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Abstract

In this article, we give an analytic construction of ALF hyperkähler metrics on smooth
deformations of the Kleinian singularity C2/Dk, with Dk the binary dihedral group of
order 4k, k > 2. More precisely, we start from the ALE hyperkähler metrics constructed
on these spaces by Kronheimer, and use analytic methods, e.g. resolution of a Monge–
Ampère equation, to produce ALF hyperkähler metrics with the same associated Kähler
classes.

Introduction

This article deals with an analytic construction of a certain class of examples of four-dimensional
non-compact, complete, Ricci-flat manifolds. One prominent feature of such spaces lies in their
appearance as limit spaces, after rescaling, of families of compact Einstein 4-manifolds; this,
among others, illustrates the interesting role played by non-compact complete Ricci-flat manifolds
in Riemannian geometry in dimension 4.

Now, dimension 4 moreover allows one to specialise the question to Ricci-flat Kähler, and
even to hyperkähler, non-compact, complete manifolds. If one adds furthermore a decay condition
on the Riemannian curvature tensor, this leads to the following definition.

Definition 0.1 (Gravitational instantons). Let (X, g, I, J,K) be a non-compact, complete,
hyperkähler manifold of real dimension 4. Then X is called gravitational instanton if its
Riemannian curvature tensor Rmg satisfies the following L2 condition:∫

X
|Rmg|2 volg . (1)

Besides this differential-geometric definition, gravitational instantons also appear as
fundamental objects in theoretical physics, where Condition (1) is thought of as a ‘finite type
action’ assumption, in fields such as Quantum Gravity [Haw77] or String and M-Theories, see
[CH05, CK99] and references therein.

Recall that hyperkähler metrics are Ricci-flat. The fundamental Bishop–Gromov theorem
[Gro99] thus implies that on gravitational instantons, ball volume grows at most with Euclidean
rate. In other words, introducing a ‘ball volume growth ratio function’

ν : x 7−→ ρ4
x

Volg(Bg(o, ρx))

(where ρ is on X the distance to some fixed point o ∈ X, the choice of which does not affect the
asymptotic behaviour of ν), this function is at least bounded below by a positive constant c.

Received 17 June 2015, accepted in final form 4 October 2017, published online 3 May 2018.
2010 Mathematics Subject Classification 53C20, 53C21, 53C26 (primary).
Keywords: gravitational instantons, Monge–Ampère equation.
This journal is c© Foundation Compositio Mathematica 2018.

https://doi.org/10.1112/S0010437X18007030 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X18007030


H. Auvray

If a bound ν 6 C, C > 0, also holds, that is, if large balls on X do have Euclidean growth

rate, one deals with Asymptotically Locally Euclidean (‘ALE’) instantons. These hyperkähler

manifolds are very well understood: they are completely classified, after [BKN89] and [Kro89b]

(with recent extension [Şuv12] and [Wri11] to the Kähler Ricci-flat case), and their classification

corresponds to an exhaustive construction by Kronheimer [Kro89a]; we shall often refer to these

spaces as Kronheimer’s instantons for this reason. In a nutshell, the hyperkähler structures of

these spaces are asymptotic to that of a quotient R4/Γ, with Γ a finite subgroup of SU(2) = Sp(1);

when moreover Γ is fixed, these spaces are all diffeomorphic to the minimal resolution of the

Kleinian singularity C2/Γ. The ALE class is moreover the standard one regarding the scaling

limit process of Einstein 4-manifolds, since ALE spaces appear in the non-collapsing case, see

e.g. [BKN89].

Now, a result by Minerbe [Min07] (see also [CC15a]) states the following quantisation on

gravitational instantons: if1 the volume form volg is replaced by the measure ν volg in Condition

(1), and if the asymptotic ball volume growth is less than Euclidean, i.e. quartic, then it is at most

cubic; one jumps from a bound ν > c to a bound ν > c(ρ+1). If an analogous reverse upper bound

ν 6 C(ρ+ 1) holds (the measure used in Condition (1) being volg in full generality, although

one can push to ν volg on many known examples), one then speaks about Asymptotically Locally

Flat, or ALF, gravitational instantons. It is now known that such spaces indeed appear in their

turn as scaled limits of (collapsing) Einstein 4-manifolds, see e.g. [Fos16] for a nice construction

based on K3 surfaces. Moreover, under the additional condition Rm = O(ρ−3) (actually, here, a

consequence of Rmg ∈ L2(ν volg) [Min07]), Minerbe classifies (a rough) half of the ALF instantons

[Min11]; their geometry at infinity is that of a circle fibration over R3, and they are explicitly

described by the so-called Gibbons–Hawking ansatz. This includes the prototypical Taub-NUT

metric, living on R4 itself [EGH80].

Results. When Rmg ∈ L2(ν volg), the only possibility left for the asymptotic geometry of the ALF

gravitational instantons is that of a circle fibration over R3/± [Min07]. This second family, for

which a classification appeared only recently [CC15b, Theorem 1.2], includes: Atiyah–Hitchin’s

‘D0-instanton’ [AH88] and a family of hyperkähler deformations of its double cover, the ‘D1-

instantons’; Page–Hitchin’s ‘D2-instantons’ [Pag81, Hit83]; the ‘Dk (or Dk+2)-families’, k > 1,

produced by Cherkis and Kapustin [CK98, CK99] and made more precise by Cherkis and Hitchin

[CH05]. To this regard, our main result consists in a construction of such spaces with independent

methods (see ‘Comments’ below); it is aimed in particular at underlining the relation between

ALE and ALF Dk-instantons, and can be stated as follows.

Theorem 0.2. Let (X, g, IX1 , I
X
2 , I

X
3 ) be an ALE gravitational instanton modelled on R4/Dk,

with Dk the binary dihedral group of order 4k, k > 2, in the sense that the infinities of X and

R4/Dk are diffeomorphic, and that the hyperkähler structure of X is asymptotic to that of R4/Dk
via the diffeomorphism in play. Then there exists on X a family of ALF hyperkähler structures

(gm, J
X
1,m, J

X
2,m, J

X
3,m)m∈(0,∞), such that, for any fixed m ∈ (0,∞):

(i) one can choose the diffeomorphism above so that gm is asymptotic to the Dk-quotient of

fm, the Taub-NUT metric with fibres of length π(2/m)1/2 at infinity;

1 This strengthened decay curvature condition is indeed required in the quantisation results in [Min07], and
[CC15a]. With the finite action condition Rmg ∈ L2(volg) only, the integer quantisation of the ball volume growth
rate is in general not quite granted, see [Hei10].
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(ii) the Kähler classes [gm(JXj,m·, ·)], j = 1, 2, 3, are the same as those of the initial ALE

hyperkähler structure, at least one of the parallel complex structures aJX1,m+ bJX2,m+ cJX3,m,

with a2 + b2 + c2 = 1, of gm equals one of those of gX , and moreover volgm = volgX ;

(iii) the curvature tensor Rmgm has cubic decay.

As is understood here, the Taub-NUT metric fm is invariant under Dk, and thus makes perfect
sense on R4/Dk. About the diffeomorphism chosen in point (i), given a Dk ALE instanton X,
one can conveniently extract a (n asymptotically tri-holomorphic) diffeomorphism FX between
the infinity of R4/Dk and that of the instanton from Kronheimer’s construction [Kro89a]; here,
we simply correct such an FX by right-composition with a rotation of R4 and with a map of the
form x 7→ (1 + a/|x|4)x, a ∈ R. The asymptotics between the ALF metric gm and fm in point (i)
are a direct and natural by-product of our construction, and are as follows: if R = dfm(0, ·)
(0 ∈ R4/Dk), then (gm− fm) and ∇fm(gm− fm) are O(R−2+ε) for all ε > 0 (and we point out the
unusual fact that our construction does give similar decays for both estimates of order 0 and 1,
instead of establishing decays improving as the order of differentiation grows).

Before discussing in more detail how Theorem 0.2 is proved, we shall underline that our
construction heavily relies on the computation of the asymptotics of the ALE instantons modelled
on R4/Dk. More precisely, the construction of these spaces by Kronheimer allows one to write
down these asymptotics as power series, the main term of which is the Euclidean model (e, I1,
I2, I3), and this actually holds for any finite subgroup Γ of SU(2) alluded to above. We describe
in this article the first non-vanishing terms of those expansions.

Theorem 0.3. Let (X, gX , I
X
1 , I

X
2 , I

X
3 ) be an ALE gravitational instanton modelled on R4/Γ.

Then one can choose a diffeomorphism Φ between X minus a compact subset and R4/Γ minus
a ball such that:

(i) Φ∗gX−e = hX+O(r−6), Φ∗I
X
1 −I1 = ιX1 +O(r−6) and if ωX1 = gX(IX1 ·, ·) and ωe

1 = e(I1·, ·),
then Φ∗ω

X
1 − ωe

1 = $X
1 + O(r−6), where hX , ιX1 and $X

1 admit explicit formulas and are
O(r−4); for instance $X

1 = −
∑3

j=1 cj(X)ddcIj (r
−2) for some explicit constants cj(X).

(ii) when Γ is not a cyclic subgroup of SU(2), the O(r−6) of the previous point can be replaced
by O(r−8).

Here the O are understood in an asymptotically Euclidean context: ε is O(r−a) if for any
` > 0, |(∇e)`ε|e = O(r−a−`) near infinity.

Another crucial analytic tool in our construction is a Calabi–Yau type theorem, adapted to
ALF geometry.

Theorem 0.4. Let (Y, gY, JY, ωY) be an ALF Kähler 4-manifold of dihedral type. Let f be a
smooth function such that |(∇gY)`f |gY = O(ρβ−2−`) for some β ∈ (0, 1) and for all ` > 0. Then
there exists a smooth function ϕ such that ωY+ddcJYϕ is Kähler, such that |(∇gY)`ϕ|gY =O(ρ−β−`)
for all ` > 0, and verifying the Monge–Ampère equation:

(ωY + ddcJYϕ)2 = efω2
Y. (2)

Let us say at this stage that an ALF Kähler 4-manifold of dihedral type is a complete
non-compact Kähler manifold of real dimension 4, agreeing at infinity with a dihedral quotient
of C2 = (R4, I1) with Taub-NUT metric, ‘up to infinite order’. The precise meaning of this
assertion is given below, when invoking Theorem 0.4.

Comments. We should start with some words on previous constructions of ALF dihedral
gravitational instantons. As mentioned above, Dk ALF instantons are known to exist since
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the works [CK98, CK99], where such spaces are produced as moduli spaces of solutions to
Nahm’s equations or of singular monopoles; they have moreover been described in an explicit
manner in [CH05], via generalised Legendre transform and twistor theory ; see also [Dan94] for
an alternative proposition using hyperkähler quotient. Despite this, and the fact that in these
various cases the underlying spaces are Kronheimer’s instantons, due to the difference in the
methods of construction, we were not able to show directly that these previous examples and our
examples coincide. However, according to the classification2 given in [CC15b], our construction
and Cherkis–Kapustin’s construction produce the same families of Dk ALF hyperkähler metrics,
k > 2, and are more precisely (almost) exhaustive, in the sense that any ALF dihedral
gravitational instanton, except Atiyah–Hitchin’s D0 and D1-instantons, Page–Hitchin’s D2-
instantons (and the D1 family for our construction), fits into the produced examples (up to
a tri-holomorphic isometry). Chen–Chen’s classification seems nonetheless delicate to avoid in
affirming that both constructions do coincide; it would thus be interesting to understand how
the different constructions link up in this respect.

More closely to the statement of Theorem 0.2, notice that it is not of a perturbative nature:
this corresponds to taking the parameter m in the whole range (0,+∞). The price to pay is
somehow that so far, we do not control what happens when m goes to 0. We conjecture that the
ALF hyperkähler structure converges back, in C∞loc-topology, to the initial ALE one, as is the
case on C2; this question will be handled in a future article.

Now in Theorem 0.3, the existence of the first order variation terms hX , ιX1 and $X
1 is of

course not new, as they already appear along Kronheimer’s construction [Kro89a]. What is new
though is their explicit determination, which we could only find in the literature for the simplest
case of the Eguchi–Hanson space (see e.g. [Joy00, p. 153]), i.e. when Γ = A2 = {± idC2}. Notice
at this point that as suggested by the statement of Theorem 0.3, the shapes of hX , ιX1 and $X

1

follow a general pattern which is only slightly affected by the order of the group Γ; up to a
multiplicative constant, we can indeed compute them on the explicit Eguchi–Hanson example.
We think moreover that Theorem 0.3 is of further interest; for instance, the order of precision it
brings could be useful in more general gluing constructions.

To conclude, we comment briefly on Theorem 0.4. This result comes within the general
scope of generalising the celebrated Calabi–Yau theorem [Yau78] to non-compact manifolds,
initiated by Tian and Yau [TY90, TY91]. A statement similar to ours can be found in [Hei10,
Proposition 4.1], in a more general and abstract framework. One interest of our statement,
nonetheless, simply lies in the fact that although we ask more precise asymptotics on our data
than Hein does, we get in compensation sharper asymptotics on our solution ϕ, which echo in
the asymptotics of Theorem 0.2.

Organisation of the article. This paper is divided into three parts, corresponding respectively to
Theorems 0.2, 0.3 and 0.4, plus an appendix. Part 1 is devoted to the proof of Theorem 0.2. We
first draw in § 1.1 a detailed program of construction of our hyperkähler ALF metrics, leading
us to the expected result (Theorem 1.3). In § 1.2 are recalled essential facts on the Taub-NUT
metric, seen as a Kähler metric on C2. The construction itself occupies §§ 1.3 and 1.4; it consists
of a gluing of the ‘non-compact part’ of the Taub-NUT metric with the ‘compact part’ of the ALE
metric of some ALE instanton, which we subsequently correct into a Ricci-flat metric thanks to
Theorem 0.4 (recalled as Theorem 1.16). The concluding § 1.5, mainly computational, deals with
the proof of two technical lemmas useful to our construction.

2 This classification answers a folklore conjecture and establishes a strong link between ALE and ALF instantons;
it can be seen as an analogue of the classification of [Min11], including the specificities of the dihedral case.
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In Part 2, which is mostly independent of Part 1, after recalling some basic facts about
Kronheimer’s construction of ALE instantons, we state Theorem 2.1, which is a specified
version of Theorem 0.3; in particular we give the promised explicit formulas (§ 2.1). We give
further details on Kronheimer’s construction and classification in § 2.2, where we also fix the
diffeomorphism of Theorem 0.3. Then we compute the tensors hX , ιX1 and $X

1 in § 2.3; using
similar techniques, we show in § 2.4 that the precision of the asymptotics is automatically
improved when Γ is binary dihedral, tetrahedral, octahedral or icosahedral. We develop in § 2.5
a few informal digressive considerations on the approximation of complex structures of certain
ALE instantons by the standard I1, relied on links observed in the construction of Part 2.

Part 3 is devoted to the proof of Theorem 0.4. As all the necessary elements are essentially
already available in the literature, instead of running a continuity method as is classical for solving
a Monge–Ampère equation, we proceed, for the sake of concision, by establishing a posteriori
estimates. This is explained in the introduction of Part 3, and the required analysis is done in
the following three sections.

Finally, the appendix gives a short account of a description of the Taub-NUT metric on C2

suggested by LeBrun [LeB91].
Throughout the article, C2 stands for (R4, I1) with I1 the standard complex structure given

by the coordinates z1 = x1 + ix2, z2 = x3 + ix4; we denote by I2 and I3 the other two standard
complex structures on R4 ∼= H, given respectively by the coordinates (x1 + ix3, x4 + ix2) and
(x1 + ix4, x2 + ix3).

1. Construction of ALF hyperkähler metrics

1.1 Strategy of construction
Outline of the strategy. As described in [LeB91] and as we shall see in the next section, one can
describe the Taub-NUT metric on R4 as a Dk-invariant hyperkähler metric with volume form
the standard Euclidean one Ωe, Kähler for the standard complex structure I1, and compute a
somehow explicit potential, ϕ say, for it.

Now, given one of Kronheimer’s ALE gravitational instantons (X, gX , I
X
1 , I

X
2 , I

X
3 ) modelled

on R4/Dk, we have a diffeomorphism ΦX between infinities of X and R4/Dk such that ΦX∗gX is
asymptotic to the standard Euclidean metric e, and ΦX∗I

X
1 is asymptotic to I1. It is in this way

quite natural to try and take, as an ALF metric on X, dIX1 d(Φ∗Xϕ) glued with gX(IX1 ·, ·) written
near the infinity of X as an IX1 -complex hessian with sufficient precision, before we correct it
into a hyperkähler metric. This naive idea works in a straightforward manner when (X, IX1 ) is a
minimal resolution of (C2/Dk, I1) and ΦX the associated map. However this fails in the general
case, where (X, IX1 ) is a deformation of (C2/Dk, I1), without further precautions: the size of the
Taub-NUT potential ϕ, roughly of order r4 as well as its Euclidean derivatives, together with
the error term ΦX∗I

X
1 − I1 on the complex structure, even make wrong the assertion that the

rough candidate dIX1 d(Φ∗Xϕ) is positive, in the sense that dIX1 d(Φ∗Xϕ)(·, IX1 ·) is a metric, near
the infinity of X.

Fortunately, up to choosing a different complex structure on X to work with, we can write
down explicitly a sufficiently accurate potential for the first Kähler form gX(IX1 ·, ·)3 and make
the appropriate corrections on ϕ so as to get a good enough ALF metric on X to start with, and

3 The problem of writing this form, or other representatives of its class, as exact IX1 -complex hessians at infinity is
actually delicate (see the end of § 1.3.1), hence our choice of expressing gX(IX1 ·, ·), which we happen to know very
well, and which happens to be the only natural representative sufficiently well known to carry over the overall
program, as an approximate IX1 -complex hessian with enough precision for our construction.
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then run the same machinery as in the minimal resolution case, up to minor but yet technical

adjustments, so as to end up with Theorem 0.2.

Detailed strategy, and involvements of Kronheimer’s instantons asymptotics. We shall now be

more specific about the different steps involved in the program we are following throughout this

part.

(i) Let SO(3) act on the complex structures of X as follows: for A = (aj`) ∈ SO(3), define the

triple (AIX)· as

(AIX)· = ((AIX)j)j=1,2,3 = (aj1I
X
1 + aj2I

X
2 + aj3I

X
3 )j=1,2,3;

then (X, gX , (AI
X)1, (AI

X)2, (AI
X)3) is again hyperkähler, and is therefore an ALE

gravitational instanton modelled on R4/Dk.
(ii) With the model R4/Dk at infinity fixed, Kronheimer’s instantons are parametrised [Kro89a]

by a triple ζ = (ζ1, ζ2, ζ3) ∈ h⊗ R3 −D, where h is a (k + 2)-dimensional real vector space

endowed with some scalar product 〈·, ·〉, and D is a finite union of spaces H ⊗ R3 with

H a hyperplane in h (as notation suggests, h is a Lie algebra, the interpretation of which

we will be more specific about in Part 2; for now, let us mention that there is a natural

identification h ' H2
cpct(X,R), and, H2

cpct(X,R) being in turn isomorphic to H2(X,R),

(ζ1, ζ2, ζ3) corresponds to ([ωX1 ], [ωX2 ], [ωX3 ]) under this identification, which moreover sends

Killing form products to cup products). Kronheimer’s ζ-parametrisation is compatible with

the SO(3)-action of point (i) in the sense that if ζ is the parameter associated to (X, gX ,

IX1 , I
X
2 , I

X
3 ), and if (Y, gY , I

Y
1 , I

Y
2 , I

Y
3 ) is the instanton associated to Aζ, defined by

Aζ = ((Aζ)j)j=1,2,3 = (aj1ζ1 + aj2ζ2 + aj3ζ3)j=1,2,3, (3)

then (Y, gY , I
Y
1 , I

Y
2 , I

Y
3 ) and (X, gX , (AI

X)1, (AI
X)2, (AI

X)3) are isometrically tri-holo-

morphic: this is Lemma 2.3, stated and proved in Part 2. Defined this way, Aζ is of course

still in h⊗R3 −D; otherwise Aζ ∈ H ⊗R3 for one of the hyperplanes H mentioned above,

and thus ζ = At(Aζ) ∈ H ⊗ R3, which would be absurd.

(iii) In general, one can take the diffeomorphism ΦX between infinities of X and R4/Dk so that

ΦX∗I
X
1 −I1 = O(r−4) with according decay on derivatives, which is not good enough for the

construction we foresee. We can nonetheless improve the precision thanks to the following

two lemmas.

Lemma 1.1. If ξ ∈ h ⊗ R3 − D is such that |ξ2|2 − |ξ3|3 = 〈ξ2, ξ3〉 = 0, and (Y, gY , I
Y
1 ,

IY2 , I
Y
3 ) is the associated ALE instanton, then one can choose ΦY such that there exists a

diffeomorphism i = iξ between infinities of R4 commuting with the action of Dk, and such

that

|(∇e)`(ΦY ∗I
Y
1 − i∗I1)|e = O(r−8−`) for all ` > 0.

Moreover, the shape of i is given by i(z1, z2) = (1 + (a/r4))(z1, z2), with a = aξ ∈ R, and

(z1, z2) the standard complex coordinates on (C2, I1), and moreover |(∇e)`(Ωe−i∗Ωe)|e =

O(r−8−`) for all ` > 0.

Lemma 1.2. For any ζ ∈ h ⊗ R3, there exists A ∈ SO(3) such that |(Aζ)2|2 − |(Aζ)3|2 =

〈(Aζ)2, (Aζ)3〉 = 0.
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Lemma 1.1, which relies on our analysis of the asymptotics of Kronheimer’s instantons, is
proved in § 1.3, assuming a general statement for these asymptotics that is seen in Part 2; the
hypothesis on ξ2 and ξ3 is moreover commented on in § 2.5. Lemma 1.2, which is elementary,
is proved at the end of this section.

(iv) Recall that ζ is the parameter of our given instanton X. We choose A as in Lemma 1.2,
consider the instanton Y associated to ξ = Aζ ∈ h ⊗ R3 − D, and perform the gluing of
the Kähler forms and correct a prototypical ALF metric into a hyperkähler metric, with
the potential ϕ[ := i∗ϕ instead of ϕ. Thanks to the better coincidence of the complex
structures, the rough candidate dIY1 d(Φ∗Y ϕ

[) is now positive at infinity, and actually also
rather close to f [ := i∗f , with f the Taub-NUT metric on R4, which is Kähler for I1.
We should moreover specify here that the gluing also requires a precise description of the
Kähler form ωY1 := gY (IY1 ·, ·), which is again part of the analysis of the asymptotics of
Kronheimer’s ALE instantons.

We get this way, after a three-step correction process (making the metric Ricci-flat near
infinity, putting it in Bianchi gauge, and concluding with a Calabi–Yau type theorem),
a Ricci-flat, actually a hyperkähler, manifold (Y, g′Y , I

Y
1 , J

Y
2 , J

Y
3 ), with ΦY ∗g

′
Y asymptotic

to f [, and [g′Y (IY1 ·, ·)] = [gY (IY1 ·, ·)]; the construction also gives [g′Y (JYj ·, ·)] = [gY (IYj ·, ·)],
j = 2, 3.

(v) We let At = A−1 act back on the previous data to come back to X, and end up with a
hyperkähler manifold (X, g′X , J

X
1 , J

X
2 , J

X
3 ), with [g′X(JXj ·, ·)] = [gX(IXj ·, ·)], j = 1, 2, 3, and

ΦX∗g
′
X asymptotic to f [, provided that ΦX is the composition of ΦY and the tri-holomorphic

isometry in play in point (ii).

We shall also add that we can play on the metric f in this construction. Indeed, f is invariant
under some fixed circle action on R4, and the length for f of the fibres of this action tends to
some constant L > 0 at infinity. We can make this length vary in the whole (0,∞) and keep the
same volume form for f ; given m ∈ (0,∞) that we call the ‘mass parameter ’, we then denote by
fm the Taub-NUT metric giving length L(m) = π

√
2/m to the fibres at infinity, and of volume

form Ωe (the choice of the parameter m instead of L will become clear in the next section).
We can then sum our construction up by the following statement, which is the main result

of this part, and is a specified version of Theorem 0.2.

Theorem 1.3. Consider an ALE gravitational instanton (X, gX , I
X
1 , I

X
2 , I

X
3 ) modelled on

R4/Dk. Then there exists a one-parameter family (g′X,m, J
X
1,m, J

X
2,m, J

X
3,m) of smooth hyperkähler

metrics on X such that, for any fixed m ∈ (0,∞):
• the equality [g′X,m(JXj,m·, ·)] = [gX(IXj ·, ·)] of Kähler classes holds for j = 1, 2, 3;
• g′X,m and gX have the same volume form;
• g′X,m is ALF in the sense that one has the asymptotics

|(∇f [m)`(ΦX∗g
′
X,m − f [m)|f [m = O(R−1−δ), ` = 0, 1,

for any δ ∈ (0, 1), and that Rmg′X,m has cubic decay at infinity.
Here R is a distance function for f [m, and ΦX is an ALE diffeomorphism between infinities of X
and R4/Dk, in the sense that |ΦX∗gX − e|e and |ΦX∗I

X
j − Ij |e are O(r−4), with according decay

on derivatives.

In this statement, f [m = i∗fm, where i = iAζ is given by Lemma 1.1, ζ ∈ h⊗ R3 −D is the
parameter associated to (X, gX , I

X
1 , I

X
2 , I

X
3 ), and A is chosen as in Lemma 1.2. There might be
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a slight ambiguity here, since different A ∈ SO(3) could do, namely, given ζ as in Lemma 1.2,

there may be many A satisfying its conclusions; we will see however in Remarks 1.4 and 1.11

that i as we construct it is not affected by this choice.

Points (i) and (v) above do not need further development. We postpone the tri-holomorphic

isometry of point (ii) to Part 2, § 2.2.1, as it is easier to tackle with a few further notions

on Kronheimer’s classification of ALE gravitational instantons. As for point (iii), as mentioned

already, the proof of 1.1 is given in § 1.3 assuming results from Part 2; apart from the proof of

Lemma 1.2 which we shall settle now, our main task in the current part is thus the gluing and

the subsequent corrections stated in point (iv), to which we devote §§ 1.3 and 1.4 below, after

recalling a few useful facts on the Taub-NUT metric seen as a Kähler metric on (C2, I1) in the

next section.

Proof of Lemma 1.2. For ζ ∈ h ⊗ R3, define the matrix Z(ζ) = (〈ζj , ζ`〉)16j,`63 of its scalar

products. It is elementary matrix calculus to check that the SO(3)-action defined by (3), and

referred to in the statement of the lemma, translates into Z(Aζ) = AZ(ζ)At.

Fixing ζ, we thus want to find A ∈ SO(3) such that AZ(ζ)At has shapeµ ∗ ∗
∗ λ 0
∗ 0 λ

 . (4)

Since Z = Z(ζ) is symmetric, there exists O ∈ SO(3) such that OZOt = diag(λ1, λ2, λ3), and

we now look for Q ∈ SO(3) such that Qdiag(λ1, λ2, λ3)Qt has shape (4); setting then A = QO

leads us to the conclusion. If two of the λj are the same then we are done, up to letting act one

of the permutation matrices
(

1 0 0
0 0 1
0 −1 0

)
,
(

0 1 0
−1 0 0
0 0 1

)
and

(
0 0 1
0 1 0
−1 0 0

)
. Up to this action again, we can

therefore assume λ1 > λ2 > λ3.

Setting

Q =


(
λ1 − λ2

λ1 − λ3

)1/2

0

(
λ2 − λ3

λ1 − λ3

)1/2

0 1 0

−
(
λ2 − λ3

λ1 − λ3

)1/2

0

(
λ1 − λ2

λ1 − λ3

)1/2

 ,

a direct computation gives Qdiag(λ1, λ2, λ3)Qt =
( λ1+λ3−λ2 0 −Λ

0 λ2 0
−Λ 0 λ2

)
, where Λ = (λ1 − λ2)1/2

(λ2 − λ3)1/2. 2

Remark 1.4. Our choice for Q is a little arbitrary; however, one can show that the

only possibilities for writing Qdiag(λ1, λ2, λ3)Qt, that is, AZAt, under shape (4) are the( λ1+λ3−λ2 Λ cosφ Λ sinφ
Λ cosφ λ2 0
Λ sinφ 0 λ2

)
, φ ∈ R, and again λ1 > λ2 > λ3.

1.2 The Taub-NUT metric as a Kähler metric on (C2, I1)

Before we proceed to the gluing of the Taub-NUT metric with the ALE metric of one of

Kronheimer’s instantons, we recall a few facts about this very Taub-NUT metric on C2, that will

be used in the analytic upcoming §§ 1.3 and 1.4. Our main references here are [GH76, LeB91].
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1.2.1 Gibbons–Hawking versus LeBrun ansätze.

Gibbons–Hawking ansatz. As recalled in the Introduction, the Taub-NUT metric on R4 is often
described via the Gibbons–Hawking ansatz as follows: given m ∈ (0,∞), set

fm = V (dy2
1 + dy2

2 + dy2
3) + V −1η2,

where (y1, y2, y3) is a circle fibration of R4\{0} over R3\{0}, V is the function (1 + 4mR)/2R
(harmonic in the yj coordinates) with R2 = y2

1 + y2
2 + y2

3, and where η is a connection 1-form for
this fibration such that dη = ∗R3dV . Thus defined, the metric fm confers length π

√
2/m to the

fibres at infinity, and is hermitian for the almost-complex structures

Ja :

{
V dya 7−→ η,

dyb 7−→ dyc,

with (a, b, c) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. These are in fact complex structures, verifying the
quaternionic relations JaJbJc = −1, for which fm is Kähler, thanks to the harmonicity of V : fm
is thus hyperkähler. One checks moreover that this way, the metric fm and the complex structures
extend as such through 0 ∈ R4.

We now switch point of view to a description better adapted to our construction.

LeBrun’s potential. As depicted in [LeB91] and reviewed in detail in Appendix A, one can give a
somehow more concrete support of the description of fm, through which the complex structure
J1 mentioned above is the standard I1 on C2, and volfm = Ωe, the standard Euclidean volume
form. One starts with the following implicit formulas:

|z1| = em(u2−v2)u,

|z2| = em(v2−u2)v,
(5)

defining functions u, v : C2
→ R, invariant under the circle action eiθ · (z1, z2) = (eiθz1, e

−iθz2)
which makes S1 as a subgroup of SU(2); notice the role of m in these formulas, which enlightens
our choice of taking it as the parameter of the upcoming construction. One then sets y1 =
1
2(u2−v2), y2 + iy3 = −iz1z2, R = 1

2(u2 +v2) = (y2
1 +y2

2 +y2
3)1/2; these are S1-invariant functions,

making (y1, y2, y3) as a principal-S1 fibration C2
→ R3 away from the origins. One finally defines

ϕm := 1
4(u2 + v2 +m(u4 + v4)) = 1

2(R+m(R2 + y2
1)). (6)

One can then check (see Appendix A) that ddcI1ϕm is positive in the sense of I1-hermitian
2-forms, and that (ddcI1ϕm)2 = 2Ωe. If one sets moreover V = (1 + 4mR)/2R, and η = I1V dy1,
noticing by passing that η is then a connection 1-form for the fibration with dη = ∗R3 dV , one
has fm := V (dy2

1 + dy2
2 + dy2

3) + V −1η2 = (ddcI1ϕm)(·, I1·). This metric is well defined at 0 ∈ C2,
as (ddcI1ϕm)(·, I1·) = e at that point.

The metric fm is therefore Kähler for I1 with volume form volfm = Ωe on the whole C2; by the
standard properties of Kähler metrics, it is thus Ricci-flat. One recovers a complete hyperkähler
data after checking that the defining equations

fm(Jj ·, ·) = ωe
j where ωe

j = e(Ij ·, ·), j = 2, 3, (7)

with I2, I3 the other two standard complex structures on R4 ∼= H, give rise to integrable complex
structures, verifying respectively Jj : V dyj 7→ η, dyk 7→ dy` for (j, k, `) = (2, 3, 1), (3, 1, 2), as well
as the quaternionic relations together with I1.
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Let us now take a look at the length of the S1-fibres at infinity. Consider the vector field
ξ := i(z1(∂/∂z1)− z1(∂/∂z1)− z2(∂/∂z2) + z2(∂/∂z2)) giving the infinitesimal action of S1. One
has dy1(−I1ξ) = V −1, thus η(ξ) = 1, and dyj(ξ) = 0, j = 1, 2, 3; since R is S1-invariant, the
length of the fibres is just 2πV −1/2, which tends to π

√
2/m.

Remark 1.5. Even if we can let m vary, this description actually leads to essentially one metric;
indeed, if κs is the dilation of factor s > 0 of R4, one gets with help of (5) and (6) the following
homogeneity property: κ∗sfm = s2fms2 , which is of course coherent with the length of the fibres
at infinity and the fact that volfm = volfms2 = Ωe.

From now on, we see the mass parameter m as fixed, and we drop the indices m
when there is no risk of confusion.

The Taub-NUT metric and the action of the binary dihedral group on C2. For k > 2, which we
fix until the end of this part, the action of the binary dihedral group Dk of order 4k seen as
a subgroup of SU(2) = Sp(1) is generated by the matrices ζk :=

(
eiπ/k 0

0 e−iπ/k

)
and τ :=

(
0 −1
1 0

)
.

One has ζ∗kyj = yj , j = 1, 2, 3, and thus ζ∗kR = R, and ζ∗kη = η, whereas τ∗yj = −yj , j = 1, 2, 3,
thus τ∗R = R, and τ∗η = −η. The Taub-NUT metric f is therefore Dk-invariant, and descends
smoothly to (R4\{0})/Dk: this is the metric we are going to glue at infinity of Dk-ALE instantons
in the next section. Before though, we need a few more analytical tools for the Taub-NUT metric
as we describe it here.

1.2.2 Orthonormal frames, covariant derivatives and curvature. In addition to the above
relations between the vector field ξ, and the 1-forms η and dyj , j = 1, 2, 3, one has that the data

(e0, e1, e2, e3) := (V 1/2ξ,−I1V
1/2ξ, V −1/2ζ, V −1/2I1ζ), (8)

is the dual frame of the orthonormal frame of 1-forms

(e∗0, e
∗
1, e
∗
2, e
∗
3) := (V −1/2η, V 1/2dy1, V

1/2dy2, V
1/2dy3) (9)

on C2\{0}, provided that the vector field ζ is defined by

ζ :=
1

2iR

(
e4my1

(
z2

∂

∂z1
− z2

∂

∂z1

)
+ e−4my1

(
z1

∂

∂z2
− z1

∂

∂z2

))
, (10)

see Appendix A; we keep the notation (ej)j=0,...,3 and (e∗j )j=0,...,3 throughout this part. An explicit
computation made in Appendix A then gives the estimates

|(∇f )`ej |f = O(R−1−`) near infinity for all ` > 1 and j = 0, . . . , 3.

Consequently, for all ` > 0, |(∇f )` Rmf |f = O(R−3−`), this justifies the terminology
‘Asymptotically Locally Flat ’ for f ; this estimate, done using the Gibbons–Hawking ansatz,
can also be found e.g. in [Min07, § 1.0.3].

We close this section with two further useful estimates, giving an idea of the geometric gap
between e and f : first, at the level of distance functions, rearranging (5) gives R 6 2r2, which
is sharp is general; second, there exists C = C(m) > 0 such that outside the unit ball of C2,
C−1r−2e 6 f 6 Cr2e, which, again, is sharp in general. Details are given in §A.2, in Appendix A.

1.3 Gluing the Taub-NUT metric to an ALE metric
As is usual when gluing Kähler metrics, we shall work on potentials to glue the ALF model-metric
to an ALE one. The previous section gives us the potential ϕ for the ALF metric (6); the following
paragraph provides us a sharp enough potential for the ALE metric.
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1.3.1 Approximation of the ALE Kähler form as a complex hessian.

Asymptotics of the Kähler form and the complex structure. In view of steps (iii) and (iv) of the
program developed in § 1.1, since we are performing our gluing on some specific ALE instantons,
we fix for the rest of this part

ξ ∈ h−D, such that: |ξ2|2 − |ξ3|2 = 〈ξ2, ξ3〉 = 0, (11)

and consider the associated ALE instanton (Y, gY , I
Y
1 , I

Y
2 , I

Y
3 ). Lemma 1.1 gives an ALE

diffeomorphism ΦY : Y \K → (R4\B)/Dk, where K is some compact subset of Y and B a
ball in R4 centred at the origin; recall that by ‘ALE diffeomorphism’ we mean that for all ` > 0,

|(∇e)`(ΦY ∗gY − e)|e = O(r−4−`),

and likewise on the complex structures. Before using the more specific properties of ΦY at the
level of complex structures, let us mention the following: we want to proceed to a gluing of Kähler
metrics, and the convenient way of doing so is to glue the Kähler forms, via their potentials. We
already have a candidate for the potential of an ALF metric at infinity at hand: as evoked,
this would be ΦY ∗ϕ

[ (see point (iv) in § 1.1). Conversely, we need to kill the ALE metric near
infinity, and for this we want a sharp enough potential, in a sense that we make clear below, see
Proposition 1.12. We thus need for this a sharp knowledge of the Kähler form ωY1 := gY (IY1 ·, ·),
and since we are about to compute IY1 -complex hessians as well, we also need a precise description
of the complex structure IY1 . These are given by the following, from which Lemma 1.1 actually
follows as we shall see at the end of this section, with the same ΦY .

Lemma 1.6. One can choose the ALE diffeomorphism ΦY such that

ΦY ∗ω
Y
1 = ωe

1 − c(|ξ1|2θ1 + 2〈ξ1, ξ2〉θ2 + 2〈ξ1, ξ3〉θ3) +O(r−8) (12)

where c > 0 is some universal constant, θj = 1
4dd

c
Ij

(r−2), j = 1, 2, 3, on the one hand, and if ιY1
denotes ΦY ∗I

Y
1 − I1, then it is given by:

e(ιY1 ·, ·) = −c(|ξ2|2 + |ξ3|2)
rdr · α1

r6
+O(r−8)

where c is the same constant as above and α1 = I1r dr, on the other hand.
We can moreover assume that ΦY ∗ΩY = Ωe, where ΩY = volgY .

In this statement the error terms O(r−8) are understood in the ‘Euclidean way’, namely
for any ` > 0, the `th ∇e-derivatives of these tensors are O(r−8−`). This lemma requires
further notions on Kronheimer’s construction, and is more precisely a direct application of
Theorem 2.1 of Part 2 to Y = Xξ with ξ verifying (11). Notice however the error term order
−8, whereas one would expect −6, if one thinks for instance about the Eguchi–Hanson metric
[Joy00, Example 7.2.2]; this estimate is crucial in proving Lemma 1.1, and is specific to (groups
containing) dihedral binary groups. Besides, the assertion on the volume forms is only needed in
the next paragraph.

Approximating ωY1 as an IY1 -complex hessian. We shall see for now how Lemma 1.6 allows us
to approximate the Kähler form ωY1 as an IY1 -complex hessian, with respect to the Taub-NUT
metric pushed-forward to Y .
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Proposition 1.7. Take ΦY as in Lemmas 1.1 and 1.6, and denote by f̃ a smooth extension of
ΦY
∗f on Y . Then there exists a function Ψ on Y such that near infinity,

|(∇f̃ )`(ωY1 − ddcIY1 Ψ)|f̃ = O(R−2), ` = 0, 1, 2. (13)

More precisely, Ψ can be decomposed as a sum ΦY
∗Ψeuc + ΦY

∗Ψmxd, where on the one hand,
Ψeuc = O(r2), |dΨeuc|e = O(r), and

|(∇e)`(ωe
1 − c|ξ1|2θ1 − ddcΦY ∗IY1 Ψeuc)|e = O(r−8−`) for all ` > 0, (14)

and on the other hand, Ψmxd= O(R−1), |dΨmxd|f = O(R−1), and

|(∇f )`(−2c(〈ξ1, ξ2〉θ2 + 〈ξ1, ξ3〉θ3)− ddc
ΦY ∗I

Y
1

Ψmxd)|f = O(R−2), ` = 0, 1, 2. (15)

Proof. Notice that once the statement on Ψeuc (the ‘Euclidean component’ of Ψ) and Ψmxd (the
‘mixed component’) are known, estimates (13) follow at once by transposition to Y of estimates
(14) and (15) and of the expansion of ωY1 stated in Lemma 1.6, keeping the following fact in
mind.

Lemma 1.8. If ` > 0, and α is a tensor of type (2, 0), (1, 1) or (0, 2) such that |(∇e)kα|e =
O(r−2a−k), a > 1, for k = 0, . . . , ` on R4, then |(∇f )kα|f = O(R1−a), k = 0, . . . , `.

This lemma takes into account estimates such as R = O(r2) and C−1r−2e 6 f 6 Cr2e of
Proposition A.9 at level ` = 0, and follows for positive ` from explicit computations using the
material given in Appendix A, where the proof of Lemma 1.8 is thus postponed.

Remark 1.9. This lemma moreover gives an essential hint about why we push to an O(r−8)
Euclidean precision in Lemma 1.6 and in (14), that is, why we do need the analysis of Part 2. In
the forthcoming gluing (§ 1.3.2), we are concerned with an error term governed by a (1, 1)-tensor, 
say, of Euclidean size O(r−8), amplified by some O(R) factor in f -scale; we thus roughly speaking
end up by Lemma 1.8 (with a = 4) with an error of size O(R−2), which suffices to go on our
construction in § 1.4. On the other hand, starting with O(r−4) or O(r−6) Euclidean precision,
that is, applying Lemma 1.8 with a = 2 or 3, would only provide an error of size O(1) or O(R−1)
after the gluing of § 1.3.2, which would not be accurate enough to conclude.

We hence come to the statements on Ψeuc and Ψmxd. We consider before starting a large
constant K such that the image of ΦY is contained in both {r > K} ⊂ R4/Dk and {R > K} ⊂
R4/Dk, and define a cut-off function χ : R → [0, 1] such that

χ(t) =

{
0 if t 6 K − 1,

1 if t > K,

which will be useful when defining functions to be pulled-back to Y via ΦY .

The Euclidean component Ψeuc. In an asymptotically Euclidean setting, a natural first candidate
for the potential of a Kähler form is 1/4r2. Now remember we are working with IY1 , or more
exactly with ΦY ∗I

Y
1 , but we forget about the push-forward here for simplicity of notation;

following Lemma 1.6, a straightforward computation gives, near infinity in R4:

ddc
IY1

(1
4r

2) = 1
2d[(I1 + ιY1 )rdr] = 1

2d[α1 + c(|ξ2|2 + |ξ3|2)r−4α1 +O(r−7)]

= ωe
1 − c(|ξ2|2 + |ξ3|2)θ1 +O(r−8),
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where the O are understood in the Euclidean way. On the other hand observe that I1d(r−2) =
−2r−4α1, and thus

ddc
IY1

(r−2) = d[(I1 + ιY1 )d(r−2)] = d[−2r−4α1 +O(r−7)] = 4θ1 +O(r−8).

Now define
Ψeuc = 1

4χ(r)(r2 + c(|ξ2|2 + |ξ3|2 − |ξ1|2)r−2);

on R4/Dk (it is Dk-invariant); it has support in the image of ΦY , has the growth stated in the
lemma as well as its differential, and by the previous two estimates we get that ωe

1 − c|ξ1|2θ1 −
ddc

ΦY ∗I
Y
1

Ψeuc = O(r−8) for e with according decay on the derivatives, as wanted.

The mixed component Ψmxd. The main reason why we could construct Ψeuc such as to reach
estimates (14) is essentially that θ1 can be realised as an I1-complex hessian, at least away
from 0. Now realising θ2 and θ3 as I1-complex hessians as well does not seem possible: see
[Joy00, p. 202] on that matter. Nonetheless, θ2 and θ3 may not be so problematic when looked
at via f . We can indeed approximate them precisely enough with respect to this metric by the I1

or IY1 -complex hessians of some well-chosen Dk-invariant functions, provided that we partially
leave the Euclidean world and use also functions coming from Taub-NUT geometry, e.g. y1 and
R (hence the previous dichotomy ‘Euclidean/mixed’).

Lemma 1.10. Consider the complex valued function

ψc := −2
(y2 + iy3) sinh(4my1)

r2R

on R4\{0}. Then near infinity:

(i) |(∇f )`ψc|f = O(R−1) for ` = 0, . . . , 4;

(ii) |(∇f )`(ddcI1ψc − (θ2 + iθ3))|f = O(R−2) for ` = 0, 1, 2, and these estimates hold with I1

replaced by IY1 as well.

The proof of this crucial lemma is essentially computational, which is why we postpone it
to § 1.5; let us just say at this stage that it will appear clearly along this proof that the main
point is to identify some function ψ such that ∂ψ/∂y1 is proportional to 1/r4, up to higher order
terms, and this turns out to happen precisely for ψ = sinh(4my1)/r2R, see (30) below.

For now set ψ2 = Re(ψc) and ψ3 = Im(ψc), and define

Ψmxd := −2cχ(R)(〈ξ1, ξ2〉ψ2 + 〈ξ1, ξ3〉ψ3).

In view of Lemma 1.10, such a function, defined on the image of ΦY , verifies the growth assertions
of Proposition 1.7, as well as the estimates (15): Proposition 1.7 is proved. 2

We are now in position to perform the gluing advertised in point (iv) of the program of
§ 1.1. This is done in the next section to which the reader may jump directly, since we conclude
the current section by the proof of Lemma 1.1, assuming Lemma 1.6 (and more precisely the
assertion on IY1 in that statement).

Proof of Lemma 1.1 following Lemma 1.6. We fix ΦY as in Lemma 1.6; we work on R4, and to
simplify notation we forget about the push-forwards by ΦY .

We are thus looking for a diffeomorphism i of R4 such that |IY1 − i∗I1|e = O(r−8), with
according decay on Euclidean derivatives, until the end of this proof we forget about ALF
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geometry and stick to the Euclidean setting; we will thus content ourselves with using O in this

Euclidean meaning. An explicit formula is given for i in the statement of Lemma 1.1, which is

i : (z1, z2) 7→ (1 + (a/r4))(z1, z2) with (z1, z2) the standard complex coordinates on (C2, I1); up

to determining the value of the constant a, we could thus simply check that such a i meets our

requirement, in light of the asymptotics for IY1 stated in Lemma 1.6.

We prefer nonetheless the following more constructive approach. In terms of Kodaira–Spencer

theory, if we set i = idC2 +ε, seeing thus ε = (ε1(∂/∂z1), ε2(∂/∂z2)) as the direction of a

deformation of idC2 , the condition IY1 −i∗I1 = O(r−8) becomes, neglecting the O(r−8) error term,

∂I1ε = ιY1 . Now ιY1 is an e-harmonic I1-(0, 1) form with values in T (1,0)C2 and with r−4-decay;

a multiple of the (1, 0)-gradient of the Green function 1/r2 is thus the best-placed candidate for

the role of ε. This actually works, with the choice

ε =
c

8
(|ξ2|2 + |ξ3|2)

[
grade

(
1

r2

)]1,0

,

that is

ε1 = −c(|ξ2|2 + |ξ3|2)z1

4r4
and ε2 = −c(|ξ2|2 + |ξ3|2)z2

4r4
,

with c the constant given by Lemma 1.6.

The last point to be dealt with is i = idC2 +(ε1, ε2) being a diffeomorphism between infinities

of C2; we leave it to the reader as an easy exercise.

The estimate i∗Ωe−Ωe = O(r−8) amounts to seeing that Re(∂ε1/∂z1 +∂ε2/∂z2) = O(r−8):

extend id(z1 + ε1) ∧ d(z1 + ε1) ∧ id(z2 + ε2) ∧ d(z2 + ε2), and look at the linear terms in ε1,

ε2. Since after multiplication by a := −c(|ξ2|2 + |ξ3|2)/4 the error would again be O(r−8), we

can do this computation with z1/r
4 and z2/r

4 playing the respective roles of ε1 and ε2. Now

(∂/∂zj)(zj/r
4) = 1/r4 − 2|zj |2/r6, j = 1, 2. Since these are real, we only need to compute the

sum (∂/∂z1)(z1/r
4) + (∂/∂z2)(z2/r

4), which is 2/r4 − 2|z1|2/r6 − 2|z2|2/r6 = 0.

The Dk-invariance of i thus constituted is clear. 2

Remark 1.11. According to the preceding proof, i as we construct it depends only on c(|ξ2|2 +

|ξ3|2). If now ξ is chosen as an Aζ, A ∈ SO(3), ζ ∈ h −D, so as to satisfy condition (11) as is

evoked in point (iii) in the program of § 1.1, by Remark 1.4, |ξ2|2 = |ξ3|2 does not depend on

A, and has to be the middle eigenvalue of the matrix (〈ζj , ζ`〉). Consequently, i = iAζ does not

depend on A ∈ SO(3).

1.3.2 The gluing. We keep the notation of the previous section: (Y, gY , (I
Y
j )j=1,2,3) is a

Dk-ALE instanton with parameter ξ verifying (11), ΦY an asymptotic isometry between infinities

of Y and R4/Dk fixed by Lemma 1.6, and i is given by Lemma 1.1 which we may also see as as

diffeomorphism of (R4\{0})/Dk.
As alluded to above, the form we want to glue ωY1 = gY (IY1 ·, ·) with at infinity is dIY1 dϕ

[,

where ϕ[ = i∗ϕ, with ϕ = ϕm LeBrun’s I1-potential for f given by (6). We set likewise f [ = i∗f ,

both on R4 and its quotient. Recall that Ψ = Ψeuc + Ψmxd is defined in Proposition 1.7 as an

approximate IY1 -complex potential of ωY1 . The next proposition explains how to glue dIY1 dϕ
[ to

ωY1 , so as to obtain an ALF metric on Y at the end; as we need it below, let us mention here

that we see Ψmxd on Y via ΦY , and we more precisely consider a smooth extension of Φ∗Y Ψmxd,

which is assumed to be bounded in absolute value by 1
2 .
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Proposition 1.12. Take K > 0 so that the identification ΦY between infinities of R4/Dk and
Y , as well as the diffeomorphism i, are defined on ϕ > K. Consider r0, R0 � 1, β ∈ (0, 1] and
set

Φ[
m = Φ+

alf − Φale − Φ−alf , (16)

where 
Φ+

alf = Φ+
alf( · ;β,K) = κ ◦ (ϕ[+β−1(ϕ[)1−β−Ψmxd − (K + β−1K1−β)),

Φale = Φale( · ; r0) = χ(r − r0)Ψeuc,

Φ−alf = Φ−alf( · ;β,R0) = χ

(
R−R0

R0

)
β−1(ϕ[)1−β,

(17)

with κ : R → R a convex function which is constant on (−∞, 1
2 ] and equal to idR on [1,∞) and

χ the cut-off function dκ/dt. Then if the parameters K, r0 and R0 (respectively β) are chosen
large enough (respectively small enough), the symmetric 2-tensor gm associated via IY1 to the
IY1 -(1, 1)-form

ωm := ωY1 + ddc
IY1

Φ[
m

is well defined on the whole Y, is a Kähler metric for IY1 , is ALF in the sense that |(∇f [)`(gm −
f [)|f [ = O(R−2) for ` = 0, 1, 2, and its volume form Ωm verifies

|(∇f [)`(Ωm − ΩY )|f [ = O(R−2) (18)

for ` = 0, 1, 2, where ΩY is the volume form of the ALE metric gY .

Remark 1.13. As will be clear from the proof below, the role of the component Φ+
alf is to bring

(slightly more than) the ALF part in ωm; the role of Φale is to remove the ALE part, coming
from ωY1 ; finally, Φ−alf is used to correct the term β−1(ϕ[)1−β of Φ+

alf near infinity (where its
contribution to positivity is no longer needed) so as to end up with the announced asymptotics.

Proof. To begin with, we mention the following comparison between f and its correction f [ = i∗f ,
that we will keep in mind.

Lemma 1.14. For ` = 0, 1, 2, we have |(∇f )`(f [ − f)|f = O(R−1) on R4. Moreover i∗R = R +
O(R−1).

The proof of this lemma is postponed to § 1.5.2, as we focus on that of Proposition 1.12.

Step 1.1. For now, we work first with the parameter β in (17) equal to 1, and consider the
closed IY1 -hermitian form ddc

IY1
Φ+

alf = ddc
IY1
κ ◦ (ϕ[−Ψmxd − K) on Y . Even though K is not

fixed yet, this form is equal to ddc
IY1

(ϕ[−Ψmxd) on {ϕ[−Ψmxd > K+1} seen on Y via ΦY ;

this is possible for K large enough since ϕ[−Ψmxd is proper on R4 as ϕ[ > i∗R ∼ R (by
Lemma 1.14) and Ψmxd = O(R−1). Moreover κ is convex, and thus ddc

IY1
[κ ◦ (ϕ[−Ψmxd −K)] is

non-negative wherever ddc
IY1

(ϕ[−Ψmxd) is, which we claim is the case near infinity. Since indeed

|ddc
IY1

Ψmxd|f = O(R−1), our claim will be checked if we prove the estimate

|ddc
IY1
ϕ[ − 1

2 [f [(IY1 ·, ·)− f [(·, IY1 ·)]|f [ = O(R−2), (19)
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as $f [ := 1
2 [f [(IY1 ·, ·) − f [(·, IY1 ·)] is nothing but the IY1 -hermitian form associated to the IY1 -

hermitian metric 1
2 [f [ + f [(IY1 ·, IY1 ·)]; notice $f [ is not closed in general. Pushing-forward by i,

proving estimate (19) amounts to seeing that

|ddci∗IY1 ϕ−
1
2 [f(i∗IY1 ·, ·)− f(·,i∗IY1 ·)]|f [ = O(R−2).

Now ddci∗IY1
ϕ = di∗IY1 dϕ = ωf + ddϕ, where ωf = f(I1·, ·) and  = i∗IY1 − I1. Let us estimate

ddϕ; by Lemma 1.1 and by Lemma 1.8, for all `= 0, 1, |(∇f )`|f = O(R−3), whereas |(∇f )`ϕ|f =
O(R2−`), `= 1, 2; therefore |ddϕ|f = O(R−2). On the other hand, still from i∗IY1 = I1 + ,
f(i∗IY1 ·, ·)− f(·,i∗IY1 ·) = 2ωf + f(·, ·)− f(·, ·). The error term f(·, ·)− f(·, ·) is controlled by
||f , which is O(R−3). We have thus proved estimate (19). Thanks to the general formal formula

∇g+hT = ∇gT + (g + h)−1 ∗ ∇gh ∗ T, (20)

(see e.g. [GV16], formula (3.39)) for any metrics g and g+h (h is thus seen here as a perturbation)
and any tensor T , with Lemma 1.14 we can take g = f , g+ h = f [ and T the tensor in play, and
prove with the same techniques an estimate similar to (19) up to order 2, that is

|(∇f [)`(ddci∗IY1
ϕ−$f [)|f [ = O(R−2),

for ` = 1, 2; this also uses |(∇f )`ϕ|f = O(R−2−`) for ` = 0, . . . , 4, and |(∇f )`|f = O(R−3) for
` = 0, . . . , 4, which follows from Lemma 1.8. If therefore K is chosen large enough, and taking
moreover the contribution of Ψmxd into account, ωY1 +ddc

IY1
κ◦(ϕ[−Ψmxd−K) is well defined and

is an IY1 -Kähler form, and is equal to (ωY1 − ddcIY1 Ψmxd) +$f [ up to a O(R−2) error at orders 0,

1 and 2 for f [.

Step 1.2. We can now deal with the β < 1 case (our intention is to make β small); as

ddc
IY1

(β−1(ϕ[)1−β) = (1− β)(ϕ[)−β(β−1ddc
IY1
ϕ[ − (ϕ[)−1dϕ[ ∧ dc

IY1
ϕ[),

as ϕ[ grows at least like m(R[)2, and as dϕ[ and dc
IY1
ϕ[ are O(R[) for f [ according to what

precedes, we have |(ϕ[)−1dϕ[ ∧ dc
IY1
ϕ[|f [ 6 A near infinity for some A > 0 (independent of

K,β,R0, r0), whereas ddc
IY1
ϕ[ > 1

2$f [ near infinity. This way, assuming that β ∈ (0, A−1),

ddc
IY1

(β−1(ϕ[)1−β) > (1− β)(ϕ[)−β(β−1 −A)ddc
IY1
ϕ[ > 1

2(1− β)(ϕ[)−β(β−1 −A)$f [

near infinity, and, more precisely, as soon as |(ϕ[)−1dϕ[∧dc
IY1
ϕ[|f [ 6 A and ddc

IY1
ϕ[ > 1

2$f [ , hence

on {ϕ[ > K}, say; we fix such a K once and for all. Therefore, as |Ψmxd| 6 1
2 on Y :

• ddc
IY1

Φ+
alf is trivial where (ϕ[ + β−1(ϕ[)1−β −Ψmxd −K − β−1K1−β) < 1

2 ;

• on {(ϕ[ + β−1(ϕ[)1−β − Ψmxd − K − β−1K1−β) > 1
2} ⊂ {ϕ

[ > K} (this inclusion being

independent of β), ddc
IY1

[ϕ[ + β−1(ϕ[)1−β −Ψmxd] > 1
2$f [ + (β−1 − A)(ϕ[)−1$f [ > 0, and

thus ddc
IY1

Φ+
alf > 0. More precisely, on {ϕ[ > K + 2}, where (ϕ[ +β−1(ϕ[)1−β −Ψmxd−K −

β−1K1−β) > 1, ddc
IY1

Φ+
alf = ddc

IY1
[ϕ[ +β−1(ϕ[)1−β −Ψmxd]. Thus ωY1 + ddc

IY1
Φ+

alf > ωY1 on Y ,

refined as ωY1 + ddc
IY1

Φ+
alf > ωY1 + 1

2(1 + (1− β)(β−1 −A)(ϕ[)−β)$f [ on {ϕ[ > K + 2};

1174

https://doi.org/10.1112/S0010437X18007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007030


From ALE to ALF gravitational instantons

• ωY1 + ddc
IY1

Φ+
alf is furthermore asymptotic to

(ωY1 − ddcIY1 Ψmxd) +$f [ + β−1ddc
IY1

(ϕ[)1−β, (21)

with an error of size O(R−2), as well as its first and second ∇f [-derivatives.
Notice that at this stage, we have not used Ψmxd, but instead only checked it did not impede us
to reach a desired positivity assertion on ωY1 + ddcΦ+

alf .

Step 2. We now deal with the summand −Φale of Φ[
m, which is meant to kill the ALE part of the

Kähler form ωY1 + ddcΦ+
alf , or equivalently of the IY1 -hermitian form (ωY1 − ddcIY1 Ψmxd) +$f [ (we

see the remaining terms in (21) as ALF perturbations, corrected below with the help of Φ−alf).
There are again two issues here: the positivity of the resulting IY1 -(1, 1) form ωY1 +ddc

IY1
(Φ+

alf−Φale)

on Y , and its asymptotics. The asymptotics are independent of r0, R0 and, to a certain extent, β,
since we are only looking at what happens near infinity. Indeed, for any value of these parameters,
and provided that r0 (respectively R0) is chosen much larger than K (respectively r0), we have
{R > R0} ⊂ {r > r0 + 1} ⊂ {ϕ[ > K + 2} and on that region, by definition of Φ+

alf and Φale,

ωY1 + ddc
IY1

(Φ+
alf − Φale) = (ωY1 − ddcIY1 Ψ) + ddc

IY1
(ϕ[ + β−1(ϕ[)1−β),

with that Ψ = Ψmxd + Ψeuc of Proposition 1.7. The term (ωY1 − ddcIY1 Ψ) in the right-hand side is

thus O(R−2) for f by this proposition, which is exactly where Ψmxd, as well as Ψeuc as we defined
it, are used ; again, these asymptotics hold for f [ by Lemma 1.14. We have already dealt with
the asymptotics of ddc

IY1
(ϕ[ + β−1(ϕ[)1−β) in the previous step. As in (21), we hence have that

ωY1 + ddc
IY1

(Φ+
alf − Φale) is asymptotic to $f [ + β−1ddc

IY1
(ϕ[)1−β, with an error of size O(R−2) for

f [ up to its second ∇f [-derivatives.
We are therefore left with the positivity assertion, which has to be proved carefully since we

essentially have to subtract a metric to another one; this is where we fix r0 and β. This boils
down to the following:
• take r0 so that on r > r0, ddc

IY1
(ϕ[+β−1(ϕ[)1−β−Ψmxd) > 1

2 [1+(1−β)(β−1−A)(ϕ[)−β]$f [

(as underlined above, this can be done independently of β);
• consider ωY1 − ddcIY1 Φale, rewritten as [1− χ(r − r0)]ωY1 + χ(r − r0)(ωY1 − ddcIY1 Ψeuc) +Rr0 ,

where Rr0 = χ′(r− r0)(Ψeucdd
c
IY1
r+dr∧dc

IY1
Ψeuc +dΨeuc∧dcIY1 r) +χ′′(r− r0)Ψeucdr∧dcIY1 r

has support in {r0 6 r 6 r0 + 1};
• as |ωY1 − ddcIY1 Ψeuc|e = O(r−4), we get |ωY1 − ddcIY1 Ψeuc|f [ = O(R−1) by Lemma 1.8; we can

thus fix r0 once and for all so that |χ(r − r0)(ωY1 − ddcIY1 Ψeuc)|f [ 6 1
6$f [ on Y ;

• we now fix β > 0 small enough so that (1−β)(β−1−A)(ϕ[)−β > 6 supr06r6r0+1 |Rr0 |f [ ; this
way, ωY1 + ddc

IY1
(Φ+

alf − Φale), which equals ωY1 + ddc
IY1

Φ+
alf > 0 on Y \{r > r0}, is bounded

below by (1
2 −

1
6 −

1
6)$f [ > 0 on {r0 6 r 6 r0 + 1}, and by (1

2 −
1
6)$f [ > 0 on {r > r0 + 1}.

Step 3. We conclude by analysing the term Φ−alf of Φ[
m, and by fixing R0. First, by the known

asymptotics on ωY1 +ddc
IY1

(Φ+
alf−Φale) before the above list, and the very shape of Φ−alf , we get that

ωm = ωY1 +ddc
IY1

(Φ+
alf−Φale)−ddcIY1 Φ−alf is asymptotic to $f [ (the error being of size O(R−2) for f [

up to two ∇f [-derivatives). Second, recall that R0 is supposed large enough so that {R > R0} ⊂
{r > r0+1}; running the first three points in the above list, and taking supports into account, one
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can also say that ωY1 +ddc
IY1

(Φ+
ALF−ΦALE), which equals ddcϕ[+ddc

IY1
(β−1(ϕ[)1−β)+(ωY1 −ddcIY1 Ψ)

on {R > R0}, is thus > 1
2$f [ + ddc

IY1
(β−1(ϕ[)1−β) − 1

6$f [ , i.e. > 1
3$f [ + ddc

IY1
(β−1(ϕ[)1−β) on

this region, where we recall that ddc
IY1

(β−1(ϕ[)1−β) > 0. Now, ddc
IY1

Φ−alf (which has support in

{R > R0 + 1}) can be rewritten as χ((R−R0)/R0)ddc
IY1

(β−1(ϕ[)1−β) + R−R0
, where R−R0

=

(1/βR0)χ′((R−R0)/R0)R−1 + (1/βR2
0)χ′′((R−R0)/R0)(ϕ[)1−βR−2 has support in {R0 6 R 6

2R0}; here R−1 stands for (ϕ[)1−βddc
IY1
R + dR ∧ dc

IY1
(ϕ[)1−β + d(ϕ[)1−β ∧ dc

IY1
R and R−2 for

dR ∧ dc
IY1
R. As R−1 = O(R1−2β), and R2 = O(R2−2β), independently of R0, we can fix R0 large

enough so that supY |R−R0
|f [ = supR06R62R0

|R−R0
|f [ 6 1

6 .

We sum all this up as: on {R > R0}, ωm = ωY1 + ddc
IY1

(Φ+
alf − Φale) − χ((R−R0)/R0)ddc

IY1

(β−1(ϕ[)1−β) − R−R0
> 1

3$f [ + [1 − χ((R−R0)/R0)]ddc
IY1

(β−1(ϕ[)1−β) − 1
6$f [ > 1

6$f [ > 0;

moreover, on Y \{R > R0}, ωm equals ωY1 + ddc
IY1

(Φ+
alf − Φale), positive on the whole Y . In

conclusion, ωm > 0 on Y .
The last part of the statements concerns volume forms, and is a direct consequence of the

estimates on the metrics, after observing that (on R4, say; recall that ΦY ∗ΩY = Ωe): volf
[ −ΩY =

i∗ volf −Ωe = i∗Ωe − Ωe, which can be written as εΩe with |(∇e)`ε|e = O(r−8), ` > 0, by

Lemma 1.1. This converts into |(∇f [)`ε|f [ = O(R−4), ` > 0, which is better than wanted. 2

Remark 1.15. We can now make our motivational Remark 1.9 more precise; indeed, in the above
proof, one can see that the dominant term in gm − f [ comes from i∗d(dϕ), and more precisely,

from its component with shape ∇f [ ∗ dϕ[ and this, for ∇f [-derivatives up to order 2. Now, we
need in the next section an error between gm and f [ of size O(R−δ) (δ > 0) at order 0, but of
size O(R−δ−1) (δ > 0) at order 1 (and of size O(R−δ−α−1), α > 0, at order 1 + α) for f [; an
O(R−1)-error in the statement of 1.12 (as would be the case with, say, an O(r−6) in Lemma 1.6
or in (14), by Lemma 1.8 and using that dϕ = O(R)) would make our procedure fail.

1.4 Corrections on the glued metric
1.4.1 A Calabi–Yau type theorem. We want to correct our IY1 -Kähler metric gm from

Proposition 1.12 into a Ricci-flat Kähler metric. For this it is sufficient to correct it into an
IY1 -Kähler metric with volume form ΩY , since this is the volume of the IY1 -Kähler metric gY ,
and, as is well known, once the complex structure is fixed, the Ricci tensor of a Kähler metric
depends only on its volume form. As suggested by the program ending to Theorem 1.3, at the
level of IY1 -Kähler forms, we want to stay in the same class; in other words, we are looking for
the IY1 -complex hessian of some function to be the desired correction.

The tool we are willing to use to determine this function is the ALF Calabi–Yau type theorem
of the Introduction, which we state precisely now (we call the manifold in play Y for more
genericity).

Theorem 1.16. Let β ∈ (0, 1) and let (Y, gY, JY, ωY) an ALF Kähler 4-manifold of dihedral type
of order β. Let f ∈ C∞β+2(Y, gY). Then there exists ϕ ∈ C∞β (Y, gY) such that ωY +ddcJYϕ is Kähler,
and

(ωY + ddcJYϕ)2 = efω2
Y. (22)

The weighted spaces of this statement follow a classical definition, and our statement simply
means that for all ` > 0, |(∇gY)`f |Y = O(R−2−β−`) and |(∇gY)`ϕ|Y = O(R−β−`); the proof of
Theorem 1.16, rather classical yet a bit involved, is postponed to Part 3 below.

1176

https://doi.org/10.1112/S0010437X18007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007030


From ALE to ALF gravitational instantons

Let us now make the following remark: since we want to construct a metric with volume
form ΩY , this is tempting to take f = log(ΩY /volgm) to apply Theorem 1.16. But so far we only
control such an f up to two derivatives (see Proposition 1.12, estimates (18)); also, even in the
C0 sense, we only have f = O(R−2) instead of O(R−2−β).

The other issue is that Y being a ‘ALF Kähler manifold of dihedral type of order β’ means
that outside a compact subset, Y is diffeomorphic to the complement of a ball in R4/Dk, and
that one can choose the diffeomorphism ΦY between infinities of Y and R4/Dk such that for all
` > 0, |(∇gY)`(ΦY∗gY − f)|gY = O(ρ−β−`), and |(∇gY)`(ΦY∗J

Y − I1)|gY = O(ρ−β−`). Here again,
a reading of Proposition 1.12 indicates that the asymptotics at our disposal do not allow us to
take immediately ΦY = ΦY or ΦY ◦ i.

We remedy to these technical problems as follows. First we correct gm into an IY1 -Kähler
metric with volume form ΩY , which is nothing but a Ricci-flat IY1 -Kähler metric, outside a
compact subset of Y , which gives us an f with compact support; then we put this corrected
metric into so-called Bianchi gauge with respect to ΦY

∗f [, which corresponds to correct ΦY

itself so as to fit into the definition of an ALF Kähler manifold of dihedral type up to the desired
order.

1.4.2 Ricci-flatness outside a compact subset. To correct gm into an IY1 -Kähler metric with
volume form ΩY outside a compact subset of Y , we use the inverse function theorem on Monge–
Ampère operators, between relevant Hölder spaces. Namely, we extend f [ on Y as a smooth
metric and define on Y the following weighted Hölder spaces:

C`,αδ (Y, f [) := {f ∈ C`,αloc | ‖f‖C`,αδ (f [)
<∞}, (23)

for ` ∈ N, α ∈ (0, 1], δ ∈ R, and where

‖f‖
C`,αδ (f [)

:= ‖Rδf‖C0 + · · ·+ ‖Rδ+`(∇f [)`f‖C0 + sup
x∈Y

[R`(∇f [)`f ]αδ ,

with

[u]αδ = sup
(x,y)∈Y,

d
f[

(x,y)<inj
f[

∣∣∣∣max(R(x)α+δ, R(y)α+δ)
u(x)− u(y)

df [(x, y)α

∣∣∣∣
f [

(24)

for u a C`,αloc tensor (u(x) − u(y) interpreted via parallel transport), with R a smooth positive

extension of ΦY
∗R on Y , and C0-norms of the tensors computed with f [.

We then state the following, indicating the type of functions which can help correcting ωm
in the sense raised above.

Proposition 1.17. Fix (α, δ) ∈ (0, 1)2 such that α + δ < 1. There exists a smooth function
ψ ∈ C2,α

δ−1(f [)∩C3,α
δ−2(f [) such that ωψ := ωm + ddc

IY1
ψ is Kähler for IY1 , and such that 1

2ω
2
ψ = ΩY

outside a compact set.

In the statement, the intention is to take the orders of regularity and decay as small as
possible, or, more precisely, to keep α in the range (0, 1− δ), to make the rest of the argument
(a forthcoming use of the implicit function theorem, followed by a gauge process) work, so as to
minimise the efforts involved in the construction of the reference metric gm of Proposition 1.12.

Proof. Taking χ a cut-off function as in Proposition 1.12 and setting χR1 = χ(R − R1), we are
done if we solve the problem (ωm + ddc

IY1
ψ)2 = (1−χR1)ω2

m + 2χR1ΩY for R1 large enough. This

is manageable, with the help of the inverse function theorem, since:
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• ω2
m − ((1 − χR1)ω2

m + 2χR1ΩY ) = χR1(ω2
m − 2ΩY ), and ‖χR1((ω2

m − 2ΩY )/ΩY )‖
Ck,αδ

tends

to 0 as R1 goes to ∞ thanks to estimates (18) for k = 0, 1;
• the linearisation of the Monge–Ampère operators C2+ε,α

δ−1−ε → Cε,αδ+1−ε, ε = 0, 1, ψ 7→
(ωm + ddc

IY1
ψ)2/ω2

m, at ψ = 0, are the scalar Laplacians ∆gm : C2+ε,α
δ−1−ε → Cε,αδ+1−ε. These

are surjective, with kernel reduced to constant functions, according to the appendix of
[BM11]. More precisely, such statements hold for ∆f [ by [BM11]. Indeed, one has the formal
representation (using the Kähler property near infinity)

∆gm = ∆f [ + (g−1
m − (f [)−1) ∗ [(∇f [)2·] + g−1

m ∗ ∇f [ ∗ (d · ) ∗ IY1
+ g−1

m ∗  ∗ (∇f [d · ) ∗ IY1 + g−1
m ∗ ∇f [ ∗ (d · ) ∗ (IY1 − ),

where  = IY1 − i∗I1, as in the proof of Proposition 1.12. From this formula, together with

the estimates (∇f [)`(f [− gm) = O(R−2), ` = 0, 1, 2, and (∇f [)` = O(R−3), ` = 0, . . . , 3, we

get that ∆gm is well defined as an operator C2,α
δ−1 → C0,α

δ+1 or C3,α
δ−2 → C1,α

δ , and differs from

∆f [ by an operator of respective sizes O(R−2+α) and O(R−1+α) in the appropriate operator

norms. This gives us the desired mapping properties for ∆gm , first for Dirichlet problems on

exterior domains by a perturbation argument, next on the whole Y by a classical argument

(based e.g. on a parametrix and a Poincaré inequality).

Once R1 is chosen large enough to apply the inverse function theorem simultaneously, and

once ψ is fixed in C2,α
δ−1(f [)∩C3,α

δ−2(f [) so that (ωm + ddc
IY1
ψ)2 = (1− χR1)ω2

m + 2χR1ΩY , the last

point to be checked is the positivity of ωψ := ωm+ddc
IY1
ψ. As ddc

IY1
ψ = O(R−δ), ωψ is asymptotic

to ωm, hence positive near infinity. Since its determinant ((1− χR1)ω2
m + 2χR1ΩY )/ω2

m relatively

to ωm never vanishes, it is positive on the whole Y . The smoothness of ψ is local. 2

1.4.3 Bianchi gauge for ωψ.

Motivation. We are now willing to deduce regularity statements on gψ, using its Ricci-flatness near

infinity. However this cannot be done immediately. The reason is that the Ricci-flatness condition

is invariant under diffeomorphisms, and consequently the linearisation of the Ricci tensor seen as

an operator on metrics is not (strongly) elliptic, which is problematic when looking for regularity.

One can however bypass this difficulty by fixing a gauge, which infinitesimally corresponds

to looking at metrics with good diffeomorphisms. We introduce the diffeomorphisms we shall

work with in next paragraph; then the gauge is fixed, and regularity is deduced from this process

(Propositions 1.21 and 1.23). Notice that the Ricci-flatness of gψ is an indispensable prerequisite

in this procedure, since the gauge alone is not enough in general to obtain the regularity statement

we are seeking here.

ALF diffeomorphisms of C2. The class of diffeomorphisms we work with to perform our gauge

enters into the following definition; we define the dual frames (e[0, . . . , e
[
3) and ((e∗0)[, . . . , (e∗3)[)

as the pull-backs by i of the frames (ei) and (e∗i ) defined in § 1.2.2 by (8), (9). We fix R0 > 1 so

that i induces a diffeomorphism between {R[ > R0} and {R > R0}.

Definition 1.18. Let (`, α) ∈ N∗ × (0, 1), and let ν > −1. We denote by Diff `,α
ν,R0

the class of

diffeomorphisms φ of {R[ > R0} such that:

• φ has regularity C`,αloc , and induces the identity on {R[ = R0};
• there exists a constant C such that for any x ∈ {R[ > R0}, df [(x, φ(x)) 6 C(1 +R[(x))−ν ;
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• consider the in C`−1,α
loc maps φij : {R[ > R0}→ R given by

φij(x) = (e[i)
∗((φ∗e[j)x − (e[j)x); i, j = 0, . . . , 3.

We then ask: φij ∈ C`−1,α
ν+1 ({R[ > R0}, f [).

We endow Diff `,α
ν,R0

with the natural topology.

The Hölder spaces are those defined for (some smooth extension of) f [ on C2, in the same
way as those of defining equation (23). Notice that we authorise the distance between a point

and its image by a φ ∈ Diff `,α
ν,R0

to go to ∞ when ν < 0; observe nonetheless that the allowed
rate of blow-up is sub-linear, and thus the diffeomorphisms are proper.

Diffeomorphisms as Riemannian exponential maps. We now parametrise our diffeomorphisms
via vector fields.

Lemma 1.19. There exists a neighbourhood V `,α
ν of 0 in C`,αν,0({R[ > R0}, f [) such that for any

Z in that neighbourhood, the map φZ : x 7−→ expf [
x (Z(x)) is in Diff `,α

ν,R0
.

If moreover ν > 0, one can choose V `,α
ν so that Z 7−→ φZ realises a diffeomorphism of V `,α

ν

onto a neighbourhood of the identity map in Diff `,α
ν,R0

.

Apart from the 0 indices indicating vanishing of the vector fields along {R[ = R0}, the
weighted spaces of vector fields are defined analogously to that of the previous paragraph,
or equivalently Z ∈ C`,αν,0({R > R0}, f [) if and only if Z ∈ C`,αloc ({R[ > R0}), Z|R[=R0

≡ 0 and

χ(R[ −R0)(e[i)
∗(Z) ∈ C`,αν (C2, f [), i = 0, . . . , 3 (with χ a cut-off function as in Proposition 1.12).

Proof. The regularity assertions are rather standard; we moreover use the fact that the injectivity
radius of f [ is bounded from below (that of f is), to get that any diffeomorphism C0-close to
identity can be written as a φZ for some (small) continuous Z, which boils down to joining any
two points x and y with df [(x, y) 6 1

2 injf [ by a unique minimising geodesic t 7→ expx (tZx).
We shall nonetheless pay particular attention to the fact that in the general case, we authorise
vector fields blowing up at infinity, when verifying the injectivity of φZ for a given Z close to
0 in C`,αν ; in the same vein, one should keep in mind that even on compact manifolds, a φW
might not be injective, unless |∇W | is small. In this respect, the key here is the decay of the

derivatives of Z at infinity, combined with the decay of Rmf [ . Suppose (`, α) = (1, 0) to fix ideas;
for simplicity, we work on the whole C2, where we extend f [ smoothly. For the injectivity of φZ
with fixed Z ∈ C1,0

ν (defined on C2) and ‖Z‖
C1,0
ν

6 1 say, we claim that there exists a constant
C independent of Z such that for any triple (x, y, z) such that φZ(x) = φZ(y) =: z,

df [(x, y) 6 C(1 +R(z))−4−3ν‖Z‖
C1,0
ν
df [(x, y),

from which the injectivity of φZ follows at once provided ‖Z‖
C1,0
ν

is small enough. We

reach this claim thanks to the estimate |Rmf [ | = O(R−3), as follows. For x, y as in the

claim, call respectively γx and γy the geodesics t 7→ expf [
x (tZ(x)) and t 7→ expf [

y (tZ(y)), and
denote by pγx , pγy the attached parallel transports. Using [BK81, Proposition 6.6], control
first df [(x, y) by |pγx(1)(Z(x)) − pγy(1)(Z(y))|f [(1 + R(z))−3−2ν . Then control |pγx(1)(Z(x)) −
pγy(1)(Z(y))|f [ by df [(x, y)(1 + R(z))−1−ν‖Z‖

C1,0
ν

; for this interpolate between γx and γy by

γs(t) := expf [

α(s)[tZ(α(s))], where α is a minimising geodesic for f [ joining x and y. This is where
one uses the estimates on the derivatives of Z. 2
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With similar techniques, one establishes the following lemma.

Lemma 1.20. With the notation of Lemma 1.19, for Z ∈ V `,α
ν , one has (φZ)∗f [ − f [ is C`−1,α

ν+1 ;

more precisely, one has the estimate ‖(φZ)∗f [ − f [ − δf [ [f [(Z, ·)]‖
C`−1,α

2ν+2
6 C‖Z‖

C`,αν
.

The gauge. Denote by Bh = δh + 1
2d trh the Bianchi operator associated to any smooth metric h

on (an open subset of) R4. The gauge process now states the following.

Proposition 1.21. Let (α, δ) fixed in Proposition 1.17 and δ assumed > 1
2 . If R0 is large enough,

there exists a smooth diffeomorphism φ ∈ Diff1,α
δ−1,R0

, commuting with the action of Dk hence

descending to R4/Dk near infinity, such that

Bφ∗f [((ΦY )∗gψ) = 0

near infinity on C2, where gψ stands for the IY1 -Kähler metric associated to the Kähler form ωψ
of Proposition 1.17. As a consequence, f [ − (φ ◦ ΦY )∗gψ ∈ C1,α

δ (X, f [).

Remark 1.22. The assumption δ > 1
2 is actually superfluous; we chose to keep it nonetheless as

it authorises a shorter proof (we only need one iteration in Step 1 below).

Proof. Fix α2 as in the statement, and consider the map

Ξ : V 2,α2

δ−1 ×Met1,α2

δ (f [)−→C0,α2

δ+1 (T ∗C2, f [)

(Z, g) 7−→Bφ∗Z f
[
(g).

We would like to solve the equation

Bφ∗Z f
[
(gψ) = 0, i.e Ξ(Z, gψ) = 0, (25)

near infinity, and for this use the implicit function theorem near (0, f [), since the differential of

Ξ with respect to Z is (∇f [)∗∇f [ , which as we shall see enjoys surjectivity properties. We first
solve a linearised version (25), to get in the ν > 0 position of Lemma 1.19, better adapted to
solve (a duly modified version of) this nonlinear equation.

Step 1. Let Z ∈ C2,α
δ−1,0({R[ > R0}, f [) be a smooth vector field such that (∇f [)∗∇f [ [f [(Z, ·)] =

Bf [(gψ) near infinity. As we shall see below, such an equation can be solved and, picking some
δ′ ∈ (0, δ), and up to using some cut-off function (which does not affect the equation verified
by Z near infinity), we can assume that ‖Z‖

C2,α

δ′−1
(f [)

is small enough so that Z ∈ V 2,α
δ′−1, i.e.,

φZ ∈Diff1,α
δ′−1,R0

(in particular, it is a diffeomorphism); as Z has regularity C2,α
δ−1(f [), we moreover

get φZ ∈ Diff1,α
δ−1,R0

. Taking a mean along the action of Dk, we can also assume that Z is
Dk-invariant, and hence that φZ commutes to the Dk-action. The smoothness of Z, purely local,
comes at once from that of f [ and Bf [(g), and ellipticity of (∇f [)∗∇f [ .

Now, given metrics g, g′ and g + h (with g′ and g + h seen as perturbations of g), repeated
use of equation (20) provides

Bg+h(g′) = Bg(g′)−Bg(h) +Qg(h, g
′),
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where Qg(h, g
′) admits a formal expansion

Qg(h, g
′) = ∇gh ∗ {(g + h)−1 − g−1}+ (g + h)−2 ∗ ∇gh ∗ h

+∇gg′ ∗ {(g + h)−1 − g−1}(g + h)−2 ∗ ∇gh ∗ (g′ − g).

Taking g = f [, h = hZ := (φZ)∗f [ − f [ and g′ = gψ, we get that Qf [(hZ , gψ) factors through

(∇f [hZ) ∗ hZ , (∇f [hZ) ∗ (f [ − gψ) and (∇f [gψ) ∗ hZ . This way, by Lemma 1.20 and as Z is

smooth, Qf [(hZ , gψ) ∈ C∞loc∩C
0,α
1+2δ. Moreover, as hZ = −δf [ [f [(Z, ·)] +h′Z with h′Z ∈ C∞loc∩C

1,α
2δ ,

Bf [(hZ) = Bg(δf
[
[f [(Z, ·)]) +Bf [(h′Z) = (∇f [)∗∇f [ [f [(Z, ·)] +Bf [(h′Z),

with Bf [(h′Z) ∈ C∞loc ∩ C
0,α
1+2δ. In conclusion, B(φZ)∗f [(gψ) = Bf [(gψ) − Bf [(hZ) + Qf [(hZ , gψ) =

Bf [(gψ)− (∇f [)∗∇f [ [f [(Z, ·)]︸ ︷︷ ︸
= 0 near infinity

+Bf [(h′Z) + Qf [(hZ , gψ) is now in C∞loc ∩ C
0,α
1+2δ. Pushing forward

by φZ , we have Bf [ [(φZ)∗gψ] ∈ C∞loc ∩ C
0,α
1+2δ(f

[), where we had Bf [(gψ) ∈ C∞loc ∩ C
0,α
1+δ(f

[) (and

1 + 2δ > 2 > 1 + δ; this is where δ > 1
2 is used).

Step 2. Set δ̄1 = 2δ − 1 ∈ (0, 1), and take δ1 ∈ (0, δ̄1). As Bf [ [(φZ)∗gψ] ∈ C∞loc ∩ C
0,α

2+δ̄1
(f [),

‖χR2(R[)Bf [ [(φZ)∗gψ]‖
C0,α

2+δ1
(f [)

goes to 0 as R2 goes to infinity; here χR2 = χ(·−R2), with χ a cut-

off function as in Proposition 1.12. In other words, given any neighbourhood of Bf [ [(φZ)∗gψ] in

C0,α
2+δ1

(f [), the 1-form (1−χR2(R[))Bf [ [(φZ)∗gψ] lies in this neighbourhood forR2 large enough; by

construction it moreover vanishes on {R[ > R2 +1}. This being said, we now work for simplicity

with the operator z 7→ Ξ[z, (φZ)∗gψ] = Bφ∗zf
[
[(φZ)∗gψ] seen as a map V 2,α

δ1
→ C0,α

δ1+2(T ∗C2, f [)

thanks to the formulas on Bg+h(g′) and Qg(h, g
′) of Step 1. Finding one solution z to the

equation Ξ[z, (φZ)∗gψ] = 0 near infinity, that is, finding a solution to the equation Ξ[z, (φZ)∗gψ] =

(1− χ(R[ −R2))Bf [ [(φZ)∗gψ] for some arbitrarily large R2, with z ∈ C2,α
δ1,0

({R[ > R0}, f [), thus
amounts by the implicit function theorem to establishing the surjectivity of the operator

(∇f [)∗∇f [ + [(φZ)∗gψ − f [] ∗ (∇f [)2 ·+∇f [ [(φZ)∗gψ] ∗ ∇f [ ·

=
∂Ξ

∂z

∣∣∣∣
(0,(φZ)∗gψ)

: C2,α
δ1,0

({R[ > R0}, f [) −→ C0,α
δ1+2({R[ > R0}, T ∗C2, f [) ∼= C0,α

δ1+2({R[ > R0}, f [).

(26)

Now, as [(φZ)∗gψ − f [] is C1,α
δ (f [) and ∇f [ [(φZ)∗gψ] is C0,α

δ+1(f [), the operator (26) differs from

(∇f [)∗∇f [ by some asymptotically vanishing term in the C2,α
δ1

(f [)-to-C0,α
δ1+2(f [) norm. Hence (up

to working in Step 2 with an R0 possibly larger than in Step 1), it is enough to see that (∇f [)∗∇f [ :
C2,α
ϑ,0 ({R[ > R0}, f [) → C0,α

ϑ+2({R[ > R0}, f [) admits a bounded right inverse for ϑ ∈ (0, 1) (playing
the role of δ1), with norm independent of the domain as we let R0 grow; we also do the case
ϑ ∈ (−1, 0) (playing the role of δ) without the independence of the bounds, needed to get Z in
the beginning of the proof. We work with f , diffeomorphic to f [ (and replace R[ by R, and so on).
As for i = 0, . . . , 3, (∇f )∗∇f (ve∗i ) equals (∆fv)e∗i plus a linear combination of the (ej · v)∇f

ek
e`

and the v(∇f )2
ej ,ek

e`, up to increasing R0, by a standard perturbation argument, the existence
of a bounded right inverse for

(∇f )∗∇f : C2,α
ϑ,0 ({R > R0}, T ∗C2, f) −→ C0,α

ϑ+2({R > R0}, T ∗C2, f)
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amounts to the analogue for the scalar Laplacian with Dirichlet condition

∆f : C2,α
ϑ,0 ({R > R0},R, f) −→ C0,α

ϑ+2({R > R0},R, f).

Using a similar procedure as in [Min09, § 2.1] (where the ‘δ’ there should be thought of as ‘3
2 −ϑ’

with our ϑ), we first get, for ϑ ∈ (−1, 1)\{0}, the existence of a bounded linear Gϑ : C0,α
ϑ+2({R >

R0}, f) → C2,α
ϑ ({R > R0}, f) satisfying ∆f ◦ Gϑ = id

C0,α
ϑ+2({R>R0}); beware we momentarily drop

the 0 index to the target space C2,α
ϑ of Gϑ. Moreover, a careful reading of Minerbe’s construction

shows that for ϑ < 1 (which prevents us to be in the case ‘δ < δj < 2− δ’ of [Min09, bottom of
p. 937]; remember δ plays the role of 3

2 − ϑ, and that δj has shape 3
2 + j, j ∈ N [Min09, p. 931])

gives that the above Gϑ has image in C2,α
ϑ,0 ({R > R0}, f). Finally, when ϑ ∈ (0, 1), a bound on Gϑ

(of shape C/ϑ(1− ϑ) and) uniform in R0 can also be extracted from this construction; a similar
bound, uniform in R0, is also valid on Gϑ−1. Consequently, for all ϑ ∈ (−1, 1)\{0},

(∇f )∗∇f : C2,α
ϑ,0 ({R > R0}, T ∗C2, f) −→ C0,α

ϑ+2({R > R0}, T ∗C2, f)

is a surjective map, with a bounded right inverse Gϑ enjoying a bound independent of R0, as
claimed.

We conclude Step 2 by taking a smooth solution z ∈ C2,α
δ1,0

({R[ > R′0}, f [) to Ξ(z, (φZ)∗gψ) = 0

near infinity (chosen Dk-invariant), producing a smooth φz ∈ Diff1,α
δ1,R′0

, and by putting φ =

(φz ◦ φZ′)−1 ∈ Diff1,α
δ−1,R′0

(which is smooth), with Z ′ = χ(R[ −R′0)Z. 2

Regularity of gψ. We conclude this paragraph by the following statement, which finally allows
us to apply Theorem 1.16.

Proposition 1.23. With the same notation as in Proposition 1.21, f [−(φ◦ΦY )∗gψ ∈ C∞δ (X, f [)
near infinity, and in particular, |Rmgψ |gψ = O(R−2−δ).

Proof. The assertion on the curvature of gψ directly follows from the estimate stated on ε :=

φ∗f [ − gψ (or φ∗ε), and the fact that |Rmf [ |f [ = O(R−3). For the regularity statement on ε,
proceed as follows: set F = φ∗f [, and define the operator ΦF by

ΦF(h) = Ric(h) + (δh)∗h [hF ·BFh]

on C2
loc metrics, where hF is the endomorphism of T ∗X such that (hF ·α, ·)h = (α, ·)F on 1-forms.

This way, ΦF(F) = ΦF(gψ) = 0 near infinity. Now ΦF is of order 2, hence schematically,

0 = ΦF(F)− ΦF(gψ) = (dFΦF)(ε) + PF(ε),

with PF(ε) an at-least-quadratic combination of ε, its first and its second derivatives, with
coefficients depending on F. Quoting [Bam11, p. 16], one has more precisely:

2PF(ε) = (gψ)uv(gψ)pq(∇ψuεpa∇ψv εqb −∇ψp εua∇ψv εqb + 1
2∇

ψ
a εup∇

ψ
b εvq)

+ (gψ)uv(−∇ψuεvp + 1
2∇

ψ
p εuv)(gψ)pq(∇ψa εqb +∇ψb εqa −∇

ψ
q εab)

+ Fuv(−∇ψuεvp + 1
2∇

ψ
p εuv)F

pq∇ψq εab
+ FuvFpq(−εap(∇ψ)2

buεvq − εbp(∇ψ)2
auεvq + 1

2εap(∇
ψ)2
bqεuv + 1

2εbp(∇
ψ)2
aqεuv)

+ ((gψ)uv − Fuv)((∇ψ)2
uaεbv + (∇ψ)2

ubεav − (∇ψ)2
uvεab + (∇ψ)2

abεuv). (27)
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The interest of this formula lies in the following: in PF(ε),

(i) the only occurrence of the second derivatives of ε = gψ −F with respect to gψ, denoted by
(∇ψ)2ε, in (27), is via tensors factoring through ε ∗ (∇ψ)2ε; using (20), we can moreover
rewrite (∇ψ)2ε as (1 + F−1 ∗ ε) ∗ (∇F)2ε plus some terms factorising through (∇Fε)∗2;

(ii) all other terms factor through (∇ψ)∗2ε; according to (20), one can say these terms factor
through (∇F)∗2ε as well;

(iii) the algebraic coefficients are controlled (for F say) in C1,α.

We sum these three points up by writing

1
2Lφ∗f [ε+ ε ? (∇F)2ε = (∇Fε)∗2 ∗Q(ε,∇Fε), (28)

where Lφ∗f [ = dFΦF is the Lichnerowicz Laplacian of F = φ∗f [, the symbols ? denote algebraic

operations. Since ε ∈ C1,α
δ (R4,F) the right-hand side of (28) is in C0,α

2δ+2(R4,F). Again since

ε ∈ C1,α
δ , the linear operator η 7→ 1

2Lφ∗f [η + ε ? (∇F)2η is elliptic and one can draw for this

operator weighted estimates similar to those for Lφ∗f [ . From this we deduce that ε ∈ C2,α
δ .

Repeating this argument, we get ε ∈ C∞δ (F), hence f [ − φ∗gψ = φ∗ε ∈ C∞δ (f [). Notice that one
could even get from this scheme ε = ε0 + ε′, with ε0 an Lφ∗f [-harmonic tensor in C∞δ (F), hence

in C∞1 (F), and ε′ ∈ C∞2δ (F); this yields in the end φ∗ε ∈ C∞1 (f [), which is better than needed. 2

1.4.4 Conclusion: proof of Theorem 1.3. We have proved that f [ and (φ ◦ ΦY )∗gψ are C∞β -
close, provided that β = δ; to fulfil completely the requirements of Theorem 1.16, we are only
left with checking that (φ ◦ ΦY )∗I

Y
1 is also C∞β close to the complex structure I[1 := i∗I1.

The estimate (φ◦ΦY )∗I
Y
1 − I[1 ∈ C0

β follows easily from the decomposition (ΦY )∗I
Y
1 −φ∗I[1 =

((ΦY )∗I
Y
1 − I1) + (I1 − I[1) + (I[1 − φ∗I[1), from the estimates |(ΦY )∗I

Y
1 − I1|e = O(r−4) and

|I1 − I[1|e = O(r−4) converted into |(ΦY )∗I
Y
1 − I1|f , |I1 − I[1|f [ = O(R−1), and |I[1 − φ∗I[1|f [ =

O(R−δ)= O(R−β) following from φ ∈ Diff1,α
δ−1,R0

in Proposition 1.21.

For higher order estimates, remember that gψ is Kähler for IY1 , and f [ for I[1. It is thus

enough for instance to evaluate the successive (∇f [)`((φ ◦ΦY )∗I
Y
1 ). In view of formula (20) and

dropping ΦY , we thus write formally for ` = 1,

∇f [(φ∗I
Y
1 ) = ∇φ∗gψ(φ∗I

Y
1 )︸ ︷︷ ︸

= 0 since gψ is IY1 -Kähler

+(f [)−1 ∗ ∇φ∗gψ(f [ − φ∗gψ) ∗ (φ∗I
Y
1 ),

which easily gives ∇f [((φ ◦ ΦY )∗I
Y
1 ) ∈ C0

β+1 in view of (f [ − φ∗gψ) ∈ C1
β. For ` > 2, simply use

inductively formula (20), and the estimate (f [ − φ∗gψ) ∈ C`β.
As sketched in the introduction of this section, we now apply Theorem 1.16, with (Y, gY, JY, ωY)

= (Y, gψ, I
Y
1 , ωψ) and f = log(ΩY /volgψ), which is smooth and has compact support. This gives us

an IY1 -metric gRF,m on Y , with volume form ΩY and which is thus Ricci-flat, and with Kähler form
ωψ + ddc

IY1
ϕ for some ϕ ∈ C∞β (Y, gψ) with β close to 1. At this stage, (gRF,m − gψ) ∈ C∞β (φ∗f [);

from this, (∇f [)`(f [ − gm) = O(R−2), ` = 0, 1, 2, and (∇f [)`(f [ − gm) = O(R−1−β), ` = 0, 1

(Proposition 1.17), we also have (∇f [)`(f [ − gRF,m) = O(R−1−β), ` = 0, 1.
We need two more complex structures for Theorem 1.3. Recall we have two more symplectic

forms coming with the ALE hyperkähler structure (Y, gY , I
Y
1 , I

Y
2 , I

Y
3 ), namely ωY2 := gY (IY2 ·, ·)

and ωY3 := gY (IY3 ·, ·). We simply define JY2 and JY3 as the endomorphisms verifying
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gRF,m(JY2 ·, ·) = ωY2 and gRF,m(JY3 ·, ·) = ωY3 ; one then checks these are almost complex structures,
satisfying the quaternionic relations with IY1 , using (ωY2 )2 = (ωY3 )2 = 2 volgRF,m and that the
IY1 − (1, 1) part of ωY2 and ω3

Y is 0. To check JY2 and JY3 are integrable, use moreover that the
holomorphic symplectic 2-form ωY2 + iωY3 , whose gRF,m-norm is constant, is gRF,m-parallel.

The cubic decay of RmgRF,m comes as follows: first, an over-quadratic decay is easily deduced
from (gψ − gRF,m) ∈ C2

β+2(Y, gψ) and Rmgψ = O(R−2−β) (Proposition 1.23). Then a result of
Minerbe [Min07, Theorem 2.5.9] (see also [CC15a]) asserts that we automatically end up with a
cubic rate decay of the curvature. 2

Remark 1.24. We conclude this section by completing Remark 1.15, about the order of
approximation on the prototype metric gm needed prior to its corrections. We can indeed observe
that making gm Ricci-flat near infinity, or constructing a Bianchi gauge for gψ would only require

to start with an error term gm− f [ in C0,α
δ (f [); now, improving the regularity after the gauge (in

view of making our metric globally Ricci-flat by Theorem 1.16) does require a C1,α
δ (f [) error term,

hence the O(r−8) of Lemma 1.6 and (14), as sketched above. Also, the improvement of regularity
up to infinite differentiation order is fairly automatic once the Bianchi gauge is reached, hence
our choice of stating Theorem 1.16 under this shape, which does not require much more effort
than a possible lower-order version.

1.5 Verification of the technical Lemmas 1.10 and 1.14
We conclude this part by the left-over proofs of Lemmas 1.10 and 1.14, both useful in the gluing
performed in § 1.3. Recall that on the one hand, Lemma 1.10 is about verifying the asymptotics
at different orders of a function ψc, the hessian of which is meant to approximate the 2-form
θ2 + iθ3 in the Taub-NUT framework, although such an approximation is likely to be vain in the
Euclidean setting; and that on the other hand, Lemma 1.14 consists of saying that even though
f [ = i∗f , with i a diffeomorphism of R4 better adapted to the Euclidean scope, the transition
between f and f [ is relatively harmless.

1.5.1 Proof of Lemma 1.10.

Asymptotics of ψc and its successive derivatives. We first look at the first point of the statement
of Lemma 1.10. Since ψc is S1-invariant when looked at on C2 (recall that the S1-action on C2

is given by α · (z1, z2) = (eiαz1, e
−iαz2)), or in other words is a function of y1, y2, y3 (recall in

particular that 2r2 = R cosh(4my1) + y1 sinh(4my1), following (5) and the definitions of y1 and
R given in § 1.2.2), we have dψc = (∂ψc/∂y1)dy1 + (∂ψc/∂y2)dy2 + (∂ψc/∂y3)dy3, and one can
see as well the partial derivatives ∂ψc/∂y` as functions of the yj only. If we thus prove here that
for any p, q, s > 0 such that p+ q + s 6 4,

∂p+q+sψc
∂yp1∂y

q
2∂y

s
3

= O(R−1−q−s), (29)

we will get the desired estimates, since we moreover know that |(∇f )`dyj |f = O(R−1−`) for all
` > 1 and j = 1, 2, 3.

The estimate (29) at order 0 is immediate, since sinh(4my1) = O(R−1r2); this follows from
the identity 2r2 = R cosh(4my1) + y1 sinh(4my1). What is thus clearly to be seen is that each
time we differentiate with respect to y2 or y3, we win an R−1, and each time we differentiate
with respect to y1, we lose nothing. Let us see how it goes at order 1, that is when p+ q+ s = 1.
If p = 1 and q = s = 0, then (near infinity, where χ(R) ≡ 1)
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∂ψc
∂y1

= −4(y2 + iy3)

(
4m cosh(4my1)

2Rr2
− y1 sinh(4my1)

2r2R3
− sinh(4my1)

4r4R

∂(2r2)

∂y1

)
(30)

and ∂(2r2)/∂y1 = 2V (y1 cosh(4my1) +R sinh(4my1)) (recall that V = (1 + 4mR)/2R), so that,
after simplifying

∂ψc
∂y1

= −4(y2 + iy3)

(
m

r4
− 1

R3
+

1

4r4R

)
,

and this is O(R−1), since r−2 = O(R−1) (as R = O(r2)).
If q = 1 and p = s = 0, then

∂ψc
∂y2

= −2
sinh(4my1)

r2R
− 2(y2 + iy3) sinh(4my1)

(
y2

r2R3
+
y2 cosh(4my1)

2r4R2

)
,

since ∂(2r2)/∂y2 = (y2/R) cosh(4my1). As sinh(4my1) and cosh(4my1) are O(r2R−1), we end up
with ∂ψc/∂y2 = O(r2/(R2r2)) + O(R · r2/R · (r−2R−2 + r2/R · r−4R−1)) = O(R−2). The case
s = 1 and p = s = 0, i.e. the estimate on ∂ψc/∂y3, is done by substituting y3 to y2.

In a nutshell, we win one order each time we differentiate y2, y3, R and r2 with respect
to y2 or y3, which moreover kills functions of y1 such as sinh(4my1); we win one order as well
when differentiating y2, y3 and R with respect to y1, but this does not hold any more for r2 or
functions like sinh(4my1). More formally, using explicit formulas for the ∂(2r2)/∂yj , j = 1, 2, 3,
we can easily prove by induction that for any p, q, s there exists a polynomial Qp,q,s of total
degree 6 (1 + p+ q + s) in its first two variables, and 2 + 3p+ 2(q + s) in total, such that

∂p+q+sψc
∂yp1∂y

q
2∂y

s
3

=
Qp,q,s(Re

±4my1 , y1e
±4my1 , R, y1, y2, y3)

(2r2)1+p+q+sR2(1+p+q+s)
,

for instance,Q1,0,0(Re±4my1 , y1e
±4my1 , R, y1, y2, y3) = 4(y2+iy3)[(R cosh(4my1)+y1 sinh(4my1))2

−R2 − 4R3]. If now P (ξ1, ξ2, η1, . . . , η4) = ξa11 ξa22 ηb11 · · · η
b4
4 is one of the monomials appearing in

Qp,q,s and a := a1 +a2, b := b1 + · · ·+ b4 so that a 6 2(1 +p+ q+s) and a+ b 6 2 + 3p+ 2(q+s),
since Re±4my1 , y1e

±4my1 = O(r2), we get that

P (Re±4my1 , y1e
±4my1 , R, y1, y2, y3)

(r2)1+p+q+sR2+2(p+q+s)
= O

(
(r2)aRb

(r2)1+p+q+sR2(1+p+q+s)

)
,

and this is O(r2a−2(1+p+q+s)Rb−2(1+p+q+s)); since a 6 1 + p + q + s and r−2 = O(R−1), this
is finally O(Ra+b−3(1+p+q+s)), which in turn is O(R−(1+q+s)) since a + b 6 2 + 3p + 2(q + s).
Therefore ∂p+q+sψc/∂y

p
1∂y

q
2∂y

s
3 = O(R−(1+q+s)), and this settles the proof of point (i) of the

statement.

Asymptotics of θ2+iθ3, and comparison with ddcI1ψc and ddc
IY1
ψc. We thus come now to point (ii)

of this statement. We do it for ` = 0; it will become clear from this that the subsequent estimates
could be dealt with in an analogous way. Our strategy for proving the desired estimate is the
following: first we restrict ourselves to ddcI1ψc; next we decompose ddcI1ψc − (θ2 + iθ3) into its
dy1 ∧ η-component and its dy1 ∧ η-free component; we then observe that the dy1 ∧ η-free
components of both ddcI1ψc and (θ2 + iθ3) have already the size we want, whereas we need
to look at the dy1 ∧ η-component of the very difference [ddcI1ψc − (θ2 + iθ3)] to reach the desired
estimate. We conclude by collecting together these estimates, and settling the case of the error
term d(IY1 − I1)dψc.
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Since ψc is S1-invariant,

ddcI1ψc = V −1

(
∂2ψc
∂y2

1

− V −1 ∂V

∂y1

∂ψc
∂y1

)
dy1 ∧ η +

(
∂2ψc
∂y2

2

+
∂2ψc
∂y2

3

+ V −1 ∂V

∂y1

∂ψc
∂y1

)
dy2 ∧ dy3

+V −1

(
∂2ψc
∂y1∂y2

− V −1 ∂V

∂y2

∂ψc
∂y1

)
(dy2 ∧ η − V dy3 ∧ dy1)

+V −1

(
∂2ψc
∂y1∂y3

− V −1 ∂V

∂y3

∂ψc
∂y1

)
(dy3 ∧ η − V dy1 ∧ dy2),

and since (ξ,−I1V ξ, ζ, I1ζ) is the dual frame of (η, dy1, dy2, dy3) and (θ2 + iθ3) is (1, 1) for I1,

θ2 + iθ3 = V (θ2 + iθ3)(ξ, I1ξ)dy1 ∧ η + (θ2 + iθ3)(ζ, I1ζ)dy2 ∧ dy3

+ (θ2 + iθ3)(ξ, I1ζ)(V dy1 ∧ dy2 − dy3 ∧ η)

+ (θ2 + iθ3)(ξ, ζ)(V dy3 ∧ dy1 − dy2 ∧ η). (31)

We already know that (on R > K), ∂ψc/∂y1 = −4(y2 + iy3)(m/r4−1/R3 +1/4r4R), thus (recall
that ∂(2r2)/∂y1 = V (|z1|2 − |z2|2))

∂2ψc
∂y2

1

= −4(y2 + iy3)

(
−2mV (|z1|2 − |z2|2)

r6
+

3y1

R5
− y1

4r4R3
− V (|z1|2 − |z2|2)

4r6R

)
,

the main term of which is 8mV (y2 + iy3)(|z1|2 − |z2|2)/r6, in the sense that it is O(R−1), whereas
the other summands are O(R−2). Moreover, from the estimates of point (i) and the fact that
∂V/∂yj = O(R−2), j = 1, 2, 3, we get that

ddcI1ψc =
8mV (y2 + iy3)(|z1|2 − |z2|2)

r6
dy1 ∧ η +O(R−2),

when estimated with respect to f .
Now recall that αj = Ijrdr, j = 1, 2, 3, and observe that

θ2 + iθ3 =
rdr ∧ α2 − α3 ∧ α1 + irdr ∧ α3 − iα1 ∧ α2

r6
=

(rdr − iα1) ∧ (α2 + iα3)

r6

=
(z1dz1 + z2dz2) ∧ (−z2dz1 + z1dz2)

r6
=
ϑ ∧ φ
r6

,

if we set ϑ = z1dz1 + z2dz2 and φ = −z2dz1 + z1dz2. Direct computations, use e.g. (10), give

ϑ(ξ) = −(|z1|2 − |z2|2), ϑ(ζ) =
2z1z2

iR
cosh(4my1),

φ(ξ) = −2iz1z2, φ(ζ) = − y1

2iR
.

In particular, ϑ(ξ) = O(r2), ϑ(ζ) = O(r2R−1), φ(ξ) = O(R) and φ(ζ) = O(1). Moreover, since
ϑ (respectively φ) is (0, 1) (respectively (1, 0)) for I1, (θ2 + iθ3)(ξ, I1ξ) = −(2i/r6)ϑ(ξ)φ(ξ) =
8mz1z2(|z1|2 − |z2|2)/r6. Therefore, from (31) and since ϑ (respectively φ) has type (0, 1)
(respectively (1, 0)) for I1, using r−2 = O(R−1) when necessary, we get

θ2 + iθ3 =
8mV z1z2(|z1|2 − |z2|2)

r6
dy1 ∧ η +O(R−2).

with respect to f . Since y2 + iy3 = −iz1z2, we thus have |ddcI1ψc − (θ2 + iθ3)|f = O(R−2).
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We set ιY1 := IY1 −I1, and conclude with an estimate on |d(IY1 −I1)dψc|f = |dιY1 dψc|f , which is
controlled by |ιY1 |f |∇fdψc|f + |∇f ιY1 |f |dψc|f . But |ιY1 |f and |∇f ιY1 |f are O(r−2) hence O(R−1) (see
e.g. the proof of Proposition 1.12), and |dψc|f and |∇fdψc|f are O(R−1) as well from point (i),
and as a result |d(IY1 − I1)dψc|f = O(R−2).

This settles the case ` = 0 of the statement. Cases ` = 1 and 2 are done in the same way,
noticing in particular that when letting ∇f act on the (∇f )jψc or the (∇f )jιY1 , we keep the same
order of precision. 2

Remark 1.25. The function ψc is not so small with respect to e, at least at positive orders; for
instance, the best one seems able to do on its differential is |dψc|e = O(rR−1).

1.5.2 Comparison between f and f [: proof of Lemma 1.14. Before comparing the metrics,

and for this the 1-forms dy[j := i∗dyj , j = 1, 2, 3, and η[ := i∗η to their natural (‘unflat’)

analogues, we shall compare the y[j := i∗yj to the yj , j = 1, 2, 3.

Lemma 1.26. We have y[j − yj = O(R−1), j = 1, 2, 3. Consequently if R[ := i∗R, then R[−R =

O(R−1).

Proof of Lemma 1.26, estimates on (y[2 − y2) and (y[3 − y3). Since y2 = (1/2i)(z1z2 − z1z2), and
i(z1, z2) = (αz1, αz2) with α = 1+a/r4 by Lemma 1.1, it is clear that y[2 = α2y2 = y2+O(y2r

−4),
that is y[2 − y2 = O(Rr−4), and this is O(R−1); recall that R = O(r2).

Similarly, y3 = −1
2(z1z2 + z1z2), thus y[3 − y3 = y3(α2 − 1), which is O(R−1).

Estimate on (y[1 − y1). The case of y[1 is slightly more subtle, and for this we shall use the very
definition of y1. We fix (z1, z2) ∈ C2. Since i∗z1 = αz1, i∗z2 = αz2, if one sets u[ = i∗u and
v[ = i∗v, LeBrun’s formulas (5) become

α2|z1|2 = e2m[(u[)2−(v[)2](u[)2,

α2|z2|2 = e2m[(v[)2−(u[)2](v[)2,
(32)

which we rewrite as
|z1|2 = e2mα2[(u[/α)2−(v[/α)2](u[/α)2,

|z2|2 = e2mα2[(v[/α)2−(u[/α)2](v[/α)2.

These are precisely the equations verified by umα2 and vmα2 instead of u[/α and v[/α; by
uniqueness of the solutions when |z1| and |z2| are fixed, u[/α = umα2 and v[/α = vmα2 , that is
u[ = αumα2 and v[ = αvmα2 , and consequently y[1 = 1

2 [(u[)2 − (v[)2] = (α2/2)(u2
mα2 − v2

mα2) =
α2y1,mα2 .

Now still with (z1, z2) fixed, differentiating LeBrun’s equations with respect to the mass
parameter, µ say, since we also see m as fixed, and rearranging them gives

∂y1,µ

∂µ
= − 4Rµy1,µ

1 + 4µRµ
;

in particular y1,µ is a non-increasing (respectively non-decreasing) function of µ on {|z1|>|z2|}
(respectively on {|z2|>|z1|}).

Since α61, we have for instance on {|z1|>|z2|} the estimate

0 6 y1,m − y1,mα2 =

∫ mα2

m

4Rµy1,µ

1 + 4µRµ
dµ 6 y1,m

∫ mα2

m

dµ

µ
= 2y1,m logα,
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and similarly 0 6 y1,mα2 − y1,m 6 −2y1,m logα on {|z2|>|z1|}. Since in both cases logα =
O(r−4) = O(R−2), we have

y1,mα2 − y1,m = O(y1,mR
−2) = O(R−1).

Therefore y[1 − y1 = α2(y1,mα2 − y1) + (α2 − 1)y1 = O(R−1) as claimed, since α− 1 = O(r−4) =
O(R−2) and in particular α ∼ 1 near infinity.

The estimate R[ −R = O(R−1) comes as follows: (R[ −R)(R[ +R) = (R[)2 −R2 = (y[1)2 −
y2

1 +(y[2)2−y2
2 +(y[3)2−y2

3 = O(1) from the previous estimates, and thus R[−R = O(1/(R[ +R)),
which in particular is O(R−1). 2

Estimates on the dy[j − dyj , j = 1, 2, 3, and η[ − η. We come back to the proof of Lemma 1.14
itself, and start with analysing the transition involved by i at the level of 1-forms. We adopt by
places the following elementary strategy to evaluate the gap between our fundamental 1-forms
and their pull-backs by i: for γ one of the dyj or η, we write

γ[ = γ[(ξ)η + V −1γ[(−I1ξ)dy1 + γ[(ζ)dy2 + γ[(I1ζ)dy3,

and then evaluate the difference γ[(ξ) − γ(ξ), and the subsequent ones. We start with the easy
cases of dy2 and dy3; for more concision, we use the complex expression γ = dy2 + idy3.

Keep the notation i(z1, z2) = (αz1, αz2); then i∗(dy2 + idy3) = d(α2(y2 + iy3)) = α2(dy2 +
idy3)+(y2+iy3)d(α2). Since α = 1+O(r−4), we focus on d(α2), or rather on dα. As α is invariant
under the usual action of S1, we already know that dα(ξ) = 0. Moreover,

dα = −2a
r2d(r2)

(r4)2
, (33)

which we keep under this shape since d(r2) = z1dz1 + z1dz1 + z2dz2 + z2dz2 is easy to evaluate
against I1ξ, ζ and I1ζ. As a matter of fact, all computations done:

dα(−I1ξ) = −4a
|z1|4 − |z2|4

(κ+ r4)2
, dα(ζ) =

−8ar2

(r4)2

y2 cosh(4my1)

R
,

dα(I1ζ) =
−8ar2

(r4)2

y3 cosh(4my1)

R
.

(34)

In particular, dα(−I1ξ) = O(r−4) = O(R−2), and dα(ζ) = O(R−1r−4) and dα(I1ζ) = O(R−1r−4),
which are O(R−3). Since α ∼ 1 and y2+iy3 = O(R), we end up with (dy[2+idy[3)(−I1ζ) = O(R−2),

(dy[2 + idy[3)(ζ) = 1 +O(R−1) and (dy[2 + idyI1[3 )(ζ) = i+O(R−1). In other words,

|(dy[2 + idy[3)− (dy2 + idy3)|f = O(R−1).

In a way similar to what is done above on y[1 − y1, the estimate on dy[1 − dy1 requires little
extra care. First, likewise y1, y[1 is invariant under the action of S1, since i commutes to this
action; therefore dy[1(ξ) = 0. Next, pulling-back (A.5) for dy1 (proof of Proposition A.9 below)
by i gives

dy[1 =
1

4mR[
(e−4my[1d(α2|z1|2)− e4my[1d(α2|z2|2)).

When evaluating dy[1, we decompose the term e−4my[1d(α2|z1|2) − e4my[1d(α2|z2|2) into σ :=

α2(e−4my[1d(|z1|2) − e4my[1d(|z2|2)) and ρ := (e−4my[1 |z1|2 − e4my[1 |z2|2)d(α2) = α−2((u[)2 −
(v[)2)d(α2) = 4α−1y[1dα.
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Now σ(−I1ξ) = 2α2(|z1|2e−4my[1 + |z2|2e4my[1) = 4R[, and by (34), ρ(−I1ξ) = 4α−1y[1dα
(−I1ξ) = −16aα−1y[1(|z1|4 − |z2|4)/(r4)2; this way

dy[1(−I1ξ) = (V [)−1 − 8aα−1 y[1
1 + 4mR[

|z1|4 − |z2|4

(r4)2
, (35)

where V [ = i∗V = (1 + 4mR[)/2R[. Since the last summand is O(r−4) and thus O(R−2), and
(V [)−1−V −1 = 2R[/(1 + 4mR[)−2R/(1 + 4mR) = 2(R[ −R)/(1 + 4mR[)(1 + 4mR) =O(R−3),
we have dy[1(−I1ξ) = V +O(R−2).

Moreover σ(ζ) = (α2/2iR)(e4m(y1−y[1)(z1z2 − z1z2) − e−4m(y1−y[1)(z1z2 − z1z2)) = α2(y2/R)
sinh[4m(y1 − y[1)], and ρ(ζ) = 4α−1y[1dα(ζ) = −32aα−1(r2/(r4)2)y[1y2 cosh(4my1)/R by (34).
Thus

dy[1(ζ) = α2 y2

2R(1 + 4mR[)
sinh[4m(y1 − y[1)]− 16aα−1 r2

(r4)2

y[1y2 cosh(4my1)

R(1 + 4mR[)
; (36)

since y1 − y[1 = O(R−1), the first summand is O(R−2), whereas since cosh(4my1) = O(r2R−1),
the second summand is O(R−1r−4), that is O(R−3), and as a result dy[1(ζ) = O(R−2). Similarly
dy[1(I1ζ) = O(R−2) (just replace y2 by y3 in the last equality above).

Estimate on η[. We conclude our estimate of |f [ − f |f by the estimate on η[. We start
with a formula for η[; since on {z1 6= 0}, d(i∗z1)/i∗z1 − d(i∗z1)/i∗z1 = d(α2z1)/α2z1 −
d(α2z1)/α2z1 = dz1/z1 + d(α2)/α2 − dz1/z1 − d(α2)/α2 = dz1/z1 − dz1/z1, and similarly
i∗(dz2/z2−dz2/z2) = dz2/z2−dz2/z2 on {z2 6= 0}, we have on {z1z2 6= 0}, according to the
identity η[ = (i/4R)[u2(dz1/z1 − dz1/z1)− v2(dz2/z2 − dz2/z2)] (Lemma A.6 in the appendix):

η[ =
i

4R[

[
(u[)2

(
dz1

z1
− dz1

z1

)
− (v[)2

(
dz2

z2
− dz2

z2

)]
.

From this we compute η[(ξ) = 1 and η[(−I1ξ) = 0. We also compute η[(ζ) as follows:

η[(ζ) =
i

4R[
1

2iR

[
(u[)2e4my1

(
z2

z1
− z2

z1

)
− (v[)2e−4my1

(
z1

z2
− z1

z2

)]
=

i

4R[
α2

2iR

[
(u[)2e4my1 z1z2 − z1z2

α2|z1|2
− (v[)2e−4my1 z1z2 − z1z2

α2|z2|2

]
=
iα2y2

2R[R
sinh[4m(y1 − y[1)],

since from the pulled-back LeBrun’s equations (32), (u[)2/α2|z1|2 = e−4my[1 and (v[)2/α2|z2|2

= e4my[1 . Similarly η[(I1ζ) = (iα2y3/2R
[R) sinh[4m(y1−y[1)], and since (y1−y[1) = O(R−1), both

η[(ζ) and η[(I1ζ) are O(R−2). Gathering those estimates, we get that

|η[ − η|f = O(R−2),

which is better than needed.
Recall that f = V (dy2

1 + dy2
2 + dy2

3) + V −1η; since V −1 − (V [)−1, and similarly V − V [, are
O(R−3), in view of the estimates we have just proved on the dyj − dy[j and η[ − η, we have

|f [ − f |f = O(R−1).
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Estimate on ∇f (f− f [). We now prove that |∇f (f− f [)|f = O(R−1), which is the same as proving

that |∇f f [|f = O(R−1). In view of the previous estimates on V − V [, V −1 − (V [)−1, on the

dyj − dy[j and on η − η[, and since the ∇fdyj and ∇fη are O(R−2) for f , it will be sufficient for

our purpose to see that the ∇f (dyj − dy[j) and ∇f (η − η[) are O(R−1) for f .

We start with ∇f (dy2 − dy[2) and ∇f (dy3 − dy[3). We have d(y2 + iy3)−d(y[2+iy[3)=(α2−1)

d(y2 + iy3) + 2(y2 + iy3)αdα, we know that α − 1 = O(r−4) = O(R−2), and we actually proved

that |dα|f = O(r−4) = O(R−2). Similarly, we will be done if we prove that |∇fdα|f is still O(r−4).

Since α is S1-invariant, dα = (∂α/∂y1)dy1 + (∂α/∂y2)dy2 + (∂α/∂y3)dy3; the ∂α/∂yj are

S1-invariant as well, and thus ∇fdα =
∑3

j,`=1 (∂2α/∂yj∂y`)dyj ⊗ dy` +
∑3

j=1 (∂α/∂yj)∇fdyj .

The last summand is O(R−2r−4), since the ∂α/∂yj are O(r−4) and the |∇fdyj |f are O(R−2); we

thus focus on the hessian
∑3

j,`=1 (∂2α/∂yj∂y`)dyj ⊗ dy`, and all we need to prove is ∂2α/∂yj∂y`
= O(r−4) (actually, O(R−2)) for all j, `. Now in terms of the yj variables,

α = 1 +
a

((y2
1 + y2

2 + y2
3)1/2 cosh(4my1) + y1 sinh(4my1))2

,

and using that e4m|y1| = O(Rr−2), proving that ∂2α/∂yj∂y` = O((R cosh(4my1) + y1 sinh

(4my1))−2) = O(r−4) for all j, ` amounts to an easy exercise. This settles the cases of

∇f (dy2 − dy[2) and ∇f (dy3 − dy[3).

Since our treatment of dy1 − dy[1 is a little less conventional, we shall see now how goes that

of ∇f (dy1 − dy[1). According to (35) and (36) and the previous estimates on the derivatives of

r2, it is enough to see that dy[1 = O(1) and dR[ = O(1), which are known for the previous step,

giving in particular d sinh[4m(y1− y[1)] = cosh[4m(y1− y[1)]d(y1− y[1), which is O(R−1) (actually

O(R−2)) for f since cosh[4m(y1 − y[1)] ∼ 1 and |d(y1 − y[1)|f = O(R−2).

The treatment of η[ is similar.

We prove finally that |(∇f )2(f − f [)|f = O(R−1) with the same techniques. 2

2. Asymptotics of ALE hyperkähler metrics

We prove in this part an explicit version of Theorem 0.3; we indeed compute explicitly the first

non-vanishing perturbative terms of the hyperkähler data of the ALE gravitational instantons

seen as deformations of Kleinian singularities. This gives in particular the asymptotics stated in

the previous part, Lemma 1.6, which are crucial in our construction of ALF metrics, as mentioned

already.

2.1 Kronheimer’s ALE instantons

2.1.1 Basic facts and notation. We introduce a few notions about the ALE gravitational

instantons constructed by Kronheimer in [Kro89a], and which is exhaustive in the sense that any

ALE gravitational instanton is isomorphic to one of Kronheimer’s list, so as to state properly the

main result of this part, i.e. Theorem 2.1 of the next paragraph, dealing with precise asymptotics

of those asymptotically Euclidean spaces.

Finite subgroups of SU(2), and McKay correspondence. The classification of the finite subgroup

of SU(2) is well known: up to conjugation, in addition to the binary dihedral groups Dk used in

Part 1, one has the cyclic groups of order k > 2, generated by
(
e2iπ/k 0

0 e−2iπ/k

)
, on the one hand, and

the binary tetrahedral, octahedral and icosahedral groups of respective orders 24, 48 and 120,
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which admit more complicated generators; all we need to notice for further purpose is that

they respectively contain D2, D3 and D5 (among others) as subgroups. When no specification

is needed, we shall adopt the notation Γ for any fixed group among these finite subgroups of

SU(2).

ALE instantons modelled on R4/Γ. Kronheimer’s construction now consists in producing

asymptotically Euclidean hyperkähler metrics on smooth deformations of the Kleinian singularity

C2/Γ, which are diffeomorphic to the minimal resolution of C2/Γ. More precisely, the

hyperkähler manifolds Kronheimer produces are parametrised as follows: since Γ is a finite

subgroup of SU(2), McKay’s correspondence [McK79] associates a simple Lie algebra, gΓ say, to

this group; for instance, the Lie algebra associated to Dk is so(2k + 4) (this Lie algebra is also

referred to as Dk+2; we prefer the so notation which is less confusing when working with binary

dihedral groups!). Pick a (real) Cartan subalgebra h of gΓ. Then:

For any ζ ∈ h⊗R3 outside a codimension 3 set D, there exists an ALE gravitational instanton

(Xζ , gζ , I
ζ
1 , I

ζ
2 , I

ζ
3 ) modelled on R4/Γ at infinity in the sense that there exists a diffeomorphism

Φζ between infinities of Xζ and R4/Γ such that Φζ∗gζ − e = O(r−4), Φζ∗I
ζ
j − Ij = O(r−4),

j = 1, 2, 3.

The O are here understood in the asymptotically Euclidean setting, i.e. ε = O(r−a) means

that for all ` > 0, |(∇e)`ε|e = O(r−a−`); since we remain in this setting until the end of this part,

we shall keep this convention throughout the following §§ 2.3 and 2.4.

2.1.2 Asymptotics of ALE instantons: statement of the theorem. Up to a judicious choice

of the ALE diffeomorphism Φζ , which actually is obtained from Kronheimer’s construction, one

can be more accurate about the O(r−4)-error term evoked above. This is the purpose of the main

result of this part.

Theorem 2.1. Given ζ ∈ h⊗R3−D, one can choose the diffeomorphism Φζ between infinities of

Xζ and R4/Γ such that Φζ∗gζ−e = hζ +O(r−6), Φζ∗I
ζ
1 −I1 = ιζ1 +O(r−6) and if ωζ1 := gζ(I

ζ
1 ·, ·),

then Φζ∗ω
ζ
1 − ωe

1 = $ζ
1 +O(r−6), where hζ , ι

ζ
1 and $ζ

1 are given by

hζ = −‖Γ‖
∑

(j,k,`)∈I3

|ζj |2
(rdr)2 + α2

j − α2
k − α2

`

r6
− 2‖Γ‖〈ζ1, ζ2〉

α1 · α2 − rdr · α3

r6

− 2‖Γ‖〈ζ1, ζ3〉
α1 · α3 + rdr · α2

r6
− 2‖Γ‖〈ζ2, ζ3〉

α2 · α3 − rdr · α1

r6
, (37)

with I3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}; ιζ1 is e-symmetric and satisfies the coupling

e(ιζ1·, ·) = ‖Γ‖(|ζ3|2 − |ζ2|2)
α2 · α3

r6
− ‖Γ‖(|ζ3|2 + |ζ2|2)

rdr · α1

r6

− 2‖Γ‖〈ζ2, ζ3〉
(rdr)2 + α2

3 − α2
1 − α2

2

r6
; (38)

and

$ζ
1 = −‖Γ‖|ζ1|2θ1 − 2‖Γ‖〈ζ1, ζ2〉θ2 − 2‖Γ‖〈ζ1, ζ3〉θ3; (39)

here ‖Γ‖ = c|Γ| for a universal constant c > 0.

Moreover, Φζ∗ volgζ = Ωe, and if Γ is binary dihedral, tetrahedral, octahedral or icosahedral,

the error term can be taken of size O(r−8).
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Recall the notation αj = Ijrdr, j = 1, 2, 3, and θa = (rdr ∧ αa − αb ∧ αc)/r6, (a, b, c) ∈ I3.
The scalar product on h used in this statement is the one induced by the Killing form.

The rest of this part is devoted to the proof of this result. In the next section we specify
the meaning of the space of parameters h − D; in particular we see how h is identified to the
degree 2 homology of our Kronheimer’s instantons, which is helpful in computing the constant
c of the statement, as well as the coefficients appearing in (37)–(39). We also fix the choice of
the diffeomorphisms Φζ , and check their properties on volume forms (Lemma 2.5). To make the
rest of our strategy a bit more explicit, let us mention here:

(i) the diffeomorphisms we fix are a natural by-product of Kronheimer’s construction;

(ii) besides their volume properties, their main feature is to put automatically the instanton
metrics, seen as deformations of the Euclidean metric, in a special gauge at leading order;
with the notation of Theorem 2.1, this can be stated as:

tre(hζ) = 0 and δehζ = 0

(Proposition 2.7), and exploits the volume conservation property;

(iii) thanks to the gauge (and its proof), we prove that the $ζ
1 (and their analogues $ζ

2 and $ζ
3)

are linear combinations of the ddcIj (1/r
2) = 4θj , j = 1, 2, 3 (Proposition 2.10); from the way

Kronheimer’s diffeomorphisms are constructed (compositions of asymptotically isometric
biholomorphisms for successive complex structures in a precise order), we explicitly compute
the coefficients of the θj (Proposition 2.12);

(iv) we finally convert these results in the explicit writing of hζ and ιζ1; these different steps are
the object of § 2.3, and we conclude the proof of Theorem 2.1 in § 2.4 by ruling out the
O(r−6)-error terms, which pertains to the same circle of ideas.

As a conclusion to this program, let us notice that, in general (that is, using asymptotically
isometric diffeomorphism a priori different from Kronheimer’s ones), the gauge of point (ii) is
likely to be recovered from an analytic Bianchi gauge process, which would allow us to deal with
point (ii) and point (iii), first half; however, Kronheimer’s charts volume condition reveals quite
useful in point (iii), second half, and these charts readily allow us to pass to point (iv), hence
our choice to use them here.

2.2 Precisions on Kronheimer’s construction
2.2.1 The degree 2 homology/cohomology.

The ‘forbidden set’ D. We keep the notation Γ for one of the subgroups of SU(2) mentioned
in the previous section. We saw that Kronheimer’s ALE instantons asymptotic to R4/Γ are
parametrised by a triple ζ = (ζ1, ζ2, ζ3) ∈ h ⊗ R3 − D, with h a real Cartan subalgebra of
the Lie algebra associated to Γ by McKay correspondence; for instance, if Γ = Dk, k > 2,
then one can take h as the Cartan subalgebra of so(2k + 4) constituted by matrices of shape
diag(λ1, . . . , λk+2,−λ1, . . . ,−λk+2). We shall first be more specific about the ‘forbidden set’ D;
according to [Kro89a, Corollary 2.10], it is the union of codimension 3 subspaces Dθ ⊗ R3 over
a positive root system of h, with Dθ the kernels of the concerned roots; as such, it thus has
codimension 3 in h.

Topology of Xζ . Recall the notation (Xζ , gζ , I
ζ
1 , I

ζ
2 , I

ζ
3 ) for the hyperkähler manifold of admissible

parameter ζ (this is actually also defined as a hyperkähler orbifold if ζ ∈ D). Those spaces are
diffeomorphic to the minimal resolution of C2/Γ (for I1, say) [Kro89a, Corollary 3.12]; as such
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they are simply connected and, again when Γ = Dk, their rank 2 topology is given by the diagram

︸ ︷︷ ︸
k vertices

(which is nothing but the Dynkin diagram associated to so(2k+4)), where each vertex represents
the class of a sphere of −2 self-intersection, and where two vertices are linked by an edge if and
only if the corresponding spheres intersect, in which case they intersect normally at one point.

Furthermore, there is an identification between h and H2(Xζ ,R) ' H2
cpct(Xζ ,R) (see [Joy00,

p. 183] for this ‘'’) such that:

• the cohomology class of the Kähler form ωζj := gζ(I
ζ
j ·, ·) is ζj , j = 1, 2, 3;

• H2(Xζ ,Z) is identified with the root lattice of h; more precisely, given simple roots of h and
the corresponding basis of H2(Xζ ,Z), the intersection matrix of this basis is exactly the
opposite of the Cartan matrix of the simple roots, see [Kro89a, p. 678]; in the case Γ = Dk,
k > 2, this matrix is thus the (k + 2)× (k + 2) matrix

2 0 −1 0 · · · 0

0 2 −1 0
...

−1 −1 2 −1
. . .

...

0 0 −1
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · 0 −1 2


.

From the latter, we deduce the following lemma, identifying the cup-product ∪ on H2
cpct(Xζ ,R),

or between H2
cpct(Xζ ,R) and H2(Xζ ,R), and the scalar product on h induced by the Killing

form, up to signs.

Lemma 2.2. Consider α, β ∈ H2(Xζ ,R), such that α or β has compact support. Then α ∪ β =∫
Xζ
α ∧ β = −〈α, β〉, where the latter is computed with seeing α and β in h via the above

identification between H2(Xζ ,R) and h.

Proof. We do it for Γ = Dk, k > 2. By Poincaré duality, the computation of α ∪ β amounts to
that of intersection numbers for a basis of H2(Xζ ,Z). But through the identification between
H2(Xζ ,Z) and the root lattice of h above, the matrix of intersection numbers on the one hand
and that of scalar products of the corresponding basis (or dually, of the simple roots) are the
same up to signs. 2

Period matrix. For ζ ∈ h−D, consider as above a basis Σ`, ` = 1, . . . , r say, of H2(Xζ ,Z); from
the previous paragraph, the period matrix

P (ζ) = (Pj`(ζ))16j63
16`6r

:=

(∫
Σ`

ωζj

)
16j63
16`6r

can be computed thanks to the identities [ωζj ] = ζj . One easily sees that these P (ζ) = P (ξ)
if and only if ζ = ξ. With this formalism Kronheimer’s classification [Kro89b, Theorem 1.3]
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can be stated as: two ALE gravitational instantons are isomorphic as hyperkähler manifolds
if and only if they have the same period matrix. From this we deduce the following (see also
[BR12, p. 8, (4)]).

Lemma 2.3. Let ζ ∈ h − D, and let A ∈ SO(3) act on ζ and the complex structures Iζj as in

§ 1.1. Then there exists a tri-holomorphic isometry between (Xζ , gζ , (AI
ζ)1, (AI

ζ)2, (AI
ζ)3) and

(XAζ , gAζ , I
Aζ
1 , IAζ2 , IAζ3 ).

Proof. Simply check that in both cases, the period matrix is AP (ζ), and apply Kronheimer’s
classification theorem. 2

2.2.2 Analytic expansions.

Choice of the chart at infinity. Consider a parameter ζ = (ζ1, ζ2, ζ3) ∈ h⊗ R3 and set

ζ ′ = (0, ζ2, ζ3), ζ ′′ = (0, 0, ζ3);

we will keep this notation below. As described in [Kro89a, p. 677], there exist proper continuous
maps

λζ1 : (Xζ , gζ , I
ζ
1 , I

ζ
2 , I

ζ
3 ) −→ (Xζ′ , gζ′ , I

ζ′

1 , I
ζ′

2 , I
ζ′

3 ),

λζ
′

2 : (Xζ′ , gζ′ , I
ζ′

1 , I
ζ′

2 , I
ζ′

3 ) −→ (Xζ′′ , gζ′′ , I
ζ′′

1 , Iζ
′′

2 , Iζ
′′

3 ),

λζ
′′

3 : (Xζ′′ , gζ′′ , I
ζ′′

1 , Iζ
′′

2 , Iζ
′′

3 ) −→ (R4/Γ, e, I1, I2, I3),

which are diffeomorphisms (at least) on (λζ
′′

3 ◦λ
ζ′

2 ◦λ
ζ
1)−1({0}), (λζ

′′

3 ◦λ
ζ′

2 )−1({0}), and (λζ
′′

3 )−1({0})
respectively. As soon as ζ ′′ /∈ D (respectively ζ ′, ζ /∈ D), λζ

′′

3 (respectively λζ
′

2 , λ
ζ
1) is a resolution

of singularities for the third (respectively the second, the first) pair of complex structures; in

particular, if ζ ′ /∈D (respectively if ζ /∈D), then λζ
′

2 (respectively λζ1) is smooth, and holomorphic
for the appropriate pair of complex structures.

To get a ‘coordinate chart’ on Xζ (or rather, to view objects on R4/Γ), one sets

Fζ : =(λζ
′′

3 ◦ λ
ζ′

2 ◦ λ
ζ
1)−1 : (R4\{0})/Γ −→ Xζ

(beware this is not exactly the same order of composition as Kronheimer’s ‘coordinate chart’,
but this is not a problem by symmetry).

‘Homogeneity’ and consequences. We shall see that the Fζ are going be the Φζ of Theorem 2.1.
For now, according to [Kro89a, Proposition 3.14] and its proof, we have for any ζ the converging
expansion

Fζ
∗gζ = e +

∞∑
j=2

h
(j)
ζ ,

with h
(j)
ζ a homogeneous polynomial of degree j in ζ with coefficients homogeneous symmetric

2-tensors on R4/Γ, more precisely, if κs is the dilation x 7→ sx of R4 for any positive s,

κ∗sh
(j)
ζ = s−2(j−1)h

(j)
ζ . We will thus be concerned with determining explicitly the term h

(2)
ζ , and

moreover with showing that when Γ contains a binary dihedral group then h
(3)
ζ = 0. For now,

observe that Kronheimer’s arguments, consisting in analyticity and homogeneity properties of
his construction, can also be used to give the existence of analogous expansions of other tensors
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such as the complex structures, and therefore the Kähler forms, or the volume forms as well. We
can write for instance

Fζ
∗Iζ1 = I1 +

∞∑
j=1

ιζ1,j , (40)

where ιζ1,j is a homogeneous polynomial of degree j in ζ with coefficients (1, 1)-tensors, satisfying

κ∗sι
ζ
1,j = s−2jιζ1,j (and again, the lower-order term ιζ1,1 vanishes, but we will find this fact again

below).

2.2.3 Minimal resolutions, invariance of the holomorphic symplectic structure. We know

that as soon as ζ /∈ D, λζ1 : (Xζ , I
ζ
1 ) → (Xζ′ , I

ζ′

1 ) is a minimal resolution, and a similar statement

holds for λζ
′

2 : (Xζ′ , I
ζ′

2 ) → (Xζ′′ , I
ζ′′

2 ) and λζ
′′

3 : (Xζ′′ , I
ζ′′

3 ) → (R4/Γ, I3) whenever ζ ′ /∈ D or
ζ ′′ /∈ D, respectively [Kro89a, p. 675].

As seen already, those maps can happen to be smooth, for instance λζ1 is, when ζ, ζ ′ /∈ D; we
are then only left with their holomorphicity property. This can be used nevertheless with their
asymptotic preserving of the hyperkähler structure, to see that they do preserve the appropriate
holomorphic symplectic structure.

Lemma 2.4. Fix ζ ∈ h⊗R3, and assume that ζ ′′ /∈D. Then the map λζ
′′

3 verifies (λζ
′′

3 )∗(ωe
1+iωe

2) =

ωζ
′′

1 + iωζ
′′

2 .

Similarly, if ζ ′, ζ ′′ /∈D, then (λζ
′

2 )∗(ωζ
′′

3 +iωζ
′′

1 ) = ωζ
′

3 +iωζ
′

1 ; if ζ, ζ ′ /∈D, then (λζ1)∗(ωζ
′

2 +iωζ
′

3 ) =

ωζ2 + iωζ3 .

Proof. The assertion on λζ
′′

3 is actually classical, and can be settled in the following elementary

way. Call θ the 2-form (λζ
′′

3 )∗(ω
ζ′′

1 + iωζ
′′

2 ), well defined on (R4\{0})/Γ, pulled-back to R4\{0}.
Since λζ

′′

3 is holomorphic for the pair (Iζ
′′

3 , I3) and ωζ
′′

1 + iωζ
′′

2 is a holomorphic (2,0)-form for

Iζ
′′

3 , θ is a holomorphic (2,0)-form for I3, and can thus be written as f(ωe
1 + iωe

2), where f is
thus holomorphic for I3 on R4\{0}. By Hartogs’ lemma it can be extended to the whole R4;

however, since (λζ
′′

3 )∗ω
ζ′′

j = Fζ′′
∗ωζ

′′

j ∼ ωe
j near infinity on R4/Γ, j = 1, 2, which can be seen

as a consequence of the power series expansions analogous to (40) for Kähler forms, we get
that f tends to 1 at infinity. It is therefore constant, equal to 1, which exactly means that

(λζ
′′

3 )∗(ωe
1 + iωe

2) = ωζ
′′

1 + iωζ
′′

2 .

We deal with the assertion on λζ
′

2 in a somehow similar way. Since ζ ′, ζ ′′ /∈ D, λζ
′

2 is a global

diffeomorphism between the smooth Xζ′ and Xζ′′ , holomorphic for the pair (Iζ
′

2 , I
ζ′′

2 ); since

ωζ
′

3 + iωζ
′

1 trivialises K
(Xζ′ ,I

ζ′
2 )

and is a (2,0)-holomorphic form for Iζ
′

2 , (λζ
′

2 )∗(ωζ
′′

3 + iωζ
′′

1 ) can be

written as f(ωζ
′

3 + iωζ
′

1 ) with f a holomorphic function on (Xζ′ , I
ζ′

2 ). Again f tends to 1 near

the infinity of Xζ′ , since there (λζ
′

2 )∗ωζ
′′

j ∼ ω
ζ′

j , j = 1, 3. Moreover ωζ
′′

3 + iωζ
′′

1 never vanishes on

Xζ′′ , and so neither does f on Xζ′′ . We collect those observations by saying that log(|f |2) is a
gζ′-harmonic function on Xζ′ tending to zero at infinity, and thus identically vanishing. Since f
is holomorphic, it is not hard seeing that it is therefore constant, thus f ≡ 1, or in other words

(λζ
′

2 )∗(ωζ
′′

3 + iωζ
′′

1 ) = ωζ
′

3 + iωζ
′

1 .

The assertion on λζ1 is done in the exact same way. 2

An easy but fundamental consequence of the construction of Fζ via the λζj and the previous
lemma is the invariance of the volume form, which we state for ζ corresponding to smooth Xζ

so as to avoid useless technicalities.
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Lemma 2.5. The volume form Fζ
∗ volgζ does not depend on ζ ∈ h⊗R3−D, and is equal to the

standard Ωe.

Proof. Notice first that once we know that Fζ
∗ volgζ does not depend on ζ, the equality

Fζ
∗ volgζ = Ωe is a direct consequence of the expansion of Fζ

∗ volgζ as a power series of ζ,
the constant term of which is Ωe. To prove that Fζ

∗ volgζ is independent of ζ, we proceed within
three steps, considering first ζ ′′, and then ζ ′ and ζ. Even if ζ /∈ D, ζ ′ or ζ ′′ might lie in D;
we can however assume this is not the case without loss of generality, since Fζ

∗ volgζ can be

written as a power series of ζ. Now from the hyperkähler data (Xζ′′ , gζ′′ , I
ζ′′

1 , Iζ
′′

2 , Iζ
′′

3 ), we know

that volgζ′′ = 1
2(ωζ

′′

1 )2. Since Fζ′′
∗(ωζ

′′

1 ) = ωe
1 (the standard Kähler form on C2), we get that

Fζ′′
∗ volgζ′′ = Ωe.

Now consider Xζ′ ; we know that ωζ
′

3 is ‘preserved’ by λζ
′

2 , and therefore

Fζ′
∗ volgζ′ = 1

2Fζ′
∗(ωζ

′

3 )2 = 1
2Fζ′′

∗(λζ
′

2 )∗(ω
ζ′

3 )2 = 1
2Fζ′′

∗(ωζ
′′

3 )2 = Fζ′′
∗ volgζ′′ ,

the last equality coming from the fact that ωζ
′′

3 is one of the Kähler forms of the hyperkähler

structure (gζ′′ , I
ζ′′

1 , Iζ
′′

2 , Iζ
′′

3 ).

To conclude, we notice that ωζ3 is preserved by λζ1 i.e. ωζ3 = (λζ1)∗ωζ
′

3 , and thus

Fζ
∗ volgζ = 1

2Fζ
∗(ωζ3)2 = 1

2Fζ′
∗(λζ1)∗(ω

ζ
3)2 = 1

2Fζ′
∗(ωζ

′

3 )2 = Fζ′
∗ volgζ′ ;

here we could also have used the forms ωζ2 and ωζ
′

2 . To make a long story short, the reason for

the volume form invariance is that at each step of the composition of the λζi , at least one Kähler
form is preserved. 2

2.3 Explicit determination of hζ

2.3.1 Verifying a gauge. We shall now work more precisely on the first possibly non-

vanishing term of the expansion of Ftζ
∗gtζ , t ∈ R, ζ fixed; this allows us to redefine h

(2)
ζ as

follows.

Definition 2.6. Fix ζ ∈ h⊗ R3, and set on R4\{0} that

hζ :=
1

2

d2

dt2

∣∣∣∣
t=0

Ftζ
∗gtζ , (41)

which is then O(r−4), with ∇e-`th derivatives O(r−4−`), near both 0 and infinity, and verifies

Fζ
∗gζ = e + hζ + εζ ,

with (∇e)`εζ = O(r−6−`). More precisely, hζ is a homogeneous polynomial of degree 2 in ζ, with
coefficients symmetric 2-tensors homogeneous of degree 2 in the sense that κ∗shζ = s−2hζ , where
κs is the dilation x 7→ sx of R4\{0} for any s > 0; as for εζ , it is a sum of terms of degree at
least 3 in ζ.

As indicated by the title of this section, given an admissible ζ, we want to analyse hζ ,
which is the first (a priori, possibly) non-vanishing term in the expansion of gζ (from now on,
for the sake of simplicity, we forget about the Fζ , we will be more accurate about this abuse
of notation whenever needed). There already exists a rather powerful theory of deformations
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of Kähler–Einstein metrics; see in particular [Bes87, ch. 12] for an overview on that subject.
Nonetheless, because of the diffeomorphisms action in general, much of the theory is configured so
as to work once a gauge is fixed, precisely killing the ambiguity coming from the diffeomorphisms.

The following proposition asserts that the hζ are indeed in some gauge, making us able
for further considerations, just as is done in § 1.4.3. Let us specify though that in determining
explicitly hζ , we will be more concerned with other specific properties of that tensor, namely
with its inductive decomposition into hermitian and skew-hermitian parts with respect to I1, I2

and I3. As we shall see though, the gauge and the decomposition are rather intricate with one
another; seeing the verification of the gauge as a guiding thread, we state the following.

Proposition 2.7. Fix ζ ∈ h⊗ R3. Then the lower-order term hζ of the deformation gζ of e on
R4\{0} is in Bianchi gauge with respect to e, and more precisely

tre(hζ) = 0 and δehζ = 0.

Moreover, the I1-skew-hermitian part of hζ is hζ′ , the I2-skew-hermitian part of hζ′ is hζ′′ , and
hζ′′ is I3-hermitian, while the I1-hermitian part of hζ , the I2-hermitian part of hζ′ and hζ′′ give
rise to closed forms, that is

d(hζ(I1·, ·)− hζ(·, I1·)) = d(hζ′(I2·, ·)− hζ′(·, I2·)) = d(hζ′′(I3·, ·)) = 0 on R4\{0}.

Remark 2.8. We took the liberty of possibly having ζ in D since these statements are made on
R4\{0}. More precisely, even if Xζ is not smooth, its orbifold singularities lie above 0 ∈ R4 via
Fζ , and hζ is smooth on the regular part of Xζ , i.e. (Fζ)

∗hζ is smooth on R4\{0}.

Proof. Let us deal first with the assertion on tre(hζ). At any point of (R4\{0})/Γ, for any t,

volgtζ = dete(gtζ)Ωe = dete(e + t2hζ +O(t3))Ωe = (1 + t2 tre(hζ) +O(t3))Ωe.

But we saw in Lemma 2.5 that for all t, volgtζ = Ωe; consequently, tre(hζ) = 0.
We now deal with the divergence assertion. As for the previous lemma, we proceed inductively

on the shape of ζ; the hermitian/skew-hermitian decomposition as well as the closedness property
will come out along the different steps of the induction. For this we assume that ζ ′ = (0, ζ2, ζ3)
and ζ ′′ = (0, 0, ζ3) are as well out of the ‘forbidden set’ D. Again, since hζ can be written as a
sum of quadratic polynomials of ζ times symmetric 2-forms independent of ζ, this assumption
does not actually lead to a loss of generality.

Step 1: δehζ′′ = 0. We hence start with ζ ′′ = (0, 0, ζ3). Since I3 is parallel for e, we have that
d∗e [hζ′′(·, I3·)] = (δehζ′′)(I3·); indeed, given any local e-orthonormal frame (ej)j=1,...,4,

d∗e [hζ′′(·, I3·)] = −
4∑
j=1

ejy[∇e
ej (hζ′′(·, I3·))] and δehζ′′ = −

4∑
j=1

(∇e
ejhζ′′)(ej , ·), (42)

see for instance [Biq, 1.2.11] for the first equality, and [Biq, 1.2.13] for the second one. Moreover
hζ′′ is clearly I3-hermitian, since the gtζ′′ are, which is straightforward from the holomorphicity of

the λtζ
′′

3 for the pairs (Itζ
′′

3 , I3); hζ′′(·, I3·) is therefore a (1, 1)-form for I3. It is furthermore closed,
since the gtζ′′(·, I3·) are. We can now use the Kähler identity ‘d∗ = [Λ, dc]’ with the structure
(e, I3) and write

d∗e(hζ′′(·, I3·)) = [Λωe
3
, dcI3 ](hζ′′(·, I3·)).
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But Λωe
3
(hζ′′(·, I3·)) = −1

2 tre(hζ′′) = 0, and since hζ′′(·, I3·) is I3-hermitian and closed, dcI3(hζ′′(·,
I3·)) = d(hζ′′(·, I3·)) = 0, hence the result.

Step 2: δehζ′ = 0. We go on our induction and analyse hζ′ , where we recall the notation ζ ′ = (0,
ζ2, ζ3). We proceed through the following lines:

(i) we come back momentarily to hζ′′ and prove it is I2-skew-hermitian;

(ii) we prove that the I2-skew-hermitian part of hζ′ is hζ′′ , which is known to be divergence-free
for e;

(iii) we conclude by proving that the I2-hermitian part of hζ′ is e-divergence-free as well.

We tackle point (i). Recall that the map λζ
′

2 : Xζ′ →Xζ′′ is holomorphic for the pair (Iζ
′

2 , I
ζ′′

2 );

since we forget about Fζ′ and Fζ′′ , this amounts to writing Iζ
′

2 = Iζ
′′

2 . Recall that in the same
way as for the metric, the complex structures admit an analytic expansion, which can be written
as a power series of ζ with coefficients homogeneous (1, 1)-tensors on (R4\{0})/Γ. We assume

momentarily that the first-order variation vanishes, and we thus write Iζ
′′

2 = I2 + ιζ
′′

2 + εζ
′′

2 ,

where ιζ
′′

2 = 1
2(d2/dt2)|t=0I

tζ′′

2 , is O(r−4) (with according decay on derivatives), and (∇e)`εζ
′′

2 =
O(r−6−`) for all ` > 0.

Now ιζ
′′

2 splits into an e-symmetric part and an e-anti-symmetric part. But according to

[Bes87, 12.96], to the anti-symmetric part, (ιζ
′′

2 )a say, corresponds an I2-holomorphic (2, 0)-form

θ via the coupling e(·, (ιζ
′

2 )a·) = θ; this we get by considering the second-order variation of

the Kähler–Einstein deformation (gtζ′′ , I
tζ′′

2 ), satisfying the gauge tre(hζ′′) = δehζ′′ = 0, and
observing that all the statements are local. We can lift θ on R4\{0}, and then write θ = fdw1∧dw2,
where w1 and w2 are the standard I2-holomorphic coordinates x1 + ix3 and x4 + ix2, and f is
thus I2-holomorphic with decay r−4 at infinity. By Hartogs’ lemma we can extend f through 0;
we thus have an entire function on (R4, I2), decaying at infinity: the only possibility is f ≡ 0,

and therefore (ιζ
′′

2 )a = 0, or ιζ
′′

2 is e-symmetric.

Here we would like to follow [Bes87, 12.96] again, to see for example that ιζ
′′

2 then corresponds

to the I2-skew-hermitian part of hζ′′ , via the coupling ωe
2(·, ιζ

′′

2 ·), this latter (2,0)-tensor being

clearly I2-skew-hermitian, because ωe
2 is I2-hermitian, and since for all t, −1 = (Itζ

′′

2 )2 = I2
2 +

t2(I2ι
ζ′′

2 + ιζ
′′

2 I2) +O(t3), thus I2ι
ζ′′

2 = −ιζ
′′

2 I2. Since in our situation, ωζ
′′

2 does not vary, we could
also expect from [Bes87, 12.95] that the I2-hermitian part of hζ′′ vanishes. Nonetheless some of
the quoted arguments are of global nature, and one should check they can be adapted to our
framework. This can be bypassed however by a rather simple computation, which we quote here:
for any t,

gtζ′′ =

{
ωtζ
′′

2 (·, Itζ
′′

2 ·) = ωe
2(·, I2·) + t2ωe

2(·, ιζ
′′

2 ·) +O(t3) since ωtζ
′′

2 = ωe
2

e + t2hζ′′ +O(t3),

and thus hζ′′ = ω2(·, ιζ
′′

2 ·) which is I2-skew-hermitian, as announced.
We now claim that the I2-skew-hermitian part of hζ′ is nothing but hζ′′ , which is point (ii)

of the current step. Indeed, since for all t, Itζ
′

2 = Itζ
′′

2 (consider λtζ
′

2 ),

0 = gtζ′(I
tζ′

2 ·, I
tζ′

2 ·)− gtζ′ = gtζ′(I
tζ′′

2 ·, I
tζ′′

2 ·)− gtζ′
= e(Itζ

′′

2 ·, I
tζ′′

2 ·) + t2hζ′(I
tζ′′

2 ·, I
tζ′′

2 ·)− e− t2hζ′ +O(t3)

= e(I2·, I2·)︸ ︷︷ ︸
= e

+t2e(I2·, ιζ
′′

2 ·) + t2e(ιζ
′′

2 ·, I2·) + t2hζ′(I2·, I2·)− e− t2hζ′ +O(t3),
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and thus hζ′−hζ′(I2·, I2·) = e(I2·, ιζ
′′

2 ·)+e(ιζ
′′

2 ·, I2·). We know that e(I2·, ιζ
′

2 ·) = ω2(·, ιζ
′′

2 ·) = hζ′′ .

To conclude, use that e and e(·, ιζ
′′

2 ·) are both symmetric, that I2ι
ζ′′

2 = −ιζ
′′

2 I2, and that e is
I2-hermitian to see that for all X, Y ,

e(ιζ
′′

2 X, I2Y ) = e(I2Y, ι
ζ′′

2 X) = −e(Y, I2ι
ζ′′

2 X) = e(Y, ιζ
′′

2 I2X) = e(I2X, ι
ζ′′

2 Y ),

i.e. e(ιζ
′′

2 ·, I2·) = e(I2·, ιζ
′′

2 ·) = hζ′′ . We have proved that

1
2(hζ′ − hζ′(I2·, I2·)) = hζ′′ ,

as claimed. Since δehζ′′ = 0, to see that δehζ′ = 0, we are only left with checking this identity
on the I2-hermitian part of hζ′ , which is point (iii) of the current induction step.

For this, let us call ϕ this tensor twisted by I2, namely ϕ = 1
2(hζ′(I2·, ·)−hζ′(·, I2·)). As above,

we want to see that d∗eϕ = 0. This is clearly an I2-hermitian 2-form, that is an I2-(1, 1)-form.
It is moreover trace-free with respect to e, since hζ′ is. If we check it is closed then we are done,

using the Kähler identity d∗e =[Λω2 , d
c
I2

]. For this, we use an expansion of ωζ
′

2 : for all t,

ωtζ
′

2 = 1
2(gtζ′(I

tζ′

2 ·, ·)− gtζ′(·, I
tζ′

2 ·)) = 1
2(gtζ′(I

tζ′′

2 ·, ·)− gtζ′(·, I
tζ′′

2 ·))
= 1

2 (e(I2·, ·) + t2e(ιζ
′′

2 ·, ·) + t2hζ′(I2·, ·)
− e(·, I2·)− t2e(·, ιζ

′′

2 ·)− t
2hζ′(·, I2·)) +O(t3)

= ωe
2 + t2ϕ+O(t3), since e(I2·, ·) = −e(·, I2·) = ωe

2 and e(·, ιζ
′′

2 ·) = e(ιζ
′′

2 ·, ·);

this expansion can be differentiated term by term, so that t2dϕ + O(t3) = 0, hence dϕ = 0, as
wanted.

Step 3: δehζ = 0. We now analyse hζ . All the techniques to pass from hζ′′ to hζ′ can actually be
used again, and bring us to the desired conclusion:

(i) we first observe that Iζ1 = Iζ
′

1 , and we define ιζ
′

1 = (d2/dt2)|t=0I
tζ′

1 which we assume again to

be the possibly lower-order non-vanishing variation of Itζ
′

1 ; then (ιζ
′

1 )a = 0, since otherwise
we would have a non-trivial entire function on C2 going to 0 at infinity;

(ii) since ωζ
′

1 = ωζ
′′

1 = ωe
1 , we get that hζ′ is I1-skew-hermitian, given by ιζ

′

1 via the identity

hζ′ = ωe
1(·, ιζ

′

1 ·), and that the I1-skew-hermitian component of hζ coincides with hζ′ , the δe

of which vanishes; we are thus left with the I1-hermitian component of hζ ;

(iii) this component is e-trace-free (hζ is), and gives rises to an I1-hermitian 2-form ψ, which

is closed since the ωtζ1 are; the Kähler identity [Λωe
1
, dcI1 ] = d∗e then leads us to d∗eψ = 0,

which is equivalent to

δe(I1-hermitian component of hζ) = 0.

To finish this proof, we justify our assumption of the vanishing of the first-order variation of

the complex structures. For instance, let us not assume that ι := (d/dt)|t=0I
tζ′′

2 is a priori
vanishing. Then it is defined on R4\{0}, and is O(r−2). Now as above, since 0 = (d/dt)|t=0gtζ′′

has vanishing trace and divergence for e, the e-anti-symmetric part of ι has to vanish since
it gives rise to a holomorphic function on (R4, I2) decaying at infinity. And we see as above

that ωe
2(·, ι·) = (d/dt)|t=0gtζ′′ = 0, and thus ι = 0. Similarly, the arguments for ιζ

′

1 apply to

(d/dt)|t=0I
tζ′

1 with (d/dt)|t=0gtζ′ = 0 instead of hζ′ , so that (d/dt)|t=0I
tζ′

1 = 0. 2
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Remark 2.9. By contrast with what is usually done, we used properties already known of hζ′

and hζ′′ , conjugated to properties of mappings between Xζ , Xζ′ and Xζ′′ to show that indeed,
our first-order deformations were in gauge, which is also retroactively used in some places, e.g.

in killing tensors like (ιζ
′′

2 )a.

2.3.2 Lower-order variation of the Kähler forms: general shape. As seen when proving that
the gauge was verified, given ζ ∈ h ⊗ R3, hζ′′ is I3-hermitian, the I2-skew-hermitian part of hζ′

is hζ′′ , and the I1-skew-hermitian part of hζ′ is hζ′′ . In order to determine hζ completely, we are
thus left with working on the respective I3, I2 and I1-hermitian components of hζ′′ , hζ′ and hζ ,
or equivalently on the respectively I3, I2 and I1-(1, 1) forms

$ζ′′

3 := hζ′′(I3·, ·), $ζ′

2 := 1
2(hζ′(I2·, ·)− hζ′(·, I2·)), $ζ

1 := 1
2(hζ(I1·, ·)− hζ(·, I1·)).

We interpret these forms as the first (possibly) non-vanishing variation term of ωζ
′′

3 , ωζ
′

2 and

ωζ1 ; as such and as seen above, these are closed forms. More precisely, they follow a general
common pattern.

Proposition 2.10. There exist real numbers a1j(ζ), a2j(ζ
′), a3j(ζ

′′), j = 1, 2, 3, such that

$ζ′′

3 = a31(ζ ′′)θ1 + a32(ζ ′′)θ2 + a33(ζ ′′)θ3, $ζ′

2 = a21(ζ ′)θ1 + a22(ζ ′)θ2 + a23(ζ ′)θ3,

and

$ζ
1 = a11(ζ)θ1 + a12(ζ)θ2 + a13(ζ)θ3,

where we recall the notation

θ1 =
rdr ∧ α1 − α2 ∧ α3

r6
, θ2 =

rdr ∧ α2 − α3 ∧ α1

r6
, θ3 =

rdr ∧ α3 − α1 ∧ α2

r6
.

Proof. We do it for $ζ
1, as it will be clear that the arguments would apply similarly to $ζ′

2 and

$ζ′′

3 ; we work on R4\{0}. As $ζ
1 is of type (1, 1) for I1, it is at any point a linear combination

of rdr ∧ α1, α2 ∧ α3, rdr ∧ α2 − α3 ∧ α1 and rdr ∧ α3 − α1 ∧ α2.
The symmetric tensor 1

2(hζ + hζ(I1·, I1·)) corresponding to $ζ
1 is moreover trace-free for e,

which translates into $ζ
1∧ωe

1 = 0. Since ω1 = (rdr ∧ α1 + α2 ∧ α3)/r2, we have (rdr∧α2−α3∧α1)
∧ ωe

1 = (rdr ∧ α3 − α1 ∧ α2) ∧ ωe
1 = 0, whereas rdr ∧ α1 ∧ ωe

1 = α2 ∧ α3 ∧ ωe
1 . As a consequence,

the pointwise coefficient of rdr ∧ α1 is the opposite of that of α2 ∧ α3. To sum up, since the θj
are O(r−4) with corresponding decay (or growth, near 0) of their derivatives, which are precisely

the orders of $ζ
1, we know that

$ζ
1 = fθ1 + gθ2 + hθ3,

for three bounded functions f , g, h, with Euclidean `-th order derivatives of order O(r−`), near
0 and infinity. We can be more precise here: from the properties of analytic expansions in play
discussed in § 2.2.2, we have that κ∗s$

ζ
1 = s−2$ζ

1, where κs is the dilation of factor s > 0 on R4.
But we exactly have κ∗sθj = s−2θj , j = 1, 2, 3; therefore, f , g, h are functions on the sphere S3.

Notice that from this point, we also know that $ζ
1 is anti-self-dual (for e), since the forms θj are.

Therefore $ζ
1 is e-harmonic on R4\{0}, which is the same as (∇e)∗(∇e)$ζ

1 = 0. On the other
hand, the forms of θj are harmonic as well: they are anti-self-dual, and closed, since

θj =
1

4
ddcIj

(
1

r2

)
, j = 1, 2, 3. (43)
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Putting those facts together and setting ej = Ij(1/r)xi(∂/∂xi), j = 1, 2, 3 (forget about (8)) so
that rdr(ej) = 0 and αk(ej) = rδjk, j, k = 1, 2, 3, we get that

∆e(fθ1) =
1

r2
(∆S3f)θ1 − 2

3∑
k=1

(ek · f)∇e
ek
θ1.

The ∇e
ek
θ1 are easy to compute: since ek ·r = 0, ∇e

ek
θ1 = (1/r6)∇e

ek
(rdr∧α1−α2∧α3). Moreover

since the Ij are parallel, we just have to compute ∇e
ek
rdr; since ∇e(rdr) = e, ∇e

ek
(rdr) =

e(ek, ·) = (1/r)αk. Therefore ∇e
e1θ1 = 0, ∇e

e2θ1 = (2/r)θ3 and ∇e
e3θ1 = −(2/r)θ2. Thus ∆(fθ1) =

(1/r2)(∆S3f)θ1− (2/r)(e2 · f)θ3 + (2/r)(e3 · f)θ2. A circular permutation on the indices gives as
well ∆(gθ2) = (1/r2)(∆S3g)θ2 − (2/r)(e3 · g)θ1 + (2/r)(e1 · g)θ3 and ∆(hθ3) = (1/r2)(∆S3h)θ3 −
(2/r)(e1 · h)θ2 + (2/r)(e2 · h)θ1. Since the θj are linearly independent, ∆$ζ

1 = 0 translates into

∆S3f − 4(e3 · g − e2 · h) = ∆S3g − 4(e1 · h− e3 · f) = ∆S3h− 4(e2 · f − e1 · g) = 0. (44)

On the other hand, d$ζ
1 = 0 is equivalent to e1 · f + e2 · g + e3 · h = e2 · f − e1 · g = e3 · g −

e2 · h = e1 · h − e3 · f = 0; the latter three equalities, plugged into equations (44), exactly give
∆S3f = ∆S3g = ∆S3h = 0, hence f , g and h are constant. 2

Remark 2.11. We have not used the Γ-invariance of the tensors here; nonetheless, since the θj
are SU(2)-invariant, which comes from the identities θj = ddcIj (1/r

2), this does not give us any
further information.

2.3.3 Lower-order variation of the Kähler forms: determination of the coefficients. We
know from the formal expansion of gζ (or those of gζ′ and gζ′′) that the ajk coefficients of
Proposition 2.10 are quadratic homogeneous polynomials in their arguments. Their explicit form
is given as follows.

Proposition 2.12. With the same notation as in Proposition 2.10,

a31(ζ ′′) = 0, a32(ζ ′′) = 0, a33(ζ ′′) = −‖Γ‖|ζ3|2,
a21(ζ ′) = 0, a22(ζ ′) = −‖Γ‖|ζ2|2, a23(ζ ′) = −2‖Γ‖〈ζ2, ζ3〉,

a11(ζ) = −‖Γ‖|ζ1|2, a12(ζ) = −2‖Γ‖〈ζ1, ζ2〉, a13(ζ) = −2‖Γ‖〈ζ1, ζ3〉,

where ‖Γ‖ := |Γ|/4 Vol(B4) = |Γ|/2π2.

Proof. We shall first prove the assertion on the a3j(ζ
′′), and then generalise our technique so as

to write down five equations with the eight remaining coefficients. We conclude by using once
again the specificity of Kronheimer’s Fζ (which essentially amounts to a gauge fixing here) to
overcome this under-determinacy.

The coefficient a33(ζ ′′). To begin with, set a = a31(ζ ′′), b = a32(ζ ′′) and c = a33(ζ ′′). We consider
on Xζ′′ (which is smooth by our assumption ζ ′′ /∈ D) a closed form λ with compact support
representing ζ3 by Poincaré duality; this is possible since minimal resolutions of C2/Γ have
compactly supported cohomology [Joy00, Theorem 8.4.3], and Xζ′′ is diffeomorphic to such a
resolution (this is actually a minimal resolution of (C2/Γ, I3), but we will not use this fact).
Next, consider a smooth cut-off function χ, vanishing on (−∞, 1], equal to 1 on [2,+∞). From
the equality ωe

3 = 1
2dd

c
I3

(r2), and from (43), we have that

ε := ωζ
′′

3 − λ− d[1
4I3d(χ(r)r2) + 1

4(aI1 + bI2 + cI3)d(χ(r)r−2)]

1201

https://doi.org/10.1112/S0010437X18007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007030


H. Auvray

is well defined on Xζ′ , has cohomology class 0, and is O(r−6) at infinity, with appropriate decay

on its derivatives; here we write r instead of (λζ
′′

3 )∗r. As we need it further, we shall also see now
that ε admits a primitive which decays at infinity.

From [Joy00, Theorem 8.4.1], ε can indeed be written as h + dβ + d
∗gζ′′ γ, where h is in

C∞3 (Xζ ,Λ
2) and is gζ′′-harmonic, and β and γ are in C∞2 (Xζ ,Λ

2); we used here classical notation
for weighted spaces: for example, β = O(r−2), ∇eβ = O(r−3), and so on. The harmonic form
h is actually decaying fast enough so that we can say it is closed and co-closed: write (all the
operations and tensors are computed with respect to gζ′′) for all r

0 =

∫
B(r)

(h,∆h) vol =

∫
B(r)

(|dh|2 + |d∗h|2) vol +

∫
S(r)

(h� dh+ h� d∗h) vol,

where B(r) = BXζ′′ (r) = (λζ
′′

3 )−1(B4(r)/Γ), and S(r) is its boundary. From what precedes, the

boundary integral is easily seen to be O(r3−3−4) = O(r−4), and thus dh = d∗h = 0. Hence
0 = dε = dd∗γ; an integration by parts similar to the previous one, but with boundary term
of size O(r−2), leads us to d∗γ = 0, and thus ε = h + dβ. According to [Joy00, Theorem 8.4.1]
again, H2(Xζ′′) → H2(Xζ′′), h 7→ [h] is an isomorphism; now here [h] = [ε− dβ] = 0. Therefore
h = 0, and ε = dβ, with β = O(r−2).

We shall now compute the integrals
∫
B(r)(ω

ζ′′

3 )2 in two different ways. First, recall that

(ωζ
′′

3 )2 = 2 vole, and thus4
∫
B(r)(ω

ζ′′

3 )2 = (2r4/|Γ|) Vol(B4). On the other hand, since ωζ
′′

3 =

λ+ dϕ+ ε, with ϕ = 1
4I3d(χ(r)r2) + 1

4(aI1 + bI2 + cI3)d(χ(r)r−2), we have∫
B(r)

(ωζ
′′

3 )2 =

∫
B(r)

λ2 + 2

∫
B4(r)/Γ

λ ∧ dϕ+ 2

∫
B(r)

λ ∧ ε

+

∫
B(r)

(dϕ)2 + 2

∫
B(r)

ε ∧ dϕ+

∫
B4(r)/Γ

ε2. (45)

Let us analyse those summands separately.
For r large enough,

∫
B(r) λ

2 =
∫
Xζ′′

λ2 = λ ∪ λ = −|ζ3|2, by Lemma 2.2, and the fact that

[λ] = [ωζ
′′

3 ] = (ζ ′′)3 = ζ3.
The integral

∫
B(r) λ ∧ dϕ equals

∫
S(r) λ ∧ ϕ by Stokes’ theorem, and this vanishes for r large

enough; similarly,
∫
B(r) λ ∧ ε =

∫
B(r) λ ∧ dβ =

∫
S(r) λ ∧ β = 0 for r large enough.

We now come to
∫
B(r)(dϕ)2. By Stokes, this is equal to

∫
S(r) dϕ ∧ ϕ, which we view back on

R4/Γ via λζ
′′

3 . For r > 2, the integrand is

(ωe
3 + aθ1 + bθ2 + cθ3) ∧

[
1

2
α3 −

1

2

(
a
α1

r4
+ b

α2

r4
+ c

α3

r4

)]
=

1

2r2

(
1− 2c

r4

)
α1 ∧ α2 ∧ α3 +O(r−7),

since ωe
3 ∧ α3 = (1/r2)α1 ∧ α2 ∧ α3= r3 volS

3(r), ωe
3 ∧ α1=ωe

3 ∧ α2 = 0 (they factor through rdr),
and θ3 ∧ α3 = −(α1 ∧ α2 ∧ α3)/r6, θ1 ∧ α3=θ2 ∧ α3 = 0 (again, factorisation through rdr) on

4 Indeed,
∫
B(r)(ω

ζ′′

3 )2 is the limit as s goes to 0 of
∫
B(r)−B(s)(ω

ζ′′

3 )2, since as an s-tubular neighbourhood of E :=

(λζ
′′

3 )−1({0}) which is of real dimension 2, B(s) has its volume tending to 0 when s goes to 0. Now we can

also see
∫
B(r)−B(s)(ω

ζ′′

3 )2 on R4/Γ via λζ
′′

3 which is diffeomorphic away from E, and since (λζ
′′

3 )∗(ω
ζ′′

3 )2 = 2Ωe,∫
B(r)−B(s)(ω

ζ′′

3 )2 is twice the Euclidean volume of the annulus of radii s and r in R4/Γ, hence the result when
s → 0.
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S3(r)/Γ. Moreover θj∧αk = O(r−7) for j, k = 1, 2, 3. As
∫
S3(r)/Γ α1∧α2∧α3= r3 Vol(B3(r))/|Γ| =

4r2 Vol(B4(r))/|Γ|, we thus end up with∫
B(r)

(dϕ)2 = 2

(
1− 2c

r4

)
Vol(B4(r))

|Γ|
+O(r−4) =

2(r4 − 2c)

|Γ|
Vol(B4) +O(r−4).

We conclude by the last two summands of (45). On the one hand,
∫
B(r) ε∧ dϕ =

∫
S(r) ε∧ϕ =

O(r3−6+1) = O(r−2), since ε = O(r−6) and ϕ = O(r). On the other hand,
∫
B(r) ε

2 =
∫
B(r) ε∧dβ =∫

S(r) ε ∧ β: this is O(r3−6−2) = O(r−5) (and this is actually the only place where we need an

estimate on the decay of a primitive of ε).
Collecting the different estimates, for r going to ∞ we have

2r4

|Γ|
Vol(B4) = −|ζ3|2 +

2(r4 − 2c)

|Γ|
Vol(B4) +O(r−2),

hence c = −(|Γ|/4 Vol(B4))|ζ3|2.

Five further equations for eight other coefficients. For the exact same reasons as for ωζ
′′

3 , one can
write {

ωζ1 = µ+ dψ + dς,

ωζ2 = ωζ
′

2 = ν + dξ + dη,

with µ, ν compactly supported and of respective class Poincaré-dual to ζ1 and ζ2 = (ζ ′)2, with
ψ and ξ smooth and exact such that 4ψ = dcI1r

2 + (a11(ζ)dcI1r
−2 + a12(ζ)dcI2r

−2 + a13(ζ)dcI3r
−2)

and 4ξ = dcI2r
2 + (a21(ζ ′)dcI1r

−2 + a22(ζ ′)dcI2r
−2 + a23(ζ ′)dcI3r

−2) outside a compact set, and ς, η
smooth forms with O(r−2)-decay, such that dς and dη are O(r−6).

Recall that ωζ
′′

3 = ωζ3 , ωζ
′

2 = ωζ2 , and that volζ = vole; thus, integrating just as above the five

remaining relations ωζj ∧ ω
ζ
k = 2δjk volζ over images via Fζ of Euclidean balls of radius r and

letting r go to ∞ yields
a11(ζ) = − |Γ||ζ1|2

4 Vol(B4)
, a12(ζ) + a21(ζ ′) = −|Γ|〈ζ1, ζ2〉

2 Vol(B4)
, a13(ζ) + a31(ζ ′′) = −|Γ|〈ζ1, ζ3〉

2 Vol(B4)
,

a22(ζ ′) = − |Γ||ζ2|2

4 Vol(B4)
and a23(ζ ′) + a32(ζ ′′) = −|Γ|〈ζ2, ζ3〉

2 Vol(B4)
.

(46)
This provides in particular the announced values of a11(ζ) and a22(ζ ′).

Three extra equations. We now conclude, using the precise way the Fζ are constituted; namely,
we replace ζ by ζ ′ in the first line of (46). As, on the one hand (ζ ′)′ = ζ ′ and (ζ ′)′′ = ζ ′′, but
(ζ ′)1 = 0, we get a12(ζ ′)+a21(ζ ′) = −|Γ|〈(ζ ′)1, ζ

′
2〉/2 Vol(B4) = 0, and likewise, a13(ζ ′)+a31(ζ ′′) =

−|Γ|〈(ζ ′)1, ζ3〉/2 Vol(B4) = 0. On the other hand, since ωζ
′

1 = ωe
1 , we have a12(ζ ′) = a13(ζ ′) = 0,

and thus
a21(ζ ′) = a31(ζ ′′) = 0,

so in the end, a12(ζ) = −|Γ|〈ζ1, ζ2〉/2 Vol(B4) and a13(ζ) = −|Γ|〈ζ1, ζ3〉/2 Vol(B4).
Replacing ζ by ζ ′′ and using that a23(ζ ′′) = 0, we get

a32(ζ ′′) = 0,

hence a23(ζ ′) = −|Γ|〈ζ2, ζ3〉/2 Vol(B4) in the same way. 2

1203

https://doi.org/10.1112/S0010437X18007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007030


H. Auvray

2.3.4 Conclusion: proof of Theorem 2.1 (general Γ). Let us sum the situation up. If we take
Φζ = F−1

ζ : Xζ\F−1
ζ ({0}) → (R4\{0})/Γ and keep the notation introduced in this section, we

have Φζ∗gζ = e + hζ + O(r−6), Φζ∗I
ζ
1 = I1 + ιζ1 + O(r−6) and Φζ∗ω

ζ
1 = ωe

1 +$ζ
1 + O(r−6). The

I1-hermitian component of hζ is $ζ
1(·, I1·), which we know, and its I1-skew-hermitian component

is hζ′ . Now the I2-hermitian component of hζ′ is $ζ′

2 (·, I2·), which we also know, and its I2-skew-

hermitian component is hζ′′ . Finally, hζ′′ is I3-hermitian, equal to $ζ′′

3 (·, I3·), which we know as
well. In a nutshell, we are able to write down explicitly hζ from Propositions 2.10 and 2.12:

hζ = $ζ′′

3 (·, I3·) +$ζ′

2 (·, I2·) +$ζ
1(·, I1·)

= −‖Γ‖
( 3∑
j=1

|ζj |2θj(·, Ij ·) + 2
∑

16j<k63

〈ζj , ζk〉θk(·, Ij ·)
)
,

which gives exactly (37), with c = 1/4 Vol(B4) = 1
2π
−2.

From this and the formula for $ζ
1 proved in 2.12, which gives (39) of Theorem 2.1, we deduce

the expected formula for ιζ1. We know indeed that ιζ1 = ιζ
′

1 , and that hζ′ = ωe
1(·, ιζ

′

1 ·) and ιζ
′

1 is
e-symmetric, hence

e(ιζ1·, ·) = e(·, ιζ
′

1 ·) = −ωe
1(I1·, ιζ

′

1 ·) = −hζ′(I1·, ·)
= ‖Γ‖(|ζ3|2θ3(I1·, I3·) + |ζ2|2θ2(I1·, I2·) + 2〈ζ2, ζ3〉θ3(I1·, I2·))
= ‖Γ‖(|ζ3|2θ3(·, I2·)− |ζ2|2θ2(·, I3·)− 2〈ζ2, ζ3〉θ3(·, I3·))

= ‖Γ‖|ζ3|2
α2 · α3 − rdr · α1

r6
− ‖Γ‖|ζ2|2

α2 · α3 + rdr · α1

r6

− 2‖Γ‖〈ζ2, ζ3〉
(rdr)2 + α2

3 − α2
1 − α2

2

r6
,

of which (38) is just a rewriting.

2.4 Vanishing of the third-order terms when Γ is not cyclic

We shall see in this section that in the expansion gζ = e + hζ +
∑∞

j=3 h
(j)
ζ , if Γ is one of the

Dk, k > 2, or contains one of these as is the case when Γ is binary tetrahedral, octahedral or

icosahedral, then the third-order term h
(3)
ζ vanishes, and that this holds as well for complex

structures and Kähler forms. Keeping working with the diffeomorphisms Fζ of the previous

section even if we omit them to simplify notation, we claim the following.

Proposition 2.13. Suppose Γ contains Dk, k > 2, as a subgroup. Then gζ = e + hζ + O(r−8),

Iζ1 = I1 + ιζ1 +O(r−8), ωζ1 = ω1 +$ζ
1 +O(r−8), where by O(r−8) we mean tensors whose `th-order

derivatives (for ∇e) are O(r−8−`).

Proof. We shall first see that, for a general Γ, the crucial considerations made in § 2.3 on

the second-order term hζ of the expansion of gζ still hold for h
(3)
ζ ; first recall that h

(3)
ζ is a

homogeneous polynomial of ζ of order 3, with coefficients O(r−6) symmetric 2-tensors, with

according decay on the derivatives, and those coefficients are independent of ζ. We start with

claiming that

tre(h
(3)
ζ ) = 0 and δeh

(3)
ζ = 0.
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Indeed, for the trace assertion, once ζ ∈ h⊗ R3 −D is fixed, one has for all t that

Ωe = volgtζ = dete(e + t2hζ + t3h
(3)
ζ +O(t4))Ωe

= (1 + t2 tre(hζ) + t3 tre(h
(3)
ζ ) +O(t4))Ωe,

since the higher-order contributions of t2hζ are included in the O(t4), hence tre(h
(3)
ζ ) = 0.

We thus notice that h
(3)
ζ shares this property with hζ because the nonlinear contributions of

the htζ , which are of order at least 4 in t, do not interfere with the linear contribution of h
(3)
tζ .

We thus generalise this observation to prove that h
(3)
ζ shares other properties with hζ , and to

start with, that δeh
(3)
ζ = 0, as promised. Again we proceed within three steps, considering first

ζ ′′ = (0, 0, ζ3), and then ζ ′ = (0, ζ2, ζ3) and ζ = (ζ1, ζ2, ζ3).

The case of h
(3)
ζ′′ is immediate, and merely amounts to the fact that it is an I3-hermitian

tensor (the gtζ′′ are) with vanishing trace for e, used with the Kähler identity [Λω3 , d
c
I3

] = d∗e

applied to h
(3)
ζ′′ (I3·, ·).

For the case of h
(3)
ζ′ , remember the following: we first saw that the second-order variation

of Iζ
′

2 = Iζ
′′

2 was e-symmetric; this still holds for the third-order term, since the only I2-entire
function on C2 decaying (like r−6) at infinity is trivial. Then we identified the I2-skew-hermitian

part of hζ′ with hζ′′ ; again, this holds for h
(3)
ζ′ with h

(3)
ζ′′ (and the latter is indeed I2-skew-

hermitian). This amounts to looking at the term of order 3 in t of:

• the expansion of gtζ′′ = ωtζ
′′

2 (·, Itζ
′′

2 ·) to see that h
(3)
ζ′′ is indeed I2-skew-hermitian (recall

ωtζ
′′

2 = ω2 for all t);

• the expansion of gtζ′(I
tζ′

2 ·, I
tζ′

2 ·)− gtζ′ to see that 1
2(h

(3)
ζ′ + h

(3)
ζ′ (I2·, I2·)) = h

(3)
ζ′′ .

We concluded by using the usual Kähler identity (for I2) on the e-trace-free I2-(1, 1)
form 1

2(hζ′(I2·, ·) − hζ′(·, I2·)), after seeing it was closed; we can do the same on its analogue
1
2(h

(3)
ζ′ (I2·, ·)−h(3)

ζ′ (·, I2·)), which is also an e-trace-free I2-(1, 1) form, and is closed as seen when

looking at the third order in t of the expansion of ωtζ
′

2 = 1
2(gtζ′(I

tζ′

2 ·, ·)− gtζ′(I
tζ′

2 ·, I2·)).
One deals with hζ in analogous way. In particular, we get in passing that the third-order

variation of Iζ1 = Iζ
′

1 , ζ1 say, is e-symmetric and anti-commutes to I1, that the I1-skew-hermitian

part of h
(3)
ζ is h

(3)
ζ′ , related to ζ1 by h

(3)
ζ′ = ωe

1(·, ζ1·), and that its I1-hermitian part gives rise to
an e-trace-free closed I1-(1, 1) form.

Running backward this description, we will thus be done if we show that the third-order
variations of the Kähler forms vanish when Γ contains a binary dihedral group. In general though,
we know these are O(r−6) near 0 and infinity with corresponding decay on their derivatives, that
they are of type (1, 1) for one of the Ij and trace-free; they are thus ∗e-anti-self-dual, and
therefore can be written as fθ1 + gθ2 + hθ3, where this time, r2f , r2g and r2h depend only on
the spherical coordinate of their argument. Our form are moreover closed, hence in particular
harmonic; using again that the Laplace–Beltrami operator and the rough Laplacian coincide on
(R4, e), and that the θj are harmonic, we have this time that

∆e(fθ1) = (∆ef)θ1 − 2
3∑

k=0

(ek · f)∇e
ek
θ1,

with e0 = (xj/r)(∂/∂xj). We set f̃ = r2f ; this is a function on S3, and e0 · f = e0 · (r−2f̃) =
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e0 · (r−2)f̃ = −2r−3f̃ = −2r−1f . Since on functions, ∆e = −(1/r3)∂r(r
3∂r·)+(1/r2)∆S3 , one has

∆ef = ∆e(r−2f̃) = − 1

r3
∂r(r

3∂r(r
−2))f̃ +

1

r4
∆S3 f̃ =

1

r4
∆S3 f̃ ,

since ∂r(r
3∂r(r

−2)) = 0 (r−2 is the Green function on R4).
Moreover, ∇e

e0θ1 = ∂r(r
−6)(rdr ∧ α1 − α2 ∧ α3) + r−6∇e

e0(rdr ∧ α1 − α2 ∧ α3) = −(6/r)θ1 +
(2/r)θ1 = −(4/r)θ1. We recall that ∇e

e1θ1 = 0, ∇e
e2θ1 = (2/r)θ3 and ∇e

e3θ1 = −(2/r)θ2, therefore

∆e(fθ1) =
1

r4
(∆S3 f̃ − 16f̃)θ1 −

2

r3
((e2 · f̃)θ3 − (e3 · f̃)θ2).

Writing the analogous equations on g̃ = r2g, h̃ = r2h, the equation ∆e(fθ1 + gθ2 + hθ3) = 0 is
equivalent to the system

∆S3 f̃ − 16f̃ − 4(e3 · g̃) + 4(e2 · h̃) = 0,

∆S3 g̃ − 16g̃ − 4(e1 · h̃) + 4(e3 · f̃) = 0,

∆S3 h̃− 16h̃− 4(e2 · f̃) + 4(e3 · g̃) = 0.

(47)

Now the closure assertion on fθ1 + gθ2 + hθ3 is equivalent to (e1 · f) + (e2 · g) + (e3 · h) =
(e0 · f)− (e3 · g) + (e2 · h) = (e0 · g)− (e1 · h) + (e3 · f) = (e0 · h)− (e2 · f) + (e1 · g) = 0.

Since e0 · u = −(2/r3)ũ and ek · u = (1/r2)ek · ũ for u = f, g, h and k = 1, 2, 3, we deduce
from the latter equalities and the system (47) the equations

∆S3 f̃ − 8f̃ = ∆S3 g̃ − 8g̃ = ∆S3 h̃− 8h̃ = 0.

Setting f̂ = r2f̃ and likewise for ĝ and ĥ, we get that f̂ , ĝ, ĥ are harmonic (on the whole R4)
and homogeneous of degree 2. This is not hard seeing that they are thus linear combinations of
the x2

1 − x2
j , j = 2, 3, 4, and the xjxk, 1 6 j < k 6 4.

The θj are Γ-invariant; f , g and h, and consequently f̂ , ĝ and ĥ, must be as well. But if Γ
contains a binary dihedral group as a subgroup, then there is no non-trivial linear combination
of the above polynomials which is Γ-invariant. We use first the τ -invariance; if indeed Dk < Γ for
some k > 2 and u =

∑3
j=1 aj(x

2
1 − x2

j ) +
∑

16j<`64 aj`xjx` is Γ-invariant, then 2u = u + τ∗u =

a2(x2
1 − x2

2 + x2
3 − x2

4) + a3(x2
1 − x2

3 + x2
3 − x2

1) + a4(x2
1 − x2

4 + x2
3 − x2

2) + a12(x1x2 + x3x4) +
a13(x1x3 − x3x1) + a14(x1x4 − x3x2) + a23(x2x3 − x4x1) + a24(x2x4 − x4x2) + a34(x3x4 + x1x2),
that is: u has shape a(x2

1−x2
2 +x2

3−x2
4) + 2b(x1x2 +x3x4) + 2c(x1x4−x3x2), i.e. aRe(z2

1 + z2
2) +

bIm(z2
1 + z2

2) + cIm(z1z2), a, b, c ∈ R, in complex notation. We now use the ζk-action and write

ku =
k∑
`=0

ζ∗ku =

k∑
`=0

a(ζ`k)
∗Re(z2

1 + z2
2) + b(ζ`k)

∗Im(z2
1 + z2

2) + c(ζ`k)
∗Im(z1z2)

= Re

( k∑
`=0

a(e2i`π/kz2
1 + e−2i`π/kz2

2)

)

+ Im

( k∑
`=0

b(e2i`π/kz2
1 + e−2i`π/kz2

2) + ce−2i`π/kz1z2

)
= 0,

since e2iπ/k 6= 1 (k > 2). In particular, the third-order variation term of ωζ1 vanishes; in other

words, ωζ1 = ω1 +$ζ
1 +O(r−8).

Since moreover ζ1 is determined by h
(3)
ζ′ which is also 0, this third-order variation of the first

complex structure vanishes as well, or Iζ1 = I1 + ιζ1 +O(r−8). 2
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This completes the proof of Theorem 2.1. Notice however that in view of the previous two
sections, we could also have given similar statements on the second and third complex structures
and Kähler forms of Xζ . We chose to focus on the first ones since this is what is needed in our
construction of Part 1, see in particular Lemma 1.6, which is just a specialisation of Theorem 2.1:
take ζ = ξ verifying condition (11), and ΦY = Φζ .

Nonetheless, the asymptotics of the second and third complex Kähler forms are available
via Proposition 2.12, from which the asymptotics of the corresponding complex structures easily
follow, since the asymptotics of the metric are known.

2.5 Comments on Lemma 1.1
2.5.1 The condition (11). The first comment we want to make about Lemma 1.1 concerns

the reason why we state it under the condition (11), which we can recall as (|ζ2|2−|ζ3|2)+2i〈ζ2, ζ3〉
= 0 (if one takes ζ instead of ξ as parameter).

One could instead try to generalise the proof we give in § 1.3 with the help of the asymptotics
given by Theorem 2.1, with ζ a generic element of h ⊗ R3 − D. This is formally possible, but
leads to include terms such as 1/r2z1, 1/r2z1, 1/r2z2, 1/r2z2 in the correction terms ε1 and ε2 of
that proof, which is obviously not compatible with the requirement that i is a diffeomorphism
of R4.

In others words, (|ζ2|2−|ζ3|2)+2i〈ζ2, ζ3〉 appears as an obstruction for Iζ1 to be approximated
to higher orders by I1, even with some liberty on the diffeomorphism between infinities of Xζ and
R4/Γ, which reveals some link between the parametrisation of the Xζ and the general problem
of the approximation of their complex structures.

2.5.2 Links with the parametrisation. Conversely we interpret Lemma 1.1 as follows: when
Γ = Dk, k > 2 (this would be true also in the tetrahedral, octahedral and icosahedral cases) and

(|ζ2|2−|ζ3|2) + 2i〈ζ2, ζ3〉 = 0, then the complex structure Iζ1 can be viewed as approximating the
standard complex structure I1 with precision twice that of the general case, i.e. with an error
O(r−8) instead of O(r−4), up to an adjustment of the ALE diffeomorphism given in Kronheimer’s
construction. Now (|ζ2|2−|ζ3|2)+2i〈ζ2, ζ3〉 = 〈ζ2+iζ3, ζ2+iζ3〉, and this is precisely the coefficient
ak in the equation of Xζ seen as a submanifold of C3, which is

u2 + v2w + wk+1 = a0 + a1w + · · ·+ akw
k + bv (48)

(aj being given by symmetric functions of the (k + 2) first diagonal values of ζ2 + iζ3 ∈ hC or
hC/(Weyl group) of degree (k + 2− j), and b by their Pfaffian).

Denote by XDk the orbifold defined in C3 by the equation u2 + v2w + wk+1 = 0, i.e. (48)
with a0 = · · · = ak = b = 0. This is identified to C2/Dk via the map (z1, z2) 7→ (u, v, w) :=
(1

2(z2k+1
1 z2−z2k+1

2 z1), (i/2)(z2k
1 +z2k

2 ), z2
1z

2
2). This suggests that (u, v, w) in (48) should somehow

have respective degrees 2k + 2, 2k and 4 in the z1, z2 variables, and this equation remains
homogeneous if we give formal degree 2 to ζ. When ak = 0, the right-hand side member of (48)
is therefore formally conferred ‘pure’ degree at most 4k − 4, instead of 4k.

We believe that this corresponds to the improvement by four orders in the approximation of
Iζ1 by I1 in the sense of Lemma 1.1. It would thus be of interest to draw a rigorous picture out of
these informal considerations, establishing a more direct link of the kind suggested here between
the parameter ζ and the associated complex structures, without passing by the analysis of gζ ;
we strongly suspect that this can be done using techniques similar to the ones used in [HC13,
Part 5] (in § 5.2 for instance, the authors construct an approximately holomorphic diffeomorphism
Φ between infinities of an affine cubic cone and one of its affine smoothings; such a construction is
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very likely to be explicit enough, regarding especially the equations of the cone and its smoothing,

to determine to what extent Φ resembles a bihilomorphism, that is, to estimate the difference

between the source and the pulled-back target complex structures). In a more algebro-geometric

fashion, see also the formalism developed by Li ([Li14], in particular § 7.3.3). Notice however

that such constructions have no obvious reason to produce Bianchi-gauged leading-order error

terms, which is nonetheless essential from the metric/Kähler form viewpoint of our analysis.

3. Proof of Theorem 1.16

We prove Theorem 1.16 in this part. In order to do so, a possible strategy would be to start

from the beginning, in terms of Calabi’s celebrated continuity method, based on a quest for a

priori estimates. Since the successful use by Yau of this method [Yau78], it has indeed been

adapted to different non-compact settings; let us quote here the version by Joyce [Joy00, ch. 8]

for ALE manifolds, especially his contribution in proving that asymptotics are preserved along

the continuity method, provided that one starts with specific enough data.

Now, the above-mentioned result by Hein [Hei10, Proposition 4.1] (based itself on some

version of the continuity method), already gives us a solution to (22) bounded at any order

with reference to ωY. We thus prefer here the following more economic (though essentially

equivalent) approach to the continuity method, consisting in establishing asymptotic a posteriori

estimates on such a solution. Roughly speaking, this can be done at order 0 using linear harmonic

analysis in (loose) ALF geometry available as well in [Hei10] (Proposition 3.16); this is what one

would (have to) adapt in the nonlinear analysis of the Monge–Ampère equation when using the

continuity method option as mentioned above. Then, at positive orders, we use some of Joyce’s

arguments, transposed from the ALE to the ALF framework.

To make things a bit more precise, with the notation and under the assumptions of 1.16, we

have by Hein a smooth solution ϕ on Y to the equation

(ωY + ddcYϕ)2 = efω2
Y, (49)

which is bounded at every order with respect to ωY, and such that

ωϕ := ωY + ddcYϕ

is positive, and, more precisely, ωϕ is equivalent to ωY, that is, for some c > 0,

cωY 6 ωϕ 6 c−1ωY on Y

(these last points are fairly automatic from (49), the boundedness of ϕ, and that of ddcYϕ with

respect to ωY). Our goal is thus to prove that ϕ ∈ C∞β (Y, ωY), up to the addition of a constant;

we do it in the following lines, along a three-step process:

(i) we first prove that ϕ, correctly normalised, is in C0
δ (Y, ωY) for some δ ∈ (0, β);

(ii) then, we get that ϕ ∈ C∞δ (Y, ωY);

(iii) we conclude by sharpening the order of decay, that is, by proving that ϕ ∈ C∞β (Y, ωY).

We henceforth organise the rest of this part accordingly, each section corresponding to one

of the above steps. We keep the same notation throughout.
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3.1 Order 0: ϕ ∈ C0
δ (Y, ωY) for some δ ∈ (0, β)

The purpose of this paragraph is to establish the following.

Proposition 3.1. Any smooth solution ϕ of (49) which is bounded at every order for ωY can
be written as a+ ψ, where a ∈ R and ψ ∈ C0

δ (Y, ωY) ∩ C∞(Y, ωY) for some (any) δ ∈ (0, β).

As will be clear in the proof, we take advantage of the complex dimension 2 and the Ricci-
flatness of ωϕ to reach the announced decay at infinity via linear harmonic analysis.

Proof. Equation (49) expands as

ω2
Y + 2ωY ∧ ddcYϕ+ (ddcYϕ)2 = efω2

Y,

and can thus be rewritten as

(ωY + 1
2dd

c
Yϕ) ∧ ddcYϕ = 1

2(ef − 1)ω2
Y,

that is

∆g′ϕϕ = (1− ef )
ω2
Y

(ω′ϕ)2
,

where ω′ϕ = ωY + 1
2dd

c
Yϕ = 1

2(ωY + ωϕ) is indeed a Kähler form, and g′ϕ is the associated metric,
which enjoys mutual bounds with gY, and is bounded at all orders with respect to this reference
metric.

Now, (1−ef ) ∈ C1
β+2(Y, ωY) and ω2

Y/(ω
′
ϕ)2 is bounded up to order 1 (at least) for ωY; therefore,

if we fix β1 ∈ (0, β), by taking α ∈ (0, 1) small enough, we have (1−ef )(ω2
Y/(ω

′
ϕ)2) ∈ C0,α

β1+2(Y, g′ϕ).

On the other hand, by [Hei10, Proposition 3.16], (i)–(ii), one has some u bounded for g′ϕ up to
order (2, α) which satisfies

∆g′ϕu = (1− ef )
ω2
Y

(ω′ϕ)2
,

and such that |u| 6 Cρ−δ for any (fixed) δ ∈ (0, β1), where C is a constant. Here, one should
mention that the ρ we use is the pull-back of the radius function R from R3, which indeed
satisfies |dρ|g′ϕ + ρ|∆g′ϕρ| 6 C, as g′ϕ is mutually bounded with gY; moreover, the result we use
is stated for ‘SOB(3)-metrics’ such as gY, but a reading of its proof shows it still holds for a
metric uniformly co-bounded to it up to order 2 such as g′ϕ, at least when these metrics are
Kähler for a common complex structure.

We are thus done if we prove that

h := ϕ− u,

which is bounded, and ∆g′ϕ-harmonic by construction, is in fact constant. Now, observe that:

(i) gϕ is complete and Ricci-flat;

(ii) for any C2
loc-function w, ∆g′ϕw can be written as

−m−1divgϕ(mA gradgϕw),

with m = (detgϕ g′ϕ)1/2, and where A is given in coordinates by A = (g′ϕ)ij(gϕ)jk(∂/∂x
i)⊗

dxk. In other words, A v = (v]gϕ )
[g′ϕ .
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As gϕ and g′ϕ are both mutually bounded with gY, uniformly on Y, hence mutually bounded with
one another uniformly on Y, giving us the existence of µ, α > 1 such that on Y,

µ−1 6 m 6 µ, and α−1|v|gϕ 6 gϕ(A v, v) and |A v|2gϕ 6 α|v|gϕ for all v ∈ TY,

(see [Sal92, p. 424]), we can apply [Sal92, Theorem 7.4] to L = ∆g′ϕ and the bounded (below)
L-harmonic function h. This immediately yields the conclusion that h is constant, and the
proposition, as h = ϕ− u with u = O(ρ−δ) on Y. 2

Remark 3.2. As mentioned in the beginning of this part, an alternative to the above linear
harmonic analysis, more in the spirit of ‘a priori estimates’, and adapted as well to higher
dimensional or non-Ricci-flat contexts, could be followed from Hein’s arguments, and more
precisely from the proof of [Hei10, Proposition 4.1] itself, as suggested in [Hei10, § 4.5] (‘Non-
parabolic manifolds’). Indeed, the solution ϕ of (49) we use is itself constructed as the locally
uniform limit, as ε → 0+, of solutions ϕε to the relaxed equations

(ωY + ddcYϕε)
2 = ef+εϕεω2

Y.

Now, a barrier argument (application of the maximum principle to functions of shape ϕε±Cρ−δ,
δ ∈ (0, β), on some exterior domain) can be invoked in this framework. As the construction of ϕ
already relies on a C0-bound on the ϕε uniform in ε, and as the exterior domain, the parameters
C and δ above can be chosen independently of ε, the only remaining (moderate) price to pay to
make this method work and get an estimate |ϕε| 6 Cρ−δ uniform in ε (hence surviving the ε→ 0,
giving |ϕ| 6 Cρ−δ, which actually reveals that ϕ = u from the beginning in the above proof), is
the (qualitative) vanishing at infinity of the ϕε. This in turn follows from a classical yet careful
integration by parts/Moser iteration scheme, applied to the ϕε together with cut-offs centred at
points going to infinity as test-functions; we refer to [Hei10, § 4.5] and references therein for the
details.

3.2 Higher-order weighted estimates
We now prove that our solution ϕ of (49), which we assume from now on normalised so as to
vanish at infinity on Y, lies in C∞δ (Y, gY), where δ ∈ (0, β) is as in Proposition 3.1.

This is a straightforward consequence of the following, which mimics [Joy00, Theorem 8.6.11].

Proposition 3.3. Let k > 3, α ∈ (0, 1), and assume that ϕ ∈ C0
δ , 0 < δ < β, that ϕ is bounded

up to order (k + 2, α) with respect to ωY, and verifies (ωY + ddcYϕ)2 = efω2
Y.

Then ϕ ∈ Ck+2,α
δ (Y, gY); more precisely, there exists a constant Q

(k)
α,δ depending only on δ, α,

‖ϕ‖C0
δ

and ‖f‖
Ck,αβ+2(Y,gY)

such that ‖ϕ‖
Ck+2,α
δ (Y,gY)

6 Q
(k)
α,γ .

Proof. As in [Joy00, § 8.6.3], this statement readily follows from the inductive use of the following
technical lemma.

Lemma 3.4. Let K1, K2 > 0, λ ∈ [0, 1], and k > 3. Then there exists K3 depending only on α,
β, δ, ‖ϕ‖C0

δ
and K1,K2, λ, k such that the following holds.

Under the assumptions of Proposition 3.3 and if ‖f‖
Ck,αβ+2

6 K1, ‖(∇Y)`ddcYϕ‖C0
λ`

6 K2,

` = 0, . . . , k, and [(∇Y)kddcYϕ]αλk+(λ−1)α 6 K2, then ‖(∇Y)`ϕ‖C0
λ`+δ

6 K3, ` = 0, . . . , k + 2, and

[(∇Y)k+2ϕ]αδ+λ(k+2)+(λ−1)α 6 K3.
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In this statement, the Hölder moduli are those of gY, defined by (24) applied to gY (hence the

slight shift of notation by comparison with [Joy00]). We recall the ideas of the proof of Lemma 3.4

after the current proof. Now, for any fixed k > 3, one starts with applying this lemma to ϕ with

λ0 = 0, thanks to Proposition 3.1; one can then apply it with λ1 = δ/(k + α) and so on, with

λn = min{[(1 + 2/(k + α))n − 1]δ/2, 1}. 2

Proof of Lemma 3.4. As the proof is an (almost) immediate retranscription of Joyce’s from the

ALE to the ALF framework, we will be brief and, while exposing the main lines, ensure that

the change of geometry is harmless. In fact, the major change here is that the injectivity radius

does not grow as fast as ρ, but instead remains bounded, essentially by half the length of the

fibres of $. This is not an issue. Indeed, the Riemannian exponential map still authorises the

following manipulations. Given x ∈ {ρ > 2ρ0} (ρ0 determined later), identify (TxY, JY,x, gY,x)

with (C2, I1, e). Taking R > 0, the map πx,R : Be(0, 1) → BgY(x,R), u 7→ expgYx (Ru), is not a

diffeomorphism in general: large balls wrap following asymptotically the fibres. As it is a smooth

covering however, we can define the operator Px,R : Ck+2,α(Be(0, 1)) → Ck,α(Be(0, 1)) by

Px,R(v) = R2 (πx,R
∗(ddcY))(v) ∧ πx,R∗(ωY + ωϕ)

πx,R∗(ω2
Y)

.

One then takes R = Lρ(x)λ, with L = L(ρ0, λ, gY) small enough so that BgY(x,R) ⊂ {ρ > ρ0};
this way one has

‖R−2πx,R
∗gY − e‖Ck,α(Be(0,1)) 6

1
2

and

‖R−2πx,R
∗ωY − ωe‖Ck,α(Be(0,1)) 6

1
2 for all x ∈ {ρ > 2ρ0},

if ρ0 is chosen large enough, thanks to the asymptotic geometry of gY. Now the rest of Joyce’s

proof applies unchanged (in particular, one is brought to using Schauder estimates between the

fixed balls Be(0, 2) and Be(0, 1), with a C3,α uniformly elliptic family of operators), since the

identity

Px,R((πx,R)∗ϕ) = R2(e(πx,R)∗f − 1)

is again just a rewriting of the pulled-back Monge–Ampère equation (49) verified by ϕ. This

gives the desired estimates near infinity, the estimates on the fixed compact subset {ρ 6 2ρ0}
being immediately deduced from the uniform bounds on ϕ for gY. 2

3.3 Refinement of the decay, and conclusion of the proof of Theorem 1.16

We have now a rather sharp estimate on ddcYϕ, and thus, in particular, on g′ϕ − gY; we can

therefore state the following.

Proposition 3.5. For all k > 0, α ∈ (0, 1), and ν ∈ (0, 1), the map

∆g′ϕ : Ck+2,α
ν (Y, g′ϕ) −→ Ck,αν+2(Y, g′ϕ)

is an isomorphism.

Proof. This is deduced from [BM11, Appendix], thanks to the estimate g′ϕ−gY ∈ C∞δ+2(Y, gY). 2
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The proof of Theorem 1.16 is now easily concluded as follows. Recall that

∆g′ϕϕ = (1− ef )
ω2
Y

(ω′ϕ)2
;

this can now be rewritten, knowing that ω′ϕ − ωY ∈ C∞δ+2(Y, g′ϕ), as ∆g′ϕϕ ∈ C
∞
β+2(Y, g′ϕ). An

immediate use of Proposition 3.5 (together with the fact that g′ϕ-harmonic functions vanishing
at infinity are trivial) thus provides that ϕ ∈ C∞β (Y, g′ϕ), which is equivalent to: ϕ ∈ C∞β (Y, gY).
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Appendix A. The Taub-NUT metric on C2

A.1 A potential for the Taub-NUT metric on C2

In [LeB91] LeBrun leaves the following exercise to his reader: let m be a positive parameter, and
u and v implicitly defined on C2 by the following:

|z1| = em(u2−v2)u,

|z2| = em(v2−u2)v
(A.1)

(we do not make the dependence on m apparent here, since for now we see this parameter as
fixed; we shall only add m as an index by places to emphasise this dependence).

Proposition A.1 (LeBrun). The metric f associated to the form

ωf := 1
4dd

c(u2 + v2 +m(u4 + v4))

for the standard complex structure I1 on C2 is the Taub-NUT metric.

We shall give our own, direct proof here. Before this, we shall mention that LeBrun’s potential
may be obtained by hyperkähler quotient considerations; we chose to give a less conceptual proof
though since it exhibits several objects we use back in this article.

Lemma A.2. The metric f is Ricci-flat; more precisely, ω2
f = 2Ωe, where we recall that Ωe is the

standard volume form (idz1 ∧ dz1 ∧ idz2 ∧ dz2)/4.

Proof. We start by the computation of ωf , which goes through that of ∂u/∂zj , ∂v/∂zj , j = 1, 2.
One has

∂u

∂z1
=

1 + 2mv2

(2z1)(1 + 2m(u2 + v2))
u,

∂u

∂z2
=

muv2

z2(1 + 2m(u2 + v2))
,

∂v

∂z1
=

mu2v

z1(1 + 2m(u2 + v2))
,

∂v

∂z2
=

1 + 2mu2

(2z2)(1 + 2m(u2 + v2))
v.

(A.2)

Indeed, differentiating the relation |z1| = em(u2−v2)u with ∂/∂z1 yields

1

2

|z1|
z1

=

[
m

(
2u2 ∂u

∂z1
− 2uv

∂v

∂z1

)
+
∂u

∂z1

]
em(u2−v2),
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hence, writing em(u2−v2) = |z1|/u, u = 2z1[(1 + 2mu2)(∂u/∂z1) − 2muv(∂v/∂z1)]. Similarly,
applying ∂/∂z1 to the relation |z2| = em(v2−u2)v, one gets 0 = (1 + 2mv2)(∂v/∂z1) −
2muv(∂u/∂z1), that is ∂v/∂z1 = (2muv/(1 + 2mv2))(∂u/∂z1). Substituting in the previous
equality, one gets (A.2) for ∂u/∂z1, . . . , ∂v/∂z2.

Now set ϕ = 1
4(u2 + v2 +m(u4 + v4)). According to (A.2),

2
∂ϕ

∂z1
= u(1 + 2mu2)

∂u

∂z1
+ v(1 + 2mv2)

∂v

∂z1
=

(1 + 2mv2)u2

2z1

and 2(∂ϕ/∂z2) = (1 + 2mu2)v2/2z2, i.e. ∂ϕ/∂z1 = (1 + 2mv2)u2/4z1 and ∂ϕ/∂z2 =
(1 + 2mu2)v2/4z2 by conjugation. Apply again ∂/∂z1 and ∂/∂z2 to those equalities, as well
as the relation uv = |z1z2| and (A.2); then, setting R = 1

2(u2 + v2),

ωf = ddcϕ

=

(
u2(1 + 2mv2)

2|z1|2(1 + 4mR)
+m|z2|2

)
idz1 ∧ dz1 +mz2z1

(
1 +

1

1 + 4mR

)
idz2 ∧ dz1

+mz1z2

(
1 +

1

1 + 4mR

)
idz1 ∧ dz2 +

(
v2(1 + 2mu2)

2|z2|2(1 + 4mR)
+m|z1|2

)
idz2 ∧ dz2.

A direct computation of ω2
f , using again uv = |z1z2|, brings the conclusion. 2

Remark A.3. With the above definition of R and (A.1), one gets

2R 6 r2 6 2Re4mR, (A.3)

(with equality along {|z1| = |z2|} and {z1z2 = 0}, respectively); this implies that R is proper
on C2.

Recall S1 acts on C2 by α · (z1, z2) = (eiαz1, e
−iαz2); the associated infinitesimal action is

generated by the vector field ξ = i(z1(∂/∂z1)+z2(∂/∂z2)−z2(∂/∂z2)−z1(∂/∂z1)). By invariance
of u and v under this circle action, clearly, ξ · u = ξ · v = ξ · ϕ = 0, and similarly Lξωf = 0. This
holds as well for the holomorphic symplectic (2, 0)-form Θ := dz1∧dz2 (notice that Θ∧Θ = 4Ωe =
2ω2

f ), thus LξΘ = 0. More precisely, ιξΘ = (z1dz2 + z2dz1) = d(iz1z2); a complex hamiltonian
H = y2 + iy3 for the S1-action on (C2,Θ) is thus given by y2 := Im(z1z2) and y3 := −Re(z1z2).

In the same way, Lξdcϕ = 0; as Lξdcϕ = ιξdd
cϕ + d(ιξd

cϕ) (Cartan’s formula), i.e. ιξωf =
−d(dcϕ(ξ)), we are led to setting y1 = dcϕ(ξ). All computations are done.

Lemma A.4. One has y1 = 1
2(u2 − v2), and thus R indeed equals (y2

1 + y2
2 + y2

3)1/2.

Proof. To see that, y1 = 1
2(u2 − v2), write, according to the proof of Lemma A.2,

dcϕ = i(1 + 2mv2)u2

(
dz1

2z1
− dz1

2z1

)
+ i(1 + 2mu2)v2

(
dz2

2z2
− dz2

2z2

)
,

hence the result, from the identity ξ = i(z1(∂/∂z1) + z2(∂/∂z2)− z2(∂/∂z2)− z1(∂/∂z1)).
Noticing that y2

2 + y2
3 = |z1z2|2 = u2v2 suffices to get y2

1 + y2
2 + y2

3 = 1
4(u2 + v2)2. 2

Lemma A.5. Set V = |ξ|−2
f . Then |ξ|2f = 2R/(1 + 4mR), and hence V = 2m(1 + (1/4mR)).

Proof. One has I1ξ = −z1(∂/∂z1) − z1(∂/∂z1) + z2(∂/∂z2) + z2(∂/∂z2); the easy but tedious
calculation of |ξ|2f = ωf (ξ, I1ξ) then follows, which can be made easier by noticing that idz1∧dz1

(ξ, I1ξ) = 2|z1|2, idz1 ∧ dz2(ξ, I1ξ) = −2z1z2, and so on. 2
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To get the Taub-NUT metric back under its classical form, we need finally a 1-form η, which
is also a connection 1-form for the circle fibration $ : C2\{0}→R3\{0}, (z1, z2) 7→ (y1, y2, y3).
The natural candidate is given by η := V I1dy1.

Lemma A.6. On C2\{z1z2 = 0}, one has

η =
i

4R

[
u2

(
dz1

z1
− dz1

z1

)
− v2

(
dz2

z2
− dz2

z2

)]
, (A.4)

and η(ξ) = 1 outside of 0.

Proof. By definition, η = V dcy1 = 1
2 iV (2u(∂u−∂u)− 2v(∂v−∂v)). We then apply (A.2), which

we rewrite as

V
∂u

∂z1
=

1 + 2mv2

4z1R
u, V

∂u

∂z2
=
muv2

2z2R
, V

∂v

∂z1
=
mu2v

2z1R
, V

∂v

∂z2
=

1 + 2mu2

4z2R
v,

hence the component of η in the dz1 direction is −iu((1 + 2mv2)/4z1R)u + iv(mu2v/2z1R) =
−iu2/4z1R, and so on. A straightforward computation suffices to see that η(ξ) = 1. 2

We shall now recover the Taub-NUT metric under a more familiar shape.

Lemma A.7. On C2\{0}, ωf = dy1 ∧ η + V dy2 ∧ dy3, hence f = V (dy2
1 + dy2

2 + dy2
3) + V −1η2.

Proof. Clearly, {dy2, dy3} is linearly independent at all points of C2\{0}, and those forms vanish
against ξ by S1-invariance. They vanish as well against I1ξ, as I1dy2 = dy3. Since dy1(ξ) = 0 (y1

is S1-invariant) and dy1(I1ξ) = −V −1 6= 0 as I1dy1 = V −1η, and since η(I1ξ) = 0 and η(ξ) = 1,
we deduce that {dy1, dy2, dy3, η} is linearly independent outside {0}. Consequently, on C2\{0},
one can write

ωf = αdy1 ∧ η + βdy2 ∧ η + γdy3 ∧ η + δdy1 ∧ dy2 + εdy1 ∧ dy3 + ζdy2 ∧ dy3

for some functions α, . . . , ζ. Now αdy1 + βdy2 + γdy3 = −ιξωf = dy1, thus α = 1 and β = γ = 0;
as ωf is of type I1 − (1, 1), one also has δ = ε = 0.

To determine ζ, one evaluates ζdy1 ∧ η ∧ dy2 ∧ dy3 = 1
2ω

2
f = Ωe on (−I1ζ, ζ); this gives

V −1ζdy2∧dy3 = Ωe(−I1ξ, ξ, ·, ·) = 1
2(|z2|2idz1∧dz1 + |z1|2idz2∧dz2 + z1z2idz1∧dz2 + z1z2idz2∧

dz1) = dy2 ∧ dy3, hence ζ = V . 2

One easily checks that η is a connection 1-form away from 0 for the fibration $ = (y1, y2, y3):
it is S1-invariant, and at any point p but 0 ∈ C2, as {η, dy1, dy2, dy3} is a basis of T ∗pC2, necessarily,
TpC2 = ker η + kerT$. Finally, dη has the expected shape.

Lemma A.8. The differential of η is given on C2\{0} by

dη = ∗R3dV.

Proof. The 1-form η is S1-invariant and η(ξ) is constant; by Cartan’s formula, 0 = Lξη = ιξdη+
d(ιξη) = ιξdη, i.e. the components of dη in the dyj ∧ η-directions vanish. Moreover dωf = 0 thus
according to Lemma A.7, dη = (∂V/∂y1)dy2∧dy3+α2dy3∧dy1+α3dy1∧dy2. For the computation
of α2 and α3, observe that

4η =

(
1 +

y1

R

)
dc log(|z1|2)−

(
1− y1

R

)
dc log(|z2|2),
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as u2 = R + y1 and v2 = R − y1. Since ddc log(|z1|2) = ddc log(|z2|2) = 0 outside of {z1z2 = 0},
we thus have dη = 1

4d(y1/R) ∧ dc log(|z1z2|2) = 1
4d(y1/R) ∧ dc log(y2

2 + y2
3). Now

d

(
y1

R

)
=

1

R3
((y2

2 + y2
3)dy1 − y1y2dy2 − y1y3dy3)

and

dc log(y2
2 + y2

3) = I1d log(y2
2 + y2

3) = 2
y2dy3 − y3dy2

y2
2 + y2

3

;

this clearly provides αj =−yj/2R3 = ∂V/∂yj , j= 2, 3. The lemma is proved, outside of {z1z2 = 0},
and the formula extends at once to C2\{0} by continuity. 2

A.2 Comparison of the Euclidean and the Taub-NUT metrics
A.2.1 Mutual control. The metrics e and f are far from being globally mutually bounded;

an example of this geometric gap can be read in the scale of the ball volume growth: r4 in the
Euclidean regime, but R3 for Taub-NUT; notice that R plays the role of the distance to 0 on
(C2, f). Another example of the geometric gap is given by the length of the orbit of the S1-action
on C2 used above: the orbit of x ∈ C2\{0} has length 2π|x|e under e, and length 2πV (x)−1/2 when
measured by f ; this latter length tends to π

√
2/m when x goes ∞, which gives us a geometric

interpretation of the parameter m. We can nonetheless still compare e and f as follows.

Proposition A.9. There exists some constant C > 0 such that on C2 minus its unit ball,

C−1r−2e 6 f 6 Cr2e.

Proof. As f = V (dy2
1 +dy2

2 +dy2
3) +V −1η2, with η = I1V dy1 and dy3 = I1dy2, we evaluate |dy1|e

and |dy2|e first; since dy2 = (i/2)(z1dz2 +z2dz1−z1dz2−z2dz1), we readily get |dy2|e = cr. Now,
we rearrange (A.1) to write

dy1 =
1

2(1 + 4mR)
(e−4my1(z1dz1 + z1dz1)− e4my1(z2dz2 + z2dz2)). (A.5)

This provides |dy1|2e = (c/(1 + 4mR)2)(|z1|2e−8my1 + |z2|2e8my1). But |z1|2e−4my1 = u2 and
|z2|2e4my1 = v2, so |dy1|2e = (c/(1 + 4mR)2)(e−4my1u2+e4my1v2) = (c′/(1 + 4mR)2)(R cosh(4my1)−
y1 sinh(4my1)). Now R cosh(4my1)− y1 sinh(4my1) 6 R cosh(4my1) + y1 sinh(4my1) is obvious,
and rearranging (A.1) gives also

2(R cosh(4my1) + y1 sinh(4my1)) = r2, (A.6)

so finally |dy1|2e 6 c(r2/R2). Those estimates give us the bound f 6 Cr2e.
The reverse bound e 6 Cr2f follows at once, as e and f are hermitian, have the same volume

form, and as we are in complex dimension 2. 2

A.2.2 Expressing Euclidean objects in Taub-NUT vocabulary. We give here some further
material useful in the comparison between e and f on C2. In Lemma A.10 we introduce a vector
field ζ helping to complete the dual frame of (V −1/2η, V 1/2dy1, V

1/2dy2, V
1/2dy3) for f . Then in

Lemma A.11, we express the canonical frames of 1-forms and vector fields of e, i.e. the dxj and the
∂/∂xj , in terms of those of f . The essential point in those expressions lies in their computational
consequences; indeed, they allow to compute objects like ∇fdxj , and estimate quantities like
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|∇fdxj |f , which is required when manipulating Euclidean objects in the Taub-NUT setting; see
e.g. the proof of Proposition 1.7.

In §A.1, we used the vector field ξ on C2, which verified η(ξ) = 1, dyj(ξ) = 0, j = 1, 2, 3, and
dy1(I1ξ) = −1/V , η(I1ξ) = dy2(I1ξ) = dy3(I1ξ) = 0. We shall complete our dual frame with the
help of another vector field.

Lemma A.10. Define on C2\{0} the vector field

ζ =
1

2iR

(
e4my1

(
z2

∂

∂z1
− z2

∂

∂z1

)
+ e−4my1

(
z1

∂

∂z2
− z1

∂

∂z2

))
.

Then dy2(ζ) = 1 whereas η(ζ) = dy1(ζ) = dy3(ζ) = 0, and dy3(I1ζ) = 1 whereas η(I1ζ) =
dy1(I1ζ) = dy2(I1ζ) = 0. Moreover, [ξ, ζ] = 0.

Proof. We only need to check the first list of equalities, as dy3 = I1dy2 and η = I1V dy1. Since
dy2 = (1/2i)(z1dz2 + z2dz1 − z1dz2 − z2dz1), we get

dy2(ζ) =
1

2R
(e4my1 |z2|2 + e−4my1 |z1|2);

now e4my1 |z2|2 = v2, e−4my1 |z1|2 = u2, and R = 1
2(u2 + v2), hence dy2(ζ) = 1. Using that

dy3 = −1
2(z1dz2 +z2dz1 +z1dz2 +z2dz1) readily gives dy3(ζ) = 0. Now for the equality dy1(ζ) = 0,

we use (A.5) to write dy1(ζ) = (1/4iR(1 + 4mR))(z1z2−z1z2−z1z2 +z1z2) = 0; likewise, equality
η(ζ) = 0 follows from formula (A.4).

Finally, the S1-invariance of ζ provides [ξ, ζ] = 0. 2

Lemma A.11. One has the following formulas for 1-forms:

dx1 = V x1dy1 − x2η +
e4my1

2R
(x4dy2 − x3dy3),

dx2 = V x2dy1 + x1η +
e4my1

2R
(x3dy2 + x4dy3),

dx3 = −V x3dy1 + x4η +
e−4my1

2R
(x2dy2 − x1dy3),

dx4 = −V x4dy1 − x3η +
e−4my1

2R
(x1dy2 + x2dy3);

and for vector fields:

∂

∂x1
= −e

−4my1

2R
(x2ξ + x1I1ξ) + (x4ζ − x3I1ζ),

∂

∂x2
=
e−4my1

2R
(x1ξ − x2I1ξ) + (x3ζ + x4I1ζ),

∂

∂x3
=
e4my1

2R
(x4ξ + x3I1ξ) + (x2ζ − x1I1ζ),

∂

∂x4
=
e4my1

2R
(−x3ξ + x4I1ξ) + (x1ζ + x2I1ζ).

Proof. We shall only see how those formulas arise for dx1 and ∂/∂x1; the other identities are then
easily deduced with the relations dx2 = I1dx1, dx3 = τ∗dx1, dx4 = I1dx3, etc., on the Euclidean
side, and τ∗yj = −yj , τ∗η = −η, τ∗ξ = −ξ, τ∗ζ = −dζ, etc., on the Taub-NUT side.
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Write dx1 = αdy1 + βη + γdy2 + δdy3. By duality between (ξ,−V I1ξ, ζ, I1ζ) and (η, dy1,
dy2, dy3), dx1(ξ) = β, dx1(I1ξ) = −α/V , dx1(ζ) = γ and dx1(I1ζ) = δ. On the other hand,
dx1(ξ) = 1

2 i(z1−z1) = −x2, dx1(I1ξ) = −1
2(z1 +z1) = −x1, dx1(ζ) = (1/2iR)(e4my1 1

2(z2−z2)+0)
= (e4my1/2R)x4 and similarly dx1(I1ζ) = (i/2R)e4my1(i/2)(z2 +z2) = −(e4my1/2R)x3, hence the
result.

Similarly, if ∂/∂x1 = αξ + βI1ξ + γζ + δI1ζ, then α = η(∂/∂x1) = −e−4my1x2/2R, β =
−V dy1(∂/∂x1) = −e−4my1x1/2R, γ = dy2(∂/∂x1) = x4 and δ = dy3(∂/∂x1) = −x3. 2

A.2.3 Derivatives. Consider the f -orthonormal frame (ej)j=0,...,3 of vector fields given by

(e0, e1, e2, e3) = (V 1/2ξ,−V 1/2I1ξ, V
−1/2ζ, V −1/2I1ζ)

away from 0. In Part 1, we have to estimate the ∇f
eiej . This we do in the following lemma.

Lemma A.12. One has [e0, ei] = (yi/4R
3V 3/2)e0 for i = 1, 2, 3, and

[ei, ej ] =
1

4R3V 3/2
(yiej − yjei + 2yke0)

for any triple (i, j, k) ∈ I = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. As a consequence,

∇fe0 =
1

4R3V 3/2

∑
(i,j,k)∈I

ei ⊗ (yke
∗
j − yje∗k − yie∗0)

with (e∗0, e
∗
1, e
∗
2, e
∗
3) = (V −1/2η, V 1/2dy1, V

1/2dy2, V
1/2dy3).

Remark A.13. Defining Jj by f(Jj ·, ·) = ωe
j , j = 2, 3, we get two complex structures verifying

with J1 := I1 the quaternionic relations, just as we did for JY2 and JY3 at the end of § 1.4.4. By
Lemma A.11, we see moreover that ω2 is exactly dy2 ∧ η + V dy1 ∧ dy3, and likewise for ω3, so
that, for instance, e0 = J1e1 = J2e2 = J3e3.

Proof of Lemma A.12. Once the statement on the Lie brackets is proved, the formula for ∇fe0

follows from Koszul formula for the Levi-Civita connection ∇f and the orthonormality of the
frame (ei). Moreover, because of the symmetric roles of e1, e2, e3, we shall only see how to
compute [e0, e1] and [e1, e2].
• [e0, e1]: this bracket is rather easy to compute. Recall that e0 = V 1/2ξ, e1 = −V 1/2I1ξ, and
ξ is holomorphic for I1, so that [ξ, I1ξ] = 0. Moreover, as V is S1-invariant, ξ · V = 0, and
(I1ξ) · V = −V −1(∂V/∂y1). Thus,

[e0, e1] = Le0(−V 1/2I1ξ) = (−e0 · V 1/2)I1ξ − V 1/2Le0(I1ξ) = 0 + V 1/2LI1ξe0

= V 1/2((I1ξ) · V 1/2)ξ + V LI1ξe0 =
1

2
((I1ξ) · V )ξ + 0 = − 1

2V

∂V

∂y1
ξ,

hence the result, as ∂V/∂y1 = (∂R/∂y1)(dV/dR) = −(y1/R)(1/2R2).
• [e1, e2]: as e1 = −V 1/2I1ξ and e2 = V −1/2ζ, by Leibniz rule,

[e1, e2] = (e2 · V 1/2)I1ξ + V 1/2Le2(I1ξ)

= −V −1(ζ · V 1/2)e1 − V ((I1ξ) · V −1/2)e2 − LI1ξζ. (A.7)
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We already know (I1ξ) · V −1/2 = (1/2V 5/2)(∂V/∂y1) = −y1/4R
3V 1/2; similarly, ζ · V 1/2 =

1
2V
−1/2(∂V/∂y2) = −y2/4R

3V 1/2. We are thus left with LI1ξζ. Now etI1ξ(z1, z2) = (e−tz1,
etz2), hence ω2 = dx1 ∧ dx3 + dx4 ∧ dx2 is invariant under this flow: LI1ξω2 = 0. Besides,
ω2 = dy2 ∧ η + dy3 ∧ dy1, so that ω2(ζ, ·) = η, hence

(dη)(I1ξ, ·) = LI1ξη = LI1ξ(ω2(ζ, ·)) = ω2(LI1ξζ, ·),

the first equality coming from Cartan’s formula and the identity η(I1ξ) = 0. Now by
Lemma A.8, (dη)(I1ξ, ·) = V −1((∂V/∂y2)dy3 − (∂V/∂y3)dy2), and thus

LI1ξζ = − 1

2R3V
(y3ξ + y2I1ξ) = − 1

2R3V 3/2
(y3e0 − y2e1).

The conclusion follows from plugging this back into (A.7). 2

A.2.4 Proof of Lemma 1.8. We conclude this appendix with a proof of Lemma 1.8 of Part 1;
we actually prove it under the following shape:
For all ` > 0, and j = 1, 2, 3, 4,

(a) |(∇f )`xj |f = O(r) and (b) |(∇f )`(e4εjmy1xj)|f = O(r), (A.8)

where ε1 = ε2 = −1 and ε3 = ε4 = +1.
With help of the Leibniz rule, and Lemmas A.11 and A.12, the verification of Lemma 1.8

then boils down to an easy verification: if for instance α =
∑4

j,k=1 αjkdxj⊗dxk with α = O(r−2a)

and |∇eα| = O(r−2a−1), a > 1, then

∇fα =
4∑

j,k,p=1

∂αjk
∂xp

dxp ⊗ dxj ⊗ dxk +
4∑

j,k=1

αjk[(∇fdxj)⊗ dxk + dxj ⊗ (∇fdxk)]

is immediately seen to be O(r−2a+2), hence O(R1−a), for f , thanks to these lemmas and estimates
(A.8)(a); estimates (A.8)(b) are actually essentially useful in proving estimates (A.8)(a).

Let us establish these estimates. First, the case ` = 0 is obvious for (a), and (b) follows from
(A.6), providing e±2my1 = O(r/R1/2), together with the identities

e−4my1(x2
1 + x2

2) + e4my1(x2
3 + x2

4) = u2 + v2 = 2R,

(direct consequence of (A.1) and y1 = 1
2(u2 − v2)), providing e−2my1xj = O(R1/2), j = 1, 2 and

e2my1xj = O(R1/2), j = 3, 4.
We now come to the ` = 1 case. Here we build on (A.8), ` = 0, (a) and (b), and Lemma A.11:

for instance, for j = 1, we get that dx1 has O(r) coefficient for e∗0 = V −1/2η and e∗1 = V 1/2dy1,
and O(r/R), hence O(r), coefficients for e∗2 = V 1/2dy2 and e∗3 = V 1/2dy3. Moreover, as

d(e−4my1x1) = e−4my1(dx1−4mx1dy1) = (V −4m)x1e
−4my1dy1−x2e

−4my1η+
1

2R
(x4dy2−x3dy3),

one sees that d(e−4my1x1) has O(r/R), hence O(r), coefficients for e∗0 and e∗1, and O(r) coefficients
for e∗2 and e∗3. The verification for j = 2, 3, 4 goes the same way, the only occurrences of e±4my1xp
to be dealt with being exactly the e4εpmy1xp, already estimated in the ` = 0 case.

In the ` = 2 case, we build on (A.8), ` = 0, 1, (a) and (b), and Lemma A.11 again, and on
Lemma A.12. Indeed, by Lemma A.11, one can write

V 1/2dxj =

3∑
k=0

Qj,k(x•, e
4ε•my1x•, R)e∗k,
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with Qj,k(ξ1, . . . , ξ4, ξ
′
1, . . . , ξ

′
4, ρ) = Aj,k(ξ1, . . . , ξ4, ξ

′
1, . . . , ξ

′
4)Bj,k(ρ), where the Aj,k are affine,

and the Bj,k are rational fractions with degBj,k 6 0. This way,

V 1/2∇fdxj = ∇f (V 1/2dx1j)−
1

2
V −1/2dV ⊗ dxj =

3∑
k=0

(dQj,k ⊗ e∗k +Qj,k∇fe∗k)−
1

2

dV

V
⊗V 1/2dxj .

Using Lemmas A.11 and A.12, this can be rewritten as

V 1/2∇fdxj =
3∑

k1,k2=0

Qj,k1,k2(x•, e
4ε•my1 , y•, R)e∗k1 ⊗ e

∗
k2 , (A.9)

with Qj,k1,k2 = Aj,k1,k2(ξ1, . . . , ξ4, ξ
′
1, . . . , ξ

′
4, η1, η2, η3)Bj,k1,k2(ρ), where the Aj,k1,k2 are affine in

ξ and ξ′, with coefficients polynomials of degree 6 1 in η, and the Bj,k1,k2 rational fractions of
degree 6 −1 (we use the V 1/2 factor in (A.9) to have a simpler description here). This gives
precisely ∇fdxj = O(r), and a analogous analysis gives ∇f (e4εjmy1dxj) = O(r) as well.

For the general case, one uses the same technique inductively, leading to

(V 1/2∇f )`dxj =
3∑

k1,...,k`+1=0

Qj,k1,...,k`+1
(x•, e

4ε•my1 , y•, R)e∗k1 ⊗ · · · ⊗ e
∗
k`+1

,

withQj,k1,...,k`+1
= Aj,k1,...,k`+1

(ξ1, . . . , ξ4, ξ
′
1, . . . , ξ

′
4, η1, η2, η3)Bj,k1,...,k`+1

(ρ) where the Aj,k1,...,k`+1

are affine in ξ and ξ′, with coefficients of degree 6 ` in η, and where degBj,k1,...,k`+1
6 −`.

Analogous statements hold for the (V 1/2∇f )`(e4εjmy1dxj), for all ` > 1. 2
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