugned by the fact that relative to e and ad
ditional evidence e', 1 have a low degree of belief in h. That is the Bayesian conclu
sion: 'a posterior distribution [of belief]' . Bayesianism achieves validity at the cost of 
content. Fisher (quoted disapprovingly by Howson, p. 56) gave his view of subjective 
probability " .. . as measuring merely psychological tendencies, theorems respecting 
which are useless for scientific purposes." 1 think Fisher is perfectly correct, barring 
their hypothetical use for the purposes of psychology. 

Bayesianism, as an general approach to scientific reasoning, mustjoin the shat
tered hulks of all those previous failed attempts to make of inductive inference a 
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species of deduction. If scientific inference does not reach beyond what is minimally 
entailed by what happens to our sense organs, it is not worth our effort, and not worth 
our respect. We want to know what evidence is acceptable, and what suspect; we 
want to know what principles we can confidently employ in constructing better 
mousetraps, and what size the girders must be in our skyscrapers. We want to know 
what is the case, not what someone believes to be the case. 

Notes 

1Acknowledgment for support ofresearch is due to the National Science 
Foundation. 

2The distinction between "direct inference" and "inverse inference" is an old one; 
it was certainly weil established in the 1920s when Fisher and Neyman were writing 
on the foundations of statistics. 

3The charge of inconsistency is not difficult to dispose of: it depends on a confu
sion of use and mention, or quantifying into a referentially opaque context. lt is a 
sentence mentioning the ratio r that occurs in the scope of the probability operator, 
and the ratio r itself that is the value of the probability expression. 

4Even if the description is "the event at timet and place p," we know a lot, since 
we know of many things at places related top and times related to t. 

5The advantage of presuppositions is that they need not be defended: they are not 
intended to be defensible. More often, now, we hear that we can get nowhere without 
making assumptions, so what is important is to make the assumptions explicit. Again, 
this can be seen as a repudiation of responsibility: if 1 state something as an ' assump
tion' then 1 am not under an obligation to defend it. 
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