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Abstract
When generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate
human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic move-
ment with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping
characteristics of movements makes it difficult to improve movement performance in a simple control manner. In
this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network
of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy
is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated
movements and human movements. The paper provides a detailed exploration of the proposed method, presenting
simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human
movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual
robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical
limitations.

1. Introduction
The design of humanoid robots [1, 2] often involves a balance between complexity and functionality.
Humanoid robots are designed with sufficient degrees of freedom (DOFs) to perform their intended
functions. With these DOFs, determining their optimal movements becomes an increasingly intricate
challenge when achieving human-like movements: It arises not only from the number of joints and actu-
ators but also from the interaction between them to achieve the proposed movements. Especially when
considering such humanoid robots [3, 4, 5], to function in complex and varied human-centric environ-
ments, they need to perform a wide range of movements that mimic human capabilities for interactions.
This challenge drives the need for innovative control methodologies that allow these robots to perform
human-like movements in low control inputs, that is, to move the joints in groups coordinately. In this
case, a humanoid robot can be controlled with a relatively low computational cost for better real-life
implementation.

In motion generation of humanoid robots with multiple DOFs [6, 7, 8, 9], The concept of “synergy”
[10] emerges as a potential solution to the control of achieving human-like movements with minimal
DOFs. It suggests that complex movements can be decomposed into simpler coordinated patterns, in
which muscle groups work in unison to produce natural movements, and the control efforts are reduced
by adapting the simplified patterns with fewer control inputs as fewer control inputs are necessary to
direct a wide range of movements. However, there is a trade-off to consider: in the process of minimizing
control inputs, essential characteristics of movement might be lost, compromising the realization of
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Figure 1. The concept of the method. Extracting synergy from the whole-body motion of a human and
adding nonlinear constraints based on the extracted synergy. This is realized by conditionally enabling
a joint angle to affect other joints with a selected connection pattern. By using this method, compared
to linear synergy joint space, the nonlinear synergy joint space will perform movements closer to the
original human movement joint space.

natural movements [11]. Tripathi et al. extend existing research by applying a “critical joint” strategy and
segmenting body parts for enhanced synergy analysis in humanoid robots, focusing on software solutions
while retaining original hardware configurations. It introduces an improved method for analyzing and
performing complex movements [12]. Patel et al. adopt nonlinear techniques to analyze hand synergies,
focusing solely on movements within the hand [13].

Actually, in addition to the constraint of synergy, there are restrictions by body structure that limit
the ability to perform postures beyond a certain range. Therefore, in this study, constraints are added
to prevent performing movements that humans cannot achieve, inspired by the human body’s intrinsic
mechanisms, particularly the fascia network [14]. When realized in hardware, this constraint can reduce
the load on the control. Fascia is an extensive organ of fibrous tissue that permeates the entire body
and provides a framework that helps support and protect individual muscle groups, organs, and the
entire body as a unit [15]. In our approach, we integrate nonlinear constraints into joint angle synergy
modeling. This integration is not a direct replication of the physical properties of the fascia but rather an
abstraction of its guiding methods. Our propose draws insights from its methods to craft constraints that
guide robot movement. The interconnectivity within the fascia network, where the constrained physical
conditions in one fascia line can influence and propagate to connected muscles, serves as a paradigm in
crafting these constraints, thereby ensuring a more diverse robot movement.

In this paper, we delve into the detailed exploration of our proposed method, designed for humanoid
robots with multiple DOFs. The concept is shown in Fig. 1. The study centers on the development and
optimization of the constraints inspired by human fascial connections. By integrating it into the method
of joint synergy, through the experiment and evaluations, we focus on how our approach contributes to
generating robot movements within the existing control strategy by introducing nonlinear constraints.

When considering the implementation of the method in actual robots, we ensure that each joint is
compensated for gravity separately, such as using the mechanism of [16]. As gravity compensation
is included, the constraint model imposed by the joint angles can be simplified from kinematics and
dynamics consideration to considering the kinematics of the robot posture only. We assume that when
the joints are connected, the connected joints rotate according to the amount of rotation of one joint
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Figure 2. The conditions, models, and notations assumed in the simulation of this study. Consider a
situation where 3 joints are connected in series, with the J1 being fixed to the floor. In the case of this
figure, we assumed a specific fascia line L, the change of segment fascia tension λi, which is influenced
by the joint angle difference of q (joint angle) and qi(0) (the initial angle of Ji), will influence the κ , the
fascia tension. The calculation of λi and κ will be introduced in section 3.4.1. In the case of the figure,
λ1 and λ2 contribute to the calculation of κ because, in the modeled configuration in section 3, they can
extract the fascia line L. λ3 does not contribute to the calculation of κ . Subsequently, if the value of κ is
less than the threshold preset, it will activate the condition of Sk. This mechanism will be introduced in
section 3.4.2. Each Sk relates with a corresponding connection pattern Tk. For the joint angle change δq
in one control cycle, the w in Tk stands for the joint displacement relationship between two angles. The
w column index is the joint that starts displacement, and the w row index is the joint that is displaced.
In this figure, the joint angle displacement of one control cycle δq of J3 will be synchronized with the
δq1 of J1, as wδq1. The notations will be further introduced in subsequent sections.

(assuming that there is no loss). The conditions models and notation assumed in the simulation of this
study are shown in Fig. 2.

The contributions of this study are threefold:

• Introduction of fascia-inspired nonlinear constraints: We integrated human fascia network-
inspired nonlinear constraints into robotic joint angle synergy, facilitating the replication of
human-like movements with multiple joints.

• Demonstration of movement authenticity with applied constraints: By employing the proposed
fascia-inspired nonlinear constraints, we validated that the generated robotic motion closely
resembles original human movements compared with those generated by joint synergy.

• One possible method for hardware implementation: We provided ideas and methods for applying
our research approach to actual hardware.

The rest of the paper is organized as follows: Section 2 introduces the background that conceives
us of the proposed method, including the meaning of fascia-inspired, and the actuator network sys-
tem (ANS) that provides a realization method of hardware constraint to the proposed method. Section
3 describes our proposed method of the fascia-inspired nonlinear constraints in joint angle synergy.
Section 4 describes the experiment and evaluation procedures and results by using a series of human
motion datasets. Section 5 gives a discussion of the proposed method, including the potential hardware
realization, and the limitations of the research. Section 6 provides the conclusion of the paper.
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(a) (b)

Figure 3. To introduce the structure and function of human fascia lines, we provide the illustration of
(a) the superficial back line (SBL) and (b) the superficial front line (SFL) of the human fascia system
[14]. For orange-highlighted parts, (a) the lower SBL from toes to knees, (b) the lower SFL from toes
to pelvis. Copyright statement: the figure is sketched referring to the illustration of the book: anatomy
trains [14].

2. Background
To introduce the background that conceives us of the proposed method, in this section, we introduce the
basic idea of fascia-inspired constraint, and ANS [17], the approach of realizing the constraint in the
hardware aspect.

2.1. Fascia inspired constraint
The human fascia is a network of connective tissues that provides support, protection, and structure to
muscles and organs, aiding in movement and shock absorption. It is divided into multiple layers and
lines, connecting different muscle groups, and enabling coordinated movements. Myers [14] identified
several lines in the body where the fascia connects different muscle groups across various joints. Figure 3
shows the typical fascia lines and their muscle components of the human fascia system.

When a person moves beyond the natural range of motion, specific fascia lines tense to restrict these
movements, causing discomfort or pain. This reaction varies when activating different fascia patterns
based on different movements. The tension in fascia lines is influenced by the connected muscles’ activ-
ity and condition. The tension within the muscles consequently affects the tension of the associated
fascia lines.

The constraint inspired by fascia can become a part of the mechanisms that realize human-like pos-
tures and movements, which may benefit in generating posture and movements closer to humans. By
exploring the idea of implementing physical constraints inspired by fascia on humanoid robots, there
is a possibility that human-like postures and movements could be achieved without the necessity for
additional computational costs.

2.2. Actuator network system
To realize such physically connected constraints, we introduce our proposed ANS, a mechanism that
forms a connection network by fluid-transmissive tubes composed of cylinders and valves [17]. ANS
changes the movements of cylinders by switching the connection patterns among the actuators.
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To perform the switch in ANS, a connection controller is used. When comparing the fast-changing
control cycle on a standalone actuator with a feedback control, the connection controller controls actu-
ator groups and does not need to change the control cycle that fast. As a result, the complexity of the
control is reduced. Although this method does not allow for precise control of each actuator, the con-
nection enabled simplified control in scenarios where functional synergetic motion is carried out by the
interaction of groups of actuators. By physically establishing the constraints among the modular joints,
different movement responses of a spinal robot to external forces can be generated without extra com-
putational cost, by switching the connection patterns [18]. Switching the connection patterns of ANS
also generated more suitable dynamics for the surrounding environment [19, 20].

Despite our main proposal in this paper being the fascia-inspired constraints, as exploiting ANS
indicates the potential of realizing the main proposal, an implementation example of a physical constraint
that can be realized by ANS is shown in Section 5.

3. Fascia-inspired nonlinear constraints in joint angle synergy
Conventionally in humanoid robots, each input angle corresponds to an actuator. Instead of controlling
each joint independently, joint synergy reduces the dimension of the inputs by decomposing the inputs
and reconstructing them while keeping maximized movement characteristics.

To introduce the fascia-inspired constraints in joint angle synergy, in this section, we set up a specific
scenario to describe how nonlinear constraints can be implemented and optimized in the humanoid robot
system. Following this, we delve into the details and explore the methodology applied for implementing
and optimizing the nonlinear constraints.

3.1. Overview of the method
Instead of replicating the original movement with the synergy control only, we consider exploiting
the inherent mechanism based on the prior knowledge of the fascia-inspired nonlinear constraints,
introduced in Section 2.

Therefore, based on the simplicity of the synergy control method, we aim to introduce constraints
that enable the joints to affect mutually, making the robot model generate motions in addition to linear
combined motions. In this research, it refers to applying constraints on the multiple DOFs joints in the
aspect of rotation angles.

This approach aims to reduce the errors in conventional joint synergy control and ultimately expects
to generate movements more reminiscent of human motions. It is divided into 4 steps, as shown in Fig. 4:

1) Defining the human model as the base model
Referring to Section 3.2, the human model is defined for the problem statement, which describes the
joint rigid structure with a representation of forward kinematics and joint coordinates. It provides a
reference for simulating human movements and serves as a benchmark for subsequent modeling steps.
2) Reconstructing the joint angles by extracting and exploiting joint angle synergy
Referring to Section 3.3, the proposed method progresses as an extension to joint synergy; therefore, a
synergy extraction method on the defined based model is introduced. We obtained motion sets of reduced
dimension joint angles that keep the characteristics of captured human movements. The extraction result
is used to reconstruct the joint angles of the human model, as the input of the nonlinear movement
constraint implementation.
3) Implementing the nonlinear movement using the proposed model of fascia constraint activation
Referring to Section 3.4, we propose an approach by introducing a nonlinear movement constraint that
mimics the mechanism of fascia constraint activation. The human model kinematics is operated through
a form of joint angle increment δe, which is defined as the angle change that is influenced by the imple-
mented constraints of every control cycle. For the reconstructed input joint angle of each control cycle,
to estimate the joint angle increments, the movement of the human model is constrained by different
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Figure 4. The overall flowchart of the proposed method. To show the whole implementation sce-
nario, the approach is divided into 4 steps: 1) Define the base model, 2) reconstruct the joint angles,
3) implement nonlinear movement constraint, 4) optimization.

connection patterns. The connection patterns are selected by different constraint activation conditions,
according to the calculation result of the fascia constraint model and the threshold presets, as a general
determination criterion.
4) Optimization on connection patterns
Referring to Section 3.5, the configuration of connection patterns among the joints is refined through an
optimization process. This is achieved by formulating and minimizing error functions that quantify the
deviation between the kinematics constrained by our model and those from naive joint synergy.

3.2. Human model
To explain the proposed method, we introduce a 6-joint human model as the base model, to show a
whole-body human motion in a 2-D lateral right-hand coordinate frame.

Figure 5 shows the definition of the model, including our defined initial posture for subsequent cal-
culation of the fascia constraint model, notated as qini. The model consists of 6 active joints, 2 reference
joints, and rigid structures.

The active joints fulfill the minimal requirements of performing a whole-body motion of a human.
They refer to a joint actuation with the capability to execute controlled rotational movements. In this
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(a) (b)

Figure 5. The initial posture and the joint angle definition with the base model. Joint angles are derived
from the arc-tangent of the ratio between the y and x coordinates differences of relevant points. For the
sake of the figure demonstration, the J4 and J5 in (a) are separated, in fact in the defined human model
they coincide, as shown in (b).

model, these joints are named as J1, J2, J3, J4, J5, J6 (ankle, knee, hip, shoulder, neck, and elbow) as
Jj(j = 1, 2, . . . , 6).

The reference joints are set for calculating qj which are adjacent to end effectors. They do not have
an actuation mechanism but need to be included in joint angle calculation for biological similarity, as
head and wrist joints in this model, named as R1, R2 (head, wrist).

The qini is a starting position where all joint angles are set as [π/2, 0, 0, 0, 0, 0], serving as a reference
posture for measuring subsequent movements. The joint angle qj is defined to measure the rotation at the
active joints, calculated based on the angles between vectors formed by structurally connected joints,
the vector relationships of qj are shown in Fig. 5, and calculated as the following formula:

qj = arctan (va) − arctan (vb) (1)

For the calculation of v, refer to Appendix A for the details of the inverse kinematics.
Vise versa, the joint coordinates also can be calculated by the input joint angles with the human

model, for error comparison in the optimization. The calculation progress of the direct kinematics is
given in Appendix B.

3.3. Joint angle synergy
The purpose of extracting synergy in a multiple-joint robot system is to describe the higher dimensional
joint angle space with a low-dimensional synergy space [21], while maximizing the variance of the
projected data. For the control simplicity, only dominant synergies are retained.

Principal component analysis (PCA) [22], is widely used in extracting the joint angle synergy of
robots [12, 23]. As its efficacy is validated in the literature, in this research, we use PCA to extract the
joint angle synergy of the human model.

The inputs of PCA, a dataset of frames of joint angles qn = {q1, q2, q3, q4, q5, q6}, where multiple
frames n = 1, . . . , N. The q1 to q6 is the n frames of joint angles from J1 to J6.
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Implement PCA on the data set, the decomposition result of the qn is

qn = q̄ + q̃nU (2)

the dataset joint angle mean value q̄, eigenvector matrix U = {u1, u2, u3, u4, u5, u6}T , the projection
matrix q̃n .

An over 80% cumulative contribution rate decides the number of components to retain. Suppose
retaining 2 components, obtaining the reconstructed joint angles

qrec = q̄ + qrVs (3)

the synergy coordinates Vs

Vs = {u1, u2, 0, 0, 0, 0}T (4)

and the joint inputs

qr = {
q̃1, q̃2, 0, 0, 0, 0

}
(5)

As the Vs are not time-variant and qr is a lower dimensional input signal, in a robot system, such
extracted joint angle synergy can reduce the control dimensions of multiple joint inputs, while qrec ∼ qn.

The Detailed method of PCA decomposition can be found in Appendix C.

3.4. Fascia-inspired nonlinear constraints
The concept of the proposed method is inspired by the observation that human muscles are grouped
and interconnected through fascia. Also, the feature of fascia has been studied by researchers in the
robotics field [24], by using a robot to study how the foot’s windlass mechanism, comprising plantar
fascia, affects jumping, resulting in a simplification of the buliding foot mechanisms of a bipedal robot.

3.4.1. Fascia and fascia constraint model
We suppose that there are multiple fascia lines surrounding the joints of the robot. These “fascia lines” do
not exist physically, yet provide morphology criterion by their math models with joint angle inputs. When
the robot system tends to perform malformed motion, similar to the human fascia network, the fascia
aids and generates responsive constraints or feedback based on the predefined math models. To achieve
this, the fascia lines are represented as an extractable line constraint, which is utilized in determining
the activation conditions for fascia.

The fascia constraint model is defined as a set of fascia line models L. For a specific fascia line L ∈ L,
connecting designated joints J ∈ Jj referring to the anatomy of human fascia, will increase the tension
when the relative joints rotate tending to extract the fascia line, shown in Fig. 6. The extraction direction
β is defined as 1 when the placed fascia segment extracts when the joint rotates counterclockwise, −1
when the placed fascia segment extracts when the joint rotates clockwise. β can only be +1 and −1.

A segment fascia tension λi is defined as the extraction of a segment fascia line of Ji, as a part of the
fascia line that surrounds a joint Ji, shown in Fig. 6 (b). Suppose a segment fascia tension λ = 0 is the
initial state of a segment fascia line. For a certain fascia line Llinename, the calculation of the fascia tension
κ of one frame of input angles q, using the designated joints J, is a cosine value of equally weighted
sum up of the designated joints’ segment tension {λi}, For all selected Ji in J, as

λi =
{

λ0 · (qi − qi(0)

) (
qi − qi(0)

)
β > 0

λ = 0
(
qi − qi(0)

)
β ≤ 0

, ∀Ji ∈ J (6)

κ = cos

(∑
i∈J λiJi

P

)
, ∀Ji ∈ J (7)

where the segment tension is a deviation of input angles of Ji and the corresponding initial angle qi(0),
where λ0 = 1 in this research. P is the total number of the designated joints in J. i is the index of the
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(a) (b)

(c) (d)

Figure 6. The fascia constraint model. The extraction of a segment fascia line is based on its placement
and its alignment with the rotation direction. (a) The relationship of rotation direction qi − qi(0) and the
extraction direction β. (b) When the joint rotation direction toward qi(0) and extraction direction are the
same, the fascia segment extracts. The λi are assigned first and used to calculate κ . (c) For all selected
Ji in J, the set of designated joint in a specific fascia line L. (d) The placement of lower SBL and the
lower SFL.

designated joints for J. When there is no extraction on a fascia line, κ = 1. When there is extraction on
a fascia line, κ < 1.

In this research, we focus on the whole-body motion from the head to the toes. Therefore, we chose
the superficial back line (SBL) and the superficial front line (SFL), shown in Fig. 3 as the target of
modeling, which has a reciprocal relationship in providing tensile support to lift the rigid which extend
backward and forward the gravity line.

Subsequently, we discuss the fascia constraints of the lower SBL and the lower SFL. In the remaining
paper, when the fascia line is referred to, we are indicating the fascia constraint model proposed in this
research.

3.4.2. Constraint activation conditions for fascia
The constraints of fascia are implemented according to the conditions of the joint angles of every control
cycle. The conditions are identified by checking if the tension of a fascia line has surpassed its threshold
preset. If surpassed, the correspondent line is treated as "malformed" and labeled as classifying evidence
of the current condition. Theoretically, with C fascia lines adapted, 2C conditions are classifiable, within
1 condition of normal, of not malformed condition.

Giving a series of joint angles of a motion set, by using the calculation formula of the fascia
tension of a specific line, the time-variant tension can be shown in Fig. 7. For the classified states
S1, S2, S3, S4, the frame sequences that belong to each state are defined as sets s1, s2, s3, s4, correspond-
ingly, as s1, s2, s3, s4 ∈ {1, 2, . . . , N}, while they are independent. The threshold preset is set by human
observations, and its configuration is not discussed in this research.

Based on the reconstructed joint angle, for every frame (control cycle), the condition of the joint
angle is checked in real time. For each time the condition Sk changes, the constraint will switch to the
connection pattern Tk corresponding to the condition, which will be explained in the next subsection.
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Figure 7. The constraint activation mechanism using fascia tense model. The condition classification
is decided by the labels of fascia lines. In this research; 2 fascia lines (lower SBL, lower SFL) are
used to constrain the motion frames. Therefore, the motion frames are categorized into 4 conditions:
S1, S2, S3, S4.

(a) (b) (c)

Figure 8. The math representation of one joint angular displacement from another joint. (a) The phys-
ical illustration of w1δq2, the displacement using a specific pattern Tk. (b) The physical meaning of
w1δq2 in different connection patterns TK. (c) The physical meaning of Tk · δq, where a specific pattern
is illustrated as an example.

k is the index of the constraint condition pattern, and K is the total number of constraint condition
patterns. In this research, we use two lines to activate the constraint condition: lower SBL and lower
SFL.

3.4.3. Implementing nonlinear movement constraints on the human model
When the condition of the input motion transits into a condition that the fascia lines are malformed, the
nonlinear movement constraint is implemented, to admit a part of joint angles to be transmitted among
the joints, pursuing the natural balance of the motion.

A connection pattern is defined for each classified condition, enabling the rotation of one joint to
affect the rotation of another one, representing the transition of joint angles. Therefore, in the hardware
aspect, the constraint of one joint is a proportional angular displacement from another joint, according
to the joint connection pattern configuration at the moment of every control cycle. Figure 8 shows the
math representation of the displacement progress.

In a time-variant system, the whole movement constraint process by initially inputting qrec is, phys-
ically, integration progress. In the math representation, for simplicity in a discrete form of the model,
we first introduce the increment δe, as the cumulative term of angular displacement is influenced by
the implemented constraints of every control cycle, a transmission matrix Tk. Note that Sk and Tk are
bijective, Sk → Tk, Tk → Sk.

For one Tk, When the constraint is activated, in every control cycle, the increment δe is defined as

δe = Tk · δq (8)
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where δq is the joint angle difference compared to the previous control cycle. And Tk, δq is consists of
form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 wk
1 0 0 0 0

0 0 wk
2 0 0 0

0 0 0 0 wk
3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δq1

δq2

δq3

δq4

δq5

δq6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wk
1δq2

wk
2δq3

wk
3δq5

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

w indicates the transmission proportion of one joint from another joint. In the case of a parameter con-
figuration, as δq1 = wk

1δq2, δq2 = wk
2δq3, δq5 = wk

3δq5, meaning the J1 (ankle) will be constrained by J2

(knee), J2 (knee) will be constrained by J3 (hip), J3 will be constrained by J5 (neck), consistent with the
illustration in Fig. 8 (c).

Note the picked-up joints to represent TK are different from those in the activation of the fascia
constraint model J. The parameter w is what we configure in the next section, meanwhile, the parameter
settings and configurations can be varied, although configured as Equation (9) in this research.

To sum up, the constraint method is a time-variant process from the start of a motion depending
on the nonlinear switch of the condition patterns as SK . Consequently, the constrained motion qcst at
frame n, qcst(n) is composed of two parts: 1) the reconstructed joint angles of synergy and 2) the nonlinear
movement constraint, representing as

qcst(n) = qrec(n) +
n∑
1

K∑
k=1

δe ×G(n) (10)

while

G(n) =
⎧⎨⎩1 n ∈ sk

0 others

where sk is the state set that includes the frame index of the k condition, as mentioned the constraint will
adjust the connection pattern that corresponds to the switch of the condition.

3.5. Optimization of the nonlinear movement constraint parameters
We optimize the nonlinear constraint parameters to make the constrained motion become closer to
human-performed motion, comparing it with the motion reconstructed by synergy.

To achieve it, the loss function of the whole optimizationL is defined as the comparison of two error
functions: 1) between the synergy motion and the original motion Esyn and 2) between the constrained
motion and the original motion Ecst. This can be represented as

L= Ecst − Esyn (11)

To calculate them, their general form, the error function E, is used to estimate the overall motion
performance of all motion sets. Therefore, it is defined as the average of the sum of E. which is the
overall error of N frames of all motion sets in Cartesian coordinates by using the direct kinematics
human model, inputting the joint angles, as

E = 1

N

N∑
i=1

E (12)
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Figure 9. The error calculation for a series of motion inputs.

where N is the total frames of all motion sets. E, as the error of one motion frame, is calculated as

E =
Z∑

j=1

ej(n) (13)

which ej(n) is the standard square error of the human model for n the frame in the Cartesian coordinates
of one joint Jj as

ej(n) =
√(

yj(n) − ŷj(n)

)2 (14)

j is the joint index, Z is the counts of all joints of human model (including active ones and reference
ones), and n is the frame index.

For a series of motion sets, as shown in Fig. 9, ŷj(n) is the joint coordinates with the original joint
angles input, yj(n) is obtained using the human model of direct kinematics with the input q(n), the joint
angle of n th frame. In this research, the joint input of the proposed model qcst and the reconstructed
joint angles of synergy model qrec are used.

The L-BFGS-B [25] solver is used, as this method optimizes a large number of parameters, using the
L-BFGS-B method provides a balance between computation time and accuracy.

To summarize, the loss function, that is, the function to be optimized, is minimized by configuring
w in Section 2.4.4, represented as formula

1

N

N∑
n=1

{√√√√ Z∑
j=1

[
f

(
qrec(n) +

n∑
1

K∑
k=1

Tk · δq ×G(n)

)
− f (q(n))

]2

−
√√√√ Z∑

j=1

[
f
(
qrec(n)

)− f (q(n))

]2}
(15)

As f is a continuous function of calculating direct kinematics of the human model, and Tk is
composed of wk and their derivatives exist. Therefore, the function can be partially differentiated.

The overall optimization step is shown in Algorithm 1.

4. Experiments and evaluation
To to assess the effect of the presence of the fascia constraint model and to show its effectiveness in the
motion generation of a multijoint humanoid robot, we carried out experiments by acquiring the original
human motion set and evaluated our proposed method using the collected data. In this study, the study
basically addressed movements within the sagittal plane.
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Algorithm 1 Optimization Using Human and Error Models
1: Input: qrec of all frames
2: Calculate constraint activation conditions
3: Implement nonlinear movement constraint with T4 = 0
4: Compute qcst for all frames
5: while not convergence do
6: Adjust w using L-BFGS-B to define T1, T2, T3, T4

7: Calculate constraint activation conditions
8: Update nonlinear movement constraint, compute qcst

9: Calculate the loss function of L= Ecst − Esyn

10: end while
11: Obtain optimized T1, T2, T3, T4

12: return T1, T2, T3, T4

Figure 10. The configuration of the motion capture system and the captured subjects. The OptiTrack
motion capture system is used to detect the markers’ locations in the set coordinate frame. Capture frame
rate: 120fps, export frame rate: 120fps. Rotation type: quaternion.

4.1. Collection of human movement data via motion capture
We use a motion capture system (Trio tracking system V120, NaturalPoint, Inc. DBA OptiTrack) to
obtain the estimated positions of the joints of a human, by acquiring reflective marker positions when
a human subject is performing motions, as shown in Fig. 10. Consequently, we collected 10 kinds of
positional motion sets with 11,551 frames of humans using a motion capture system, shown in Table I,
the data is the joint angles on the 2-D lateral side of a human, showing a human using his whole body
to perform different motions. Each motion is performed 3 to 4 times. Assume one frame is a control
cycle.

The marker position using the motion capture system is shown in Fig. 11, in this research,
Q1,Q2,Q4,Q10 set as the joint position of J1, J2, J3, J6 of the human model, respectively, Q6 as the joint
position of J4, J5, Q8 as R1, Q11 as R2.

4.2. Extraction of joint angle synergy
By adapting the method introduced in Section 2, we extracted the joint synergy from the obtained motion
sets. The dataset mean q̄ = [1.32, 0.80, −0.98, −2.50, −0.66, 0.57] (rad), the first 2 synergies (shown
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Table I. The motion descriptions.

code name of the motion description
M1 sit down gently Sits to a low sofa gently.
M2 stand up gently Stands from a low sofa without hand assists.
M3 sit down hardly Sits to a low sofa with hitting the sofa hard.
M4 stand up hardly Stands from a low sofa with hand assists.
M5 bow Slowly bows to the front with hands reaching the ground as

best as he can.
M6 bow reset Slowly returns to a normal standing posture from the bow

motion.
M7 lean back Slowly leans back as far as he can, while keeping his balance.
M8 lean reset Slowly returns to a normal standing posture from the lean back

motion.
M9 squad Slowly squads.
M10 stand up from the ground Slowly returns to a normal standing posture from the squad

motion.

Figure 11. Marker placements on the human body.

in Fig. 12) count for 91.3% cumulative contribution rate. Hence, we choose the first 2 synergies to
reconstruct the joint angles as qrec, the reconstruct method is explained in Section 2.

4.3. Optimization of fascia-inspired nonlinear constraints
According to the constraint activation condition calculation method in 2.4.3, for chosen fascia line lower
SBL and lower SFL, κLSBL of lower SBL, the designated joint angles J are J1, J2: κLSFL of lower SFL, the
designated joint angles J are J1, J2, J3. The κLSBL, κLSFL toward frames for M1 to M10 is calculated.

According to the classification method of constraint activation condition in Section 2.4.3, we cate-
gorize the motion frames into 4 conditions as mentioned in Fig. 7. Their switching relationship toward
time is shown in Fig. 13.

To achieve a seamless and physically feasible transition when switching motion conditions as in the
real world, it is essential to interpolate the state weight correlating with different states. The calculation
process is given in Appendix D.

After these configurations, we process the optimization. According to 2.4.4, parameters in T1, T2, T3

(w1
1, w1

2, w1
3, w2

1, w2
2, w2

3, w3
1, w3

2, w3
3) are the optimization variables (T4 = 0 as a normal condition). The T1,

T2, T3, T4 correspond to 4 conditions. The inputs are the reconstructed joint angles qrec and constrained
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Figure 12. Cumulative contribution rate from the 6 decomposed eigenvectors, 91.3% of the data can
be represented by using 2 principal components.

Figure 13. The M1 to M10 motion sets are activated into 4 conditions SK by frame. The red part
demonstrates the scopes of the activated condition sk.

joint angles qcst. MinimizeL= Ecst − Esyn of the whole motion set within 200 iterations. The calculation
of L-BFGS-B is given in Appendix E.

4.4. Evaluation methodology
We aim to optimize the nonlinear movement constraint parameters to achieve motion that closely
resembles human-performed motion.

The optimization involves adjusting parameters w to minimize the loss function defined as the dif-
ference between two error functions: the error between the synergy motion and the original motion and
the error between the constrained motion and the original motion.

The original motion is a part of collected human movement data, as a one-time performance of each
motion collected. The reason for only using a part is to increase the optimization speed in the observation
of the homogeneity of multiple times of movements in each kind of motion.

4.4.1. Experiment condition
To validate our approach, a series of optimizations were executed on a computer possessing the following
specifications: CPU: AMD 7950X, GPU: NVIDIA RTX 4090, RAM: 32 GB, Software platform: python
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Figure 14. The error comparing the synergy model Esyn and the proposed model Ecst. The distribution
is calculated by the E of each frame. The lower the error, the closer to the original motion.

3.9.13 on Visual Studio Code. Each optimization took around 40 minutes, including 200 iterations,
N = 3755.

4.4.2. Evaluation metrics
With the above conditions in mind, our evaluation comprises the following metrics:

1) The loss function L= Ecst − Esyn at the convergent solution.
2) The median error from M1 to M10, comparing the two human model errors of input qrec and

optimized qcst, w.
3) The error distribution, depicted as violin plots, comparing the two human model errors of input

qrec and qcst, w.

4.5. Results
After 200 iterations, the optimization can get a convergent solution with an average error difference of
−0.058, which Ecst = 0.5197, Esyn = 0.5781.

From the optimization result, we got the solution of w of w1
1 = 0.26, w1

2 = −0.24, w1
3 = −0.01, w2

1 =
−0.24, w2

2 = 2.35, w2
3 = −2.02, w3

1 = −1.09, w3
2 = −5.78, w3

3 = 3.53.
Median errors for each motion set in the proposed and synergy models: Proposed Model/ Synergy

Model: M1: 0.362/ 0.377, M2: 0.309/ 0.514, M3: 0.630/ 0.630, M4: 0.543/ 0.595, M5: 0.550/ 0.550,
M6: 0.302/ 0.302, M7: 0.256/ 0.263, M8: 0.368/ 0.427, M9: 0.511/ 0.813, M10: 0.403/ 0.738.

We use the optimized parameters to reconstruct the robot motion and visually compare the distri-
bution of error between the proposed model and the synergy model across various motion sets (M1 to
M10) with a violin plot shown in Fig. 14.

The human model of M1 motions of the synergy model and the constraint model, which is rebuilt as
a series of motion capture clips, is shown in Fig. 15.

Comparing the synergy model, the proposed model is more effective in performing original human
motion with a lower median error and lower error distribution.

5. Discussion
As a result, the average error difference of the proposed model is smaller than that of the reconstructed
synergy model. It means that in the aspect of postures of the human model during the movement per-
formance, the motion generated by the proposed model is closer to the original human motion. This is
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f = 11

f = 41

f = 71

f = 101

f = 131

f = 161

f = 191

f = 221

f = 251

f = 281

Figure 15. The comparison of video clips of the human model of M1 motions. From left to right: orig-
inal motion, reconstructed joint synergy model, the proposed model. They are rebuilt with the forward
kinematics of the human model. The clips are captured every 30 frames. The connection pattern start
switching at f = 161.

because introducing nonlinear constraint adjusts the joint space of the linear synergy, resulting in the
complementary toward the essential characteristics of movements.

In the evaluation, we not only focus on the decline in the average error of overall movements but also
attention is paid to the specific movements where the error has been significantly reduced. By examining
the nature of these movements, we considered the reason for a substantial decrease in error, of whether
the movements are closely related to the fascia being studied. If a movement is unrelated to the fascia
in focus, its error is unlikely to be considerably influenced. Conversely, it would be peculiar if the error
diminished substantially across a wide array of movements, irrespective of their relevance to the fascia
being studied.

In the case of this research, we observed from the results that after the implementation of the nonlinear
constraint, a significant decrease in error was noted in M1. This outcome is attributed to the activation
of the lower SBL and lower SFL effect, which facilitated the adjustment of motion using the optimized
connection pattern, thereby enhancing the support effect.

For motions M5 and M6, no noticeable change was observed. This lack of variation is due to the
non-activation of the nonlinear constraint effect, which implies that the predefined conditions necessary
to trigger the nonlinear constraint were not met in these motions.

In instances where the nonlinear constraint was activated, but the effect was not pronounced, for
instance, M7 and M8. This is likely due to the insufficient magnitude of the applied constraints to create
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Figure 16. The proposed hardware mechanism. A rotatable joint, equipped with a pulley, link,
free-rotation pulley, and cylinder, functions by having its pulley rotated by a motor through input angles,
which subsequently moves the cylinder piston via the pulley-tendon mechanism. This process facili-
tates force transmission, providing incremental input to the motor of the adjacent rotatable joint, which
receives both its supposed input angle and the incremental input generated by the previous joint.

a notable alteration in the motion patterns or due to the inherent characteristics of the motions themselves
that make them less susceptible to modifications by the nonlinear constraints.

On the other hand, this method does not add an extra control signal based on the input of the joint
synergy. It works by switching the pre-configured connection pattern among the joints, as the TK are
constant matrices and do not change for each condition once pre-configured.

The feature of the proposed system is its capacity for minor adjusting the joint angles. This is achieved
by utilizing the intrinsic rotation of the joints, which allows for minor adjustments compared to tradi-
tional linear joint synergy control methods. This is beneficial in applications where similar reduced
dimension systems or systems require a single numeral signal to adjust the movements. In previous
systems, the synergy approach has been shown to effectively facilitate upright postures and maintain
balance [26]. This is evident in the context of standing-up movements [27].The connection constraints
to this framework can additionally enhance the performance of human-like movements with nonlinear
features, with the results shown in Section 4.5.

5.1. Potential hardware realization for nonlinear constraints
In this research, the proposed nonlinear constraints can be implemented in either the software or
hardware aspect. The proposed model is consistent with the hardware mechanism of the ANS. The
configuration of intrinsic constraint condition can be realized by exploiting ANS without increasing the
computation loads as explained in Section 2.2. Using ANS, the response delay does not exist as it can
be realized by physical constraints among joints without electrical sensors or devices.

Specifically, it is realized by connecting cylinders and tubes with the ANS. We connect the cylinders
by tubes and solenoid valves to switch the fluid connection patterns. Based on this concept, we introduce
the implementation method of proposing fascia-inspired constraints using hardware structure instead of
software, as shown in Fig. 16.

By exploiting the fluid transmission among the chambers, the rotation angle of one joint can be trans-
mitted to another using the fluid linkage-pulley-tendon mechanism. Each rotatable joint is driven by a
motor, and it is programmed to respond to joint synergy-based commands. To simplify the mechanism
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Figure 17. The method of controlling different connection patterns. The figure shows a minimal system
of switching 2 patterns. This figure shows a case for a joint angle transmitted from the upper vertical
cylinder to the lower horizontal cylinder. As the sectional areas A of different chambers of the cylinders
can be configured by adjusting the piston diameter, thus, the w in Tk be adjusted.

description, we use motors to rotate the joints here, as the simplest mechanism of generating joint rota-
tions. However, it can be replaced by any form of mechanism that can generate a rotation angle, for
example, linear actuators [28].

Note that in the illustrated mechanism, for the pulley on the transmitted joint, of the motor on the pul-
ley (the orange joint), the motor’s stator is attached to the pulley. When the pulley rotates, it consequently
induces the rotation on the stator.

Controlling different constraint conditions can be hardware achieved by setting different connection
patterns. A minimal system showing switching 2 patterns is shown in Fig. 17, with a valve control
strategy shown in Table. II.

Also, the w in TK can be hardware represented as a proportion of cylinder segment area ratio ω by
changing the diameter of the chamber piston. This is shown in Fig. 17 and Table II. ω can be changed
by configuring A of each chamber of the cylinders.

As the proposed mechanism that realizes the constraint is based on hardware, it can realize closer
human-like movements by only using the control input of the joint synergy.

5.2. Limitations
When implementing the proposed hardware structure, as the complexity of Tk and the number of activa-
tion conditions, the mechanism will become more complex because of the increase of cylinders, valves,
and pulleys. When designing the hardware, the trade-off between hardware complexity and control
complexity must be considered.

One more thing that needs to be mentioned is that as the hardware becomes more complex, there
will be other physical factors that affect the actual performance of the robot, e.g., the gravity issue.
Therefore, a gravity compensation mechanism [29, 16] needs to be further studied. In this research, we
only consider the whole-body kinematics, the dynamics of a robot system are not considered.

We have investigated the specific effects that may arise from these additional optimization parameters
of the proposing fascia constraint, including the connection pattern Tk. The configuration of the thresh-
old will be discussed for the future feature study of the model. While the error indicates better human
movements of the proposed method, it is acknowledged that the error may not fully capture the features
of human-like motion. when evaluating the human-likeness using an actual robot, more quantitative
evaluation indicators need to be used to study the natural movements from multiple aspects.
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Table II. The pattern switching method by manipulating the
state of the 2-port valve and 4-port valve. By changing the
valve states, the connection pattern can be adjusted; by pre-
configuring the section area A inside the cylinders, the ω

can be changed, meaning that the w in Tk can be hardware
realized.

pattern 1 pattern 2 open pattern
2-port valve on on off
4-port valve off on on or off
ω A1

A2

A1
A3

0

6. Conclusion
This research introduces a fascia-inspired nonlinear constraint into the joint synergy of humanoid robots,
specifically for those with multiple DOFs. Drawing inspiration from the human fascia network, our
constraint model is built to facilitate human-like movements in humanoid robots in a simple control
manner of switching the connection pattern when keeping a reduced number of control inputs.

In this study, we integrated fascia-inspired constraints into joint synergy control of a 6-DOF humanoid
robot model, enabling robots with multiple DOFs with fewer control inputs to resemble human-like
movements more closely. Our experiments have shown that for the movements generated with the
proposed constraints, lower average error, median error and their corresponding error distribution are
obtained. It proves that the proposed model can generate human movements better than the joint syn-
ergy model, confirming the effectiveness of our approach in enhancing humanoid movements based on
the joint synergy method. Besides the theoretical implementation, demonstration, and validation of the
proposed constraints, we also outlined one possible method for applying our findings to actual robotic
systems, which is crucial for transitioning from theory to partial application in humanoid robotics.

Our future work will include actual robot experiments considering the effects of other physical factors
such as implementing a gravity compensation mechanism on the robot and a broader exploration of the
varied conditions of the fascia constraint model, including asymmetrical motions across multiple planes.
We are optimistic about the potential impact on the development of more advanced humanoid robots,
especially in terms of achieving more natural movements within existing mechanical limitations.
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Appendix
A. The Inverse Kinematics: Calculation of Joint Angles of the Human Model by Inputting

Marker Coordinates
As the coordinate settings stated in Section 3.2, and the joint configuration stated in Fig. 5, We have the
following relationship in Table III, for the Equation (1):

Table III. va, vb relationship of q.

q q1 q2 q3 q4 q5 q6

a v1 v2 v3 v4 v5 v6

b v0 v1 v2 v3 v3 v4

And the va, vb is calculated by the following relationship in Table IV:

Table IV. The start and end points of va, vb. Note the J4 and J5 coincide.

v 0 1 2 3 4 5 6
start joint O J1 J2 J3 J4 J5 J6

end joint +x axis J2 J3 J5 J6 R1 R2

These calculations assume the joints can be seen as in a single plane and ignore the complexities of
3-D movements.

B. The Direct Kinematics: Calculation of Joint Coordinates of the Human Model by Inputting
Joint Angles

As the kinematic chain of the human model f stated in Section 3.2, and the joint angles qj defined in
Fig. 5.

Assuming the origin y1 of the base frame at J1 as (0,0), the positions are obtained using the rota-
tional transformations defined by the joint angles qj and the translational transformations defined by
link lengths lj. The remaining yj is calculated as

y(j+1) = yj + lj · �j (B1)

where the �j

�j = �j−1 + qj−1 (j � 3) (B2)

Starting from q4, the head branch and the arms branch adopt the same rule above for each branch, but
the notation j varies as a consequence of individual calculation.

These calculations assume the joints can be seen as in a single plane and ignore the complexities of
3-D movements.

C. PCA Decomposition Calculate Progress
Consider the projection onto a one-dimensional space, we define the direction of this space using a
6-dimensional vector u1, and uT

1 u1 = 1. Each data point qn is then projected onto a scalar value uT
1 qn = 1.
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The mean of the projected data uT
1 q̄ where q̄ is the sample set mean given by

q̄ = 1

n

N∑
n=1

qn (C1)

The variance of the projected data is

1

N

N∑
n=1

(
uT

1 qn − uT
1 q̄
)2 = uT

1 D1u1 (C2)

The data correlation matrix is

D1 = 1

N

N∑
n=1

(qn − q̄) (qn − q̄)
T (C3)

Then, maximize the uT
1 D1u1. To enforce the constraint uT

1 u1 = 1, introduce a Lagrange multiplier γ1, and
make an unconstrained maximization of

uT
1 D1u1 + γ1(1 − uT

1 u1) (C4)

By setting the derivative with respect to u1 equal to zero, we see that this quantity will have a stationary
point when

D1u1 = γ1u1 (C5)

which says that u1 must be an eigenvector of Sk. If we left-multiply by uT
1 and make use of uT

1 u1 = 1, we
see that the variance is given by

uT
1 D1u1 = γ1 (C6)

and so the variance will be a maximum when we set u1 equal to the eigenvector having the largest
eigenvalue γ1. At that time, The eigenvector u1 is known as the first principal component.

The above contents refer to [30, 31], which the eigenvectors find, and the method of eigenvector
decomposition can also be found.

D. The Smoothness Between Condition Switch
Let:

• s1, s2, . . . , sk be the sets of indices for each condition, where Sk ⊆ I for k = 1, 2, . . . , K.
• N be the set of all frame indices, N= {0, 1, 2, . . . , N}.

For each n ∈N, calculate:

1. dkn = min{|n − s|:s ∈ sk} (or ∞ if sk is empty), for k = 1, 2, . . . , K.

Then, calculate the condition weight τ as:

τkn = e−dkn/σ∑K
g=1 e−dgn/σ

(D1)

For k = 1, 2, . . . , K and n ∈N.
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