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From ALE to ALF gravitational instantons

Hugues Auvray

ABSTRACT

In this article, we give an analytic construction of ALF hyperkéhler metrics on smooth
deformations of the Kleinian singularity C?/Dy, with Dy, the binary dihedral group of
order 4k, k > 2. More precisely, we start from the ALE hyperkéahler metrics constructed
on these spaces by Kronheimer, and use analytic methods, e.g. resolution of a Monge—
Ampere equation, to produce ALF hyperkahler metrics with the same associated Kahler
classes.

Introduction

This article deals with an analytic construction of a certain class of examples of four-dimensional
non-compact, complete, Ricci-flat manifolds. One prominent feature of such spaces lies in their
appearance as limit spaces, after rescaling, of families of compact Einstein 4-manifolds; this,
among others, illustrates the interesting role played by non-compact complete Ricci-flat manifolds
in Riemannian geometry in dimension 4.

Now, dimension 4 moreover allows one to specialise the question to Ricci-flat Kdahler, and
even to hyperkdhler, non-compact, complete manifolds. If one adds furthermore a decay condition
on the Riemannian curvature tensor, this leads to the following definition.

DEFINITION 0.1 (Gravitational instantons). Let (X,g,I,J, K) be a non-compact, complete,
hyperkahler manifold of real dimension 4. Then X is called gravitational instanton if its
Riemannian curvature tensor Rm? satisfies the following L? condition:

/ [Rm|? vol? . (1)
X

Besides this differential-geometric definition, gravitational instantons also appear as
fundamental objects in theoretical physics, where Condition (1) is thought of as a ‘finite type
action’ assumption, in fields such as Quantum Gravity [Haw77] or String and M-Theories, see
[CHO5, CK99] and references therein.

Recall that hyperkahler metrics are Ricci-flat. The fundamental Bishop—Gromov theorem
[Gro99] thus implies that on gravitational instantons, ball volume grows at most with Euclidean
rate. In other words, introducing a ‘ball volume growth ratio function’

ol
Voly(By (0, pz))

V.Tr+——

(where p is on X the distance to some fixed point o € X, the choice of which does not affect the
asymptotic behaviour of v), this function is at least bounded below by a positive constant c.
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If a bound v < C, C > 0, also holds, that is, if large balls on X do have Euclidean growth
rate, one deals with Asymptotically Locally Euclidean (‘ALE’) instantons. These hyperkéhler
manifolds are very well understood: they are completely classified, after [BKN89] and [Kro89b]
(with recent extension [Juv12] and [Wrill] to the Kéhler Ricci-flat case), and their classification
corresponds to an exhaustive construction by Kronheimer [Kro89al; we shall often refer to these
spaces as Kronheimer’s instantons for this reason. In a nutshell, the hyperkéhler structures of
these spaces are asymptotic to that of a quotient R*/I", with I' a finite subgroup of SU(2) = Sp(1);
when moreover I' is fixed, these spaces are all diffeomorphic to the minimal resolution of the
Kleinian singularity C2/T. The ALE class is moreover the standard one regarding the scaling
limit process of Einstein 4-manifolds, since ALE spaces appear in the non-collapsing case, see
e.g. [BKNS&9].

Now, a result by Minerbe [Min07] (see also [CC15a]) states the following quantisation on
gravitational instantons: if' the volume form volY is replaced by the measure v vol? in Condition
(1), and if the asymptotic ball volume growth is less than Euclidean, i.e. quartic, then it is at most
cubic; one jumps from a bound v > ¢ to a bound v > ¢(p+1). If an analogous reverse upper bound
v < C(p+1) holds (the measure used in Condition (1) being volY in full generality, although
one can push to v volY on many known examples), one then speaks about Asymptotically Locally
Flat, or ALF, gravitational instantons. It is now known that such spaces indeed appear in their
turn as scaled limits of (collapsing) Einstein 4-manifolds, see e.g. [Fos16] for a nice construction
based on K3 surfaces. Moreover, under the additional condition Rm = O(p~3) (actually, here, a
consequence of RmY € L?(v vol9) [Min07]), Minerbe classifies (a rough) half of the ALF instantons
[Min11]; their geometry at infinity is that of a circle fibration over R3, and they are explicitly
described by the so-called Gibbons—Hawking ansatz. This includes the prototypical Taub-NUT
metric, living on R* itself [EGHS0].

Results. When Rm?Y € L?(vvol?), the only possibility left for the asymptotic geometry of the ALF
gravitational instantons is that of a circle fibration over R3/4 [Min07]. This second family, for
which a classification appeared only recently [CC15b, Theorem 1.2], includes: Atiyah—Hitchin’s
‘Do-instanton’ [AH88] and a family of hyperkéhler deformations of its double cover, the ‘Dj-
instantons’; Page—Hitchin’s ‘Do-instantons’ [Pag81, Hit83]; the ‘Dy (or Dyyo)-families’, k > 1,
produced by Cherkis and Kapustin [CK98, CK99] and made more precise by Cherkis and Hitchin
[CHO5]. To this regard, our main result consists in a construction of such spaces with independent
methods (see ‘Comments’ below); it is aimed in particular at underlining the relation between
ALE and ALF D;-instantons, and can be stated as follows.

THEOREM 0.2. Let (X,g,I;%, 155, I5Y) be an ALE gravitational instanton modelled on R*/Dy,
with Dy, the binary dihedral group of order 4k, k > 2, in the sense that the infinities of X and
R* /Dy, are diffeomorphic, and that the hyperkihler structure of X is asymptotic to that of R* /Dy,
via the diffeomorphism in play. Then there exists on X a family of ALF hyperké&hler structures
(gm, Jffm, JQ)’(m, J:i(m)me(o,oo); such that, for any fixed m € (0,00):

(i) one can choose the diffeomorphism above so that g, is asymptotic to the Dy-quotient of
f,,, the Taub-NUT metric with fibres of length 7(2/m)/? at infinity;

! This strengthened decay curvature condition is indeed required in the quantisation results in [Min07], and
[CC15a]. With the finite action condition Rm? € L?(vol?) only, the integer quantisation of the ball volume growth
rate is in general not quite granted, see [Heil0)].

1160

https://doi.org/10.1112/50010437X18007030 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X18007030

FroM ALE 1O ALF GRAVITATIONAL INSTANTONS

(ii) the Kéhler classes [gm(ij(m‘, )], 7 = 1,2,3, are the same as those of the initial ALE
hyperkahler structure, at least one of the parallel complex structures anfm + bJQ{(m + ch)fm,
with a® 4+ b> 4 ¢® = 1, of g,, equals one of those of gx, and moreover vol9™ = vol9X ;

(iii) the curvature tensor Rm9™ has cubic decay.

As is understood here, the Taub-NUT metric £, is invariant under Dy, and thus makes perfect
sense on R*/Dy. About the diffeomorphism chosen in point (i), given a Dy ALE instanton X,
one can conveniently extract a (n asymptotically tri-holomorphic) diffeomorphism Fx between
the infinity of R*/D;, and that of the instanton from Kronheimer’s construction [Kro89a]; here,
we simply correct such an Fx by right-composition with a rotation of R* and with a map of the
form z + (1+a/|z|*)x, a € R. The asymptotics between the ALF metric g,, and f,, in point (i)
are a direct and natural by-product of our construction, and are as follows: if R = ds, (0, -)
(0 € R*/Dy), then (g, — ) and Vi (g,,, — £,,) are O(R™27¢) for all € > 0 (and we point out the
unusual fact that our construction does give similar decays for both estimates of order 0 and 1,
instead of establishing decays improving as the order of differentiation grows).

Before discussing in more detail how Theorem 0.2 is proved, we shall underline that our
construction heavily relies on the computation of the asymptotics of the ALE instantons modelled
on R*/Dy.. More precisely, the construction of these spaces by Kronheimer allows one to write
down these asymptotics as power series, the main term of which is the Euclidean model (e, I,
I5, I3), and this actually holds for any finite subgroup I' of SU(2) alluded to above. We describe
in this article the first non-vanishing terms of those expansions.

THEOREM 0.3. Let (X, gx,I;{X, I5, I5X) be an ALE gravitational instanton modelled on R*/T.
Then one can choose a diffeomorphism ® between X minus a compact subset and R*/T" minus
a ball such that:

(i) ®ugx—e=hx+0(r %), @, X~ =15 +O0(r%) and ifwi = gx([;X-,-) and w§ = e(I1-, -),
then ®,wi* — w$ = wy + O(r=F), where hx, ;¥ and w;* admit explicit formulas and are
O(r~%); for instance wy = —Z?Zl c; (X)dd?j (r~2) for some explicit constants c;(X).

(i) when T is not a cyclic subgroup of SU(2), the O(r~°) of the previous point can be replaced
by O(r=8).

Here the O are understood in an asymptotically Euclidean context: € is O(r~%) if for any
£>0, |(V®)|e = O(r~*) near infinity.

Another crucial analytic tool in our construction is a Calabi—Yau type theorem, adapted to
ALF geometry.

THEOREM 0.4. Let (Y, gy, Jy,wy) be an ALF Kéhler 4-manifold of dihedral type. Let f be a
smooth function such that |(V9)’ f|s, = O(p?~27*) for some 8 € (0,1) and for all ¢ > 0. Then
there exists a smooth function ¢ such that wy+ddS, ¢ is Kéhler, such that |(V9 )olgy = O(p~ P75
for all £ > 0, and verifying the Monge—-Ampére equation:

(wy + dd, ¢)* = e/ w]. (2)
Let us say at this stage that an ALF Kahler 4-manifold of dihedral type is a complete
non-compact Kéahler manifold of real dimension 4, agreeing at infinity with a dihedral quotient

of C?2 = (R%,I;) with Taub-NUT metric, ‘up to infinite order’. The precise meaning of this
assertion is given below, when invoking Theorem 0.4.

Comments. We should start with some words on previous constructions of ALF dihedral
gravitational instantons. As mentioned above, D, ALF instantons are known to exist since
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the works [CK98, CK99], where such spaces are produced as moduli spaces of solutions to
Nahm’s equations or of singular monopoles; they have moreover been described in an explicit
manner in [CHO5], via generalised Legendre transform and twistor theory; see also [Dan94] for
an alternative proposition using hyperkdhler quotient. Despite this, and the fact that in these
various cases the underlying spaces are Kronheimer’s instantons, due to the difference in the
methods of construction, we were not able to show directly that these previous examples and our
examples coincide. However, according to the classification? given in [CC15b], our construction
and Cherkis—Kapustin’s construction produce the same families of Dy ALF hyperkdhler metrics,
k > 2, and are more precisely (almost) exhaustive, in the sense that any ALF dihedral
gravitational instanton, except Atiyah—Hitchin’s Do and Di-instantons, Page—Hitchin’s Da-
instantons (and the Dy family for our construction), fits into the produced examples (up to
a tri-holomorphic isometry). Chen—Chen’s classification seems nonetheless delicate to avoid in
affirming that both constructions do coincide; it would thus be interesting to understand how
the different constructions link up in this respect.

More closely to the statement of Theorem 0.2, notice that it is not of a perturbative nature:
this corresponds to taking the parameter m in the whole range (0,400). The price to pay is
somehow that so far, we do not control what happens when m goes to 0. We conjecture that the
ALF hyperkahler structure converges back, in C-topology, to the initial ALE one, as is the
case on C?; this question will be handled in a future article.

Now in Theorem 0.3, the existence of the first order variation terms hy, i and @t is of
course not new, as they already appear along Kronheimer’s construction [Kro89a]. What is new
though is their explicit determination, which we could only find in the literature for the simplest
case of the Eguchi-Hanson space (see e.g. [Joy00, p. 153]), i.e. when I' = As = {£id¢2}. Notice
at this point that as suggested by the statement of Theorem 0.3, the shapes of hx, ¢ and w;®
follow a general pattern which is only slightly affected by the order of the group I'; up to a
multiplicative constant, we can indeed compute them on the explicit Eguchi—-Hanson example.
We think moreover that Theorem 0.3 is of further interest; for instance, the order of precision it
brings could be useful in more general gluing constructions.

To conclude, we comment briefly on Theorem 0.4. This result comes within the general
scope of generalising the celebrated Calabi-Yau theorem [Yau78] to non-compact manifolds,
initiated by Tian and Yau [TY90, TY91]. A statement similar to ours can be found in [HeilO,
Proposition 4.1], in a more general and abstract framework. One interest of our statement,
nonetheless, simply lies in the fact that although we ask more precise asymptotics on our data
than Hein does, we get in compensation sharper asymptotics on our solution ¢, which echo in
the asymptotics of Theorem 0.2.

Organisation of the article. This paper is divided into three parts, corresponding respectively to
Theorems 0.2, 0.3 and 0.4, plus an appendix. Part 1 is devoted to the proof of Theorem 0.2. We
first draw in §1.1 a detailed program of construction of our hyperkahler ALF metrics, leading
us to the expected result (Theorem 1.3). In § 1.2 are recalled essential facts on the Taub-NUT
metric, seen as a Kéahler metric on C2. The construction itself occupies §§ 1.3 and 1.4; it consists
of a gluing of the ‘non-compact part’ of the Taub-NUT metric with the ‘compact part’ of the ALE
metric of some ALE instanton, which we subsequently correct into a Ricci-flat metric thanks to
Theorem 0.4 (recalled as Theorem 1.16). The concluding § 1.5, mainly computational, deals with
the proof of two technical lemmas useful to our construction.

2 This classification answers a folklore conjecture and establishes a strong link between ALE and ALF instantons;
it can be seen as an analogue of the classification of [Min11], including the specificities of the dihedral case.
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In Part 2, which is mostly independent of Part 1, after recalling some basic facts about
Kronheimer’s construction of ALE instantons, we state Theorem 2.1, which is a specified
version of Theorem 0.3; in particular we give the promised explicit formulas (§2.1). We give
further details on Kronheimer’s construction and classification in §2.2, where we also fix the
diffeomorphism of Theorem 0.3. Then we compute the tensors hx, L{( and wf in §2.3; using
similar techniques, we show in §2.4 that the precision of the asymptotics is automatically
improved when I' is binary dihedral, tetrahedral, octahedral or icosahedral. We develop in §2.5
a few informal digressive considerations on the approximation of complex structures of certain
ALE instantons by the standard Iy, relied on links observed in the construction of Part 2.

Part 3 is devoted to the proof of Theorem 0.4. As all the necessary elements are essentially
already available in the literature, instead of running a continuity method as is classical for solving
a Monge—Ampere equation, we proceed, for the sake of concision, by establishing a posteriori
estimates. This is explained in the introduction of Part 3, and the required analysis is done in
the following three sections.

Finally, the appendix gives a short account of a description of the Taub-NUT metric on C?
suggested by LeBrun [LeB91].

Throughout the article, C? stands for (R*, I;) with I; the standard complex structure given
by the coordinates z1 = x1 + ix2, 20 = x3 + ix4; we denote by Iy and I3 the other two standard
complex structures on R* = H, given respectively by the coordinates (z1 + iz3,24 + iz2) and
(x1 + iwy, T2 + ix3).

1. Construction of ALF hyperkéihler metrics

1.1 Strategy of construction

Outline of the strategy. As described in [LeB91] and as we shall see in the next section, one can
describe the Taub-NUT metric on R* as a Dy-invariant hyperkihler metric with volume form
the standard Euclidean one )¢, Kéhler for the standard complex structure I;, and compute a
somehow explicit potential, ¢ say, for it.

Now, given one of Kronheimer’s ALE gravitational instantons (X, gx, I;X, I5*, I3*) modelled
on R*/Dy, we have a diffeomorphism ®x between infinities of X and R*/Dj, such that ®x,gx is
asymptotic to the standard Euclidean metric e, and ® X*IlX is asymptotic to I7. It is in this way
quite natural to try and take, as an ALF metric on X, dI;Xd(®%¢) glued with gx (IX-, ) written
near the infinity of X as an le -complex hessian with sufficient precision, before we correct it
into a hyperkihler metric. This naive idea works in a straightforward manner when (X, I{¥) is a
minimal resolution of (C2/Dy, 1) and ®x the associated map. However this fails in the general
case, where (X, I;X) is a deformation of (C?/Dy, I), without further precautions: the size of the
Taub-NUT potential ¢, roughly of order r* as well as its Euclidean derivatives, together with
the error term ®x, 1 1X — I on the complex structure, even make wrong the assertion that the
rough candidate dI;* d(®% ) is positive, in the sense that dI{Xd(®%¢)(-, I;¥-) is a metric, near
the infinity of X.

Fortunately, up to choosing a different complex structure on X to work with, we can write
down explicitly a sufficiently accurate potential for the first Kihler form gx (I;X-,-)? and make
the appropriate corrections on ¢ so as to get a good enough ALF metric on X to start with, and

3 The problem of writing this form, or other representatives of its class, as ezact I -complex hessians at infinity is
actually delicate (see the end of §1.3.1), hence our choice of expressing gx (I, -), which we happen to know very
well, and which happens to be the only natural representative sufficiently well known to carry over the overall
program, as an approzimate I -complex hessian with enough precision for our construction.
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then run the same machinery as in the minimal resolution case, up to minor but yet technical
adjustments, so as to end up with Theorem 0.2.

Detailed strategy, and involvements of Kronheimer’s instantons asymptotics. We shall now be
more specific about the different steps involved in the program we are following throughout this
part.

(i) Let SO(3) act on the complex structures of X as follows: for A = (aj¢) € SO(3), define the
triple (AIX). as

(AIY). = ((AIY)))j=123 = (ajn it + ajols + ajsly ) j—123;

then (X,gx, (AIX)1, (AIX)y, (AIX)3) is again hyperkihler, and is therefore an ALE
gravitational instanton modelled on R*/Dy.

(ii) With the model R*/Dj, at infinity fixed, Kronheimer’s instantons are parametrised [Kro89a
by a triple ¢ = (¢1,(2,(3) € h @ R? — D, where b is a (k 4 2)-dimensional real vector space
endowed with some scalar product (-,-), and D is a finite union of spaces H ® R? with
H a hyperplane in b (as notation suggests, b is a Lie algebra, the interpretation of which
we will be more specific about in Part 2; for now, let us mention that there is a natural
identification b ~ HZ (X,R), and, H2,(X,R) being in turn isomorphic to H*(X,R),

cpct
X X X

(¢1, (2, ¢3) corresponds to (Jwi' |, [ws' |, [ws']) under this identification, which moreover sends
Killing form products to cup products). Kronheimer’s {-parametrisation is compatible with
the SO(3)-action of point (i) in the sense that if ¢ is the parameter associated to (X, gx,
LY L5 I, and if (Y, gy, IV, 1Y, 1Y) is the instanton associated to A(, defined by

AC = ((AQ)j)j=1,2,3 = (aj1C1 + aj2(2 + a;3(3)j=1,2,3 (3)

then (Y, gy, 1,13, 1Y) and (X, gx, (AI%)1, (AIX)q, (AIX)3) are isometrically tri-holo-
morphic: this is Lemma 2.3, stated and proved in Part 2. Defined this way, A( is of course
still in h ® R? — D; otherwise AC € H ® R? for one of the hyperplanes H mentioned above,
and thus ¢ = A'(A¢) € H ® R3, which would be absurd.

(iii) In general, one can take the diffeomorphism ®x between infinities of X and R*/D}, so that
@y, I{* —I; = O(r~*) with according decay on derivatives, which is not good enough for the
construction we foresee. We can nonetheless improve the precision thanks to the following
two lemmas.

LEMMA 1.1. If € € h ® R® — D is such that |&]? — |&]3 = (£9,&) = 0, and (Y, gy, 1Y,
IY, 1Y) is the associated ALE instanton, then one can choose ®y such that there exists a
diffeomorphism 1 = J¢ between infinities of R* commuting with the action of Dy, and such
that

(Vo) (@y, I} — T 1) = O(r5*) forall > 0.
Moreover, the shape of 1 is given by J(z1,22) = (1 + (a/r%))(z1, 22), with a = a¢ € R, and
(21, 22) the standard complex coordinates on (C?, I), and moreover |(V®)*(Qe — 3*Q0)|e =

O(r=8=*) for all £ > 0.

LEMMA 1.2. For any ¢ € h ® R3, there exists A € SO(3) such that |(A¢)2|> — [(AQ)3|> =
((AQ)2, (AQ)3) = 0.
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Lemma 1.1, which relies on our analysis of the asymptotics of Kronheimer’s instantons, is
proved in § 1.3, assuming a general statement for these asymptotics that is seen in Part 2; the
hypothesis on & and €3 is moreover commented on in § 2.5. Lemma 1.2, which is elementary,
is proved at the end of this section.

(iv) Recall that ¢ is the parameter of our given instanton X. We choose A as in Lemma 1.2,

consider the instanton Y associated to & = AC € h ® R? — D, and perform the gluing of
the Kéhler forms and correct a prototypical ALF metric into a hyperkahler metric, with
the potential ¢” := J*¢ instead of ¢. Thanks to the better coincidence of the complex
structures, the rough candidate dI}’ d(@;‘/gob) is now positive at infinity, and actually also
rather close to f” := J*f, with f the Taub-NUT metric on R?*, which is Kéhler for I;.
We should moreover specify here that the gluing also requires a precise description of the
Kihler form w! := gy (I}-,-), which is again part of the analysis of the asymptotics of
Kronheimer’s ALFE instantons.

We get this way, after a three-step correction process (making the metric Ricci-flat near
infinity, putting it in Bianchi gauge, and concluding with a Calabi-Yau type theorem),
a Ricci-flat, actually a hyperkéhler, manifold (Y, g4, I%/ , JZY , Jgf ), with ®y, ¢} asymptotic
to £°, and [g} (I} -,-)] = [gv (I} -,-)]; the construction also gives [gg/(J]Y', ] = [gy(IjY', I,
ji=2,3.

(v) We let A® = A~! act back on the previous data to come back to X, and end up with a
hyperkiithler manifold (X, g%, Ji%, J5<, J5%), with [g’X(JjX-, )] = [gX(I]X-, )], 5 =1,2,3, and
® x, g asymptotic to f > provided that ® x is the composition of ®y and the tri-holomorphic
isometry in play in point (ii).

We shall also add that we can play on the metric f in this construction. Indeed, f is invariant
under some fixed circle action on R?*, and the length for f of the fibres of this action tends to
some constant L > 0 at infinity. We can make this length vary in the whole (0, 00) and keep the
same volume form for f; given m € (0, 00) that we call the ‘mass parameter’, we then denote by
f,, the Taub-NUT metric giving length L(m) = 7m1/2/m to the fibres at infinity, and of volume
form Qe (the choice of the parameter m instead of L will become clear in the next section).

We can then sum our construction up by the following statement, which is the main result
of this part, and is a specified version of Theorem 0.2.

THEOREM 1.3. Consider an ALE gravitational instanton (X,gx, I1X, IZX, I:)f() modelled on
R*/Dy. Then there exists a one-parameter family (gkm, Ji(m, me, ngm) of smooth hyperkéahler
metrics on X such that, for any fixed m € (0,00):

e the equality [gg(’m(Jj{(m‘, )] = [gX(I]X-, -)] of Kahler classes holds for j = 1,2,3;

° g/X,m and gx have the same volume form;

° g/X,m is ALF in the sense that one has the asymptotics

(V) (@x .t m = Bl = O(RTT), £=0.1,

for any ¢ € (0,1), and that RmY%m has cubic decay at infinity.
Here R is a distance function for f),, and ®x is an ALE diffeomorphism between infinities of X
and R* /Dy, in the sense that |®x,gx — el and ]CI’X*IJX — Ij|e are O(r=%), with according decay
on derivatives.

In this statement, f;, = 3*f,,, where J = J4 is given by Lemma 1.1, { € h ® R — D is the
parameter associated to (X, gx, I%, I3, I5*), and A is chosen as in Lemma 1.2. There might be
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a slight ambiguity here, since different A € SO(3) could do, namely, given ¢ as in Lemma 1.2,
there may be many A satisfying its conclusions; we will see however in Remarks 1.4 and 1.11
that J as we construct it is not affected by this choice.

Points (i) and (v) above do not need further development. We postpone the tri-holomorphic
isometry of point (ii) to Part 2, §2.2.1, as it is easier to tackle with a few further notions
on Kronheimer’s classification of ALE gravitational instantons. As for point (iii), as mentioned
already, the proof of 1.1 is given in § 1.3 assuming results from Part 2; apart from the proof of
Lemma 1.2 which we shall settle now, our main task in the current part is thus the gluing and
the subsequent corrections stated in point (iv), to which we devote §§1.3 and 1.4 below, after
recalling a few useful facts on the Taub-NUT metric seen as a Kihler metric on (C2, 1) in the
next section.

Proof of Lemma 1.2. For ¢ € h ® R3, define the matrix Z(¢) = (({;,(r))1<je<s of its scalar
products. It is elementary matrix calculus to check that the SO(3)-action defined by (3), and
referred to in the statement of the lemma, translates into Z(A¢) = AZ(¢) A"

Fixing ¢, we thus want to find A € SO(3) such that AZ(¢)A? has shape

(4)

* ¥ =
S > %
> O *

Since Z = Z(() is symmetric, there exists O € SO(3) such that 0ZO! = diag(\1, A2, \3), and
we now look for Q € SO(3) such that Q diag(\1, A2, A3)Q" has shape (4); setting then A = QO
leads us to the conclusion. If two of the \; are the same then we are done, up to letting act one

) . 100 0 10 001 . ) .
of the permutation matrices 001), 7]1 8[1) and 0 10). Up to this action again, we can

)\1 — )\3 >\1 - /\3
0 1 0
- Ay — )\3 1/2 0 A — Ao 1/2
)\1 — )\3 )\1 - /\3

< A+A3—A2 0 —A

a direct computation gives Q diag(\1, A2, \3)Q! = 0A )E)Z /\0 ), where A = (A1 — \g)'/?
- 2

()\2 — )\3)1/2. O

therefore assume A1 > g > As.
Setting

)

Remark 1.4. Our choice for @ is a little arbitrary; however, one can show that the

only possibilities for writing Q diag(\1, A2, A3)Q?, that is, AZA!, under shape (4) are the
A1+A3—A2 Acos¢ Asing
( Neoso A0 ) 6 € R, and again A, > Ay > As.
Asin¢ 0 A2

1.2 The Taub-NUT metric as a Kihler metric on (C2, I)

Before we proceed to the gluing of the Taub-NUT metric with the ALE metric of one of
Kronheimer’s instantons, we recall a few facts about this very Taub-NUT metric on C?, that will
be used in the analytic upcoming §§ 1.3 and 1.4. Our main references here are [GH76, LeB91].
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1.2.1 Gibbons—Hawking versus LeBrun ansdtze.

Gibbons—Hawking ansatz. As recalled in the Introduction, the Taub-NUT metric on R?* is often
described via the Gibbons-Hawking ansatz as follows: given m € (0, 00), set

£, = V(dyi +dys + dy3) + V%,

where (y1,%2,y3) is a circle fibration of R*\{0} over R3\{0}, V is the function (1 +4mR)/2R
(harmonic in the y; coordinates) with R? = yf + y3 + y3, and where 7 is a connection 1-form for
this fibration such that dn = #gsdV. Thus defined, the metric f,, confers length 71/2/m to the
fibres at infinity, and is hermitian for the almost-complex structures

7 Vdy, —> 1,
@ dyp —> dye,

with (a,b,c) € {(1,2,3),(2,3,1),(3,1,2)}. These are in fact complex structures, verifying the
quaternionic relations J,JpJ. = —1, for which f,,, is Kéhler, thanks to the harmonicity of V: f,,
is thus hyperkéhler. One checks moreover that this way, the metric f,,, and the complex structures
extend as such through 0 € R*.

We now switch point of view to a description better adapted to our construction.

LeBrun’s potential. As depicted in [LeB91] and reviewed in detail in Appendix A, one can give a
somehow more concrete support of the description of f,,,, through which the complex structure
J1 mentioned above is the standard I; on C?, and volfm = Qe, the standard Euclidean volume
form. One starts with the following implicit formulas:

m(uz—v2)u

m(,u2_u2)v’ (5)

|z1f = e

22| =€
defining functions u,v : C> — R, invariant under the circle action e - (21, z0) = (21, e " 2y)
which makes S' as a subgroup of SU(2); notice the role of m in these formulas, which enlightens
our choice of taking it as the parameter of the upcoming construction. One then sets y; =
(U2 —0?), yo+iys = —iz122, R = F(u?+0%) = (47 +y3 +y2)1/2; these are S'-invariant functions,
making (y1,y2,y3) as a principal-S! fibration C? — R3 away from the origins. One finally defines

pm = 1(u® + 0+ mut +0%)) = F(R+m(B + 7). (6)
One can then check (see Appendix A) that dd] om is positive in the sense of Ij-hermitian
2-forms, and that (ddf, ©m)? = 2Qe. If one sets moreover V = (1 +4mR)/2R, and n = I;Vdy;,
noticing by passing that n is then a connection 1-form for the fibration with dn = s dV, one
has £, := V(dy? + dy3 + dy3) + V1n? = (ddF, #m)(+, 11+). This metric is well defined at 0 € C2,
as (ddg, om)(+, I1-) = e at that point.
The metric f,,, is therefore Kéhler for I; with volume form volf = Qg on the whole C2; by the
standard properties of K&hler metrics, it is thus Ricci-flat. One recovers a complete hyperkahler
data after checking that the defining equations

fn(Jj, ) =ws  where wf =e(l;-,-), j=2,3, (7)

with I, I3 the other two standard complex structures on R* =2 H, give rise to integrable complex
structures, verifying respectively J; : Vdy; — ), dyy, — dy, for (j,k,€) = (2,3,1),(3,1,2), as well
as the quaternionic relations together with I;.
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Let us now take a look at the length of the S'-fibres at infinity. Consider the vector field
¢ :=1i(21(0/021) — z1(0/071) — 22(0/022) + 72(9/973)) giving the infinitesimal action of S*. One
has dy; (—1&) = V71, thus n(€) = 1, and dy;(§) = 0, j = 1,2,3; since R is Sl-invariant, the
length of the fibres is just 27V /2, which tends to m+/2/m.

Remark 1.5. Even if we can let m vary, this description actually leads to essentially one metric;
indeed, if k4 is the dilation of factor s > 0 of R*, one gets with help of (5) and (6) the following
homogeneity property: xf,, = s2f,,.2, which is of course coherent with the length of the fibres
at infinity and the fact that volf™ = volfms? = Q.

From now on, we see the mass parameter m as fized, and we drop the indices m
when there is no risk of confusion.

The Taub-NUT metric and the action of the binary dihedral group on C2. For k > 2, which we
fix until the end of this part, the action of the binary dihedral group Dy of order 4k seen as
a subgroup of SU(2) = Sp(1) is generated by the matrices (j := (e”(r)/k e_io,r/k) and 7:= (9 31).
One has (y; = y;, j = 1,2,3, and thus (R = R, and (;n = 7, whereas 7*y; = —y;, j = 1,2,3,
thus 7*R = R, and 7*n = —n. The Taub-NUT metric f is therefore Di-invariant, and descends
smoothly to (R*\{0})/Dy: this is the metric we are going to glue at infinity of D-ALE instantons
in the next section. Before though, we need a few more analytical tools for the Taub-NUT metric

as we describe it here.

1.2.2 Orthonormal frames, covariant derivatives and curvature. In addition to the above
relations between the vector field £, and the 1-forms 1 and dy;, j = 1,2, 3, one has that the data

(eo, €1, €2, €3) := (VV/2e, — VY2, V=12 V=121, (8)
is the dual frame of the orthonormal frame of 1-forms
(€5, €5, e3,€3) i= (V7 2n, VH2dy, Vi P2dys, V2 dys) (9)
on C2\{0}, provided that the vector field ¢ is defined by
1 A o __ 0 —dmy o __ 0
= o _m 2 52 1
¢ 5k (6 <22 = 2o +e g TP, ) ) (10)

see Appendix A; we keep the notation (e;) o, 3 and (ej) j=0,....3 throughout this part. An explicit
computation made in Appendix A then gives the estimates

(VHeile = O(R™'™) near infinity for all £ > 1 and j = 0,...,3.

Consequently, for all ¢ > 0, |(VORmfly = O(R3Y), this justifies the terminology
‘Asymptotically Locally Flat’ for f; this estimate, done using the Gibbons-Hawking ansatz,
can also be found e.g. in [Min07, §1.0.3].

We close this section with two further useful estimates, giving an idea of the geometric gap
between e and f: first, at the level of distance functions, rearranging (5) gives R < 272, which
is sharp is general; second, there exists C' = C(m) > 0 such that outside the unit ball of C2,
C~'r~2e < f < Cr?e, which, again, is sharp in general. Details are given in § A.2, in Appendix A.

1.3 Gluing the Taub-NUT metric to an ALE metric

As is usual when gluing K&hler metrics, we shall work on potentials to glue the ALF model-metric
to an ALE one. The previous section gives us the potential ¢ for the ALF metric (6); the following
paragraph provides us a sharp enough potential for the ALE metric.
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1.3.1 Approxzimation of the ALE Kdéhler form as a complex hessian.

Asymptotics of the Kahler form and the complex structure. In view of steps (iii) and (iv) of the
program developed in § 1.1, since we are performing our gluing on some specific ALE instantons,
we fix for the rest of this part

§eh—D, such that: & — [&)° = (&, &) =0, (11)

and consider the associated ALE instanton (Y, gy,If ,I%/ ,I%f ). Lemma 1.1 gives an ALE
diffeomorphism ®y : Y\K — (R*\B)/Dj, where K is some compact subset of Y and B a
ball in R* centred at the origin; recall that by ‘ALE diffeomorphism’ we mean that for all £ > 0,

(V) (Dy.gy —e)le = O(r~*7F),

and likewise on the complex structures. Before using the more specific properties of ®y at the
level of complex structures, let us mention the following: we want to proceed to a gluing of Kéahler
metrics, and the convenient way of doing so is to glue the Kdhler forms, via their potentials. We
already have a candidate for the potential of an ALF metric at infinity at hand: as evoked,
this would be ®y,¢” (see point (iv) in §1.1). Conversely, we need to kill the ALE metric near
infinity, and for this we want a sharp enough potential, in a sense that we make clear below, see
Proposition 1.12. We thus need for this a sharp knowledge of the Kdhler form w%/ = gy([ly-, ),
and since we are about to compute I} -complex hessians as well, we also need a precise description
of the complex structure I} . These are given by the following, from which Lemma 1.1 actually
follows as we shall see at the end of this section, with the same ®y-.

LEMMA 1.6. One can choose the ALE diffeomorphism ®y such that

Py ,wi = wf — c(|€1201 + 2(&1,&)02 + 2(€1,&3)03) + O(r~®) (12)

where ¢ > 0 is some universal constant, 6; = %dd?j (r=%), j = 1,2,3, on the one hand, and if 1}

denotes @y*Ily — I, then it is given by:

e} ) = —elleal’ + lesP) L 4 o)

where c is the same constant as above and oy = Iyr dr, on the other hand.
We can moreover assume that ®y,Qy = Qe, where Qy = vol?Y,

In this statement the error terms O(r~%) are understood in the ‘Euclidean way’, namely
for any ¢ > 0, the fth Ve-derivatives of these tensors are O(r~87¢). This lemma requires
further notions on Kronheimer’s construction, and is more precisely a direct application of
Theorem 2.1 of Part 2 to Y = X, with £ verifying (11). Notice however the error term order
—8&, whereas one would expect —6, if one thinks for instance about the Eguchi-Hanson metric
[Joy00, Example 7.2.2]; this estimate is crucial in proving Lemma 1.1, and is specific to (groups
containing) dihedral binary groups. Besides, the assertion on the volume forms is only needed in

the next paragraph.
Approzimating wl as an I} -complex hessian. We shall see for now how Lemma 1.6 allows us
to approximate the Kéhler form w}/ as an [ %/ -complex hessian, with respect to the Taub-NUT

metric pushed-forward to Y.
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ProposiTION 1.7. Take ®y as in Lemmas 1.1 and 1.6, and denote byf' a smooth extension of
®y*f on Y. Then there exists a function ¥ on Y such that near infinity,

(VO (Wi = ddfy )z = O(R™?), £=0,1,2. (13)

More precisely, ¥ can be decomposed as a sum ®y* Ve + Py U, q, where on the one hand,
Ueue = O(r?), [d¥euele = O(r), and

(VO (& — clér*01 — ddg, .y Weuc)le = O(r™7F) for all £ >0, (14)
and on the other hand, ¥, q= O(R™Y), |d¥pqls = O(R™1), and
|(vf)é(—20(<§17 £2>02 + <§1, §3>93) - dd%Y*I%/\IJde)’f = O(R_2>7 E = 0, 1, 2. (15)

Proof. Notice that once the statement on Wey. (the ‘Euclidean component’ of W) and Wy,.q (the
‘mixed component’) are known, estimates (13) follow at once by transposition to Y of estimates
(14) and (15) and of the expansion of w] stated in Lemma 1.6, keeping the following fact in
mind.

LEMMA 1.8. If £ > 0, and « is a tensor of type (2,0), (1,1) or (0,2) such that |(V®)Fale =
O(r=2e=%),a>1, fork=0,...,£ on R*, then |(VH)*a|f = O(R'™), k=0,...,L.

This lemma takes into account estimates such as R = O(r?) and C~'r~2e < f < Cr?e of
Proposition A.9 at level ¢ = 0, and follows for positive ¢ from explicit computations using the
material given in Appendix A, where the proof of Lemma 1.8 is thus postponed.

Remark 1.9. This lemma moreover gives an essential hint about why we push to an O(r—%)
Euclidean precision in Lemma 1.6 and in (14), that is, why we do need the analysis of Part 2. In
the forthcoming gluing (§ 1.3.2), we are concerned with an error term governed by a (1, 1)-tensor, 3
say, of Euclidean size O(r~%), amplified by some O(R) factor in f-scale; we thus roughly speaking
end up by Lemma 1.8 (with a = 4) with an error of size O(R~?), which suffices to go on our
construction in §1.4. On the other hand, starting with O(r~*) or O(r~%) Euclidean precision,
that is, applying Lemma 1.8 with a = 2 or 3, would only provide an error of size O(1) or O(R™!)
after the gluing of §1.3.2, which would not be accurate enough to conclude.

We hence come to the statements on Ve, and ¥,,.q. We consider before starting a large
constant K such that the image of ®y is contained in both {r > K} ¢ R*/D;, and {R > K} C
R* /Dy, and define a cut-off function y : R — [0, 1] such that

(1) = 0 ift<K-—1,
XUZN1 it > kK,

which will be useful when defining functions to be pulled-back to Y via ®y.

The Euclidean component We,.. In an asymptotically Euclidean setting, a natural first candidate
for the potential of a Kéhler form is 1/4r2. Now remember we are working with I%/ , OI more
exactly with ®y,I}, but we forget about the push-forward here for simplicity of notation;
following Lemma 1.6, a straightforward computation gives, near infinity in R*:

ddjy (37°) = 3d[(h + of Jrdr] = dfar + (&) + [€[*)r~ a1 + O(r ™))
=wf —c(lel + |l + 00,
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where the O are understood in the Euclidean way. On the other hand observe that I1d(r—2) =
—2r~%qy, and thus

ddsy (r2) = d[(I + ) )d(r2)] = d[-2r a1 + O(T)] = 46, + O

Now define
\I’euc = %X(T)(T2 + C(|€2’2 + ‘§3|2 - ’£1|2)T_2);

on R*/Dy, (it is Dy-invariant); it has support in the image of ®y, has the growth stated in the
lemma as well as its differential, and by the previous two estimates we get that w$ — ¢|¢1]%0; —
ddfpy I Yeue = O(rfg) for e with according decay on the derivatives, as wanted.

*71

The mized component V4. The main reason why we could construct We.. such as to reach
estimates (14) is essentially that 6; can be realised as an Ij-complex hessian, at least away
from 0. Now realising 65 and f3 as Ij-complex hessians as well does not seem possible: see
[Joy00, p. 202] on that matter. Nonetheless, 62 and 63 may not be so problematic when looked
at via f. We can indeed approximate them precisely enough with respect to this metric by the Iy
or I} -complex hessians of some well-chosen Dj-invariant functions, provided that we partially
leave the Euclidean world and use also functions coming from Taub-NUT geometry, e.g. y; and
R (hence the previous dichotomy ‘Euclidean/mixed’).

LEMMA 1.10. Consider the complex valued function

(y2 + iy3) sinh(4dmy; )
2R

e = =2

on R*\{0}. Then near infinity:

(i) (V) ele = O(R™Y) for £ =0, ..., 4;
(ii) |(Vf)€(dd§1¢c — (02 +1i63))|s = O(R™2) for £ = 0,1,2, and these estimates hold with I
replaced by I f/ as well.

The proof of this crucial lemma is essentially computational, which is why we postpone it
to §1.5; let us just say at this stage that it will appear clearly along this proof that the main
point is to identify some function 1 such that dv/dy, is proportional to 1/r*, up to higher order
terms, and this turns out to happen precisely for ¢ = sinh(4my1)/r?R, see (30) below.

For now set 19 = Re(1).) and 13 = Im(1).), and define

Winxd = —2ex(R)((€1,§2)12 + (€1,€3)93).

In view of Lemma 1.10, such a function, defined on the image of @y, verifies the growth assertions
of Proposition 1.7, as well as the estimates (15): Proposition 1.7 is proved. O

We are now in position to perform the gluing advertised in point (iv) of the program of
§1.1. This is done in the next section to which the reader may jump directly, since we conclude
the current section by the proof of Lemma 1.1, assuming Lemma 1.6 (and more precisely the
assertion on I in that statement).

Proof of Lemma 1.1 following Lemma 1.6. We fix ®y as in Lemma 1.6; we work on R*, and to
simplify notation we forget about the push-forwards by ®y.

We are thus looking for a diffeomorphism 3 of R* such that |[I}' — J*I1|o = O(r~%), with
according decay on Euclidean derivatives, until the end of this proof we forget about ALF
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geometry and stick to the Euclidean setting; we will thus content ourselves with using O in this
Euclidean meaning. An explicit formula is given for J in the statement of Lemma 1.1, which is
J:(21,22) = (14 (a/r*))(21, 22) with (21, 29) the standard complex coordinates on (C2, I1); up
to determining the value of the constant a, we could thus simply check that such a J meets our
requirement, in light of the asymptotics for I stated in Lemma 1.6.

We prefer nonetheless the following more constructive approach. In terms of Kodaira—Spencer
theory, if we set 3 = idc2 +¢, seeing thus e = (£1(0/0z1),e2(0/022)) as the direction of a
deformation of id¢2, the condition I —3*I; = O(r~®) becomes, neglecting the O(r~%) error term,
01,6 =1} . Now «) is an e-harmonic I;-(0,1) form with values in 700 C? and with r—*-decay;
a multiple of the (1,0)-gradient of the Green function 1/r? is thus the best-placed candidate for
the role of . This actually works, with the choice

_ Clie 2 2 q¢ 1\
= gl + 6P |maa ()]

that is
= (|6 + &)= and ey — (& + 16372
4rt 4r4 ’
with ¢ the constant given by Lemma 1.6.
The last point to be dealt with is 3 = id¢2 +(e1, £2) being a diffeomorphism between infinities
of C2; we leave it to the reader as an easy exercise.
The estimate J*Qe — Qe = O(r~8) amounts to seeing that Re(de1/0z1 + de2/029) = O(r~°):
extend id(z; + 1) A d(Z1 + €1) Aid(22 + e2) A d(Z2 + E2), and look at the linear terms in ey,
g9. Since after multiplication by a := —c(|&|? + |€3]?)/4 the error would again be O(r~%), we

can do this computation with z;/r* and zo/r? playing the respective roles of £; and 5. Now
(0/02;)(2;/r*) = 1/r* — 2|2;?/r®, j = 1,2. Since these are real, we only need to compute the
sum (0/0z1)(z1/r*) 4+ (0/022)(22/7*), which is 2/r* — 2|21|?/r® — 2|22|%/r5 = 0.

The Dj-invariance of 3 thus constituted is clear. O

Remark 1.11. According to the preceding proof, J as we construct it depends only on ¢(|¢2]? +
|€3]2). If now £ is chosen as an AC, A € SO(3), ¢ € h — D, so as to satisfy condition (11) as is
evoked in point (iii) in the program of §1.1, by Remark 1.4, |¢3]? = |£3]2 does not depend on
A, and has to be the middle eigenvalue of the matrix (((j,(s)). Consequently, 3 = J4¢ does not
depend on A € SO(3).

1.3.2 The gluing. We keep the notation of the previous section: (Y, gy, (I]Y)j:m’g) is a
Di-ALE instanton with parameter £ verifying (11), ®y an asymptotic isometry between infinities
of Y and R*/D;, fixed by Lemma 1.6, and J is given by Lemma 1.1 which we may also see as as
diffeomorphism of (R*\{0})/Dy.

As alluded to above, the form we want to glue w! = gy (I{ -,-) with at infinity is dIfd(pb,
where ¢’ = J*, with ¢ = ¢, LeBrun’s I1-potential for f given by (6). We set likewise f* = J*f,
both on R?* and its quotient. Recall that U = Woye + Ueq is defined in Proposition 1.7 as an
approximate I -complex potential of w} . The next proposition explains how to glue dI; de to
w%’, so as to obtain an ALF metric on Y at the end; as we need it below, let us mention here
that we see Wy,xq on Y via ®y, and we more precisely consider a smooth extension of ®3 W4,
which is assumed to be bounded in absolute value by %
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PROPOSITION 1.12. Take K > 0 so that the identification ®y between infinities of R*/Dj, and
Y, as well as the diffeomorphism 3, are defined on ¢ > K. Consider 9, Ry > 1, § € (0, 1] and
set
O q)a_lfa (16)
where

Ol = O3 8, K) = wo (P+5 (@) Wia — (K + 571 KF)),

Dy = CI)ale( : ;TO) = X(T‘ - TO)\Peum (17)

_ _ R—Ry\ . B
QaleCDalf(';B’RO):X< RO >B 1(@b)1 /Ba

with k : R — R a convex function which is constant on (—oo, 3] and equal to idg on [1,00) and

X the cut-off function dk/dt. Then if the parameters K, ro and Ry (respectively () are chosen
large enough (respectively small enough), the symmetric 2-tensor g, associated via I%/ to the
IV -(1,1)-form

W = wi + dd%/ .

is well defined on the whole Y, is a Kéhler metric for I, is ALF in the sense that |(Vfb)£(gm —
)| = O(R™2) for £ = 0,1,2, and its volume form €, verifies

(V") (= Qy)lpy = O(R?) (18)
for £ = 0,1,2, where Qy is the volume form of the ALE metric gy .

Remark 1.13. As will be clear from the proof below, the role of the component <I>$f is to bring
(slightly more than) the ALF part in w,,; the role of ®, is to remove the ALE part, coming
from w’; finally, @ is used to correct the term B~1(¢")!= of @, near infinity (where its
contribution to positivity is no longer needed) so as to end up with the announced asymptotics.

Proof. To begin with, we mention the following comparison between f and its correction > = J*f,
that we will keep in mind.

LEMMA 1.14. For £ = 0,1,2, we have |(VE)!(f* — f)|f = O(R™') on R*. Moreover J*R = R +
O(R™1).
The proof of this lemma is postponed to §1.5.2, as we focus on that of Proposition 1.12.

Step 1.1. For now, we work first with the parameter § in (17) equal to 1, and consider the
closed I{ -hermitian form ddﬁ,@;‘lf = ddi}/lﬁ o (¢"=Wq — K) on Y. Even though K is not

fixed yet, this form is equal to ddiy(gob—lllmxd) on {gpb—\I/mxd > K+1} seen on Y via ®y;
1

this is possible for K large enough since ¢’—W.q is proper on R* as ¢” > J*R ~ R (by
Lemma 1.14) and ¥,,,.q = O(R™!). Moreover & is convex, and thus ddy [k o (@ =Wy — K)] is
1

non-negative wherever ddiy(cpb—\llmxd) is, which we claim is the case near infinity. Since indeed
1

|dd Sy Vinxale = O(R™1), our claim will be checked if we prove the estimate
1

|y — SIE(1 ) = £ 1 )]lp = O(R™), (19)
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as we 1= %[fb(lf/-, ) — £°(,IY-)] is nothing but the I -hermitian form associated to the I} -
hermitian metric %[fl’ + (I, I)")]; notice wys is not closed in general. Pushing-forward by 2,
proving estimate (19) amounts to seeing that

[ddSy v — 3[E(3L ) — £, 3.0 )]l = O(R™?).

Now ddg*qgo = d3. 1 dp = wg + dydp, where we = f(I1-,-) and y = 3,17 — I;. Let us estimate

djdyp; by Lemma 1.1 and by Lemma 1.8, for all /= 0,1, |(VF)%)|s = O(R™3), whereas |(V!)y|s =
O(R?>7Y), £=1,2; therefore |djdp|s = O(R™2). On the other hand, still from J,I{ = I + 1,
f(3.07-,) — £(-,3.07) = 2we + £(,-) — £(-, 7). The error term f(y-,-) — (-, 7-) is controlled by
|7l¢, which is O(R™3). We have thus proved estimate (19). Thanks to the general formal formula

VIThT = VIT 4+ (g + h) "« VIh + T, (20)

(see e.g. [GV16], formula (3.39)) for any metrics g and g+h (h is thus seen here as a perturbation)
and any tensor T, with Lemma 1.14 we can take g = f, g+ h = f” and T the tensor in play, and
prove with the same techniques an estimate similar to (19) up to order 2, that is

b c _
(V) (dds o — wp)lp = O(R™),

for £ = 1,2; this also uses |(V)fpls = O(R™27%) for £ = 0,...,4, and [(VF)’y|f = O(R™3) for
¢ =0,...,4, which follows from Lemma 1.8. If therefore K is chosen large enough, and taking
moreover the contribution of ¥,.q into account, w{ +ddCY/£O(<pb—\Imed — K) is well defined and

is an I -Kihler form, and is equal to (w] — dd;y mxd) —|— wp up to a O(R™2) error at orders 0,
1 and 2 for f’.

Step 1.2. We can now deal with the 5 < 1 case (our intention is to make 5 small); as
ddiy (B71(¢")'70) = (1= B)(¢") (B dd5y ¢ — () 1dg” A dy ),

as ¢” grows at least like m(R’)?, and as dy’ and df,ygol’ are O(R’) for f> according to what
1
precedes, we have |(¢°)~tdg” A diygob]fb < A near infinity for some A > 0 (independent of
1
K, B, Ry, 70), whereas dd‘;%/ o > %Wfb near infinity. This way, assuming that 3 € (0, A™1),

ddfy (571(#)'7F) 2 (1= B)(@) (87! = A)ddfy ¢ > 3 (1= B)(&") (87" — Ay

near infinity, and, more precisely, as soon as |(¢”) " d¢” /\dﬁ, ¢l < Aand ddc > 3wy, hence
on {¢* > K}, say; we fiz such a K once and for all. Therefore, as |W¥yq| < sonY:
. dd%@;ﬁf is trivial where (¢” 4+ 81"V P = Vg — K — B7IKF) < 1
o on {(¢" + BN = Uy — K — BLKYF) > 1) € {¢’ > K} (this inclusion being
independent of ), ddiy [* + B7H@") P — Upd] = 3 + (B — A)(¢°) " top > 0, and
thus dd;Yq);lf 0. More precisely, on {¢” > K + 2}, where (¢’ + 31 (¢")'# = Vg — K —
BIK- 5) 1, dd;ly ar = ddfy (" 4+ B~ (") P = Wpq]. Thus w) +ddy o >wlony,
refined as w + dd;}/@zlf wy + (1 +(1=B)(B! = A)(¥")P)we on {cp > K + 2};
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o wl + dd}y @;f is furthermore asymptotic to
1
(i — ddfy nxa) +@p + 5 dd5y (&), (21)

with an error of size O(R™?), as well as its first and second VI’ _derivatives.
Notice that at this stage, we have not used ¥,q, but instead only checked it did not impede us
to reach a desired positivity assertion on w%/ + ddcéa'ﬁf.

Step 2. We now deal with the summand —®,;, of <I)|7’7L, which is meant to kill the ALE part of the

Kihler form w} + ddcq);rlf, or equivalently of the I} -hermitian form (w} — ddSy Unxd) + g (We
1

see the remaining terms in (21) as ALF perturbations, corrected below with the help of ® ;).

There are again two issues here: the positivity of the resulting I{-(1, 1) form w] —|—dd v (@ F—Pate)

on Y, and its asymptotics. The asymptotics are independent of rg, Ry and, to a Certaln extent, 3,
since we are only looking at what happens near infinity. Indeed, for any value of these parameters,
and provided that 7o (respectively Rp) is chosen much larger than K (respectively rg), we have
{R> Ry} C {r>ry+1} C{¢’ > K +2} and on that region, by definition of ®};; and ®,je,

wy + ddily(q):lf — Do) = (W] — ddﬁf ) + ddiv(sﬁb +B87H)P,

with that U = U, 4 + Weye of Proposition 1.7. The term (w) ddc U) in the right-hand side is

thus O(R~2) for f by this proposition, which is exactly where \Ilmxd, as well as Wy, as we defined
it, are used; again, these asymptotics hold for f* by Lemma 1.14. We have already dealt with
the asymptotics of ddfy (¢” 4+ B~1(¢”)'7P) in the previous step. As in (21), we hence have that
1
wi + ddy ( 1 — Pale) is asymptotic to wyg + 571ddﬁy(g0b)1*5, with an error of size O(R~?2) for
1

2 up to 1ts second V¥ -derivatives.

We are therefore left with the positivity assertion, which has to be proved carefully since we
essentially have to subtract a metric to another one; this is where we fix rg and S. This boils
down to the following:

e take r( so that on r > ro, dd;ly(gob—kﬁ_l((pb)l_ﬁ ~ Vi) = 2[1+(1=B) (B = A) () Pl
(as underlined above, this can be done independently of ();
e consider wi — dds T v @ale, Tewritten as [1 — x(r — 7o)]wi + x(r — ro)(w) — ddiy euc) + ’RTO,

where Ry, = X' (7 = 70) (Veucddy r + dr AdSy Vene + dWenc AdSyr) + X" (1 — rg)\IJeucdr Adiy
1 1 1 1

has support in {ro <r < rg+ 1};
o as |wi — dd%\l'eu&e =0(r%), we get |wi — ddﬁf\I’equ = O(R™!) by Lemma 1.8; we can

thus fiz 7o once and for all so that |x(r — ro)(w) — ddfy Veue)lpp < twp on Y
1

o we now ﬁ:v 8>0 small enough so that (1—8)(8~1 = A)(¢")# > 6 SUD,, <r<ro+1 | Rorolgr; this
way, wi + ddly( a1t — Pale), which equals wi + ddfy (ID;FH >0 on Y\{r > ro}, is bounded
1

below by (3 =+ = 1), > 0 om {ro <r < 7o+ 1}, and by (5 — 1)mp > 0 on {r > ro+1}.

Step 3. We Conclude by analysing the term ®_;; of P° 7., and by fixing Ry. First, by the known
asymptotics on wy +dd v (P ;'lf ®,1e) before the above list, and the very shape of ®_ ., we get that
1

Wy, = wf—kdd% (@ — Pate) _ddif @, is asymptotic to wp (the error being of size O(R~2) for £’

up to two Vfb—derivatives). Second, recall that Ry is supposed large enough so that {R > Ry} C
{r > ro+1}; running the first three points in the above list, and taking supports into account, one
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can also say that wf%—ddzy (@4 p—ParLE), which equals ddc(pb+dd§1), (871 (Sﬁb)l_ﬂ)"‘(w}/_ddzy )
on {R > Ry}, is thus > %wfb + ddif(ﬁfl(gpb)lfﬁ) — %Wfb, ie. > %Wfb + ddﬁf (B~ (") #) on
this region, where we recall that ddﬁf (B~ (")) > 0. Now, ddi%, ®_; (which has support in
{R > Ry + 1}) can be rewritten as y((R — Ro)/Rg)ddif(ﬁ_l(cpb)l_B) + Rp,» where Ry =
(1/8Ro)X'((R — Ro)/Ro)Ry + (1/BR3)x"((R — Ro)/Ro)(¢") PR has support in {Ry < R <
2Ro}; here Ry stands for (cpb)lfﬁdd;fR + dR A d;¥<<pb)1*ﬁ +d(")' P A djy R and Ry for
dR N d;%/R. As Ry = O(R'"?%), and R, = O(R*™?P), independently of Ry, we can fix Ry large
enough so that supy |RI_%O|fb = SUPR,<R<2R, ‘R1_20|fb < é.

We sum all this up as: on {R > Ro}, wm = wi + dd%/ (@ — Pate) — X((R— RO)/Ro)dd%
(B7HE) ) = Ry = gwp + [1 = x(R~ Ro)/Ro)lddiy (B~ (¢")'™F) = gmp > gwp > 0;
moreover, on Y\{R > Ry}, w,, equals w! + ddily((I);f — ®,10), positive on the whole Y. In
conclusion, w,, >0on Y.

The last part of the statements concerns volume forms, and is a direct consequence of the
estimates on the metrics, after observing that (on R4, say; recall that @y, Qy = Qe): volfb —Qy =
J*volf =0 = T*0e — e, which can be written as Qe with \(Ve)ee\e =0(r8), 4 >0, by
Lemma 1.1. This converts into \(Vfb)fdfb = O(R™), £ > 0, which is better than wanted. O

Remark 1.15. We can now make our motivational Remark 1.9 more precise; indeed, in the above
proof, one can see that the dominant term in g,, — f* comes from J*d(ydy), and more precisely,
from its component with shape vt VE: clgpb and this, for VI _derivatives up to order 2. Now, we
need in the next section an error between g, and £ of size O(R~%) (§ > 0) at order 0, but of
size O(R™971) (6 > 0) at order 1 (and of size O(R™=*"1), a > 0, at order 1 + o) for f*; an
O(R™1)-error in the statement of 1.12 (as would be the case with, say, an O(r~°) in Lemma 1.6
or in (14), by Lemma 1.8 and using that dy = O(R)) would make our procedure fail.

1.4 Corrections on the glued metric

1.4.1 A Calabi—-Yau type theorem. We want to correct our I%/ -Kéhler metric g, from
Proposition 1.12 into a Ricci-flat Kahler metric. For this it is sufficient to correct it into an
IY-Kihler metric with volume form Qy, since this is the volume of the I} -Kihler metric gy,
and, as is well known, once the complex structure is fixed, the Ricci tensor of a Kéahler metric
depends only on its volume form. As suggested by the program ending to Theorem 1.3, at the
level of If -Kahler forms, we want to stay in the same class; in other words, we are looking for
the IY -complex hessian of some function to be the desired correction.

The tool we are willing to use to determine this function is the ALF Calabi—Yau type theorem
of the Introduction, which we state precisely now (we call the manifold in play Y for more
genericity).

THEOREM 1.16. Let 5 € (0,1) and let (Y, gy, Jy,wy) an ALF Kéhler 4-manifold of dihedral type
of Zrder B. Let f € C’gﬁrQ(‘é, 9y). Then there exists ¢ € CEO(H, gy) such that wy +dchy(‘0 is Kahler,
an

(wy + dd§H¢)2 = efwlﬁ. (22)

The weighted spaces of this statement follow a classical definition, and our statement simply

means that for all £ > 0, [(V9%)!fly = O(R™278=%) and (V%) ply = O(R™77Y); the proof of
Theorem 1.16, rather classical yet a bit involved, is postponed to Part 3 below.
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Let us now make the following remark: since we want to construct a metric with volume
form Qy, this is tempting to take f = log(Qy /voly,,) to apply Theorem 1.16. But so far we only
control such an f up to two derivatives (see Proposition 1.12, estimates (18)); also, even in the
CY sense, we only have f = O(R™2) instead of O(R™277).

The other issue is that Y being a ‘ALF Kahler manifold of dihedral type of order 8’ means
that outside a compact subset, Y is diffeomorphic to the complement of a ball in R*/Dy,, and
that one can choose the diffeomorphism ®y between infinities of Y and R*/Dy, such that for all
030, [(V9)!(@y,gy — D)lgy = O(p~7), and |(V99) Dy, ¥ — )]y, = O(p~"~). Here again,
a reading of Proposition 1.12 indicates that the asymptotics at our disposal do not allow us to
take immediately ®y = @y or Py o .

We remedy to these technical problems as follows. First we correct g, into an I -Kéhler
metric with volume form y, which is nothing but a Ricci-flat I} -Kihler metric, outside a
compact subset of Y, which gives us an f with compact support; then we put this corrected
metric into so-called Bianchi gauge with respect to ®y*f’, which corresponds to correct ®y
itself so as to fit into the definition of an ALF Kéahler manifold of dihedral type up to the desired
order.

1.4.2 Ricci-flatness outside a compact subset. To correct g,, into an I -Kihler metric with
volume form €y outside a compact subset of Y, we use the inverse function theorem on Monge—
Ampere operators, between relevant Holder spaces. Namely, we extend f” on Y as a smooth

metric and define on Y the following weighted Hélder spaces:
Y6 0o
(Y. 8) = (] € O | fll oy < o0 (23)

loc

for £ € N, a € (0,1], 6 € R, and where

b b
I llgte gy = 1B flico + -+ [RFVE) Flleo + sup[RY(VE) SIS,

zeY
with () )
u(x) — uy
ul§ = sup max(R(z)*, R(y) ) —~L 2 24
ki (z,y)€Y, (Bl) W)*) des (z,9)* |p» 24

dgp (z,y)<injgp

for u a C’fo’g‘ tensor (u(z) — u(y) interpreted via parallel transport), with R a smooth positive
extension of ®y*R on Y, and C%-norms of the tensors computed with f”.

We then state the following, indicating the type of functions which can help correcting w,,
in the sense raised above.

PROPOSITION 1.17. Fix (a,d) € (0,1)? such that a + § < 1. There exists a smooth function
(VNS C’g’f‘l )N C’g’fyz(fb) such that wy, := wy, + ddfy ¢ is Kéhler for IY, and such that %wi =Qy
1

outside a compact set.

In the statement, the intention is to take the orders of regularity and decay as small as
possible, or, more precisely, to keep « in the range (0,1 — §), to make the rest of the argument
(a forthcoming use of the implicit function theorem, followed by a gauge process) work, so as to
minimise the efforts involved in the construction of the reference metric g,, of Proposition 1.12.

Proof. Taking x a cut-off function as in Proposition 1.12 and setting xr, = x(R — R1), we are
done if we solve the problem (w,, + ddiyz/))z = (1— xR, )w2, +2xr,Qy for Ry large enough. This
1

is manageable, with the help of the inverse function theorem, since:
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o wi — ((1 = xr)wp, + 2XR, V) = X, (Wi, — 2Qy), and [|xr, ((wp, — 20y) /8y )| cho tends
to 0 as Ry goes to oo thanks to estimates (18) for £k =0, 1;

e the linearisation of the Monge—Ampere operators ngff‘a — 2§f1_ » e =019 —
(Wm + dd%/w)z/w?m at ¢ = 0, are the scalar Laplacians Ay : Céfff‘s — C5f)_,. These

are surjective, with kernel reduced to constant functions, according to the appendix of
[BM11]. More precisely, such statements hold for Ag, by [BM11]. Indeed, one has the formal
representation (using the Kéhler property near infinity)

Ny, = Dp + (g7 — ()7 # [(VF)2) + g5t + Vg (d o)+ 1Y
gy (VEd ) 1Y + g« Vg (d-) + (1) — ),

where j = I} — J*I3, as in the proof of Proposition 1.12. From this formula, together with

the estimates (Vfb)e(f|7 —gm)=O0(R™2),£=0,1,2, and (Vfb)ej =O0(R™3),£=0,...,3, we

get that Ay = is well defined as an operator Cg’_al — Cgfl or Cg”_oé — Cg’o‘, and differs from

Ay» by an operator of respective sizes O(R™27%) and O(R~'*%) in the appropriate operator

norms. This gives us the desired mapping properties for A, , first for Dirichlet problems on

exterior domains by a perturbation argument, next on the whole Y by a classical argument
(based e.g. on a parametrix and a Poincaré inequality).

Once R, is chosen large enough to apply the inverse function theorem simultaneously, and

once 9 is fixed in C3% (£7) N C2%(£7) so that (w,, + dd%/w)2 = (1 — xRr, w2, +2xr, Ny, the last

point to be checked is the positivity of wy, := wy, +ddf.¥1/1. As dd%@[) = O(R™9), wy is asymptotic

to wm, hence positive near infinity. Since its determinant ((1 — x g, Jw2, + 2X g, Qy ) /w2, relatively
to wy, never vanishes, it is positive on the whole Y. The smoothness of ¢ is local. |

1.4.3 Bianchi gauge for wy.

Motivation. We are now willing to deduce regularity statements on gy, using its Ricci-flatness near
infinity. However this cannot be done immediately. The reason is that the Ricci-flatness condition
is invariant under diffeomorphisms, and consequently the linearisation of the Ricci tensor seen as
an operator on metrics is not (strongly) elliptic, which is problematic when looking for regularity.

One can however bypass this difficulty by fixing a gauge, which infinitesimally corresponds
to looking at metrics with good diffeomorphisms. We introduce the diffeomorphisms we shall
work with in next paragraph; then the gauge is fixed, and regularity is deduced from this process
(Propositions 1.21 and 1.23). Notice that the Ricci-flatness of g, is an indispensable prerequisite
in this procedure, since the gauge alone is not enough in general to obtain the regularity statement
we are seeking here.

ALF diffeomorphisms of C2. The class of diffeomorphisms we work with to perform our gauge
enters into the following definition; we define the dual frames (e, ...,e}) and ((e})’, ..., (e5)")
as the pull-backs by 3 of the frames (e;) and (e}) defined in §1.2.2 by (8), (9). We fix Ry > 1 so
that J induces a diffeomorphism between {R’ > Ry} and {R > Ry}.

DEFINITION 1.18. Let (4,a) € N* x (0,1), and let v > —1. We denote by Diﬂ‘f/’jf20 the class of
diffeomorphisms ¢ of {R” > Ry} such that:

e ¢ has regularity Cﬁf, and induces the identity on {R’ = Ry};

e there exists a constant C such that for any 2 € {R” > Ry}, dp (2, d(2)) < C(1 + R*(2))7Y;
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e consider the in Cfozl’a maps ¢;; : {R” > Ry} — R given by
Bij(x) = ()" ((0€))e — (€))); 4,5 =0,...,3.
We then ask: ¢;; € C’e:&’a({Rb > Ry}, f).

1%

We endow Difff’oéo with the natural topology.

The Holder spaces are those defined for (some smooth extension of) f? on C2, in the same
way as those of defining equation (23). Notice that we authorise the distance between a point
and its image by a ¢ € Diﬁ'i’%o to go to oo when v < 0; observe nonetheless that the allowed
rate of blow-up is sub-linear, and thus the diffeomorphisms are proper.

Diffeomorphisms as Riemannian exponential maps. We now parametrise our diffeomorphisms
via vector fields.

LEMMA 1.19. There exists a neighbourhood ”f/f’a of 0 in C’ﬁ:g({Rb > Ro}, fb) such that for any
Z in that neighbourhood, the map ¢z : x —> expf(Z@)) is in Diﬂ'ﬁ”oéo.
If moreover v > 0, one can choose “//f’o‘ so that Z — ¢y realises a diffeomorphism of ”//,,E’a

l,a

onto a neighbourhood of the identity map in Diff [y, .

Apart from the 0 indices indicating vanishing of the vector fields along {R> = Ry}, the
weighted spaces of vector fields are defined analogously to that of the previous paragraph,
or equivalently Z € Cﬁ:g({R > Ry}, ) if and only if Z € CLY({R’ > Ry}), Z|pp—g, =0 and

loc

X(R* — Ro)(e2)*(Z) € CL¥(C2, %), i=0,...,3 (with x a cut-off function as in Proposition 1.12).

Proof. The regularity assertions are rather standard; we moreover use the fact that the injectivity
radius of f” is bounded from below (that of f is), to get that any diffeomorphism C°-close to
identity can be written as a ¢z for some (small) continuous Z, which boils down to joining any
two points = and y with dg (z,y) < %injfb by a wnique minimising geodesic t — exp, (tZ,).
We shall nonetheless pay particular attention to the fact that in the general case, we authorise
vector fields blowing up at infinity, when verifying the injectivity of ¢ for a given Z close to
0 in Cf’o‘; in the same vein, one should keep in mind that even on compact manifolds, a ¢w
might not be injective, unless |VW]| is small. In this respect, the key here is the decay of the
derivatives of Z at infinity, combined with the decay of Rmf’. Suppose (¢, a) = (1,0) to fix ideas;
for simplicity, we work on the whole C2, where we extend f” smoothly. For the injectivity of ¢
with fixed Z € Cp"° (defined on C2) and || Z|| oo < 1 say, we claim that there exists a constant
C independent of Z such that for any triple (xy, y, z) such that ¢z(x) = ¢z (y) =: 2,

dp (2,y) < C(1+ R(2)) || Z]| prodp (x, ),

from which the injectivity of ¢z follows at once provided [Z| 10 is small enough. We

reach this claim thanks to the estimate |Rmfb\ = O(R™3), as follows. For x,y as in the
claim, call respectively 7, and 7, the geodesics ¢ — exp£b (tZ(x)) and t — expib (tZ(y)), and
denote by p,,, p,, the attached parallel transports. Using [BK81, Proposition 6.6], control
first dos (2, ) by |y, (1)(Z(2) — oy ()(Z ()]s (1 + R(2))~52. Then control [p,, (1)(Z(x)) —

Py (D(Z(y))]g> by dgs (2, 9)(1 + R(z))_l_VHZHCi,o; for this interpolate between 7, and -, by

vs(t) = expgb(s) [tZ(a(s))], where « is a minimising geodesic for f* joining = and y. This is where

one uses the estimates on the derivatives of Z. O
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With similar techniques, one establishes the following lemma.

LEMMA 1.20. With the notation of Lemma 1.19, for Z € %/, one has (¢z)*f’ — £ is Cfﬁ’o‘;
more precisely, one has the estimate ||(¢z)*f* — f> — 5t [£(Z, Mlge-1.0 < CZ]| 0
2042 v

The gauge. Denote by B" = 6" + %d tr the Bianchi operator associated to any smooth metric h
on (an open subset of) R*. The gauge process now states the following.

PROPOSITION 1.21. Let («, d) fixed in Proposition 1.17 and ¢ assumed > % If Ry is large enough,
there exists a smooth diffeomorphism ¢ € Diﬂ';f‘1 Ry» commuting with the action of Dy, hence

descending to R*/Dy, near infinity, such that

B (@y).gy) =0

near infinity on C2, where gy, stands for the I Y _Kéhler metric associated to the Kéhler form W
of Proposition 1.17. As a consequence, f* — (¢ o Dy )igy € C’;’O‘(X, £).

Remark 1.22. The assumption § > % is actually superfluous; we chose to keep it nonetheless as
it authorises a shorter proof (we only need one iteration in Step 1 below).

Proof. Fix as as in the statement, and consider the map

=052 x Mety 2 (f7) — CP%2 (T*C2, )

(.9) — B2 (g).
We would like to solve the equation
* £h . —_
BY%% (g,) =0, ieE(Z,gy) =0, (25)

near infinity, and for this use the implicit function theorem near (0,f?), since the differential of

= with respect to Z is (vfb)*vfb, which as we shall see enjoys surjectivity properties. We first
solve a linearised version (25), to get in the v > 0 position of Lemma 1.19, better adapted to
solve (a duly modified version of) this nonlinear equation.

Step 1. Let Z € C’gf‘l’o({Rb > Ry}, %) be a smooth vector field such that (Vfb)*vfb [£2(Z,)] =

Bf (gy) near infinity. As we shall see below, such an equation can be solved and, picking some
8" € (0,9), and up to using some cut-off function (which does not affect the equation verified

by Z near infinity), we can assume that | Z]| 2.0 (£ 1 small enough so that Z € ;fyl, ie.,
8 —1

¢z € Diff éﬁl Ro (in particular, it is a diffeomorphism); as Z has regularity C’?’f‘l (£*), we moreover

get ¢y € Diﬁ';f‘l’ R,- Taking a mean along the action of Dy, we can also assume that Z is
Dy-invariant, and hence that ¢z commutes to the Di-action. The smoothness of Z, purely local,
comes at once from that of £> and B’ (g9), and ellipticity of (Vfb)*Vfb.

Now, given metrics g, ¢’ and g + h (with ¢’ and g + h seen as perturbations of g), repeated
use of equation (20) provides

Bg+h(g/) = B9(g") — B(h) + Qg(h,9/)7
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where Q4(h, ¢") admits a formal expansion

Qg(h,g) =Vohx{(g+h) " —g '} +(g+h) 2« VIhxh
+ V99 «{(g+h) " =g Hg+h) T« VIhx (g —g).

Taking g = f°, h = hy := (¢2)"f — £> and ¢’ = g, we get that Qp (hz,gy) factors through
(VEhy) % hy, (Vfbhz) * (£ — gy) and (Vfbg¢) * hy. This way, by Lemma 1.20 and as Z is
smooth, Q¢ (hz,gy) € CRX. ﬁC?f%. Moreover, as hy = —sF [£°(Z, )]+ h', with b, € C’I%OCQCZI(’;O‘,

BY (hy) = BY(T[€(2,)]) + BY (W) = (VO )"V [£°(2, )] + BY (b)),

with be(h’Z) e N C?f%. In conclusion, B(¢2)'f’ (9y) = BY (gv) — be(hz) + Qe (hz,9y) =

BY (g4) — (VV)*VE [£(Z, )] +BY () + Qps (hz, 9) s now in C2 N C. Pushing forward

loc

=0 near infinity

by ¢z, we have be[(gbz)*gw] e n C(ljf%(fb), where we had Bf’ (g4) € Cio.N C?fé(fb) (and

1420 > 2> 1+ 6; this is where § > % is used).

Step 2. Set 61 = 26 — 1 € (0,1), and take §; € (0,61). As be[(qﬁz)*gw] e CxX N Cgfgl(fb),
X R, (Rb)be [(02)«9v] ”CO,a(S (£) 8oes to 0 as Ry goes to infinity; here x g, = X(-—R2), with x a cut-
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off function as in Proposition 1.12. In other words, given any neighbourhood of Bf [(¢2)*gy) in
C’gf(;l (£°), the 1-form (1—xg, (Rb))be [(¢2)+9gy] lies in this neighbourhood for R; large enough; by
construction it moreover vanishes on {Rb > Ry +1}. This being said, we now work for simplicity
with the operator z — Z[z, (¢2)+gy] = B@fb[(qbz)*gw] seen as a map 7/5?’0‘ — Cg;iQ(T*(CQ,fb)
thanks to the formulas on B9%"(¢') and Qqg(h,g") of Step 1. Finding one solution z to the

equation Z[z, (¢z)«gy] = 0 near infinity, that is, finding a solution to the equation Z[z, (¢2)«gy| =
(1—x(R — Rg))be[(d)Z)*gw] for some arbitrarily large Ra, with z € C(?{OE)({Rb > Ry}, f?), thus
amounts by the implicit function theorem to establishing the surjectivity of the operator

(VEVVE 4+ [(02)95 — F] % (VE) - 4V [(02) 90 * V-

85 o « * ~ «
= 9 oo Cio({R = Ro}, ) — C5%,({R” > Ro}, T"C*, %) = C3,({R > Ro}, ),
\PZ)xGyp
(26)

Now, as [(¢z)«gy — £°] is C’;’a(fb) and Vfb[(qﬁz)*gqp] is Cgfl(fb), the operator (26) differs from

(vf")*vfb by some asymptotically vanishing term in the C’(?l’a(f b)—to—C’gl’iYr2 (£°) norm. Hence (up
to working in Step 2 with an Ry possibly larger than in Step 1), it is enough to see that (Vfb )*Vfb :
C’;:S‘({R" > Ro}, %) — Cg’fr"Q({Rb > Ry}, f*) admits a bounded right inverse for 9 € (0,1) (playing
the role of 41), with norm independent of the domain as we let Ry grow; we also do the case
Y € (—1,0) (playing the role of §) without the independence of the bounds, needed to get Z in
the beginning of the proof. We work with f, diffeomorphic to f* (and replace R’ by R, and so on).
As for i = 0,...,3, (VI)*Vi(ve}) equals (Agv)e} plus a linear combination of the (e; ~’U)V£keg
and the U(Vf)gjm eg, up to increasing Ry, by a standard perturbation argument, the existence
of a bounded right inverse for

(VH)*VE Oy 0 ({R > Ro}, T*C2 £) — CY2,({R > Ro}, T*C2 )
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amounts to the analogue for the scalar Laplacian with Dirichlet condition

Ar: CS0({R > Ro}, R f) — Cyfy({R > Ro} R f).

Using a similar procedure as in [Min09, §2.1] (where the ‘9’ there should be thought of as ‘% — ¥
with our 1), we first get, for ¥ € (—1,1)\{0}, the existence of a bounded linear Gy : Cng({R >
Ro}, f) — Cg’a({R > Ry}, f) satisfying Af o Gy = id

0o ({R> Ro})’ beware we momentarily drop

the 0 index to the target space C's’o‘ of Gy. Moreover, a careful reading of Minerbe’s construction
shows that for ¥ < 1 (which prevents us to be in the case ‘0 < §; < 2 — ¢’ of [Min09, bottom of
p. 937]; remember § plays the role of % — 9, and that ¢; has shape % + 4, j € N [Min09, p. 931])
gives that the above Gy has image in C’;:g‘({R > Ry}, f). Finally, when 9 € (0, 1), a bound on Gy
(of shape C'/9(1 — ¥) and) uniform in Ry can also be extracted from this construction; a similar
bound, uniform in Ry, is also valid on Gy_;1. Consequently, for all ¢ € (—1,1)\{0},

(VO)'VT: CHE({R > Ro}, T°C? f) — Cyty({R > Ro}, T°C2 f)

is a surjective map, with a bounded right inverse Gy enjoying a bound independent of Ry, as
claimed.
We conclude Step 2 by taking a smooth solution z € C(?{OE)({Rb > Ry}, ) to Z(2, (¢2)xgy) =0

near infinity (chosen Dj-invariant), producing a smooth ¢, € DifféiaR,, and by putting ¢ =
g

(¢-0¢z)~" € Diff;" sy, (which is smooth), with Z’ = x(R’ — Ry)Z. O

Regularity of g,. We conclude this paragraph by the following statement, which finally allows
us to apply Theorem 1.16.

ProprosITION 1.23. With the same notation as in Proposition 1.21, £ (¢°(I)Y)*9w € C (X, fb)
near infinity, and in particular, |[Rm9 | 9 = O( R*Qfé).

Proof. The assertion on the curvature of g, directly follows from the estimate stated on ¢ :=

¢*f> — gy (or ¢.e), and the fact that |Rmfb|fb = O(R™?). For the regularity statement on &,
proceed as follows: set F = ¢*f”, and define the operator ®F by

®F(h) = Ric(h) + (6")**[hp - B¥R]

on C2 . metrics, where hy is the endomorphism of 7% X such that (hg-«, "), = (@, ) on 1-forms.
This way, ®F(F) = ®¥(g,) = 0 near infinity. Now ®F is of order 2, hence schematically,

0= @F(F) - % (gy) = (dp®")(e) + Pr(e),

with Pg(e) an at-least-quadratic combination of e, its first and its second derivatives, with
coefficients depending on F. Quoting [Bam11, p. 16], one has more precisely:

2Pp(c) = (gw)uv(gw)pq(v$5mv$5qb - V}fﬁuavf%b + %Vggupv;favq)
+(99) " (= View + 1V¥e00) (90)P (Ve + Viega — Vieaw)
+FY(=View + 3Vieuw)FPVYeq
+ FFP (—eap(V )3uevg — €6p (VY )auog + 3€ap(V¥ ) + 360p(VY)ogEun)
+ ((96)" = F*)(V)uebo + (V¥ )opear — (V) iseab + (V¥)apEun)- (27)
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The interest of this formula lies in the following: in Pg(e),

(i) the only occurrence of the second derivatives of ¢ = g, — F with respect to gy, denoted by
(V¥)2e, in (27), is via tensors factoring through e x (V¥)2¢; using (20), we can moreover
rewrite (V%)% as (1 4+ F~1 x &) * (VF)2¢ plus some terms factorising through (V¥e)*?;

(ii) all other terms factor through (V¥)*2e; according to (20), one can say these terms factor
through (VF)*2¢ as well;

(iii) the algebraic coefficients are controlled (for F say) in 1.

We sum these three points up by writing
3Lppe T ex (V)% = (VFe)? % Q(e, VFe), (28)

where $¢*fb = dp®F is the Lichnerowicz Laplacian of F = ¢*f”, the symbols x denote algebraic
operations. Since ¢ € C’;’a(R‘l,F) the right-hand side of (28) is in C’gﬁQ(R‘L,F). Again since
€€ C;’a, the linear operator 7+ %fqb*fm + &% (V¥)?p is elliptic and one can draw for this
operator weighted estimates similar to those for .Zj.¢. From this we deduce that € € C?’O‘.
Repeating this argument, we get ¢ € C§°(F), hence £ — DxGyy = PxE € C’go(fb). Notice that one
could even get from this scheme € = g9 + &/, with g an & s+pp-harmonic tensor in Cg° (F), hence

in C°(F), and ¢’ € C35(F); this yields in the end ¢.e € C° (£°), which is better than needed. O

1.4.4 Conclusion: proof of Theorem 1.3. We have proved that f” and (¢ o Py )sgy are Cgo—
close, provided that § = §; to fulfil completely the requirements of Theorem 1.16, we are only
left with checking that (¢ o ®y).I{ is also Cg° close to the complex structure I b= 2J*],.

The estimate (po®y), I} — I € Cg follows easily from the decomposition (®y ), I} —¢*I? =
(Py)IY — L) + (I; = I) + (I’ — ¢*I2), from the estimates |(Py).I) — I1le = O(r~*) and
I} — B]e = O(r~*) converted into |(®y).I{ — Lile, |[I1 — Ii|p = O(R™Y), and |1 — ¢* 2| =
O(R™%)= O(R™?) following from ¢ € Diff};fvl R, in Proposition 1.21.

For higher order estimates, remember that g, is Kahler for IV, and f* for I{. It is thus

enough for instance to evaluate the successive (Vfb)e((gb o ®y),IY). In view of formula (20) and
dropping @y, we thus write formally for £ =1,

V(oY) = VP9 (a0Y)  H(E) T x V(R — hugy) * (6u1)),
~———

=0 since gy is Ily—Kéhler

which easily gives Vfb((aﬁ o dy), ) € C’gﬂ in view of (f* — ¢.gy) € Cé. For ¢ > 2, simply use
inductively formula (20), and the estimate (f* — ¢.gy) € C’é.

As sketched in the introduction of this section, we now apply Theorem 1.16, with (Y, gy, Jy, wy)
= (Y, gy, IV ,wy) and f = log(y /vol?”), which is smooth and has compact support. This gives us
an [ }/ -metric grr,m,m on Y, with volume form 2y and which is thus Ricci-flat, and with Kahler form
wy + ddzygo for some p € CF(Y, gy) with 3 close to 1. At this stage, (grrm — gy) € Cgo(gb*fb);
from this, (VE)(f — gm) = O(R72), £ = 0,1,2, and (V) — g) = O(R™1P), £ = 0,1
(Proposition 1.17), we also have (Vfb)f(fb — grFm) = O(R™178), £ =0,1.

We need two more complex structures for Theorem 1.3. Recall we have two more symplectic

forms coming with the ALE hyperkihler structure (Y, gy, I, I3, I), namely wi := gy (I3 -, ")

and wd = gy(IY.). We simply define J) and JY as the endomorphisms verifying
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grFm(J3 ) =wd and grpm(J3 -, -) = wl'; one then checks these are almost complex structures,
satisfying the quaternionic relations with I, using (w3)? = (w)? = 2vol9"Fm and that the
IV — (1,1) part of wy and w? is 0. To check JY and J) are integrable, use moreover that the
holomorphic symplectic 2-form wi + iw?{ , whose grp m-norm is constant, is grr m,-parallel.
The cubic decay of Rm9%F:m comes as follows: first, an over-quadratic decay is easily deduced
from (g — grEm) € C[%H(Y, gy) and Rm% = O(R~277) (Proposition 1.23). Then a result of
Minerbe [Min07, Theorem 2.5.9] (see also [CC15a]) asserts that we automatically end up with a
cubic rate decay of the curvature. O

Remark 1.24. We conclude this section by completing Remark 1.15, about the order of
approximation on the prototype metric g,, needed prior to its corrections. We can indeed observe
that making g,, Ricci-flat near infinity, or constructing a Bianchi gauge for g, would only require
to start with an error term g,, — £ in C’g’a(f ®); now, improving the regularity after the gauge (in
view of making our metric globally Ricci-flat by Theorem 1.16) does require a C’;’a(f b) error term,
hence the O(r~%) of Lemma 1.6 and (14), as sketched above. Also, the improvement of regularity
up to infinite differentiation order is fairly automatic once the Bianchi gauge is reached, hence
our choice of stating Theorem 1.16 under this shape, which does not require much more effort
than a possible lower-order version.

1.5 Verification of the technical Lemmas 1.10 and 1.14

We conclude this part by the left-over proofs of Lemmas 1.10 and 1.14, both useful in the gluing
performed in §1.3. Recall that on the one hand, Lemma 1.10 is about verifying the asymptotics
at different orders of a function 1., the hessian of which is meant to approximate the 2-form
02 + i03 in the Taub-NUT framework, although such an approximation is likely to be vain in the
Euclidean setting; and that on the other hand, Lemma 1.14 consists of saying that even though
f* = 2*f, with 3 a diffeomorphism of R* better adapted to the Euclidean scope, the transition
between f and f? is relatively harmless.

1.5.1 Proof of Lemma 1.10.

Asymptotics of 1. and its successive derivatives. We first look at the first point of the statement
of Lemma 1.10. Since 1), is S'-invariant when looked at on C? (recall that the S'-action on C?
is given by a - (21,22) = (€'21,e7"25)), or in other words is a function of 1, ¥, y3 (recall in
particular that 272 = R cosh(4my;) + y1 sinh(4myy), following (5) and the definitions of y; and
R given in §1.2.2), we have dy. = (0v./0y1)dy1 + (0¢c/0y2)dys + (0¢./Jys3)dys, and one can
see as well the partial derivatives 0i./0y, as functions of the y; only. If we thus prove here that
for any p, ¢, s > 0 such that p+ ¢+ s < 4,

ap-i-Q-‘rsz/}
e = O(R™17179), 29
oo O 2

we will get the desired estimates, since we moreover know that |(VT)¢dy;|¢ = O(R™1*) for all
{>1and j=1,23.

The estimate (29) at order 0 is immediate, since sinh(4my;) = O(R~17?); this follows from
the identity 2r? = Rcosh(4my;) + y1 sinh(4my;). What is thus clearly to be seen is that each
time we differentiate with respect to ys or ys, we win an R~', and each time we differentiate
with respect to y1, we lose nothing. Let us see how it goes at order 1, that is when p+¢q+s = 1.
If p=1and g = s =0, then (near infinity, where x(R) = 1)
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e
oy

4mcosh(4myy)  yisinh(4my;)  sinh(dmy;) 0(2r?) ) (30)

= —4(y2 + iys3) ( O R2 - 2r2R3 4R oy

and 0(2r2) /0y = 2V (y1 cosh(4my) + Rsinh(4myy)) (recall that V = (1 4+ 4mR)/2R), so that,
after simplifying
0, , m 1 1
=4 A L
oy (2 + iys) <r4 R 4T4R>’

and this is O(R™1), since r 2 = O(R™!) (as R = O(r?)).
If g=1and p=s =0, then

0. sinh(4my;) . .
= 27— 9y + nh(4
o R (y2 + iys) sinh(dmy1)

Y2 y2 cosh(4myy)
r2R3 2ri R? ’

since 9(2r?)/0ya = (y2/R) cosh(4my; ). As sinh(4my;) and cosh(4my;) are O(r2R™!), we end up
with 9v./0y2 = O(r?/(R*r?)) + O(R - 7?/R - (r 2R™2 +72/R - r—*R™1)) = O(R™2). The case
s=1and p=s=0, i.e. the estimate on 0v¢./dys, is done by substituting y3 to ys.

In a nutshell, we win one order each time we differentiate v, y3, R and r? with respect
to yo or ys, which moreover kills functions of y; such as sinh(4my;); we win one order as well
when differentiating 2, y3 and R with respect to y;, but this does not hold any more for r2 or
functions like sinh(4my; ). More formally, using explicit formulas for the 9(2r?)/dy;, j = 1,2, 3,
we can easily prove by induction that for any p,q, s there exists a polynomial @, 4 s of total
degree < (14 p+ ¢+ s) in its first two variables, and 2 4+ 3p + 2(¢ + s) in total, such that

(9]?-1-q-i-s¢C C?pq@(f%€i4nu“=yl€i4n”“,f%,y1,y2,y3)
Oy 0y30y5 (2r2)1+ptats R2(14p+ats) ’

for instance, Q1 0 o( ReT4™1, yet4mv R yl, Y2, y3) = 4(y2+iys)[(R cosh(4my; )+ sinh(dmy;))?
— R2 —4R3). If now P(&1,&,m1, ..., 1m4) = 5‘212171171 . b4 is one of the monomials appearing in
Qp.q.s and a :== a1 +az, b:=by+---+by so that a < 2(1+p+q+s) and a+b<2+4+3p+2(qg+s),
since Re™m1 yet4my1 = O(r?), we get that

P(ReEAmun gy e R gy ys,y3) o (r?)*R"
(T2)1+p+q+s R2+2(p+q+s) o (r2)1+p+q+s R2(1+p+q+s)

and this is O(r2¢—2(4ptats) Rb=2(14p+a+9)): since a < 1+ p+ g+ s and r—2 = O(R™'), this
is finally O(Re*+0=3(4p+a+5)) " which in turn is O(R~(+9+9)) since a + b < 2+ 3p + 2(q + ).
Therefore OPTI+54), /Oyt dyloys = O(R™(19%5)), and this settles the proof of point (i) of the
statement.

Asymptotics of 024103, and comparison with ddf ¢. and dd;f/ 1. We thus come now to point (ii)
of this statement. We do it for £ = 0; it will become clear from this that the subsequent estimates
could be dealt with in an analogous way. Our strategy for proving the desired estimate is the
following: first we restrict ourselves to ddf t.; next we decompose dd ¢ — (02 + i63) into its
dy; N m-component and its dy; A n-free component; we then observe that the dy; A n-free
components of both ddf ¢. and (62 + if3) have already the size we want, whereas we need
to look at the dy; A n-component of the very difference [dd$ 1. — (02 +i63)] to reach the desired
estimate. We conclude by collecting together these estimates, and settling the case of the error
term d(Iy — I1)die.
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Since 1. is S'-invariant,

%P, OV 8%) (82% d*pe 0V 8%)
=V —V- dyy A+ TR AN /s A dys A d
e (a P awon) T o g T aman )T
e ya V. a¢c>
dys ANn— Vdys Nd
( 1ay2 a0 (dy2 A1 y3 A dyr)
2
e " ov 3%)
s dys A1 — Vdyy Adys),
(6y18y3 B3 Oy ( Ys A1 Y1 y2)

and since (&, —I1 V&, ¢, [1() is the dual frame of (n,dy1,dys, dys) and (02 + i63) is (1,1) for Iy,

Oz + i3 = V(02 4 i63) (&, [1€)dyy A m + (02 + 103)(C, 11{)dy2 A dys
+ (02 +103) (&, 1Q) (Vdyy A dy2 — dys A n)
+ (02 +i63) (&, ) (Vdys A dyy — dya A1). (31)

We already know that (on R > K), 0v./0y1 = —4(ya +iys)(m/r* —1/R3 +1/4r*R), thus (recall
that 9(2r2)/0y1 = V(|z1|> — |22]?))

*1he 2mV (|z1)* — |z2*) | 3n Y1 V(z1* = |z
— 4 ) [ — LA -
oy? (y2 + iys) < 76 + R  4r4R3 476 R ’

the main term of which is 8mV (y2 + iy3)(|21|* — |22/%) /7%, in the sense that it is O(R™!), whereas
the other summands are O(R~2). Moreover, from the estimates of point (i) and the fact that
oV/dy; = O(R™2), j = 1,2,3, we get that

8mV (y2 + iys3)(|z1]* — |z2]?)
6
.

dds e = dyr An+O(R™?),

when estimated with respect to f.
Now recall that a; = Ijrdr, j = 1,2,3, and observe that

. rdr Nag —as Ao +irdr ANag —iag Aag (rdr —iag) A (ag + i)
0y + if3 = =

_ (21dZT + 22dZ) A (—Tjgdzl +21dz) YN "
- 76 6
if we set ¥ = 21dZz1 + 22dz3 and ¢ = —zadz; + z1dz2. Direct computations, use e.g. (10), give
96 = (5 = [2P), 9(Q) = 2 cosh(dmyy),
BE) = ~2inzm, B(0) = — .

In particular, 9(¢) = O(r?), 9(¢) = O(r*R™1), ¢(¢) = O(R) and ¢(¢) = O(1). Moreover, since
¥ (respectively ¢) is (0,1) (respectively (1,0)) for I, (02 + i03)(€, [1€) = —(2i/r%)9(€)p(€) =
8mz122(]21]2 — |22/)/r®. Therefore, from (31) and since ¥ (respectively ¢) has type (0,1)
(respectively (1,0)) for I, using r=2 = O(R™!) when necessary, we get

8mV z129(|21|% — |22/%)

.- dy1 A+ O(R™?).

Oy + 103 =

with respect to f. Since yo + iys = —iz122, we thus have \dd§1¢c — (02 +i63)|s = O(R™2).
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We set 1] := IY — I, and conclude with an estimate on |d(I{ — I1)di|s = |ditY dipelg, which is
controlled by [} [¢|VEdibe|s + VI ¢|dipele. But [ |¢ and |VE) | are O(r2) hence O(R™!) (see
e.g. the proof of Proposition 1.12), and |dvc|e and |VEdip.|s are O(R™1) as well from point (i),
and as a result |[d(I7 — I1)dc|s = O(R™2?).

This settles the case ¢ = 0 of the statement. Cases £ = 1 and 2 are done in the same way,
noticing in particular that when letting V¥ act on the (V)74 or the (Vf)71]", we keep the same
order of precision. O

Remark 1.25. The function 1, is not so small with respect to e, at least at positive orders; for
instance, the best one seems able to do on its differential is |dic|le = O(rR™1).

1.5.2 Comparison between £ and £*: proof of Lemma 1. 14 Before comparing the metrics,
and for this the 1-forms dy? = :l*dyj, =1,2,3, and 7’ := J* to their natural (‘unflat’)
analogues, we shall compare the yj = J*y; to the y;, j =1, 2, 3.

LEMMA 1.26. We have y; —y; = O(R™), j =1,2,3. Consequently if R” := J*R, then R” — R =
O(R™1).

Proof of Lemma 1.26, estimates on (y — yo) and (y5 — y3). Since y2 = (1/2i)(2122 — Z1%22), and
(2, zg) (azl, az9) with a = 1+a/r* by Lemma 1.1, it is clear that 35 = a2ys = yo+O(yar—?),
that is y3 — y2 = O(Rr—%), and this is O(R™'); recall that R = O(r?).

Slmllarly, ys = —3(2122 + Z122), thus v — y3 = y3(a® — 1), which is O(R™1).

Estimate on (v} — y1). The case of y1 is slightly more subtle, and for this we shall use the very
definition of 3. We fiz (21, 22) € C2. Since J*2z; = az;, J*z9 = az, if one sets v’ = J*u and

v’ = J*v, LeBrun’s formulas (5) become
a2|21|2 _ e2m[(u")2—(vb)2](ub)2’
a2‘22’2 _ €2m[(vb)2—(u")2} (,Ub)2 (32)

9

which we rewrite as b2 b
|Zl|2 ZEQma [(w”/a)?—(v° /)?] ( b/o[)

’22|2 _ e?ma [(v"/a)2—(u’ /a)? ]( b/a)

These are precisely the equations verified by ,,,2 and v,,,2 instead of u’/a and ©°/a; by
uniqueness of the solutions when |z1| and |zo| are fixed, u’/a = U2 and v*/a = v,,,2, that is
W = 02 and v° = av,,,2, and consequently ] = %[(ub)2 — (1*)?] = (a?/2)(u? uZ o= 5) =
a2y1,ma2'
Now still with (z1,29) fixed, differentiating LeBrun’s equations with respect to the mass
parameter, | say, since we also see m as fixed, and rearranging them gives
Oy _ ARy

o 1+4uR,’

in particular y;, is a non-increasing (respectively non-decreasing) function of p on {|z1|>|22|}
(respectively on {|z2|>|21]})-
Since a<1, we have for instance on {|z1]>|z2|} the estimate

ma? ma?
AR,y du
0<¥Y1m—t% 22/ —E A <y, — =2y1,mloga,
m ma . 1+4 R m - 1 m
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and similarly 0 < ¥1,m02 — Y1,m < —2y1,mloga on {|z2]>]z1]}. Since in both cases loga =
O(r=%) = O(R™?), we have

Y1,ma2 — Y1i,m = O(yl,mR_Q) = O(R_l)

Therefore 3§ —y; = a2(y17moéz — 1) + (a® — 1)y = O(R™1Y) as claimed, since a — 1 = O(r—%) =
O(R~2) and in particular a ~ 1 near infinity.

The estimate R” — R = O(R™") comes as follows: (R” — R)(R’ + R) = (R*)?> — R?> = (3})% —
Y24+ (5)? =13+ (y3)> — 432 = O(1) from the previous estimates, and thus R”— R = O(1/(R’ + R)),
which in particular is O(R™!). O

Estimates on the dyg —dy;, 3 =1,2,3, and 7’ —n. We come back to the proof of Lemma 1.14
itself, and start with analysing the transition involved by 3 at the level of 1-forms. We adopt by
places the following elementary strategy to evaluate the gap between our fundamental 1-forms
and their pull-backs by 3: for v one of the dy; or n, we write

V= (En+ VI (=LE)dyr + 7 (Q)dy2 + 7’ (11€)dys,

and then evaluate the difference 7°(£) — v(€), and the subsequent ones. We start with the easy
cases of dy, and dys; for more concision, we use the complex expression v = dys + idys.

Keep the notation J(z1,22) = (az1, az2); then J*(dyz + idys) = d(a?(y2 + iy3)) = a?(dyz +
idys)+ (y2+iy3)d(a?). Since a = 1+O(r~*), we focus on d(a?), or rather on da. As « is invariant
under the usual action of S!, we already know that da(¢) = 0. Moreover,

r2d(r?)

do = —2QW7

(33)

which we keep under this shape since d(r?) = Z1dz1 + 21dz1 + Zadzs + 22d%5 is easy to evaluate
against [1¢, ¢ and I1{. As a matter of fact, all computations done:

B |21 |* — |22]* _ —8ar? yy cosh(4my1)
d()é(*]lf) - Wa dOé(C) - (7’4)2 R ) (34)
do(I¢) = —8ar? y3 cosh(4my; )
(87 1C = (T4)2 R .

In particular, da(—I11€) = O(r~*) = O(R™2), and da(¢) = O(R™'r~*) and da(I1¢) = O(R™'r™4),
which are O(R™3). Since o ~ 1 and ya+iyz = O(R), we end up with (dy+idy})(—1¢) = O(R™2),
(dyb + idy3)(¢) = 1+ O(R™Y) and (dyb + idy*)(¢) = i + O(R™). In other words,

\(dy}, + idyl) — (dys + idys)|e = O(R™Y).

In a way similar to what is done above on y? — 11, the estimate on dy'i — dy; requires little
extra care. First, likewise 1, y'i is invariant under the action of S!, since J commutes to this
action; therefore dy’(¢) = 0. Next, pulling-back (A.5) for dy; (proof of Proposition A.9 below)

by 3 gives

dgh = s (e (021 ) — (0?2 ?)),
When evaluating dy}, we decompose the term e_4my?d(a2\z1|2) - e4mygd(a2|22]2) into o :=
o (et d(|z[?) — et™id(|z[?) and p = (e7Wi|z |2 — ei|5[?)d(0?) = o H((u")? —

(v*)2)d(a?) = 4o My do.
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Now o(—1§) = 20[2(|zl|2€_4my5 + |22|2e4my5) = 4R’, and by (34), p(=L¢) = 4oz_1y?doz
(—1&) = —16aa 'y} (|z1]* — |22]*)/(r")?; this way

b 4 4
d b _JI _ by—1 —1 U1 |Z]-’ — "22|
yl( 15) (V ) Baoy 1+ 4mRP (T4)2 )

(35)

where V? = 2*V = (1 + 4mR’)/2R’. Since the last summand is O(r~*) and thus O(R~2), and
(V))T1—V-1=2R° /(1 + 4mR’)—2R/(1 + 4mR) = 2(R’ — R)/(1 + 4mR")(1 + 4mR) = O(R™®),
we have diy}(—I,€) =V + O(R™?).

Moreover o(¢) = (042/21'R)(e4m(y1*y3)(21z2 — Z122) — e~ AmWi—v1) (712 — 7122)) = o*(y2/R)
sinh[4m(y1 — y7)], and p(¢) = 4o~ yida(¢) = —32aa" (r*/(r*)*)yjy2 cosh(4my) /R by (34).
Thus

o, r? y*{ygcosh(élmyl)'

(rY)2 R(1+4mR°) '

Ay (¢) = R E— sinh[4m(y, —3})] — 16ac

2R(1 + 4mR) (36)

since y; — y, = O(R™1), the first summand is O(R™2), whereas since cosh(4my;) = O(r2R™1),
the second summand is O(R~'r~*), that is O(R™3), and as a result dy’(¢) = O(R~?). Similarly
dy’ (I1¢) = O(R™2) (just replace yo by y3 in the last equality above).

Estimate on 1°. We conclude our estimate of |[f” — f|¢ by the estimate on 7°. We start
with a formula for 7’; since on {z # 0}, d(2*z)/2*71 — d(3*21)/D* 21 = d(o?7)/a’Z —
d(a?z)/a?z = dz/z1 + d(a?)/a? — dz/z1 — d(a?)/a? = dz1/z1 — dz1/71, and similarly
J*(dz3/z3—dz9/22) = dz3/Zz—dz2/22 on {z3 # 0}, we have on {2122 # 0}, according to the
identity 1> = (i/4R)[u?(dz1/Z1 — dz1/21) — v*(d%2/% — d2z2/2)] (Lemma A.6 in the appendix):

b b [z _da) _ b2 (22 dz
n—m[(u)(m z1> <v>(22 =

From this we compute 7°(£) = 1 and n°(—11¢) = 0. We also compute 1°(¢) as follows:

b :Li N2 dmyn (22 P2\ b2 —dmy (L ZL
PO = g |02 (2 2) - perimn (2

2

_ i« b\2 dmy; F172 — Z122 N2 —dmy; 172 — 2122
4R’ 2iR [( ) a2|z |2 (") 2|22
;2
(1675 b

= sinh[4m(y; — ,

since from the pulled-back LeBrun’s equations (32), (u°)2/a?|z|? = e=4myi and (v°)%/a?| 2o
= ™1 Similarly 7’ (I1¢) = (ia®y3 /2R’ R) sinh[4m(y1 —13)], and since (y1 — %) = O(R™!), both
7°(¢) and 7°(I1¢) are O(R2). Gathering those estimates, we get that

" —nle = O(R™?),
which is better than needed.

Recall that f = V(dy? + dy3 + dy3) + V"1 since V1 — (V*)~1, and similarly V — V°, are
O(R™3), in view of the estimates we have just proved on the dy; — dyg and 7° — 7, we have

> — flg = O(R™Y).
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Estimate on VE(f —£?). We now prove that |V (f — )]s = O(R~1), which is the same as proving
that |V’ = O(R™'). In view of the previous estimates on V — V?, V=1 — (V*)~1 on the
dy; — dyg and on 1 — 1°, and since the Vidy; and Vin are O(R™2) for f, it will be sufficient for
our purpose to see that the V¥(dy; — dy]b») and Vf(n — ) are O(R™) for f.

We start with V(dys — dys) and V(dys — dy3). We have d(ya + iys)—d(y}+iy})=(a?—1)
d(y2 +iy3) + 2(y2 + iy3)ada, we know that a — 1 = O(r~*) = O(R™?), and we actually proved
that |dajs = O(r~—*) = O(R™2). Similarly, we will be done if we prove that |Vidalg is still O(r—*).

Since « is Sl-invariant, da = (0a/dy1)dyr + (Oa/dy2)dys + (Oa/dys)dys; the da/dy; are
Sl-invariant as well, and thus Vida = Ziezl (0%a/Dy;0ye)dy; & dy; + 25":1 (0 /Oy;)VEidy;.
The last summand is O(R~2r~%), since the da/dy; are O(r~*) and the |Vidy;|s are O(R™2); we
thus focus on the hessian Zi[:l (0%a/9y;0y,)dyj @ dyp, and all we need to prove is 0%a/dy;0y,
= O(r=) (actually, O(R~?)) for all j,£. Now in terms of the y; variables,

a

a=1+ . ,
((y? + y3 + y3)'/2 cosh(4dmy ) + y1 sinh(4my; ))?

and using that %1l = O(Rr=2), proving that 6%a/dy;0y, = O((Rcosh(4my1) + y1sinh
(4my1))~2) = O(r~*) for all j,¢/ amounts to an easy exercise. This settles the cases of
VH(dy — dy3) and V¥ (dyz — dyb).

Since our treatment of dy; — dy'i is a little less conventional, we shall see now how goes that
of VE(dy; — dy?). According to (35) and (36) and the previous estimates on the derivatives of
r2, it is enough to see that dyﬁ = 0(1) and dR’ = O(1), which are known for the previous step,
giving in particular d sinh[4m(y; —y3)] = cosh[dm(y1 — ¢2)]d(y1 —}), which is O(R™') (actually
O(R™2)) for f since cosh[4m(y; — 13)] ~ 1 and |[d(y; — 13)|f = O(R™2).

The treatment of 7° is similar.

We prove finally that |(V)2(f — £2)|¢ = O(R~!) with the same techniques. O

2. Asymptotics of ALE hyperkahler metrics

We prove in this part an explicit version of Theorem 0.3; we indeed compute explicitly the first
non-vanishing perturbative terms of the hyperkahler data of the ALE gravitational instantons
seen as deformations of Kleinian singularities. This gives in particular the asymptotics stated in
the previous part, Lemma 1.6, which are crucial in our construction of ALF metrics, as mentioned
already.

2.1 Kronheimer’s ALE instantons

2.1.1 Basic facts and notation. We introduce a few notions about the ALE gravitational
instantons constructed by Kronheimer in [Kro89al, and which is exhaustive in the sense that any
ALE gravitational instanton is isomorphic to one of Kronheimer’s list, so as to state properly the
main result of this part, i.e. Theorem 2.1 of the next paragraph, dealing with precise asymptotics
of those asymptotically Euclidean spaces.

Finite subgroups of SU(2), and McKay correspondence. The classification of the finite subgroup

of SU(2) is well known: up to conjugation, in addition to the binary dihedral groups Dy used in

e/t 0 the one hand, and
0 67%/,6), on the one hand, an

the binary tetrahedral, octahedral and icosahedral groups of respective orders 24, 48 and 120,

Part 1, one has the cyclic groups of order k > 2, generated by (
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which admit more complicated generators; all we need to notice for further purpose is that
they respectively contain Dg, D3 and D (among others) as subgroups. When no specification
is needed, we shall adopt the notation I' for any fixed group among these finite subgroups of
SU(2).

ALE instantons modelled on R*/T'. Kronheimer’s construction now consists in producing
asymptotically Euclidean hyperkahler metrics on smooth deformations of the Kleinian singularity
C2?/T, which are diffeomorphic to the minimal resolution of C2/T. More precisely, the
hyperkahler manifolds Kronheimer produces are parametrised as follows: since I' is a finite
subgroup of SU(2), McKay’s correspondence [McK79] associates a simple Lie algebra, gr say, to
this group; for instance, the Lie algebra associated to Dy is s0(2k + 4) (this Lie algebra is also
referred to as Dy o; we prefer the so notation which is less confusing when working with binary
dihedral groups!). Pick a (real) Cartan subalgebra h of gr. Then:

For any ¢ € h@R? outside a codimension 8 set D, there exists an ALE gravitational instanton
(XC,gC,If,IQC,Ig) modelled on R*/T at infinity in the sense that there exists a diffeomorphism
D¢ between infinities of X¢ and R*/T such that ®¢ gc —e = O(r™%), @C*ch —I; = O(r™%),
j=1,2,3.

The O are here understood in the asymptotically Euclidean setting, i.e. ¢ = O(r~%) means
that for all £ > 0, |(V®)%e|e = O(r~%*); since we remain in this setting until the end of this part,
we shall keep this convention throughout the following §§2.3 and 2.4.

2.1.2 Asymptotics of ALFE instantons: statement of the theorem. Up to a judicious choice
of the ALE diffeomorphism ®., which actually is obtained from Kronheimer’s construction, one
can be more accurate about the O(r~*)-error term evoked above. This is the purpose of the main
result of this part.

THEOREM 2.1. Given ¢ € h®R3 — D, one can choose the diffeomorphism ®. between infinities of
X¢ and RY/T such that ®¢ gc —e = he +O(r~6), & If — I} = 1§ + O(r~9) and if o := g¢(I5-, ),
then @C*wf —wf = w§ + O(r=°), where he, L% and w% are given by

(rdr)® + a2 — ai — Oz% ai-ay —rdr-ag
he=—IT1 Y IGP g — 20T, (Y
(4,k,£)€T3
ay - agz +rdr - a9 g — rdr - oq

_2HFH<CI7C3> r6 - 2HFH<<27C3> 76 > (37)

with J3 = {(1,2,3),(2,3,1),(3,1,2)}; L§ is e-symmetric and satisfies the coupling

. dr -
e(1f,) = ITII(IGP = 1621 =52 = DI (Gal? + 162 =5
2 2 2 2
RPN ISR S (38)
and
@§ = — TG 200 = 2IITII(G1, G262 — 2I[TII(Gr, Ca)os; (39)

here ||T'|| = c|I'| for a universal constant ¢ > 0.
Moreover, ®; vol% = Qe, and if I is binary dihedral, tetrahedral, octahedral or icosahedral,
the error term can be taken of size O(r~%).
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Recall the notation a; = Ijrdr, j = 1,2,3, and 0, = (rdr A ag — ap A ae) /15, (a,b,¢) € Ts.
The scalar product on h used in this statement is the one induced by the Killing form.

The rest of this part is devoted to the proof of this result. In the next section we specify
the meaning of the space of parameters h — D; in particular we see how b is identified to the
degree 2 homology of our Kronheimer’s instantons, which is helpful in computing the constant
c of the statement, as well as the coefficients appearing in (37)-(39). We also fix the choice of
the diffeomorphisms ®., and check their properties on volume forms (Lemma 2.5). To make the
rest of our strategy a bit more explicit, let us mention here:

(i) the diffeomorphisms we fix are a natural by-product of Kronheimer’s construction;

(ii) besides their volume properties, their main feature is to put automatically the instanton
metrics, seen as deformations of the Euclidean metric, in a special gauge at leading order;
with the notation of Theorem 2.1, this can be stated as:

tr°(h¢) =0 and  0°he =0

(Proposition 2.7), and exploits the volume conservation property;

(iii) thanks to the gauge (and its proof), we prove that the wg (and their analogues wg and wg )

are linear combinations of the ddj (1/r?) = 46;, j = 1,2, 3 (Proposition 2.10); from the way
Kronheimer’s diffeomorphisms are constructed (compositions of asymptotically isometric
biholomorphisms for successive complex structures in a precise order), we explicitly compute
the coefficients of the §; (Proposition 2.12);

(iv) we finally convert these results in the explicit writing of h¢ and L%; these different steps are
the object of §2.3, and we conclude the proof of Theorem 2.1 in §2.4 by ruling out the
O(r~%)-error terms, which pertains to the same circle of ideas.

As a conclusion to this program, let us notice that, in general (that is, using asymptotically
isometric diffeomorphism a priori different from Kronheimer’s ones), the gauge of point (ii) is
likely to be recovered from an analytic Bianchi gauge process, which would allow us to deal with
point (ii) and point (iii), first half; however, Kronheimer’s charts volume condition reveals quite
useful in point (iii), second half, and these charts readily allow us to pass to point (iv), hence
our choice to use them here.

2.2 Precisions on Kronheimer’s construction
2.2.1 The degree 2 homology/cohomology.

The ‘forbidden set’ D. We keep the notation I' for one of the subgroups of SU(2) mentioned
in the previous section. We saw that Kronheimer’s ALE instantons asymptotic to R*/I" are
parametrised by a triple ¢ = ((1,(2,(3) € h ® R® — D, with h a real Cartan subalgebra of
the Lie algebra associated to I' by McKay correspondence; for instance, if I' = Dy, k > 2,
then one can take h as the Cartan subalgebra of so(2k + 4) constituted by matrices of shape
diag(A1, ...y Akr2, = A1y ., —Agt2). We shall first be more specific about the ‘forbidden set’ D;
according to [Kro89a, Corollary 2.10], it is the union of codimension 3 subspaces Dy ® R? over
a positive root system of §, with Dy the kernels of the concerned roots; as such, it thus has
codimension 3 in b.

Topology of X¢. Recall the notation (X¢, g¢, 1 f , I§ ) g ) for the hyperkéhler manifold of admissible
parameter ¢ (this is actually also defined as a hyperkéahler orbifold if ¢ € D). Those spaces are
diffeomorphic to the minimal resolution of C2/T" (for Iy, say) [Kro89a, Corollary 3.12]; as such
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they are simply connected and, again when I' = Dy, their rank 2 topology is given by the diagram

o——=0

k vertices

(which is nothing but the Dynkin diagram associated to so(2k+4)), where each vertex represents
the class of a sphere of —2 self-intersection, and where two vertices are linked by an edge if and
only if the corresponding spheres intersect, in which case they intersect normally at one point.

Furthermore, there is an identification between b and H?(X¢,R) ~ HZ . (X¢,R) (see [Joy00,
p. 183] for this ‘~’) such that:

e the cohomology class of the Kéhler form wjg = gC(Ijg-, ) is ¢, 7 =1,2,3;

e Hy(X¢,Z) is identified with the root lattice of h; more precisely, given simple roots of h and
the corresponding basis of H(X¢,Z), the intersection matrix of this basis is exactly the
opposite of the Cartan matrix of the simple roots, see [Kro89a, p. 678]; in the case I' = Dy,
k > 2, this matrix is thus the (k + 2) x (k + 2) matrix

2 0 -1 0 - 0
0o 2 -1 0
-1 -1 2 -1
o o0 -1 . . 0

0O -+ --- 0 =1 2
From the latter, we deduce the following lemma, identifying the cup-product U on ngct (X¢, R),
or between H?2 (X¢,R) and H 2(XQ,R), and the scalar product on b induced by the Killing

cpct
form, up to signs.

LEMMA 2.2. Consider «, 3 € H2(XC,R), such that « or § has compact support. Then U 8 =
ch a N B = —(a,p), where the latter is computed with seeing o and [ in b via the above

identification between H*(X¢,R) and b.

Proof. We do it for I' = Dy, k > 2. By Poincaré duality, the computation of o U  amounts to
that of intersection numbers for a basis of Hy(X(,Z). But through the identification between
Hy(X¢,7Z) and the root lattice of h above, the matrix of intersection numbers on the one hand
and that of scalar products of the corresponding basis (or dually, of the simple roots) are the
same up to signs. O

Period matriz. For ( € h — D, consider as above a basis ¥, £ = 1,...,r say, of Hy(X¢,Z); from
the previous paragraph, the period matriz

—(P; o — ¢
PO = (Pulzgzs = ([ ),y

1<e<r

can be computed thanks to the identities [wf] = (j. One easily sees that these P(() = P(¢)
if and only if ¢ = £ With this formalism Kronheimer’s classification [Kro89b, Theorem 1.3]
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can be stated as: two ALE gravitational instantons are isomorphic as hyperkdhler manifolds
if and only if they have the same period matriz. From this we deduce the following (see also
BRI2, p. 8, (4))).

LEMMA 2.3. Let ( € h — D, and let A € SO(3) act on ¢ and the complex structures Ijg as in
§ 1.1. Then there exists a tri-holomorphic isometry between (X, g, (AI%)1, (AI%)q, (AI%)3) and
(XAC7 9AC Ifca I?C’ I§4<)

Proof. Simply check that in both cases, the period matrix is AP((), and apply Kronheimer’s
classification theorem. O

2.2.2 Analytic expansions.

Choice of the chart at infinity. Consider a parameter ¢ = ((1,(2,(3) € h ® R? and set

CI = (07 §27 C3)7 C” = (07 07 <3)7
we will keep this notation below. As described in [Kro89a, p. 677], there exist proper continuous
maps
)‘g : (XC7gCa11€>IQ<7I3C) I (XClv.gC’vllc 712< >I§ )7
N (Ko gon IS 15,15 ) — (X gon Iy 15,15,
Ag : (XC”th”?IlC 7I2C 7I§ ) - (]R4/F,e, 117]27[3)7

which are diffeomorphisms (at least) on (A 0AS 0A$)=1({0}), (AS 0AS)~1({0}), and (A§ )~ ({0})
respectively. As soon as (" ¢ D (respectively ¢’,( ¢ D), )\gﬁ (respectively /\g/, )\g) is a resolution
of singularities for the third (respectively the second, the first) pair of complex structures; in
particular, if ¢’ ¢ D (respectively if { ¢ D), then )\g (respectively )\g) is smooth, and holomorphic
for the appropriate pair of complex structures.

To get a ‘coordinate chart’ on X (or rather, to view objects on R*/T), one sets

Fe =" 0§ 0 X)) ™! (RN{0})/T — X¢
(beware this is not exactly the same order of composition as Kronheimer’s ‘coordinate chart’,
but this is not a problem by symmetry).

‘Homogeneity’ and consequences. We shall see that the F are going be the ®; of Theorem 2.1.
For now, according to [Kro89a, Proposition 3.14] and its proof, we have for any ¢ the converging
expansion

oo
Flge=e+y hf),
=2

with héj ) a homogeneous polynomial of degree j in ¢ with coefficients homogeneous symmetric
2-tensors on R*/I', more precisely, if s, is the dilation = + sz of R* for any positive s,
K;;‘héj ) = 520 _1)h2j ). We will thus be concerned with determining explicitly the term h?), and
moreover with showing that when I' contains a binary dihedral group then h® = 0. For now,

observe that Kronheimer’s arguments, consisting in analyticity and homogeneity properties of
his construction, can also be used to give the existence of analogous expansions of other tensors
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such as the complex structures, and therefore the Kahler forms, or the volume forms as well. We
can write for instance

o0
FrIy =L+ 4, (40)
j=1
where L% - is a homogeneous polynomial of degree j in ¢ with coefficients (1, 1)-tensors, satisfying
H*L§ = =5 Li j (and again, the lower-order term Lil vanishes, but we will find this fact again
below).

2.2.3 Minimal resolutions, invariance of the holomorphic symplectic structure. We know
that as soon as ¢ ¢ D, )\C (X¢, It 1) = (X, I /) is a minimal resolution, and a similar statement
holds for AS : (X¢, I ') — (X, 1) and AC (Xer, I§") — (R4/T, I3) whenever ¢ ¢ D or
¢" ¢ D, respectively [Kro89a, p. 675].

As seen already, those maps can happen to be smooth, for instance A% is, when ¢, (' ¢ D; we
are then only left with their holomorphicity property. This can be used nevertheless with their
asymptotic preserving of the hyperkahler structure, to see that they do preserve the appropriate
holomorphic symplectic structure.

LEMMA 2.4. Fix( € hoR3, and assume that (" ¢ D. Then the map )\gl verifies ()\g”)*(w‘f—m'wg) =
w%n n 'iw?// '

Similarly, if ¢, " ¢ D, then (A )*(w§ +iw$ ) = w§ +iw$ ;if ¢, ¢' ¢ D, then (X$)*(wS +iw§ ) =

WS + i

2 3

Proof. The assertion on )\gﬁ is actually classical and can be settled in the following elementary

way. Call 6 the 2-form ()\CH) (w% + zw2 ), well deﬁned on (R4\{0})/F pulled-back to R*\{0}.

Since )\C is holomorphic for the pair (I§ ,I3) and w1 T+ zwg is a holomorphic (2,0)-form for

Ig , 0 is a holomorphic (2,0)-form for I3, and can thus be written as f(w§ + iw$), where f is
thus holomorphic for I3 on R*\{0}. By Hartogs’ lemma it can be extended to the whole R*;
however, since ()\3 )*w]C” = Fer*w C ~ wf near infinity on R*/T, j = 1,2, which can be seen
as a consequence of the power Serles expansions analogous to (40) for Kéahler forms, we get
that f tends to 1 at infinity. It is therefore constant, equal to 1, which exactly means that

(A§)"(ws +iw) =wf +iws .
We deal with the assertion on )\g in a somehow similar way. Since (', (" ¢ D, )\g is a global
diffeomorphism between the smooth X and X, holomorphic for the pair (124/7[5//); since

wgl + iw%l trivialises K(X€/7[C, and is a (2,0)-holomorphic form for IQC,, ()\g)*(wgu + iw%”) can be

2 )
written as f (wgl + iw%,) with f a holomorphic function on (XCI,IZC/). Again f tends to 1 near
the infinity of X, since there (/\gl)*ch-” ~ ]Cf" j =1,3. Moreover wgu + z'wlﬂ never vanishes on
X, and so neither does f on X¢v. We collect those observations by saying that log(] f 1) is a
g¢-harmonic function on X tending to zero at infinity, and thus identically vanishing. Since f
is holomorphic it is not hard seeing that it is therefore constant, thus f = 1, or in other words
A (WS + i) = w§ + s

The assertion on )\g is done in the exact same way. O

An easy but fundamental consequence of the construction of F¢ via the )\JC- and the previous
lemma is the invariance of the volume form, which we state for ¢ corresponding to smooth X,
so as to avoid useless technicalities.
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LEMMA 2.5. The volume form F¢* vol% does not depend on ¢ € h ® R3 — D, and is equal to the
standard §e.

Proof. Notice first that once we know that F¢*vol’ does not depend on (¢, the equality
F¢*vol% = Qg is a direct consequence of the expansion of F¢*vol% as a power series of (,
the constant term of which is Q. To prove that F* vol% is independent of ¢, we proceed within
three steps, considering first ¢, and then ¢’ and (. Even if ¢ ¢ D, ¢’ or ¢” might lie in D;
we can however assume this is not the case without loss of generality, since F¢* vol% can be
written as a power series of . Now from the hyperkéhler data (X¢», ger, I 14”, IQC”, Igu), we know
that vol%” = %(wCH)Q. Since Fgrr*(wgu) = w® (the standard Kihler form on C?), we get that
FC"* vol9e” = Q.
Now consider X/; we know that wgl is ‘preserved’ by )\g/, and therefore

FC’* vol9¢ = %FC/*(M§/)2 = %FC//*()\g)*(wg/)Q = %FC"*(W§,/)2 = FC”* vol9¢”

the last equality coming from the fact that wg/, is one of the Kahler forms of the hyperkéhler
structure (gcu,j'lC ,Ig ,Ig ).
To conclude, we notice that wg is preserved by )\(1: i.e. wg = (A%)*wgl, and thus

FC* vol¥¢ = %Ff(wé)z = %FC/*()\g)*(wg)Q = %FC/*(wgl)Q = FC/*VOF](/;

here we could also have used the forms wg and wg/. To make a long story short, the reason for

the volume form invariance is that at each step of the composition of the )\g, at least one Kahler
form is preserved. O

2.3 Explicit determination of h¢
2.3.1 Verifying a gauge. We shall now work more precisely on the first possibly non-
vanishing term of the expansion of Fy:*gic, t € R, ( fixed; this allows us to redefine h?) as

follows.

DEFINITION 2.6. Fix ¢ € h ® R3, and set on R*\{0} that

1 d2

he = =—
2di%|,_,

Fie" gee, (41)

which is then O(r~—*), with Ve-¢th derivatives O(r~**), near both 0 and infinity, and verifies
FC*QC =e+ h¢ +e¢,

with (V®)fe; = O(r=6=*). More precisely, h. is a homogeneous polynomial of degree 2 in ¢, with
coefficients symmetric 2-tensors homogeneous of degree 2 in the sense that x;h; = s_QhC, where
ks is the dilation x — sz of R\ {0} for any s > 0; as for e, it is a sum of terms of degree at
least 3 in (.

As indicated by the title of this section, given an admissible ¢, we want to analyse h¢,
which is the first (a priori, possibly) non-vanishing term in the expansion of g¢ (from now on,

for the sake of simplicity, we forget about the F¢, we will be more accurate about this abuse
of notation whenever needed). There already exists a rather powerful theory of deformations
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of Kéhler-Einstein metrics; see in particular [Bes87, ch. 12] for an overview on that subject.
Nonetheless, because of the diffeomorphisms action in general, much of the theory is configured so
as to work once a gauge is fixed, precisely killing the ambiguity coming from the diffeomorphisms.
The following proposition asserts that the h¢ are indeed in some gauge, making us able
for further considerations, just as is done in §1.4.3. Let us specify though that in determining
explicitly h¢, we will be more concerned with other specific properties of that tensor, namely
with its inductive decomposition into hermitian and skew-hermitian parts with respect to I, I
and I3. As we shall see though, the gauge and the decomposition are rather intricate with one
another; seeing the verification of the gauge as a guiding thread, we state the following.

PROPOSITION 2.7. Fix ¢ € h ® R3. Then the lower-order term h¢ of the deformation g of e on
R*\{0} is in Bianchi gauge with respect to e, and more precisely

tr°(h¢) =0 and 6°h¢ = 0.

Moreover, the Ii-skew-hermitian part of h¢ is h¢r, the Ia-skew-hermitian part of her is her, and
hen is I3-hermitian, while the Ii-hermitian part of h¢, the Io-hermitian part of her and her give
rise to closed forms, that is

d(h‘C(Il'v ) - h((-, Il')) = d(hC'<IQ'7 ) - hC’('v 12')) = d(h‘C"(I?)'v )) =0 on R4\{0}'

Remark 2.8. We took the liberty of possibly having ¢ in D since these statements are made on
R*\{0}. More precisely, even if X, is not smooth, its orbifold singularities lie above 0 € R? via
F¢, and h¢ is smooth on the regular part of X¢, i.e. (F¢)*h¢ is smooth on R*\{0}.

Proof. Let us deal first with the assertion on tr®(h¢). At any point of (R*\{0})/T, for any ¢,
vol9 = det®(gyc)Qe = det®(e + t2he + O(t?))Qe = (1 + 2 tr°(h¢) + O(£?)) Qe

But we saw in Lemma 2.5 that for all ¢, vol9%¢ = (¢; consequently, tr®(h¢) = 0.

We now deal with the divergence assertion. As for the previous lemma, we proceed inductively
on the shape of (; the hermitian/skew-hermitian decomposition as well as the closedness property
will come out along the different steps of the induction. For this we assume that ¢’ = (0, (2, (3)
and ¢” = (0,0,(3) are as well out of the ‘forbidden set’ D. Again, since h¢ can be written as a
sum of quadratic polynomials of ¢ times symmetric 2-forms independent of (, this assumption
does not actually lead to a loss of generality.

Step 1: 6°h¢n = 0. We hence start with ¢ = (0,0, (3). Since I3 is parallel for e, we have that
d*e[hen (-, I3-)] = (8%h¢n)(I3+); indeed, given any local e-orthonormal frame (e;);—1,... 4,

4
d*elhen Zeﬂ (hen(13))] and 6%hen = = (Ve her)(ej,),  (42)

j=1
see for instance [Biq, 1.2.11] for the first equality, and [Biq, 1.2.13] for the second one. Moreover
hen is clearly I3-hermitian, since the g;¢ are, which is straightforward from the holomorphicity of

the )\gc/l for the pairs (I. f.f", I3); hen (-, I3-) is therefore a (1, 1)-form for I3. It is furthermore closed,
since the gucr (-, I3-) are. We can now use the Kéhler identity ‘d* = [A,d°]” with the structure
(e, I3) and write

d*e(hen (- Isr)) = [Awg, di,](hen (- I3)).
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But Ay (her (-, I3-)) = —5 tr®(her) = 0, and since her (-, I3-) is Is-hermitian and closed, dS, (her (-,
I3-)) = d(h¢n (-, I3-)) = 0, hence the result.

Step 2: 6°her = 0. We go on our induction and analyse h¢r, where we recall the notation ¢’ = (0,
(2,(3). We proceed through the following lines:

(i) we come back momentarily to h¢v and prove it is Ir-skew-hermitian;

(ii) we prove that the I-skew-hermitian part of h¢r is her, which is known to be divergence-free
for e;

iii) we conclude by proving that the Iz-hermitian part of hy is e-divergence-free as well.
¢

We tackle point (i). Recall that the map )\g, : X¢» = Xev is holomorphic for the pair (124’7 IQH);

since we forget about Fy» and Fer, this amounts to writing 1. ¢ = IQCH. Recall that in the same
way as for the metric, the complex structures admit an analytic expansion, which can be written
as a power series of ( with coefficients homogeneous (1, 1)-tensors on (R4\{0}) JT. We assume

"

momentarily that the ﬁrst order variation vanishes, and we thus write I =1y + L2 + 62 ,
Where Lg = 3(d? Jdt?)|i—o I 5>, is O(r~—1) (with according decay on derivatives), and (Ve)tes € =
O(r=6=%) for all £ > 0.

¢

Now ¢ splits into an e-symmetric part and an e-anti-symmetric part. But according to
[Bes87, 12.96], to the anti-symmetric part, (Lgl)“ say, corresponds an Iz-holomorphic (2, 0)-form
0 via the coupling e(-, (Lg’)a-) = 6; this we get by considering the second-order variation of
the Kéahler-Einstein deformation (gtCu,I;C”), satisfying the gauge tr®(h¢v) = 6®h¢er = 0, and
observing that all the statements are local. We can lift  on R*\ {0}, and then write § = fdw; Adws,
where w; and wy are the standard I»-holomorphic coordinates x1 + ixs and x4 + ixo, and f is
thus Io-holomorphic with decay »—* at infinity. By Hartogs’ lemma we can extend f through 0;
we thus have an entire function on (R*, I5), decaying at infinity: the only possibility is f = 0,

and therefore (Lg”)“ =0, or Lg” is e-symmetric.

Here we would like to follow [Bes87, 12.96] again, to see for example that Lg// then corresponds

to the I>-skew-hermitian part of h¢v, via the coupling w$(-, Lg//'), this latter (2,0)-tensor being
clearly I-skew-hermitian, because w§ is 12 hermitian, and since for all ¢, —1 = (I;CN)2 =12+
t2 (]ngN + Lgulg) +O(t?), thus IQLg” = —L2 'I. Since in our situation, wg does not vary, we could
also expect from [Bes87, 12.95] that the Io-hermitian part of h¢» vanishes. Nonetheless some of
the quoted arguments are of global nature, and one should check they can be adapted to our
framework. This can be bypassed however by a rather simple computation, which we quote here:
for any t,

ggcrr = wégu(" IECH') = wg('v 12') + t2w§('7 Lg//') + O(tg) since W;C“ = wg
e e+ tQhCH —+ O(t?’),
and thus her = ws(,, g// -) which is I-skew-hermitian, as announced.

We now claim that the I>-skew-hermitian part of her is nothlng but h¢r, which is point (ii)

of the current step. Indeed, since for all ¢, I, = = I, e (c

0= g (I 1) — g = gta(f? ST = g
eIl 1) + Phe ( T IR —e — Phe + O(1%)
= e(IQ-, 12) +t2€(12-, L2 ) + t2e(LgN', IQ) + tth/(Ig-, IQ) — e — t2h</ + O(t3),
——

—e

onsider AL ) ,
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and thus her — her(Io-y Io) = e(I-,15 -) +€(i§ -, Io-). We know that e(T-, S ) = wa(-,e§ ) = hen
To conclude, use that e and e(-,LgN-) are both symmetric, that Igbg” = —Lgufg, and that e is

I>-hermitian to see that for all X, Y,
e(lS' X, LY) = e(IY, 1§ X) = —e(Y, Ini§ X) = (Y, 1§ X) = e(12X,:5 ),
ie. e(LgN-, Iy) = e(Iy, Lg”') = h¢r. We have proved that
3(he = her (T2, 1)) = hn,

as claimed. Since 6°h¢r = 0, to see that 6®he = 0, we are only left with checking this identity
on the Io-hermitian part of k¢, which is point (iii) of the current induction step.

For this, let us call ¢ this tensor twisted by I, namely ¢ = %(hg (I2+,-)=hei (-, I2+)). As above,
we want to see that d*¢¢ = 0. This is clearly an Io-hermitian 2-form, that is an I»-(1, 1)-form.
It is moreover trace-free with respect to e, since h¢s is. If we check it is closed then we are done,

using the Kéahler identity d* =[A,,d7,]. For this, we use an expansion of wglz for all ¢,

"

Wy = Y (1) = g (1)) = S (1) = e (L 1Y)
= L(e(ly, ) +t%e(i$ ) + t*he (I, )
—e(, Ip) — tPe(-,1§ ) — *he (-, 1)) + O(£)
=wS + 2o+ O, since e(lo,-) = —e(-, Ir") = w§ and e(-, 1§ ) = e(4S -,");

this expansion can be differentiated term by term, so that t2dy + O(t®) = 0, hence dp = 0, as
wanted.

Step 3: 0°h¢ = 0. We now analyse h¢. All the techniques to pass from h¢r to her can actually be
used again, and bring us to the desired conclusion:

(i) we first observe that If =1 f/, and we define L%l = (d?/ dt2)|t:0IfC/ which we assume again to

be the possibly lower-order non-vanishing variation of I fc/; then (Li:/)a = 0, since otherwise
we would have a non-trivial entire function on C? going to 0 at infinity;

(ii) since wll = wlﬁ = wf, we get that he is I1-skew-hermitian, given by L%l via the identity
her = wi (-, L?-), and that the [;-skew-hermitian component of h¢ coincides with h¢r, the 6¢
of which vanishes; we are thus left with the I;-hermitian component of h¢;

(iii) this component is e-trace-free (h¢ is), and gives rises to an /;-hermitian 2-form ¢, which
is closed since the wiC are; the Kéhler identity [Awf, dfl] = d*e then leads us to d*ey) = 0,
which is equivalent to

d¢(I;-hermitian component of h¢) = 0.

To finish this proof, we justify our assumption of the vanishing of the first-order variation of
the complex structures. For instance, let us not assume that ¢ := (d/dt)|t:0.fécu is a priori
vanishing. Then it is defined on R*\{0}, and is O(r~2). Now as above, since 0 = (d/dt)|i—ogsc»
has vanishing trace and divergence for e, the e-anti-symmetric part of ¢ has to vanish since
it gives rise to a holomorphic function on (R*, I3) decaying at infinity. And we see as above

that w$(-,¢:) = (d/dt)|t=0gic» = 0, and thus ¢ = 0. Similarly, the arguments for Lg/ apply to
(d/dt)]—oI'® with (d/dt)|,—ogicr = 0 instead of her, so that (d/dt)|,—oI' = 0. O
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Remark 2.9. By contrast with what is usually done, we used properties already known of h¢
and h¢r, conjugated to properties of mappings between X, X and X¢» to show that indeed,
our first-order deformations were in gauge, which is also retroactively used in some places, e.g.
in killing tensors like (LCN)CL.

2.3.2 Lower-order variation of the Kdhler forms: general shape. As seen when proving that
the gauge was verified, given ¢ € h ® R3, her is I3-hermitian, the Iz-skew-hermitian part of h¢s
is h¢r, and the I1-skew-hermitian part of h¢ is her. In order to determine h¢ completely, we are
thus left with working on the respective I3, I and I;-hermitian components of h¢r, her and he,
or equivalently on the respectively I3, I and I1-(1,1) forms

@y o= hen(l3,-), @S = L(he(la,) = he( Io)), @S == L(he(Li,-) = he(- I)).

/

We interpret these forms as the first (possibly) non-vanishing variation term of wgﬂ, wg and
w%; as such and as seen above, these are closed forms. More precisely, they follow a general
common pattern.

PROPOSITION 2.10. There exist real numbers a1;((), a2;(¢’), as;(¢"), j = 1,2,3, such that

= a31(¢")bh + as2(¢")02 + as3(¢”)bs, wé’ = a21(¢")01 + a22(¢")02 + azs(¢')bs,

!

@
and
wg = a11(Q)01 + a12(¢)f2 + a13(¢)0s,

where we recall the notation

rdr ANap — as A ag rdr A ag — ag A\ aq rdr A ag — a1 A ag
91: TG ) 92: 7"6 ) 93: .

70

Proof. We do it for w%, as it will be clear that the arguments would apply similarly to wg/ and

wgu; we work on R*\{0}. As w% is of type (1,1) for Iy, it is at any point a linear combination
of rdr N aq, as A ag, rdr A as — ag A ag and rdr A ag — ag A as.

The symmetric tensor 3(h¢ + he(Ih+, I1+)) corresponding to w% is moreover trace-free for e,

which translates into wg/\w‘f = 0. Since wy = (rdr A a1 + as A a3)/r?, we have (rdr Aas—azAaq)

AwS = (rdr AN ag — a1 A ag) Aw§ = 0, whereas rdr A ag Aw§ = as A az Aw§. As a consequence,
the pointwise coefficient of rdr A aq is the opposite of that of ag A a3. To sum up, since the ¢;
are O(r~*) with corresponding decay (or growth, near 0) of their derivatives, which are precisely
the orders of w%, we know that

@ = fO1 + gbs + b3,

for three bounded functions f, g, h, with Euclidean ¢-th order derivatives of order O(r*), near
0 and infinity. We can be more precise here: from the properties of analytic expansions in play
discussed in §2.2.2, we have that xiw; = s*2w§, where kg is the dilation of factor s > 0 on R%.
But we exactly have r%0; = s720;, j = 1,2, 3; therefore, f, g, h are functions on the sphere S3.

Notice that from this point, we also know that wf is anti-self-dual (for e), since the forms 6; are.

Therefore @} is e-harmonic on R*\{0}, which is the same as (Ve)*(Ve)wg = 0. On the other
hand, the forms of §; are harmonic as well: they are anti-self-dual, and closed, since

r2

1 1
0; = ddj, () j=1,2,3. (43)
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Putting those facts together and setting e; = I;(1/r)z;(0/0x;), j = 1,2,3 (forget about (8)) so
that rdr(e;) = 0 and ag(ej) = rdji, j, k =1,2,3, we get that

3

Be(f01) = 5 (Be )~ 2D (e~ 1)V,
k=1

The V¢ 01 are easy to compute: since e -7 =0, V& 61 = (1/r%)VE, (rdr Aay—as Aas). Moreover
since the [; are parallel, we just have to compute Vg rdr; since V¢(rdr) = e, Vg (rdr) =
e(ex, ) = (1/r)ag. Therefore V¢ 61 = 0, VE,01 = (2/r)03 and V¢, 01 = —(2/r)02. Thus A(f6,) =
(1/72)(Ags f)01 — (2/7)(e2 - £)03 + (2/7)(e3 - f)fa. A circular permutation on the indices gives as
well A(gha) = (1/72)(Agsg)fa — (2/7)(e3 - g)01 + (2/7)(e1 - )03 and A(hb3) = (1/r%)(Agsh)03 —
(2/r)(e1-h)f2+ (2/r)(ez - h)B:. Since the §; are linearly independent, Aw% = 0 translates into

Agsf —4(es-g—ea-h) =Agsg—4(er-h—es- f) =Agsh —4(ea- f—e1-g) =0. (44)

On the other hand, dw% =0 is equivalent toe; - f+ex-g+es-h=e-f—e-g=e3-g—
e2-h =-e1-h—e3-f=0;the latter three equalities, plugged into equations (44), exactly give
Agsf = Agsg = Agzh = 0, hence f, g and h are constant. O

Remark 2.11. We have not used the I'-invariance of the tensors here; nonetheless, since the 0;
are SU(2)-invariant, which comes from the identities §; = ddy, (1/72), this does not give us any
further information.

2.3.3 Lower-order wvariation of the Kdhler forms: determination of the coefficients. We
know from the formal expansion of g (or those of go and g¢v) that the ajj coefficients of
Proposition 2.10 are quadratic homogeneous polynomials in their arguments. Their explicit form
is given as follows.

ProposITION 2.12. With the same notation as in Proposition 2.10,

az1(¢") =0, az(¢")=0, as(¢")=—|TIG),
ag1(¢") =0, ag(¢)=—|T)|¢* as(¢) =-2|T|(¢, ),
a11(¢) = =[0G a12(¢) = =2|0[{¢1, ¢2),  a13(¢) = —2[TI1{¢1, Gs),

where ||T|| := |T'|/4 Vol(B*) = |T'|/272.

Proof. We shall first prove the assertion on the az;(¢”), and then generalise our technique so as
to write down five equations with the eight remaining coefficients. We conclude by using once
again the specificity of Kronheimer’s F¢ (which essentially amounts to a gauge fixing here) to
overcome this under-determinacy.

The coefficient as3(¢"). To begin with, set a = a31(¢"), b = a32(¢") and ¢ = as3(¢”"). We consider
on Xe» (which is smooth by our assumption ¢ ¢ D) a closed form A with compact support
representing (3 by Poincaré duality; this is possible since minimal resolutions of C?/I" have
compactly supported cohomology [Joy00, Theorem 8.4.3], and X¢» is diffeomorphic to such a
resolution (this is actually a minimal resolution of (C2?/T', I3), but we will not use this fact).
Next, consider a smooth cut-off function x, vanishing on (—o0, 1], equal to 1 on [2, +00). From
the equality w§ = %ddﬁg (r?), and from (43), we have that

ci=wS —A— d[i]gd(X(T)T‘Q) + i(a[l + bl + CIg)d(X(T)T‘_Q)]
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is well defined on X, has cohomology class 0, and is O(r~9) at infinity, with appropriate decay

on its derivatives; here we write r instead of ()\gn)*r. As we need it further, we shall also see now
that € admits a primitive which decays at infinity.

From [Joy00, Theorem 8.4.1], € can indeed be written as h + df + d"¢"~, where h is in
Cs°(X¢, A?) and is g¢r-harmonic, and 8 and vy are in C9°( X, A?); we used here classical notation
for weighted spaces: for example, 8 = O(r=2), V¢8 = O(r~3), and so on. The harmonic form
h is actually decaying fast enough so that we can say it is closed and co-closed: write (all the
operations and tensors are computed with respect to g¢) for all r

0:/ (h,Ah)vol:/ (\dhy2+yd*h|2)vol+/ (h ® dh + h ® d*h) vol,
B(r) B(r) S(r)

where B(r) = Bx,, (r) = (Ag/’)*l(B‘l(r)/F), and S(r) is its boundary. From what precedes, the
boundary integral is easily seen to be O(r3737%) = O(r~%), and thus dh = d*h = 0. Hence
0 = de = dd*~v; an integration by parts similar to the previous one, but with boundary term
of size O(r~2), leads us to d*y = 0, and thus € = h + df3. According to [Joy00, Theorem 8.4.1]
again, H*(X) — H*(X¢n), h > [h] is an isomorphism; now here [h] = [¢ — d] = 0. Therefore
h =0, and € = dB, with 8 = O(r~2).

We shall now compute the integrals fB(T) (wgﬁ)2 in two different ways. First, recall that

1"

(ougﬁ)2 = 2vol®, and thus* f]Bg(r)(wg”)2 = (2r1/|T]) Vol(B*). On the other hand, since w3 =
A+ dp + e, with ¢ = 2I3d(x(r)r?) + (aly + bly + cI3)d(x(r)r~2), we have

/ (wgﬂ)Q:/ )\2+2/ /\/\dcp—|—2/ ANe
B(r) B(r) B4(r)/T B(r)

+/ (dcp)2+2/ 5/\dg0+/ 2. (45)
B(r) B(r) B4(r)/T

Let us analyse those summands separately.
For r large enough, fB(T) A2 = ch“ A2 = AUX = —|G3|? by Lemma 2.2, and the fact that

A= 5] = (6" = G

The integral fB(T) A A dy equals fS(T) A A ¢ by Stokes’ theorem, and this vanishes for r large
enough; similarly, fB(T) ANe= fB(T) ANdB = fS(T) A A B =0 for r large enough.

We now come to fB(T)(dgp)2. By Stokes, this is equal to fS(T) dy N ¢, which we view back on
R*/T via )\gu. For r > 2, the integrand is

1 1 (65} a9 Qa3
(w§ + abBy + bh2 + cbz) A [20[3 ~3 (ar4 + br—4 + cﬂﬂ

1 2c _7
:272<1—7A>Q1AQQACE3+O(T ),

since w§ A ag = (1/r?)a1 A ag A az= 13 vol®' ("), w§ A aj=w§ A ag = 0 (they factor through rdr),
and 03 A ag = —(a1 Aag Aag)/r®, 61 A az=0 A az = 0 (again, factorisation through rdr) on

4 In/(,ieed, fm(r)((.ug”)2 is the limit as s goes to 0 of f]B(T)_]B(S)(ng)2, since as an s-tubular neighbourhood of E :=
(A§ )71 ({0}) which is of real dimension 2, B(s) has its volume tending to 0 when s goes to 0. Now we can
also see fB(T)_B(S)(wg )2 on R*/T via A§ which is diffecomorphic away from E, and since (A§ )«(w§ )? = 29,

fB(me(s)(‘*Jg”)Q is twice the Euclidean volume of the annulus of radii s and r in R*/I", hence the result when
s — 0.
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S3(r)/T. Moreover 0; Aay, = O(r~7) for j, k =1,2,3. As fS3(
472 Vol(B*(r))/|T'|, we thus end up with

2_of1_2 VOl(B4( ) 4 _2(7“4—20) ol(B4 4
/B(T)(dgo) - (1 7»4>|r| +0() = 2= Vol() + 06,

r)/T aiNagNag= rs VOI(IB?)(T))/’F’ =

We conclude by the last two summands of (45). On the one hand, fB(T) eNdp = fS(r) eENp =
O(r375+t1) = O(r=2), since e = O(r=%) and = O(r). On the other hand, fB(T) g2 = fB(T) eNdS =
fS(r) e A fB: this is O(r37672) = O(r~®) (and this is actually the only place where we need an
estimate on the decay of a primitive of ¢).

Collecting the different estimates, for r going to co we have

2 2(rt — 2
2 Vol(BY) = 6P + 20 =29 voumty + 002,
Tl Tl

hence ¢ = —(|T'| /4 Vol(B*)) |3/

1"

Five further equations for eight other coefficients. For the exact same reasons as for w3 , one can
write
Wi = p+ dy + ds,
wgzwg =v 4+ d& + dn,

with u, v compactly supported and of respectlve class Poincaré—dual to (1 and (3 = ({)2, with
¥ and £ smooth and exact such that 4 = df, r + (a11(¢)d§, r 2 + a12(¢)dg, 7% + a13(¢)d§,r2)
and 4§ = dg,r 2+ (a1 (¢ )al?1 2+ ag (¢ )dg, 2+ ags (¢ )dg, 2) outside a compact set, and <,

smooth forms with O(r~2)-decay, such that ds and dn are O( 6.

Recall that wgﬂ = wg, wg = wg, and that vol® = vol®; thus, integrating just as above the five
remaining relations wC A wc =29 kvolC over images via F¢ of Euclidean balls of radius r and

letting r go to oo ylelds

2
(0 =~y 20) +an(¢) =~ a0+ an(¢") = gyt
r 2 r
CLQZ(CI) = 4|\/(|)|]C(§BL’L) and QQB(C/) 4 a’32(CH) _ |2\|/§§12(,B§j)>
(16)

This provides in particular the announced values of a11(¢) and ag2(¢’).

Three extra equations. We now conclude, using the precise way the Iy are constituted; namely,
we replace ¢ by ¢’ in the first line of (46). As, on the one hand (¢') = ¢’ and (¢")” = ¢”, but
(¢")1 =0, we get ar2(¢") +ao1(¢") = —|T{(¢)1, ¢4)/2 Vol (B*) = 0, and likewise, a13(¢") +az1(¢") =
—IT){(¢")1,¢3) /2 Vol(B*) = 0. On the other hand, since w§ = w§, we have a12(¢") = a13(’) =0,
and thus

a2 () = az1(¢") =0,
so in the end, a12(¢) = —|T'|{(¢1, (2)/2 Vol (IB%4) and a13(¢) = —|T|(¢1, (3)/2 Vol (B*).
Replacing ¢ by ¢” and using that a23(¢”) = 0, we get

as(¢") =0,
hence ag3(¢") = —|T|((2, ¢3)/2 Vol(B*) in the same way. O
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2.3.4 Conclusion: proof of Theorem 2.1 (general T"). Let us sum the situation up. If we take
O, = Fgl : XC\FQTl({O}) — (R*\{0})/T" and keep the notation introduced in this section, we
have ®¢ g = e+ h¢ + O(r™9), (I)C IC =1+ L% + O(r=%) and @C*wl = wf + w% + O(r=%). The
I1-hermitian component of h¢ is wl( I,-), which We know, and its I1-skew-hermitian component
is h¢r. Now the Io-hermitian component of he is w2 ( I5-), which we also know, and its Is-skew-

hermitian component is h¢r. Finally, her is I3-hermitian, equal to w3 ( I5-), which we know as
well. In a nutshell, we are able to write down explicitly hg from Propositions 2.10 and 2.12:

he = @5 (+I3) + @ (-, L) + @5 (-, 1)

=4wﬂ§]g%mw>+z§:<g@wmim)
j=1

1<5<k<3

which gives exactly (37), with ¢ = 1/4 Vol(B*) = 17 —2.
From this and the formula for wg proved in 2.12, which gives (39) of Theorem 2.1, we deduce

the expected formula for Lg. We know indeed that L% = Lgl, and that he = wP(-, Lgl') and Lgl is
e-symmetric, hence

e(if,) = e(- 4§ ) = —wi(hi ) = —her (L1, )
= DN (1¢s05(11-, Is-) + [Cal P02 (11, Io+) + 2(Ca, (3)03(11-, I2+))
= |T)1(1¢3]205 (-, Io-) — |Col?0a(+, I3) — 2(Ca, C3)05(+, I37))

Qg a3 —rdr - o g a3z +rdr-oq
= [IT ¢l p; =Tl f?

(rdr)2 + a% — oz% — a%

_2||F||<C27C3> r6 ’

76

of which (38) is just a rewriting.

2.4 Vanishing of the third-order terms when I' is not cyclic

We shall see in this section that in the expansion g; = e + h¢ + ZOO h(] , if T' is one of the
Dy, k > 2, or contains one of these as is the case when I' is bmary tetmhedml, octahedral or
icosahedral, then the third-order term h?) vanishes, and that this holds as well for complex
structures and Kahler forms. Keeping working with the diffeomorphisms F of the previous
section even if we omit them to simplify notation, we claim the following.

PROPOSITION 2.13. Suppose I' contains Dy, k > 2, as a subgroup. Then g; = e + h¢ + O(r™%),
1'1C =1 +L§ +0(r™%), wf =w —i—w% +0O(r~8), where by O(r~%) we mean tensors whose {th-order
derivatives (for V) are O(r—87°).

Proof. We shall first see that, for a general I', the crucial considerations made in §2.3 on

®3)

the second-order term h¢ of the expansion of g still hold for hég); first recall that hC is a

homogeneous polynomial of ¢ of order 3, with coefficients O(r~%) symmetric 2-tensors, with
according decay on the derivatives, and those coefficients are independent of (. We start with
claiming that

() =0 and 6°nY =0
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Indeed, for the trace assertion, once ¢ € h ® R? — D is fixed, one has for all ¢ that
Qe = vol#'c = det®(e + t2h¢ + 20 + O(t))Qe
= (1+ 2 tr°(he) + £ 0°(AY) + O(t1)) Qe

since the higher-order contributions of t?h. are included in the O(t*), hence tre(h?)) =0.

We thus notice that hé?’) shares this property with h¢ because the nonlinear contributions of
3)

the hye, which are of order at least 4 in ¢, do not interfere with the linear contribution of ht( .

We thus generalise this observation to prove that hég) shares other properties with h¢, and to

start with, that 5ehé3) = 0, as promised. Again we proceed within three steps, considering first

C// = (07 07 <3)’ and then C/ = (07 <27 <3) and C = (Cla <27 C3)

The case of h(?,) is immediate, and merely amounts to the fact that it is an I3-hermitian
tensor (the gy~ are) with vanishing trace for e, used with the Kahler identity [Aq,,df,] = d*

applied to h(:,)’,) (I3, ).

For the case of hg’),
of Ig/ = Igu was e-symmetric; this still holds for the third-order term, since the only I>-entire

function on C? decaying (like 7 ) at infinity is trivial. Then we identified the Is-skew-hermitian

part of he with hev; again, this holds for hg’) with héz,)’,) (and the latter is indeed Iz-skew-

hermitian). This amounts to looking at the term of order 3 in ¢ of:

remember the following: we first saw that the second-order variation

e the expansion of gen = w;@”<.7 [;C".) to see that hg,g,) is indeed Iz-skew-hermitian (recall

tc//

wy = wy for all t);

e the expansion of gtC/(Iécl'a I;C/-) — gt to see that %(hé‘?) + hé:?)(IQ', Iy")) = hé:,)’,).
We concluded by using the usual Kahler identity (for I3) on the e-trace-free Ip-(1,1)
form §(he(Io-,+) — her(+, o)), after seeing it was closed; we can do the same on its analogue

%(hg’) (Ig+,+) — hgj’)(, I5-)), which is also an e-trace-free I-(1,1) form, and is closed as seen when

looking at the third order in ¢ of the expansion of wécl = %(th/(fécl-, ) = Gicr (I;Cl-, I-)).

One deals with h¢ in analogous way. In particular, we get in passing that the third-order
variation of I 1( =1 1(’, ﬁ say, is e-symmetric and anti-commutes to I, that the I;-skew-hermitian
part of hé3) is hg), related to ]§ by hé:,g) = wf(, j%-), and that its I;-hermitian part gives rise to
an e-trace-free closed I1-(1,1) form.

Running backward this description, we will thus be done if we show that the third-order
variations of the Kéhler forms vanish when I' contains a binary dihedral group. In general though,
we know these are O(r~%) near 0 and infinity with corresponding decay on their derivatives, that
they are of type (1,1) for one of the I; and trace-free; they are thus se-anti-self-dual, and
therefore can be written as ff; + gy + hf3, where this time, 72 f, r2¢g and r2h depend only on
the spherical coordinate of their argument. Our form are moreover closed, hence in particular
harmonic; using again that the Laplace—Beltrami operator and the rough Laplacian coincide on
(R%,e), and that the §; are harmonic, we have this time that

3

Ae(f01) = (Aef)0r — 2 (e [)VE, 01,
k=0

with eg = (x;/7)(9/dx;). We set f = r2f; this is a function on S3, and ey - f = e - (r 2f) =
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eo-(r~2)f = —2r=3f = —2r~1f. Since on functions, A, = —(1/r3)8 (r30,-) + (1/r%) Ags, one has

Nef =Ae(r™?f) = —*5 (r20, (r _2))f+ Assf = 4A§3f,

since 0,(r30,(r=2)) = 0 (r~2 is the Green function on R%).
Moreover, V& 61 = 0,(r~%)(rdr A ay — ag A ag) +178VE (rdr Aoy — ag Aaz) = —(6/r)601 +
(2/r)0h = —(4/r)01. We recall that Vg 61 = 0, VE,01 = (2/r)03 and V¢, 01 = —(2/7)02, therefore

Dol(f01) = 5 (Bef = 167161 — S((e2- s — (e5- F)o)

Writing the analogous equations on § = r2g, h = r2h, the equation Ae(fO1 + gbo + hO3) =0 is
equivalent to the system

Agaf— 16f —4(e3-g) +4(ez- il) =0,
Ags§ — 16§ — 4(e1 - h) + 4(es - f) =0, (47)
Agsh — 16h — 4(eg - f) +4(e3 - §) = 0.

Now the closure assertion on f6; + gfa + hfs is equivalent to (e; - f) + (e2 - g) + (63 h) =
(eo-f)—(e3-g)+(e2-h)=(eo-g) — (ex-h)+(e3- f) = (eo-h) — (e2- f)+(€1 g9) =

Since eg - u = —(2/r3)@ and e - u = (1/r?)ey, - @ for u = f,g,h and k = 1,2,3, we deduce
from the latter equalities and the system (47) the equations

Assf —8f = Ags§ — 85 = Agsh — 8h = 0.

Setting f = 72f and likewise for § and h, we get that f, §, h are harmonic (on the whole R*)
and homogeneous of degree 2. This is not hard seeing that they are thus linear combinations of
the z2 — m?, Jj=2,3,4, and the zjz, 1 <j <k < 4.

The 0; are I'-invariant; f, g and h, and consequently f , g and iL, must be as well. But if T’
contains a binary dihedral group as a subgroup, then there is no non-trivial linear combination
of the above polynomials which is -invariant. We use first the 7-invariance; if indeed Dy < T" for
some k > 2 and u = Zj Laj(z? — ) + Zl<§<€<4 ajexi Ty 1s I- 1nvar1ant then 2u = u + 7 =
ag(2? — 23 + 2% — 22) + az(z? — 23 + 23 — 2%) + ag(2? — 23 + 22 — 23) + ara(7172 + T374) +
a13(r123 — x321) + a14(x1204 — x322) + a23(x2x3 — L4x1) + a24(T2s — T4x2) + az34(x374 + T122),
that is: u has shape a(x? — 23+ 23 — 23) + 2b(z122 + 2374) + 2¢(T124 — T3T2), i.€. aRe(2F + 23) +
bIm(z3 + 22) + cjm(?lzg), a,b,c € R, in complex notation. We now use the (-action and write

k
ku = Z Gru = Z (Gr)*Re(2f + 23) + b(¢R) Tm(2 + 25) + c(¢)*Im(Z122)

=0
k .
:9%2<Z ( 2ilm [k 2+ —22€w/kzg)>
=0
+Jm<2b 2zé7r/k 2 21@7r/k 2) + ce 22€7r/k2122)

=0,

since e2m/k £ 1 (k > 2). In particular, the third-order variation term of w% vanishes; in other

words, w$ = wy + @$ + O(r~9).

Since moreover jg is determined by hg) which is also 0, this third-order variation of the first

complex structure vanishes as well, or I f =0+ L§ +0(r78). O
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This completes the proof of Theorem 2.1. Notice however that in view of the previous two
sections, we could also have given similar statements on the second and third complex structures
and Kéhler forms of X.. We chose to focus on the first ones since this is what is needed in our
construction of Part 1, see in particular Lemma 1.6, which is just a specialisation of Theorem 2.1:
take ( = & verifying condition (11), and ®y = .

Nonetheless, the asymptotics of the second and third complex Kéhler forms are available
via Proposition 2.12, from which the asymptotics of the corresponding complex structures easily
follow, since the asymptotics of the metric are known.

2.5 Comments on Lemma 1.1

2.5.1 The condition (11). The first comment we want to make about Lemma 1.1 concerns
the reason why we state it under the condition (11), which we can recall as (|(2|?—|(3]?)+2i(Ca, C3)
= 0 (if one takes ¢ instead of £ as parameter).

One could instead try to generalise the proof we give in § 1.3 with the help of the asymptotics
given by Theorem 2.1, with ¢ a generic element of h ® R? — D. This is formally possible, but
leads to include terms such as 1/r%21, 1/r%27, 1/r223, 1/7?Z3 in the correction terms €1 and e of
that proof, which is obviously not compatible with the requirement that J is a diffeomorphism
of R4,

In others words, (|¢2|2 —[¢3]?)+2i((2, (3) appears as an obstruction for IlC to be approximated
to higher orders by I, even with some liberty on the diffeomorphism between infinities of X and
R*/T, which reveals some link between the parametrisation of the X¢ and the general problem
of the approximation of their complex structures.

2.5.2 Links with the parametrisation. Conversely we interpret Lemma 1.1 as follows: when
I' = Dy, k > 2 (this would be true also in the tetrahedral, octahedral and icosahedral cases) and
(|¢2|? = ¢312) +2i(C2, ¢3) = 0, then the complex structure Ilc can be viewed as approximating the
standard complex structure I; with precision twice that of the general case, i.e. with an error
O(r~®) instead of O(r~*), up to an adjustment of the ALE diffeomorphism given in Kronheimer’s
construction. Now (|¢a|? —[(3|?)+2i(Cs, (3) = ((o+i(3, (2 +i(3), and this is precisely the coefficient
ay, in the equation of X seen as a submanifold of C3, which is

u? + v?w + Wt = ag + ayw + - - - + apw® + bo (48)

(a; being given by symmetric functions of the (k 4 2) first diagonal values of (2 + i(3 € hc or
hc/(Weyl group) of degree (k + 2 — j), and b by their Pfaffian).

Denote by Xp, the orbifold defined in C* by the equation u? + v?w + whtl =0, i.e. (48)
with ag = -+ = a; = b = 0. This is identified to C?/Dy via the map (z1,22) — (u,v,w) 1=
(%(z%kﬂzz —22M020), (1/2) (23F 4 23%), 27 23). This suggests that (u, v, w) in (48) should somehow
have respective degrees 2k + 2, 2k and 4 in the z1, zo variables, and this equation remains
homogeneous if we give formal degree 2 to (. When a; = 0, the right-hand side member of (48)
is therefore formally conferred ‘pure’ degree at most 4k — 4, instead of 4k.

We believe that this corresponds to the improvement by four orders in the approximation of
Ilc by I; in the sense of Lemma 1.1. It would thus be of interest to draw a rigorous picture out of
these informal considerations, establishing a more direct link of the kind suggested here between
the parameter ¢ and the associated complex structures, without passing by the analysis of g¢;
we strongly suspect that this can be done using techniques similar to the ones used in [HC13,
Part 5] (in § 5.2 for instance, the authors construct an approximately holomorphic diffeomorphism
® between infinities of an affine cubic cone and one of its affine smoothings; such a construction is
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very likely to be explicit enough, regarding especially the equations of the cone and its smoothing,
to determine to what extent ® resembles a bihilomorphism, that is, to estimate the difference
between the source and the pulled-back target complex structures). In a more algebro-geometric
fashion, see also the formalism developed by Li ([Lil4], in particular §7.3.3). Notice however
that such constructions have no obvious reason to produce Bianchi-gauged leading-order error
terms, which is nonetheless essential from the metric/Kéhler form viewpoint of our analysis.

3. Proof of Theorem 1.16

We prove Theorem 1.16 in this part. In order to do so, a possible strategy would be to start
from the beginning, in terms of Calabi’s celebrated continuity method, based on a quest for a
priori estimates. Since the successful use by Yau of this method [Yau78], it has indeed been
adapted to different non-compact settings; let us quote here the version by Joyce [Joy00, ch. §]
for ALE manifolds, especially his contribution in proving that asymptotics are preserved along
the continuity method, provided that one starts with specific enough data.

Now, the above-mentioned result by Hein [HeilO, Proposition 4.1] (based itself on some
version of the continuity method), already gives us a solution to (22) bounded at any order
with reference to wy. We thus prefer here the following more economic (though essentially
equivalent) approach to the continuity method, consisting in establishing asymptotic a posteriori
estimates on such a solution. Roughly speaking, this can be done at order 0 using linear harmonic
analysis in (loose) ALF geometry available as well in [Heil0O] (Proposition 3.16); this is what one
would (have to) adapt in the nonlinear analysis of the Monge-Ampeére equation when using the
continuity method option as mentioned above. Then, at positive orders, we use some of Joyce’s
arguments, transposed from the ALE to the ALF framework.

To make things a bit more precise, with the notation and under the assumptions of 1.16, we
have by Hein a smooth solution ¢ on Y to the equation

(wy + ddgcp)2 = efwlﬁ, (49)
which is bounded at every order with respect to wy, and such that
Wy 1= wy + ddyp

is positive, and, more precisely, w,, is equivalent to wy, that is, for some ¢ > 0,

cwy < Wy < c_lwy onY

(these last points are fairly automatic from (49), the boundedness of ¢, and that of ddjj¢ with
respect to wy). Our goal is thus to prove that ¢ € Cgo(‘d, wy), up to the addition of a constant;
we do it in the following lines, along a three-step process:

(i) we first prove that ¢, correctly normalised, is in Cg(H,wy) for some § € (0, 5);
(ii) then, we get that p € C5°(Y,wy);
(iii) we conclude by sharpening the order of decay, that is, by proving that ¢ € cy (Y, wy).

We henceforth organise the rest of this part accordingly, each section corresponding to one
of the above steps. We keep the same notation throughout.
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3.1 Order 0: ¢ € C9(Y,wy) for some & € (0, 3)
The purpose of this paragraph is to establish the following.

PROPOSITION 3.1. Any smooth solution ¢ of (49) which is bounded at every order for wy can
be written as a + 1, where a € R and ¢ € C2(Y,wy) N C*(Y,wy) for some (any) & € (0, 3).

As will be clear in the proof, we take advantage of the complex dimension 2 and the Ricci-
flatness of w,, to reach the announced decay at infinity via linear harmonic analysis.

Proof. Equation (49) expands as

wg + 2wy A dd§e + (ddp)® = efwﬁ,
and can thus be rewritten as

(wy + %ddljcp) A ddyp = %(ef — l)wg,

that is

2
Wy

(wj)?’
where wj, = wy + %ddfdgp = %(wy +wy) is indeed a Kéhler form, and g, is the associated metric,
which enjoys mutual bounds with gy, and is bounded at all orders with respect to this reference

metric.
Now, (1—ef) € Cé+2 (Y, wy) and wﬁ/(w;f is bounded up to order 1 (at least) for wy; therefore,

if we fix 1 € (0, 8), by taking a € (0, 1) small enough, we have (1—e/)(w3/(w,)?) € Cg’l‘iQ(‘g}, 95)-
On the other hand, by [Heil0, Proposition 3.16], (i)—(ii), one has some u bounded for g/, up to

order (2, «) which satisfies

Ag@,@ = (1 - ef)

@y

(w},)?’

and such that |u| < Cp~9 for any (fixed) § € (0,3;), where C is a constant. Here, one should
mention that the p we use is the pull-back of the radius function R from R?, which indeed
satisfies [dply + p|Ag p| < C, as g, is mutually bounded with gy; moreover, the result we use
is stated for ‘SOB(3)-metrics’ such as gy, but a reading of its proof shows it still holds for a
metric uniformly co-bounded to it up to order 2 such as gfp, at least when these metrics are

Kahler for a common complex structure.
We are thus done if we prove that

Ag{pu:(l—ef)

h:=¢p—u,

which is bounded, and Ag{p—harmonic by construction, is in fact constant. Now, observe that:

(i) g, is complete and Ricci-flat;
(ii) for any C2 -function w, Ag w can be written as

—m ™ tdiv9e (me/grad, w),

with m = (det9® gfp)l/Q, and where ¢/ is given in coordinates by & = (¢/,)" (9,,)x(0/0z") ®

dz®. In other words, &/v = (vﬁgw)bg/v.
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As g, and gfp are both mutually bounded with gy, uniformly on Y, hence mutually bounded with
one another uniformly on Y, giving us the existence of p, a > 1 such that on Y,

pt<m<p, and o 'ulg, < gu(Fv,v) and ]%v@w < alvlg, forallveTY,

(see [Sal92, p. 424]), we can apply [Sal92, Theorem 7.4] to L = Ag&) and the bounded (below)
L-harmonic function h. This immediately yields the conclusion that h is constant, and the
proposition, as h = ¢ — u with u = O(p~°) on Y. O

Remark 3.2. As mentioned in the beginning of this part, an alternative to the above linear
harmonic analysis, more in the spirit of ‘a prior: estimates’, and adapted as well to higher
dimensional or non-Ricci-flat contexts, could be followed from Hein’s arguments, and more
precisely from the proof of [Heil0, Proposition 4.1] itself, as suggested in [HeilO, §4.5] (‘Non-
parabolic manifolds’). Indeed, the solution ¢ of (49) we use is itself constructed as the locally
uniform limit, as € — 07, of solutions . to the relaxed equations

(wy + dd@gog)2 = eerWEw%.

Now, a barrier argument (application of the maximum principle to functions of shape ¢. +C p9,
d € (0,5), on some exterior domain) can be invoked in this framework. As the construction of ¢
already relies on a C°-bound on the ¢, uniform in €, and as the exterior domain, the parameters
C' and 0 above can be chosen independently of €, the only remaining (moderate) price to pay to
make this method work and get an estimate |p.| < Cp~9 uniform in ¢ (hence surviving the ¢ — 0,
giving |¢| < Cp~%, which actually reveals that ¢ = u from the beginning in the above proof), is
the (qualitative) vanishing at infinity of the .. This in turn follows from a classical yet careful
integration by parts/Moser iteration scheme, applied to the . together with cut-offs centred at
points going to infinity as test-functions; we refer to [Heil0, §4.5] and references therein for the
details.

3.2 Higher-order weighted estimates
We now prove that our solution ¢ of (49), which we assume from now on normalised so as to
vanish at infinity on Y, lies in C5°(Y, gy), where § € (0, 3) is as in Proposition 3.1.

This is a straightforward consequence of the following, which mimics [Joy00, Theorem 8.6.11].

PROPOSITION 3.3. Let k > 3, a € (0, 1), and assume that ¢ € C’g, 0 < § < B, that ¢ is bounded
up to order (k + 2, ) with respect to wy, and verifies (wy + ddggo)Q = efw,ﬁ.

Then ¢ € C(’;H’a (Y, gy); more precisely, there exists a constant Q&kzs depending only on 6, «,

(k)
H()DHC(? and HfHCgfz(H,gy) such that H()OHC";JFZQ(%%) < Qo

Proof. As in [Joy00, §8.6.3], this statement readily follows from the inductive use of the following
technical lemma.

LEMMA 3.4. Let K1, Ko >0, A € [0,1], and k > 3. Then there exists K3 depending only on «,
B, 9, H‘PHC}; and K1, Ko, \, k such that the following holds.

Under the assumptions of Proposition 3.3 and if || f|| ke < Ki, ||(V13)£dd§<p||cgz < Ko,
B2
{=0,...,k, and [(Vy)kddfdcp]i‘kﬂ/\_l)a < Ko, then H(Vy)eSDHCQH(S < K3, £=0,...,k+2, and

[(VH)k+290]?+)\(k+2)+(/\—1)a < K.
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In this statement, the Holder moduli are those of gy, defined by (24) applied to gy (hence the
slight shift of notation by comparison with [Joy00]). We recall the ideas of the proof of Lemma 3.4
after the current proof. Now, for any fixed k > 3, one starts with applying this lemma to ¢ with
Ao = 0, thanks to Proposition 3.1; one can then apply it with Ay = 6/(k + «) and so on, with
Ap, = min{[(1+2/(k 4+ «))" — 1]6/2,1}. O

Proof of Lemma 3.4. As the proof is an (almost) immediate retranscription of Joyce’s from the
ALE to the ALF framework, we will be brief and, while exposing the main lines, ensure that
the change of geometry is harmless. In fact, the major change here is that the injectivity radius
does not grow as fast as p, but instead remains bounded, essentially by half the length of the
fibres of w. This is not an issue. Indeed, the Riemannian exponential map still authorises the
following manipulations. Given z € {p = 2po} (po determined later), identify (7,Y,Jy.,gy)
with (C?,I1,e). Taking R > 0, the map 7, : Be(0,1) = By, (z, R), u — exp$’ (Ru), is not a
diffeomorphism in general: large balls wrap following asymptotically the fibres. As it is a smooth
covering however, we can define the operator P, g : C¥+2%(Be(0,1)) — C*%(B(0,1)) by

(ma,R"(ddy)) (v) A o, R* (wy + wip)
Tz R* (w%) ’

Px,R(”) = R2

One then takes R = Lp(z)*, with L = L(po, A, gy) small enough so that By, (z, R) C {p > po};
this way one has

—2
IR 121" gy — ellcra(py0,1)) < 3

and

| R 27, r*wy — Wellcha(Bo(0,1)) < 3 forallz e {p=>2p},

if po is chosen large enough, thanks to the asymptotic geometry of gy. Now the rest of Joyce’s
proof applies unchanged (in particular, one is brought to using Schauder estimates between the
fired balls Be(0,2) and Be(0,1), with a €3 uniformly elliptic family of operators), since the
identity

Py r((me,r) ) = Rz(e(m’R)*f —-1)

is again just a rewriting of the pulled-back Monge-Ampere equation (49) verified by ¢. This
gives the desired estimates near infinity, the estimates on the fixed compact subset {p < 2pg}
being immediately deduced from the uniform bounds on ¢ for gy. O
3.3 Refinement of the decay, and conclusion of the proof of Theorem 1.16

We have now a rather sharp estimate on ddje, and thus, in particular, on gZD — gy; we can
therefore state the following.

PROPOSITION 3.5. For all k > 0, « € (0,1), and v € (0,1), the map

Ag, - CEP (Y, 9)) — Cs (Y, 9)

is an isomorphism.

Proof. This is deduced from [BM11, Appendix], thanks to the estimate g;,— gy € C§%5(Y,gy). O
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The proof of Theorem 1.16 is now easily concluded as follows. Recall that

Ag o= (1-¢) ;

—

this can now be rewritten, knowing that wi, — wy € Cg§,(Y,g,), as Ag o € 5529, 9,). An
immediate use of Proposition 3.5 (together with the fact that g;—harmonic functions vanishing
at infinity are trivial) thus provides that ¢ € C’Eo(‘j, g,), which is equivalent to: ¢ € Cy (Y, gy).
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Appendix A. The Taub-NUT metric on C?

A.1 A potential for the Taub-NUT metric on C?
In [LeB91] LeBrun leaves the following exercise to his reader: let m be a positive parameter, and
w and v implicitly defined on C? by the following:

|21] = €m0y, (A1)
J22] = em0* =1y |
(we do not make the dependence on m apparent here, since for now we see this parameter as

fixed; we shall only add m as an index by places to emphasise this dependence).
PRrROPOSITION A.1 (LeBrun). The metric f associated to the form

we = 1dd°(u? +v? + m(u* +v*))
for the standard complex structure I; on C? is the Taub-NUT metric.

We shall give our own, direct proof here. Before this, we shall mention that LeBrun’s potential
may be obtained by hyperkéhler quotient considerations; we chose to give a less conceptual proof
though since it exhibits several objects we use back in this article.

LEMMA A.2. The metric f is Ricci-flat; more precisely, w = 2Qe, where we recall that (e is the
standard volume form (idzy A dzy A idzy A dz3) /4.

Proof. We start by the computation of we, which goes through that of Ou/0z;, 0v/0z;, j =1, 2.

One has
ou 1+ 2mov? ou muv?
R u — =
0z @a)(L+2m@? +02) " 0z m(+ 2m(u +0?)] (A:2)
ov mu?v v 1 + 2mu? '

9z 2l +2m(ui2 +02) 9z (222)(1 + 2m(u? +vz))v'

Indeed, differentiating the relation |z1| = e™®* =¥y with 9/02 yields
1|z 5 Ou ov ou 2,2
il i) 222 — 7| em(ut o)
2 Z1 |:m< Y 82’1 uv@zl + 821 € ’
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hence, writing €™ ~"*) = |z1|/u, u = 22[(1 + 2mu?)(du/dz1) — 2muv(0v/dz)]. Similarly,
applying 8/8z to the relation |z5] = ™"~y one gets 0 = (1 + 2mv?)(dv/dz) —
2muv(0u/dz1), that is Ov/0z; = (2muv/(1 + 2mv?))(0u/0z1). Substituting in the previous
equality, one gets (A.2) for Qu/0z1,...,0v/0z.
Now set ¢ = £(u® + v? + m(u? + v1)). According to (A.2),
Oy 9, OU oy O (14 2mo?)u?
2— =wu(l+2 — 142 — =

5on u(l 4 2mu )821 +v(1 4+ 2mv )6z1 2o
and 2(0¢/0z) = (14 2mu?)v?/2z, ie. 0¢/0z1 = (1+2mv?)u?/4z7 and Op/07; =
(14 2mu?)v? /473 by conjugation. Apply again 9/0z; and 3/0z to those equalities, as well
as the relation uv = |212| and (A.2); then, setting R = $(u? + v?),

wg = ddp
_( uA(1 4 2me?)
-\ 2z112(1 4+ 4mR)

+ m\z2|2>z’dz1 ANdzZ1 +mzazy <1 + >id22 A dz1

1
1+4mR

1 v?(1 4 2mu?) 9
Zizo| 1+ ———— )idzy A dzg idzy A dzg.
+m2‘12’2( +1+4mR)Z 21 22+(2|22|2(1—|—4mR)+m121| idzo A dzo
A direct computation of w?, using again uv = |z1 22|, brings the conclusion. O

Remark A.3. With the above definition of R and (A.1), one gets
2R < 12 < 2Re™E, (A.3)

(with equality along {|z1| = |22|} and {z122 = 0}, respectively); this implies that R is proper
on C2.

Recall St acts on C2 by « - (21, 22) = (e!21,e @2y); the associated infinitesimal action is
generated by the vector field £ = i(21(0/021)+%2(0/0%2) — 22(0/022) —Z1(0/0%1)). By invariance
of u and v under this circle action, clearly, { -u = {-v = {- ¢ = 0, and similarly L¢wg = 0. This
holds as well for the holomorphic symplectic (2, 0)-form © := dz; Adz2 (notice that O©AO = 4Q =
2w%), thus £:0 = 0. More precisely, 1¢© = (21dz2 + 22dz1) = d(iz122); a complex hamiltonian
H = y5 + iys for the St-action on (C2%,©) is thus given by yo := Jm(2122) and y3 := —Re(2122).

In the same way, Ledp = 0; as Led®p = 1gddp + d(1ed®p) (Cartan’s formula), i.e. tewr =
—d(d°p(£)), we are led to setting y; = d°p(§). All computations are done.

(u? — v?), and thus R indeed equals (y? + y3 + yg)l/Q.

D=

LEMMA A.4. One has y; =

[\

Proof. To see that, y; = %(u — v?), write, according to the proof of Lemma A.2,

. dzs dzo
1+ 2mu | 222 - ==
> Z( m )U (222 222>’

hence the result, from the identity £ = i(21(0/0z1) + Z2(0/0%3) — 22(0/0z2) — z1(0/0%71)).
Noticing that y3 + y3 = [2122]> = u?v? suffices to get ¥ +y3 + y5 = (u? +v?)% O

dz_ da

dc :1 2 2 2
o =1(142mv°)u (221 52,

LEMMA A.5. Set V = |¢|;2. Then |¢|} = 2R/(1 + 4mR), and hence V = 2m(1 + (1/4mR)).
Proof. One has 11§ = —21(0/0z1) — z1(0/0%1) + 72(0/0%2) + 22(0/0z2); the easy but tedious

calculation of [£|2 = we(&, I€) then follows, which can be made easier by noticing that idz; A dzy
(6, 116) = 2|21 |?, idz1 A dZ3(€,11€) = —22173, and so on. O
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To get the Taub-NUT metric back under its classical form, we need finally a 1-form 7, which
is also a connection 1-form for the circle fibration w : C2\{0}—R3\{0}, (21, 22) = (y1,¥2,¥3)-
The natural candidate is given by 1 := VI1dy;.

LEMMA A.6. On C?\{z129 = 0}, one has

7 2 dzl dzl 2 dZQ dZQ
= o) == A4
n 4R[u(z1 z1> U<z2 29 )| (A-4)

and n(§) = 1 outside of 0.

Proof. By definition, n = Vd°y; = iV (2u(0u — 0u) — 20(dv — Ov)). We then apply (A.2), which
we rewrite as

v ou 1+ 2mov? ou muv? ov muv ov 1+ 2mu?
5 - T . 5 W a. ) a. — ) a.
821 421R 62’2 222R 821 2Z1R 82’2 422R

v,

hence the component of 1 in the dz; direction is —iu((1 + 2mv?)/4z1 R)u + iv(mu?v/221R) =
—iu?/421 R, and so on. A straightforward computation suffices to see that n(¢) = 1. O

We shall now recover the Taub-NUT metric under a more familiar shape.
LEMMA A.7. On C?\{0}, ws = dy1 An+ Vdya A dys, hence f =V (dy? + dy3 + dy?) + V ~1n2.

Proof. Clearly, {dys, dys} is linearly independent at all points of C?\{0}, and those forms vanish
against ¢ by S'-invariance. They vanish as well against I1¢, as I1dys = dys. Since dy1(€) =0 (i1
is S'-invariant) and dy;(I1€) = —V =1 £ 0 as I1dy; = V™15, and since n(11£) = 0 and n(¢) =1,
we deduce that {dy1, dys, dys,n} is linearly independent outside {0}. Consequently, on C?\{0},
one can write

wr = adyy An+ Bdya An+ ydys An+ ddyr A dys + edyr A dys + (dy2 A dys

for some functions a, ..., (. Now ady; + Bdys + vdyz = —tewg = dy;, thus a = 1 and 8 = v = 0;
as wr is of type I — (1,1), one also has § = = 0.

To determine (, one evaluates (dy; A n A dys A dys = %w% = Qe on (—11¢,(); this gives
V_lé-dyQ ANdys = Qe(—llf, £ - ) = %(|2’2|2id21 ANdz1 + ‘Zl|2’id22 ANdZzZ3 +Z1z91dz1 NdZg + 21Z21dzo N
dz7) = dy2 N dys, hence ( = V. O

One easily checks that 7 is a connection 1-form away from 0 for the fibration @ = (y1, y2,y3):
it is S'-invariant, and at any point p but 0 € C2, as {n, dy1, dy2, dy3} is a basis of T, > C?, necessarily,
Tp(C2 = kern + ker T'w. Finally, dn has the expected shape.

LEMMA A.8. The differential of n is given on C?\{0} by
dn = xp3dV.

Proof. The 1-form 7 is S'-invariant and n(¢) is constant; by Cartan’s formula, 0 = L¢n = tedn +
d(ten) = tedn, i.e. the components of dn in the dy; A n-directions vanish. Moreover dwg = 0 thus
according to Lemma A.7, dn = (0V/0y1)dy2 Adys + aadys Ady1 +asdyi Adys. For the computation
of as and ag, observe that

oy — (1 ; i;)dc log(|1 %) (1 - i;)dc log(|22).
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as u? = R+ y; and v2 = R — y;. Since dd®log(|z1|?) = dd®log(|z2|?) = 0 outside of {z122 = 0},
we thus have dn = 1d(y1/R) A d°log(|2122|?) = $d(y1/R) A dlog(y3 + y3). Now

1
d(‘%) = ﬁ((yg +y3)dy1 — y1yadys — y1y3dys)

and
Yyodys — ysdys

d°log(ys + y3) = Lidlog(ys + y3) = 2 ;
2 3 2 3 y%%_yg

this clearly provides ai; = —y; /2R? = 9V /dyj, j =2, 3. The lemma is proved, outside of {z122 = 0},
and the formula extends at once to C?\{0} by continuity. O

A.2 Comparison of the Euclidean and the Taub-NUT metrics

A.2.1 Mutual control. The metrics e and f are far from being globally mutually bounded;
an example of this geometric gap can be read in the scale of the ball volume growth: r* in the
Euclidean regime, but R3 for Taub-NUT; notice that R plays the role of the distance to 0 on
(C2,f). Another example of the geometric gap is given by the length of the orbit of the S!-action
on C2 used above: the orbit of z € C%\{0} has length 27|z| under e, and length 27V (z)~'/2 when
measured by f; this latter length tends to m1/2/m when z goes oo, which gives us a geometric
interpretation of the parameter m. We can nonetheless still compare e and f as follows.

PROPOSITION A.9. There exists some constant C' > 0 such that on C? minus its unit ball,
C~lr2e < f < Crle.

Proof. As £ =V (dy} +dy3 +dy3) +V ~1n?, with n = [LVdy, and dys = I1dys, we evaluate |dy;|e
and |dysle first; since dys = (i/2)(z1dz + 22d2z1 — Z1dZ3 — Zadz1), we readily get |dya|e = cr. Now,
we rearrange (A.1) to write

1

m(e%myl (F1dz1 + 21d77) — '™ (Fadzg + 20d73)). (A.5)

dy1 =
This provides |dy1|2 = (¢/(1 4 4mR)?)(|z1|2e 8™ 4 |29)2e8™1). But |z1]2e 4™ = 4% and
|z0]?et™1t =02 50 |dy1 |2 = (¢/(1 + 4mR)?) (e~ 412 +et™1y2) = (¢ /(1 + 4mR)?) (R cosh(4my; ) —
y1 sinh(4my;)). Now R cosh(4my;) — y1 sinh(4my;) < Rcosh(4myi) + y1 sinh(4my1) is obvious,
and rearranging (A.1) gives also

2(R cosh(4myq) + y1 sinh(4my)) = 72, (A.6)

so finally |dy1|2 < c(r?/R?). Those estimates give us the bound f < Cr2e.
The reverse bound e < Cr?f follows at once, as e and f are hermitian, have the same volume
form, and as we are in complex dimension 2. O

A.2.2 Expressing Fuclidean objects in Taub-NUT vocabulary. We give here some further
material useful in the comparison between e and f on C?. In Lemma A.10 we introduce a vector
field ¢ helping to complete the dual frame of (V*1/277, V12dy,, V2dys,, V1/2dy3) for f. Then in
Lemma A.11, we express the canonical frames of 1-forms and vector fields of e, i.e. the dz; and the
0/0z;, in terms of those of f. The essential point in those expressions lies in their computational
consequences; indeed, they allow to compute objects like Vfdxj, and estimate quantities like
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|Vidx,|¢, which is required when manipulating Euclidean objects in the Taub-NUT setting; see
e.g. the proof of Proposition 1.7.

In §A.1, we used the vector field £ on C?, which verified n(¢) = 1, dy;(£) =0, j = 1,2,3, and
dy1(11€) = —1/V, n(11&) = dy2(11€) = dy3(11€) = 0. We shall complete our dual frame with the
help of another vector field.

LEMMA A.10. Define on C2\{0} the vector field

— L dmy, i _ *i —dmy, i _ *i
‘= %R (e (zQ FEr T om om))

Then dy>(¢) = 1 whereas n(¢) = dy1(¢) = dy3(¢) = 0, and dys(I1¢) = 1 whereas n(I1() =
dy1(11¢) = dy2(11¢) = 0. Moreover, [§, (] = 0.

Proof. We only need to check the first list of equalities, as dys = I1dy. and n = I;Vdy;. Since
dys = (1/2i)(z1dze + z2dz1 — Z1dZ3 — Zadz1), we get
1

dy2(C) = ﬁ(e4my1|z2’2 + eI )

now 1|22 = v?, e 41|z |2 = u2, and R = i(u® + v?), hence dy»(¢) = 1. Using that
dys = —%(ZleQ + zodz1 +Z1dZ2 + Z2dz1) readily gives dys(¢) = 0. Now for the equality dy;(¢) =0,
we use (A.5) to write dy; (¢) = (1/4iR(1 + 4mR))(z120 —Z122 — 2122+ Z122) = 0; likewise, equality
n(¢) = 0 follows from formula (A.4).

Finally, the S-invariance of ¢ provides [¢,¢] = 0. O

LEMMA A.11. One has the following formulas for 1-forms:
€4myl
2R

dl‘l = ledyl — xan + (1’4dy2 — x3dy3),

edmy1
dro = ngdyl + a1+ °R ($3dy2 + x4dy3)7
e—4my1
doy = —Vagdy: + 2an + — 5 (v2dys — 21dys),
e—4dmy1
and for vector fields:
b e—4dmy1
87;51 = — 57 (x2€ + x111€) + (z4C — x311C),
0 e~ 4myL
871;2 — R ([L‘lg — Izllg) + (333C + $4Il<),
0 etmy
e = o (246 + 2301 ) + (v2¢ — 2111C),
0 etmy

dxy - R (—x3€ + x4 1E) + (21C + 22110).

Proof. We shall only see how those formulas arise for dz; and 9/0x1; the other identities are then
easily deduced with the relations dzo = I1dx1, dxs = 7*dx1, dxy = [1dxs, etc., on the Euclidean
side, and 7*y; = —y;, T'n = —n, 77 = =, 7°( = —d(, etc., on the Taub-NUT side.

1216

https://doi.org/10.1112/50010437X18007030 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X18007030

FroM ALE 1O ALF GRAVITATIONAL INSTANTONS

Write dx1 = ady; + fn + vydys + ddys. By duality between (£, -V 11§, I1¢) and (n,dy,
dya,dys), dxi1(§) = B, dxi1(L€) = —a/V dx1(¢) = v and dx;(11¢) = 0. On the other hand,
dml(f) = %1(21—71) = —X9, dml(hf) = —*<Z1+21) = -1, dacl( ) ( /2iR)(e4my1%(22—5)+0)
= (e*™1 /2 R)x, and similarly dzy(11¢) = (1/2R)e*™1(i/2) (20 + %) = — (™1 /2R)x3, hence the
result.

Similarly, if 0/0x1 = af + BLE + ¢ + 0I1¢, then a = n(0/0x1) = —e ™11y /2R, B =
—Vdy1(0/0z1) = —e ™13 2R, v = dys(0/0z1) = x4 and § = dy3(0/0x1) = —x3. O

A.2.3 Derivatives. Consider the f-orthonormal frame (e;);=o,... 3 of vector fields given by
(co,e1,e2,e5) = (VI/26, V2L, V20 VI21()
away from 0. In Part 1, we have to estimate the Vgiej. This we do in the following lemma.

LEMMA A.12. One has [eq, ¢;] = (y;/AR3V3/?)eq for i = 1,2,3, and

1
4R3v3/2

for any triple (i,j,k) € T ={(1,2,3),(2,3,1),(3,1,2)}. As a consequence,

les, ej] = (yie; — yjei + 2yreo)

1 * * *
ero = W Z e; X (ykej —yjep — yie())
(4,5,k)ET

with (ef, e}, €3, e3) = (V=120 V12dy, V1 2dy,, V1/2dys).

Remark A.13. Defining J; by £(J;-,-) = wj, j = 2,3, we get two complex structures verifying
with J; := I; the quaternionic relations, just as we did for J) and J) at the end of §1.4.4. By
Lemma A.11, we see moreover that wo is exactly dy» An + Vdy; A dys, and likewise for ws, so
that, for instance, eg = Jie1 = Joeg = Jzes.

Proof of Lemma A.12. Once the statement on the Lie brackets is proved, the formula for Veq
follows from Koszul formula for the Levi-Civita connection Vf and the orthonormality of the
frame (e;). Moreover, because of the symmetric roles of e, es, e3, we shall only see how to
compute [eg, e1] and [eg, ea].
e [eo, e1]: this bracket is rather easy to compute. Recall that eg = V1/2§, e1 = —Vl/zllf, and
¢ is holomorphic for Iy, so that [£, I1£] = 0. Moreover, as V is Sl-invariant, ¢ - V = 0, and
(L&) -V = =V~Y0V/dy;). Thus,

leos 1] = Leo(~VV211€) = (—eq - VYA€ = V2L (1:€) = 0+ V2L e
1 oV

1
_yl/2 1/2 _1! . __ 1oV
V(1) VA + ViLneen = 5(1) V)E+0 =~ 2 e,
hence the result, as 9V/dy; = (OR/0y1)(dV/dR) = —(y1/R)(1/2R?).
o [e1,ez]:as e = —V1/211§ and ey = V*1/2C, by Leibniz rule,
[e1,e2] = (ea - VIA)LE+ V2L, (1n€)
= VNV P)er = V(L) - VT 2)er — LieC. (A7)
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We already know (1,€) - V=12 = (1/2V%/2)(0V/dy1) = —y1/4R*VY/2; similarly, ¢ - V1/2 =
VY2V /9ys) = —ya /ARPVY/2. We are thus left with L£,¢¢. Now €18 (2q, 25) = (e7t21,
€'z3), hence wy = dry A drg + dxy A dxs is invariant under this flow: £ newe = 0. Besides,
we = dya A+ dys A dyi, so that wa((,-) =, hence

(dn)(1i€,-) = Lnen = Lre(w2(C, ) = w2(Lred, ),

the first equality coming from Cartan’s formula and the identity n(;§) = 0. Now by
Lemma A8, (dn)(11§,-) = V~'((0V/dy2)dys — (0V/dys)dys), and thus

(y3€ +y2l1) = (yseo — yoer).

1 1
2R3V  2R3V3/2
The conclusion follows from plugging this back into (A.7). |

Eh{C =

A.2.4 Proof of Lemma 1.8. We conclude this appendix with a proof of Lemma 1.8 of Part 1;
we actually prove it under the following shape:
For all £ >0, and j =1,2,3,4,

(a) [(V)zsle = O(r) and  (b) [(VF)* ("™ )¢ = O(r), (A.8)

where €1 = e9 = —1 and €3 = g4 = +1.

With help of the Leibniz rule, and Lemmas A.11 and A.12, the verification of Lemma 1.8
then boils down to an easy verification: if for instance o = Z;{k:l ajrdrj @dry, with o = O(r=29)
and |Vea| = O(r=2¢71), a > 1, then

4

4
Oov;
Vie= " ;g‘jp’“ dry, @ do; @ dog + Y op[(Viday) @ day + doy @ (Viday)]

j7k7p:1 ]7k:1

is immediately seen to be O(r~2¢%2) hence O(R!~%), for f, thanks to these lemmas and estimates
(A.8)(a); estimates (A.8)(b) are actually essentially useful in proving estimates (A.8)(a).

Let us establish these estimates. First, the case £ = 0 is obvious for (a), and (b) follows from
(A.6), providing e*2™¥1 = O(r/R'/?), together with the identities

e Myt (22 4 22) + M1 (22 + 27) = u® 4 v = 2R,

(direct consequence of (A.1) and y; = 3(u® — v?)), providing e >™1z; = O(RY?), j =1,2 and

emelxj = O(RY?), j =3,4.

We now come to the £ = 1 case. Here we build on (A.8), £ =0, (a) and (b), and Lemma A.11:
for instance, for j = 1, we get that dx; has O(r) coefficient for e} = V—12p and e] = V12dy,,
and O(r/R), hence O(r), coefficients for e = V/2dy, and e} = V/2dys. Moreover, as

1
d(e™™ig)) = e ™ (dxy —dmardy;) = (V —4m)x e dy1—$2€_4my177+ﬁ(udyz—aﬁsdyz&),

one sees that d(e~4™¥1x1) has O(r/R), hence O(r), coefficients for e and e}, and O(r) coefficients
for e3 and e3. The verification for j = 2, 3,4 goes the same way, the only occurrences of ei4mylmp
to be dealt with being exactly the e*e»™1 Zp, already estimated in the ¢ = 0 case.

In the ¢ = 2 case, we build on (A.8), £ =0,1, (a) and (b), and Lemma A.11 again, and on
Lemma A.12. Indeed, by Lemma A.11, one can write

3
1/2 deq
178 dej = g Qjk(Te, €™ xq, R)er,
k=0
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with Qj,k(fh ce 5543 537 s 75217 p) = Aj,k(élv s 7£4) fia s 7£Z)Bj,k(p)’ where the A],k are afﬁnev
and the Bjj are rational fractions with degB;; < 0. This way,

3
1 1d
V2Vide; = ViV 2da, ) - §V’1/2dV ®drj =Y (dQjr® et +QjxVTer) — 57‘/ ® VY2dz;.
k=0
Using Lemmas A.11 and A.12, this can be rewritten as
3
V1/2Vfd:nj = Z Qj k1 ko (x.,645‘my1,y.,R)eZ1 ® er,, (A.9)
k1,ka=0

With Qi ke = Ajser ko (15 &0, 0+, €411, M2,13) By ey ks (p), where the Aj g, , are affine in
¢ and &', with coefficients polynomials of degree < 1 in 7, and the Bj, », rational fractions of
degree < —1 (we use the V1/2 factor in (A.9) to have a simpler description here). This gives
precisely Vidr; = O(r), and a analogous analysis gives VI (e*™V1dz;) = O(r) as well.

For the general case, one uses the same technique inductively, leading to

3
f\¢ . * *
(VU ey = T Qikyken (Te, €™ ye, R)e}, @ - @€,

K1,k 1=0

with Qj7k17---7kz+1 = Aj7k1,---,kz+1 (517 oy S ﬂ’ R vgzllv m, 72, 7)3)Bj,k1,...,k4+1 (,0) where the Ajvklr"ykl—‘—l
are affine in ¢ and ¢', with coefficients of degree < £ in 7, and where degBj,, k., < —/.

Analogous statements hold for the (V1/2V¥)¢(etemvidy;), for all £ > 1. O
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