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Abstract

We prove modularity of formal series of Jacobi forms that satisfy a natural symmetry condition.
They are formal analogs of Fourier—Jacobi expansions of Siegel modular forms. From our result
and a theorem of Wei Zhang, we deduce Kudla’s conjecture on the modularity of generating series
of special cycles of arbitrary codimension and for all orthogonal Shimura varieties.

2010 Mathematics Subject Classification: 11F46 (primary); 14C25 (secondary)

1. Introduction

Fourier Jacobi expansions are one of the major tools to study Siegel modular
forms. For example, they appeared prominently in the proof of the Saito—
Kurokawa conjecture [1, 24-26, 38]. Also the work of Kohnen and Skoruppa on
spinor L-functions [18, 19] features Fourier—Jacobi expansions. We formalize
the notion of Fourier—Jacobi expansions by combining two features of Siegel
modular forms: Fourier—Jacobi coefficients are Siegel-Jacobi forms, and Fourier
expansions of genus-g Siegel modular forms have symmetries with respect to
GL,(Z).

For simplicity, we restrict this exposition to classical Siegel modular forms of
even weight. Suppose that f is a Siegel modular form of even weight k for the
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full modular group Sp,, (Z). For I with 1 <1 < g, the Fourier-Jacobi expansion
of f is given by

f@O= Y éuln.de(mn), ()

0<meSym; (Q)

where the variable 7 in the genus-g Siegel upper half space H, is written as

T 2
T=|: s
AN %)

with 7y € H,_;, z € Mat,_; ;(C), and 1, € H,. The summation in (1) runs through
half-integral symmetric positive semidefinite matrices m, and we write e(x) =
exp(2mi - trace(x)). This amounts to the partial Fourier expansion of f with
respect to the variable 7,. We call [ the cogenus of the Fourier—Jacobi series.

The weight-k transformation law of f implies that the holomorphic functions
¢m (71, 7) are Siegel-Jacobi forms of weight k and index m; see Section 2.3 for
details. Such Siegel-Jacobi forms have Fourier expansions

¢m(tls Z) = E C(¢m; n, r)e(ntl + trZ)s (2)
neSym,_;(Q)
reMatg_; (Z)

and the coefficients of the usual Fourier expansion

f@O= > c(fivelr)

0<reSym, (Q)

c(f; (%’Zr Z)) = c(@uin.r). 3)

Note that the weight-k transformation law of f implies that its Fourier
coefficients satisfy the symmetry condition

of f are given by

c(f;t) = c(f; ‘utu) 4)

for all u € GL,(Z).

In this paper we study formal analogs of Fourier—Jacobi expansions of Siegel
modular forms. Specifically, let f be a formal series of Siegel-Jacobi forms
as in (1), given by a family of Siegel-Jacobi forms ¢,, of weight k and index
m for half-integral positive semidefinite matrices m € Sym,(Q). We stress that
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no convergence assumption is required of such a series. For 1 € Sym,(Q), we
define the formal Fourier coefficients c(f, ) of f by means of the coefficients
c(¢u; n, r) of the ¢,, and identity (3). We call f a symmetric formal Fourier—
Jacobi series (of weight k, genus g, and cogenus /) if its coefficients satisfy (4)
for all u € GL,(Z). Denote the corresponding vector space by FM,(f’Z), and write
M,ig) for the space of Siegel modular forms of genus g and weight k. Our main
result is as follows.

THEOREM 1.1 (Modularity of symmetric formal Fourier—Jacobi series). If 1 <
| < g, the linear map

N
M — EM, fr— Y gu(n, e(mn),
0<meSym; (Q)

given by the cogenus-l Fourier—Jacobi expansion, is an isomorphism.

The main assertion of the theorem is that every symmetric formal Fourier—
Jacobi series converges automatically. Since the symplectic group Sp,,(Z) is
generated by the embedded Jacobi group and the discrete Levi factor GL,(Z),
the transformation law then follows immediately.

REMARK 1.2. Our work also covers the more general case of symmetric
formal Fourier—Jacobi series of half-integral weight for representations of the
metaplectic double cover Mp,, (Z) of Sp,, (Z); see Theorem 5.5 on page 25. The
case of vector-valued weights, that is, representations of GL,(C) occurring in
the factor of automorphy, can also be handled by our method. See Section 6.2
for details.

REMARK 1.3. Formal Fourier—Jacobi expansions were first studied by Aoki in
the case of genus-2 Siegel modular forms for the full modular group; see [2].
Ibukiyama et al. [17] studied them in the case of genus-2 paramodular forms of
level 1 through level 4. The special case g = 2 was independently completed by
both authors in separate work [8, 29].

Our main application is Kudla’s modularity conjecture for Shimura varieties
X associated with orthogonal groups of signature (n, 2). As a special case of
earlier joint work with Millson, Kudla [21] attached classes in CH® (X) of special
cycles Z(r) of codimension g to positive semidefinite matrices ¢ € Sym, (Q), and
considered their generating series

A= Y Zyg".

1eSym, (Q)
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He observed that his results with Millson implied that the analogous (but coarser)
generating series for the images cly,, Z (¢) of the cycle classes in cohomology is a
Siegel modular form of weight 14-r/2 and genus g. As aresult, he asked [21, 22]
whether such a modularity property already held for the series A, at the level of
Chow groups.

Based on his construction of meromorphic modular forms with explicit
divisors, Borcherds showed [5] that the CH'(X)-valued generating series of
special divisors is an elliptic modular form. Building on Borcherds’ work,
Zhang [39] proved a partial modularity result for the higher-codimension cycles
(see also [37]). He showed that, for every m € Symgfl(Q), the mth Fourier—
Jacobi coefficient of the CH* (X)-valued generating series A, can be written as a
finite sum of push forwards of generating series for special divisors on embedded
Shimura subvarieties of codimension g — 1. Employing Borcherds’ result, he
could then deduce that the mth Fourier—Jacobi coefficient is a Jacobi form of
index m.

In our notation, Zhang’s result states that A, is a symmetric formal Fourier—
Jacobi series of weight 1 4 n/2, genus g, and cogenus g — 1. Combining it with
our main theorem, we obtain the following.

COROLLARY 1.4 (Kudla’s modularity conjecture). Kudla’s modularity
conjecture for Shimura varieties of orthogonal type is true.

REMARK 1.5. A more detailed statement can be found in Section 6.1.

One further appealing consequence of our work is an algorithm to compute
Siegel modular forms, sketched in Section 6.3. The idea is to consider truncated
symmetric Fourier—Jacobi series of cogenus 1, which we call symmetric Fourier—
Jacobi polynomials. In the simplest case of scalar-valued Siegel modular forms
we write FM,(f)g p for the space of polynomials

D bl De(mmy).

0<m<B

We call B the (truncation) precision, and impose a symmetry condition similar
to the previous one. One can deduce effective lower bounds on B so that the
natural projection FM,(Cg R FMZg)< p 1s injective. Moreover, our main theorem
implies that this projection is onto, if B is large enough. Effective results in
this direction are not in sight. However, if the dimension of M,Eg ) is known, we
obtain an algorithm that computes Fourier expansions of Siegel modular forms
in finite time. Closed formulas for dim M,(Cg) are known in very few cases, but an
algorithm to compute dim M,(f ’ has recently been provided in [34]. Its correctness
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depends on a certain assumption on A-packets, for which we refer the reader to
the original paper.

The proof of our main theorem can be separated into three parts. We consider
the graded algebra FM® = FM$'" of symmetric formal Fourier-Jacobi series
of cogenus 1. Clearly, it contains the graded ring of Siegel modular forms M®.
First, slope bounds for Siegel-Jacobi forms allow for dimension estimates of
FM® . They, in particular, imply that FM® is a finite-rank module over M.
Consequently, any f € FM® satisfies a nontrivial algebraic relation over M(®,
Now, viewing f as an element of the completion @u of the local ring at
boundary points a of a regular toroidal compactification of the Siegel orbifold,
one can deduce that f converges in a neighborhood of the boundary. Using
the structure of the Picard group of the Siegel orbifold, it can be shown that
f has a holomorphic continuation to the whole Siegel half space, and therefore
converges everywhere.

To cover general symmetric formal Fourier—Jacobi series, we use induction
on the cogenus and a certain pairing of formal Fourier—Jacobi expansions. Two
tools enter that will probably be of independent interest: in Lemmas 3.3 and 3.4,
we study formal versions of the Siegel @ operator and the theta expansion of
Fourier—Jacobi coefficients. Both are, as we show, compatible with our definition
of symmetric formal Fourier—Jacobi series.

We start the paper with Section 2 on preliminaries on Siegel modular forms,
Jacobi forms, Fourier Jacobi expansions, vanishing orders, and slope bounds.
Section 3 contains the definition of symmetric formal Fourier—Jacobi Series,
compatibility statements for the formal Siegel @ operator and theta expansions
of Fourier—Jacobi coefficients, and an asymptotic estimate of dimensions
of FM,Eg). In Section 4, we prove that the algebra of Siegel modular forms is
algebraically closed as a subalgebra of all symmetric formal Fourier—Jacobi
series. We establish modularity in Section 5. Finally, we discuss some possible
generalizations and applications in Section 6. Kudla’s modularity conjecture, in
particular, is deduced in Section 6.1.

2. Preliminaries

2.1. Siegel modular forms. The Siegel upper half space of genus g is
denoted by H,. We typically write T for an element in there. The action of the
symplectic group Sp,,(R) C GLq, (R) on H, is given by

(Z 2) T = (at + b)(ct +d)~".
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Define the metaplectic double cover Mp,, (Z) of Sp,,(Z) as the set

{(% w):y = <Ccl Z) € Sp,,(Z) and @ : H, — C with w(1)* = det(ct —I—d)},

with multiplication

1, 1) (72, 2) = (172, (@1 0 Y2) - 2).
The canonical projection Mp,,(Z) — Sp,,(Z) gives rise to an action on H,.
Given k € %Z and a finite-dimensional representation p of Mp,,(Z), we write
M,(f)(,o) for the space of Siegel modular forms of weight k and type p, that is,
the space of holomorphic functions f : H, — V(p) satisfying
fro) =w@*ply, ») f()

for all (y,w) € Sp,(Z) (and being holomorphic at the cusp if g = 1).
Throughout this work, we assume that p factors through a finite quotient of
Mp,, (Z). If p is trivial, we suppress it from the notation. The graded algebra
of classical Siegel modular forms is denoted by M.

For a finite-index subgroup I" of Mp,,(Z), define My(I") as the space of
holomorphic weight-k Siegel modular forms for the subgroup I" with trivial
representation.

A Siegel modular form f € M,(f) (p) has a Fourier expansion

f@= Y elf;ne),

0<reSym, (Q)

with coefficients c(f; ¢) in the representation space of p, where 0 < ¢ means
that ¢ is positive semidefinite. Here, and throughout, we set e(x) = exp(27i -
trace(x)).

2.2. Siegel-Jacobi forms. Siegel-Jacobi forms are functions on the Jacobi
upper half space

Hg,l = Hg X Matg,l((C).
Given 0 < [ € Z, define the metaplectic cover of the full Jacobi group
'« = Mp, (Z) x (Maty,;(Z) x Mat,(Z)).

It acts on H, ; via
((Z Z) NONS M)(t, D)= (at +b)ct+d)", (4 th + wct + ),

where A, . € Mat,(Z), and (¢ %) and w are as in the previous section.
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In order to define Siegel-Jacobi forms in a convenient way, we make use of
the embedding

e s Mpy,,)(Z) (5)
a 0€D b ap — b

ab 0o1® gy 0
((cd)’w’)\’u)'_) c 0 dcu—dxr T > (1)

00 0 1?

Fix k € %Z, m € Sym,(%Z) with integral diagonal entries, and a finite-
dimensional representation p of I"®). We say that a holomorphic function
¢ : H,;, — V(p) is a (Siegel-) Jacobi form of weight k, index m, and type
p if

¢(T7 Z) ° e(m‘[,)» (tTZ Z/) € Hé’+l

T

transforms like a genus-g + [ Siegel modular form of weight k and type p under
the image of (5) (and ¢ (7, @t + B) being holomorphic at the cusp for all «,
B € Q' if g = 1). The space of Jacobi forms of genus g, weight k, type p, and
index m € Sym,(Q) will be denoted by J,(f; (p). We use notation analogous to
the case of Siegel modular forms. A Jacobi form ¢ has a Fourier expansion of
the form

¢t = Y cld;in et +r'). (6)

neSymg Q)
reMatg ; (Q)

If m € Sym,(Q) is a positive definite half-integral matrix, we define the
associated vector-valued genus-g theta series as follows. For u € D,(m) :=
Mat, ;(Z)(2m)~" / Mat, ;(Z), we let

6.0 = ), elmxn)eum'). ™

xeu+Matg ; (Z)

It is a standard result that (6¢),),, transforms like a vector-valued Siegel modular
form of weight //2 and type (p'#)", where p® is the Weil representation of

Mp,, (Z) on C[D,(m)]; see for instance [30, page 168]. The transformation law

under the Jacobi group implies that any ¢ € J ,(f,)n can be uniquely written as a sum

o= uh M(I)O,ﬁf,L(f, z), where the functions %, (t) are the components of a

vector-valued Siegel modular form with representation p'¢’; see [40]. We obtain
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a map, called the theta decomposition of Jacobi forms (see for example [40,
Section 3]),

Jl(fr)n — Ml(i)l/z(lor(ng))a (8

¢ — (hﬂ)ﬂeDg(m)-

2.3. Fourier-Jacobi expansions. Fix 0 </ < g, and write

_ [t 2
~(2)

where 1) is a (g — 1) x (g — ) matrix, z has size (g —[) x [, and 1, has size [ x [.
Siegel modular forms of weight k allow for a Fourier—Jacobi expansion

f@O= Y u(n.De(mn),

meSym,; (Q)

where m runs through symmetric positive semidefinite matrices of size / x [ and
Om € J,((‘?n:[) . We say that this is the Fourier—Jacobi expansion of cogenus /, and

call ¢,, the Fourier—Jacobi coefficient of index m.

24. Vanishing orders. We say that a symmetric matrix 7 € Sym,(Q)
represents m € Q if there is v € Z¢# with 'vrv = m. For a nonzero Siegel modular
form f € M,(f)(p), we define the vanishing order by

ord f =inf{m € Q : 3t € Sym,(Q) such that c¢(f; ) # 0 and ¢ represents m}.

In addition, we use the convention that ord f = oo if f = 0. The order is additive
with respect to the tensor product of Siegel modular forms, ord f ® g = ord f +
ord g.

An analogous definition can be made for Siegel-Jacobi forms. If ¢ € J,(fz1 (p)
is nonzero, we put

ord¢ =inf{m € Q : 3t € Sym,(Q), r € Mat,;(Q)
such that c(¢; t, r) # 0 and ¢ represents m}.
Spaces of modular forms with vanishing order greater than or equal to 0 € Q
are marked by square brackets, M,(f') (p)[o] and J,(f,)n(,o)[o]. Given a Siegel
modular form f € M,(f)(,o)[o] of vanishing order o, then its Fourier—Jacobi
coefficients ¢,, are zero if m < o.
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2.5. Slope bounds for Siegel modular forms. Here we recall some known
results on slope bounds for Siegel modular forms associated to the full modular
group. From this we deduce slope bounds for vector-valued Siegel modular
forms.

DEFINITION 2.1. We define the slope of a nonzero Siegel modular form f of

weight k by
) = ‘
V= o f
The minimal slope bound for scalar-valued genus-g Siegel modular forms is
written as
0, = inf o(f). (10)
FeMiNo)

As a corollary to work of Eichler and Blichfeld, we find a lower bound on p,
for all g.

THEOREM 2.2. We have

373 —4/n
0; > 3z F(z n ﬁ) ,
2
Proof. Tn [10], Eichler found that ¢, > 2+/37y,, and Blichfeld established in
his work [4] that y, < 2/7 (2 +n/2)*". -

REMARK 2.3. For g < 5, we know o, exactly by unpublished work of
Weissauer, by Salvati Manni [31], and by Farkas et al. [12]. We have

01 = 12, 0 = 10, 03 = 9, 04 = 8, and 05 = %

PROPOSITION 2.4. Assume that m > k/o,. For any representation p of Mp,,(Z)
factoring through a finite quotient, we have

M (0)[m] = {0}.

Proof. If p is the trivial one-dimensional representation, the assertion is an
immediate consequence of the definition of g,.

To prove the assertion for general p, define d = [Mp,,(Z) : ker(p)] as the
index of the kernel of p. Let v € V(p)" be a linear form on the representation
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space of p. For any function f : H, — V (o), we denote by (v, f) the function

T — v(f(1)).
Let f € M (p)[m], and set

o= ] (@ Hhy

y €ker(0)\Mpy, (Z)

Since (v, f) is a scalar-valued Siegel modular form of weight k for the group
ker(p), the function f,(t) is a scalar-valued Siegel modular form of weight dk
for Mp,, (Z). Since (v, f)xy can be expressed as (v,, f) for a suitable v, €

V(p)Y, we find that f, € Mij‘;() [dm]. Hence the assertion in the scalar case implies
that f, = 0 and (v, f) =0forallv € V(p)". O

3. Symmetric formal Fourier-Jacobi series

In this section, we define formal expansions whose coefficients are Jacobi
forms and which satisfy symmetry conditions inspired by the action of
GL,(Z) C Spy,(Z) on Siegel modular forms. We will often decompose the
variable T € H, into three parts, as in (9).

Let p be a representation of Mp,, (Z) as before. For every 0 </ < g it induces
a representation of the Jacobi group by restriction via the embedding defined in
(5), which we also denote by p.

Given a formal series of Jacobi forms

f@= 3 éu(n,demn),

0<meSym,; (Q)

with ¢, € J,(f,;l)(,o) for all m, define its Fourier coefficients as

Erm

n o
c(f;t) =c(@min,r), 1=\, :

where the coefficients c¢(¢,,; n, r) are given by (6).

DEFINITION 3.1. Fixk € %Z and a representation p of Mp,,(Z). For an integer
0<l<g,let

f@O= Y ¢ut.2emn)

0<meSym;(Q)

https://doi.org/10.1017/fmp.2015.6 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2015.6

Formal Fourier—Jacobi series 11

be a formal series of Jacobi forms ¢,, € J (1) (p). Givenu € GL,(Z) and a choice

k,m

w of a square root of det(u) € {%1}, set rot(u) = (g 1u0,,). If

c(fi 1) = o™ p(rot(u), w)e(f; ‘utu)

holds for all 0 < 7 € Sym,(Q) and all u € GL,(Z), then we call f a symmetric
formal Fourier—Jacobi series of genus g, cogenus /, weight k, and type p. The
¢, are called the canonical Fourier—Jacobi coefficients of f.

The notion of vanishing orders extends to symmetric formal Fourier—Jacobi
series in a straightforward way.

We write FM,Eg D (p) for the vector space of such symmetric formal Fourier—
Jacobi series. If [ = 1, we abbreviate this by FM,(f) (p). Further, set

FM((p) = EDFM (p).
k
If p, is the trivial representation on C, we briefly write FM®) = FM®(0y).

PROPOSITION  3.2. Scalar-valued  symmetric  formal  Fourier—Jacobi
series FM® carry an algebra structure over the graded ring of classical
modular forms M®). Symmetric formal Fourier-Jacobi series FM® (p) are a
module over M®.

Proof. This amounts to a straightforward verification of the symmetry condition
of Definition 3.1. O

3.1. The Siegel @ operator and Fourier—Jacobi coefficients. We describe
two results, which allow us to reduce considerations of cogenus / to lower

) € Hy, where 7,

cogenus. Fix 0 < /" < [. Recall the decomposition of T = (11 o

has size I’ x I’. We refine this decomposition as follows:

T 211 212
t

T=| 211 Ti2 22
t t
212 22 T

Here 7, has size (g — [) x (g — ) and 1y, has size (I — ') x (I —[’). The oft-

diagonal matrices z1;, z12, and 7y have size (g — 1) x (I —=1'), (g — 1) x I', and

(I =1") x I, respectively. In addition, write z; for the (g — ) x [ matrix (z;; z12).
Given a formal Fourier—Jacobi expansion

f(f) = Z ¢m(rlh Zl)e<m<l.?222 Z.L_222>>

meSym;(Q)
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of cogenus /, we define formal Fourier—Jacobi coefficients of index m’' €
Sym; (Q) by

Yw(t,2) = Y O (1 1) (T 2enTz +2r'22), (11)
neMat,_, (Q) rom
reMat,,,/_l/(Q))

LEMMA 3.3. Let f € FM,((g‘[) be a symmetric formal Fourier—Jacobi series. Fix
I' = 1. Then vy defined in (11) is a symmetric Fourier—Jacobi series of genus
g — l and cogenus 1 — 1.

Proof. Consider ¢,,(t;, z;) with

m— m” 0
~\00/°
By general theory of Siegel-Jacobi forms, ¢,, is constant in z;,. Therefore,
depends only on t;. It can be written as

Yo(t) = Z ¢(m0~ 8)(711, zi)e(m’ty).

m” eMat;—1 (Q)

The symmetry condition for v, follows directly from the one of f, by applying
transformations of the form

u’ 0 ”

01)¢€ GL,(Z), u" € GL,_1(Z). O
LEMMA 34. Let f € FM,(f‘l) be a symmetric formal Fourier—Jacobi series. Fix

I" =1 —1 and a positive definite m’ € Sym,,(Q). The formal Fourier—Jacobi
coefficient \r, of f defined in (11) has a formal theta expansion

Y (11.2) = Y B (20 (11, 2), (12)
~

where the sum over (' runs through Mat,_y y(Z)(2m’)~" / Mat,_; ;(Z), and the
theta functions 05" are defined by (7). We have (hyy ), € FM,(C"’_}I;)z (p,(,ffl/)).

m

REMARK 3.5. An analog of Lemma 3.4 can be proved without restrictions on
I’. In Section 5, we only need the case I’ = [ — 1, and so we restrict ourselves to
the present setting, in order to minimize technical effort.
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Proof of Lemma 3.4. The symmetry condition for the Fourier coefficients of f
allows us to define a formal theta expansion of the v,,,. Indeed, the symmetry of
f under matrices of the form

10
<l)\ 1) € GLg(Z), A€ Matg_,/_,p(Z),

implies the identity of formal series

(g=1)
m'\ 1, = m' '\t - 1, )
Y (T1, 2) E oy (T))6, " (T1 2)
w

where
c(h yin' —xm"'x) = c(Ypin', x)

for any representative x € Mat,_, (Q) of u'. We have to show that (A, /), is
a symmetric formal Fourier—Jacobi series of cogenus 1 and type P&

m’

As a first step, we show symmetry of Fourier coefficients. Symmetry of
Fourier coefficients of f implies that

C(wm’; n,a r/) = det(u)kc(l/fm’; tun/u7 tur,)

for all n € Sym, ,(Q), r' € Mat, ,,(Q), and u € GL, ;(Z). By fixing a
representative x € Mat,_, ,(Q) of u’, we can deduce the corresponding relation
for the Fourier coefficients of 4, , . Forn’ € Sym,_, (Q), we have

c(hy s n' —xm"'x) = c(Y,r; 0, x)
= det(u) c(Y; ‘un'u, 'ux) = det() c(hyy w0 'un'u — ‘uxm’ xu).

Note that 'u acts on u in accordance with the representation ,o;g,_l’).
As a second step, we have to examine the coefficients v, , ,» of h,, , in the

formal expansion
B (@) =D Y (T11, 7100 T10). (13)
n’€Q>0

Inserting this into (12) and comparing with (11), we obtain the identity of formal
power series

> (. 2y, z)e(nti +r'z)
neZsg Y2 m'
reMat; ;(Q)
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(-1
D0 W (T zi)e' )05 (11, 2). - (14)
WeQsy W
which uniquely determines the coefficients ¥, ,.,,. We write u' = (Z ! ), where
w, € Mat, ;,(Z)(2m')~" /Mat,_; (Z) and
s € Maty (Z)(2m')~" / Mat, ; (Z).
Then 9,5151,’)(11, 7) is equal to
Z e(xlm,txlfll + 2xym' ("xy 211 + tle))e(xzmmle'lz + 2xom’'27).
x1€pn+Mat,_,; 1 (Z)
xy€py+Mat y/ (Z)

Inserting this in the previous identity and comparing the Fourier coefficients at
e(nti+r'z2), we find that for all w}, all r with r (2m’)~! = @), (mod Mat, ;(Z)),
and all n € Z>0 we have

¢( n r/z)(fu,zl)

/2 m'
—Zw (711,211)2 e(oxim’ xy Ty + 2xm' (%211 + '212)
x|
= Zl// (Tu,Zu)@ )(T11,212+Zux2)- (15)

Here x, = r(2m’)‘1 and n’ = n — xo,m’'x,. This can be viewed as a partial theta
decomposition of the holomorphic J acobi form on the left-hand side. The linear
independence of the theta functions 0’; u (r”, Z12) as functions in z;, implies
that the v, ,» are holomorphic.

To finish the proof, consider the action of the Siegel-Jacobi group
Spae_1)(Z) X Mat,_; ;(Z)* embedded into Spy, ;,(Z) x Mat,_y ;(Z)* C Sp,,(Z)
on the above identity (15). The left-hand side is invariant in weight k and index
n by the assumption on f. On the right-hand side, 9;‘%;[,1) transforms by the

restriction of the dual of ,o(g " to the genus-g — [ Jacobi group. Arguing as in

[40, Section 3], this implies the transformation law for (¥, ,/.n) - O

3.2. Asymptotic dimensions. We now establish formulas for the asymptotic
dimensions of FM,(f). Our main tools are the order filtration and the theta
decomposition for Siegel-Jacobi forms. Recall the definition of vanishing orders
for Siegel-Jacobi forms and symmetric formal Fourier—Jacobi series from
Section 2.4.
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LEMMA 3.6. For every g and every k, there is a (noncanonical) embedding of
vector spaces

FME — T35, ml.

k,m
m=0
Proof. Consider the graded ring associated to the decreasing filtration
FM® > FM¥[1] D - --

of symmetric formal Fourier—Jacobi series by their vanishing order. For each
m > 0, choose a linear section

4, : FM®[m] /FM®[m + 1] — FM®[m] c FM¥

for the canonical projection. Recursively define formal Fourier—Jacobi series f,,
by means of fy = f and f,, = fu_1 — €m_1(fn_1) for m > 1. The map from
symmetric formal Fourier—Jacobi series into the corresponding graded ring

FME — [ FMEIm]/FME m + 1]

m>=0

fr— (fu+FMEm +1])

m>=0

is injective, because its kernel equals (), FM®[m] = {0}.
By mapping a symmetric formal Fourier—Jacobi series in FM,(f) [m] to its mth
Fourier—Jacobi coefficient, we obtain maps

M [m] — I, " [m],
whose kernel, for given m, is FM,(f) [m 4+ 1]. This means that the maps
FM [m]/ FME[m + 1] — 1, Vm,

are injective. By combining them with the above injection, we obtain the
statement. O

LEMMA 3.7. Ifm € Z withm > %(k/0,), then dimJ%),[m] = 0.

k,m

Proof. Fix some ¢ € J,i*f; [m] with theta decomposition

¢(1,2) = Z hu(T)0Y) (T, 2).

ne(l/2m)zs | 78
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Given r € Z# and a Jacobi form v of genus g, set
ord, ¥ =inf{m’' € Q : 3 € Sym,(Q) such that c(y;,r) # 0and 1, , = m'}.

Observe that ord ¢ < ord, i for all r. In analogy with the usual vanishing order,
we have ord, fy = ord f 4+ ord, ¥ for any Siegel modular form f of genus g.
For 1/2mr € nu + 78, we have

ord ¢ < ord, ¢ = ord i, 4 ord, foL.

Further, for (1/2m)r = (1/2m)(ry, ..., r,) € u + Z8, we have ord, Qjﬁ <
(1/4m)r;. By choosing —m < r, < m, we find that ord, 6¢), < m/4. By the
hypothesis, we have ord ¢ > m, so thatord h, > m —m/4 = (3/4)m. Hence we
find ord 2 > k/o,, which implies that &/ = 0 by Proposition 2.4. O

THEOREM 3.8 (Runge). Fix e > 0, and assume that g > 2. Then the ring

@ Jl(cg )

k,meZ
k>em

is finitely generated.
Proof. This is Theorem 5.5 in [30]; see also Remark 3.8 therein. O

LEMMA 3.9. Fixe > 0. For k > em and positive k, we have
dim I8, < k¥ me 4 1) < kG2,

Proof. If g = 1, one can prove this using weak Jacobi forms as in [11]. We
restrict ourselves to the case g > 2, so that the assumptions of Theorem 3.8 are
satisfied.

We apply Noether normalization to the bigraded ring 9 ksem J ,(f,)n This yields
d+1=g(g+1)/2 + 1 Siegel modular forms fi,..., f;4; of genus g and
dy + 1 Siegel-Jacobi forms ¢y, .. ., ¢4 41 that are algebraically independent. We

fix a basis ¥, ..., ¥, of @)=, I over

Jm

R = C[f]’"'3fd+17¢]7"'?¢d]+1]'

Theorem 5.1 of [30] identifies Jacobi forms with sections of line bundles over
a projective variety of dimension g(g + 1)/2-+g. Therefore, we have thatd; < g.
Write k(f;), k(¢;), m(p;), k(i;), and m(y;) for the weight and index of the
fi» &i, and ;. Moreover, for atuple a = (ay, . .., a4+1) of dy + 1 integers, write

m(a) = aym(¢y) + -+ - + ag1m(Pa;41),
k(a) = aik(¢1) + - + ag41k(Pa41).
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We denote the graded pieces of R by Ry ,. Note that R, C M,((g), yielding
bounds for dim Ry . For m > 0, we bound the graded dimensions as follows:

dim Ry, = Y dimRigwo L Y (k—k(a) +1)*

dy+1 dy+1
a€’ a€’

>0 >0
m(a)=m m(a)=m

<L (k + l)d . #{Cl S Zga—l : m(a) = m} < (k + l)d(de + 1)
We find that
Ty
dim Jk(é:r)l = Z dim Rk—k(le,‘),m—m(w,‘)

i=1

e Yk =k@) + DT (n = m@)® +1) K k(m® + 1),

i=1
as desired. O
REMARK 3.10. An alternative, more analytic, proof of dim J,(fj’,)n & k8@+3/2 for
k > 0 can be obtained by specializing the dimension bounds of [36, Theorem 4]
to our situation, making use of k > em.
THEOREM 3.11. For every g and positive k, we have
dim FM® <, k#&H0/2,

Proof. By Lemma 3.6, we have an embedding

FME — []35, ml.

k,m
m=0
Using Lemma 3.7, we find that
k3041
dimFME < Y dim I, ml.
m=0

Lemma 3.9 provides us with a uniform estimate for the dimension of spaces
of Jacobi forms that occur. On plugging this in, we find the result:

4k/30,-1
dimFM,(f) &, Z k(e=D(e+2)/2) <, K (8(e+D)/2) 0
m=0
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4. Formal Fourier—Jacobi expansions as an algebra extension

In this section, we show that the ring of holomorphic Siegel modular forms is
algebraically closed in the ring of formal Fourier—Jacobi expansions.

4.1. Geometry of Siegel modular varieties. Let X, be a toroidal
compactification of the Siegel modular variety Y, = Sp,,(Z)\H, associated to
an GL, (Z)-admissible cone decomposition of the space of positive semidefinite
symmetric bilinear forms on R$, which is nonsingular in the orbifold sense; see
for example [3, 28] for details. We write 9Y, = X,\Y, for the boundary divisor.
There is a natural map

T:X,— Y,

to the Satake compactification Y, of Y,. The stratification of the Satake boundary
into Siegel modular varieties of lower genus induces a stratification of 9Y,. For
our argument, we will mainly need the boundary stratum of genus g — 1 (see
Remark 4.6). For completeness we briefly recall its description; see [9, Ch. 3.11].

We fix a splitting of T € H, as in (9) with /[ = 1. For ¢ > 0, we consider the
subset

Uge = {‘[ = (rl Z) € H, : Im(z,) —Im('z) Im(7;) "' Im(z) > c}

Z 1,

of the Siegel upper half plane. The Klingen parabolic subgroup

b x

* ok ab

d x| €5P@): <C d) € Spyp-1y(2)
0+

acts on U, .. If c is sufficiently large, we obtain an embedding
P\Ug.c —> Spy, (Z)\H,. (16)
We consider the map
Upe — H, xC' x C*, 1 (11,2, q),

where ¢, = ¢*"'™. There is an induced action of P on the image, which extends
to H,_; x C¢~! x C. It gives rise to a map

P\U,, —> P\(H,_; x C*7' x C*), (17)
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which is biholomorphic onto its image. The quotient of the boundary divisor
H,_; x C#~! x {0} by P is given by the universal principally polarized abelian
variety

Xe1/{E1} = Spye_ ) (Z) x Z2¢7V\(H,—, x C71)

of dimension g — 1 modulo £1. We obtain a partial compactification of P\U, .
by taking the closure of the image under the map (17). Glueing this partial
compactification onto Y, by means of (16), we get the partial compactification

X =Y, uX,_ /(1) (18)

The genus-g — 1 boundary stratum of X, is given by X,_;/{%1}. The natural
map from X,_,/{%1} to the genus-g — 1 boundary stratum of the Satake
compactification 7g is induced by the projection H,_; x C¢~! x {0} — H,_,

The local ring O, ) of Spy(,_;,(Z) x Z*€ "D\ (H,_; x C¢~') at a point (ty, z)
is given by the ring of invariants C[7, — 7y, Z; — z;]¢ of the ring of convergent
power series at (7, z) under the action of the (finite) stabilizer G C Sp,,_;,(Z) X
7*¢7Y of (1, 2).

The local ring O, -0 of X" at a boundary point (z;, z, 0) € X, _; is given by
the local ring of the quotient P \(H,_; x C¢~! x C) at (11, z, 0). It is isomorphic
to the ring of convergent power series O(;, ;){¢2} over O, ). The completion of
O(x,.2.0) at its maximal ideal is the ring of formal power series

6(1,.1,0) = C[[‘El — T, 21 — Zl]]G[[(Iz]]- (19)

In particular, (formal) Fourier—Jacobi expansions of cogenus 1 define elements
of these local rings. Similarly, (formal) Fourier—Jacobi expansions of arbitrary
cogenus / define elements of (completed) local rings of the genus-g — I boundary
stratum of X,.

PROPOSITION 4.1. Assume that g > 2, and let D be a prime divisor on X,.
Let U C X, be an open neighborhood of the boundary 9Y,. Then D N U is a
nontrivial divisor on U.

Proof. If D is supported on the boundary 9Y,, we have nothing to show. So we
assume that D is not supported on the boundary.

By our assumption, the pushforward D" = 7*(D) under the natural map 7 :
X, — Y is a prime divisor on Y We employ the fact that P1C(Y )®Q=QL,
where ,C is the class of the Hodge bundle (see [6, 16]). Hence there is a positive
integer n and there is a holomorphic Siegel modular form f of weight k > 0
such that div f = nD’ on Y. The restriction of f to the boundary of Y, that
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is, the image of f under the @-operator, is a Siegel modular form of weight k
and genus g — 1 > 1. It must vanish at some point of the Satake boundary, and
therefore D’ has nontrivial intersection with the Satake boundary. Consequently,
D’ N (U) is a nontrivial divisor on 7t (U). This implies the assertion. [

4.2. Algebraic relations of formal Fourier-Jacobi series. We need the
following result from commutative algebra.

PROPOSITION 4.2. Let A be a local integral domain, and let A be the
completion of A. If A is henselian and excellent, then A is algebraically closed
in A.

Proof. If A is an excellent local integral domain (not necessarily henselian),
then its henselization can be described as the algebraic closure of A in A; see for
example [13, page 16] or [35, Example 16.13.3]. This implies the assertion. []

LEMMA 4.3. Let Q = Z?:o a; X' € M®[X] be a nonzero polynomial of degree
d with coefficients a; € My, ;—iy, and let

=Y bu(ti.0)qy € FMY

be a formal Fourier—Jacobi expansion of cogenus 1 such that Q(f) = 0. Then
f converges absolutely in an open neighborhood of the boundary divisor of X,
and defines a holomorphic function there.

Proof. Let (11, z,0) € X{" be a boundary point as in (19). The polynomial Q

defines a polynomial in O, . [X], and f defines an element of @(n.z,O) which
is algebraic over O, .0 by hypothesis. The local ring O, .0, is henselian
(a consequence of the Weierstrass preparation theorem) and excellent (see for
example [27, Theorem 102]). Hence Proposition 4.2 implies that f converges
in a neighborhood of (ty, z,0). Varying the boundary point, we find that f
converges in a neighborhood of the whole boundary stratum of X;”. The same
argument applies to the boundary strata of smaller genus. This proves the
proposition. O

LEMMA 4.4. Let W C CV be a domain, and let Q(t, X) € O(W)[X] be a
monic irreducible polynomial with discriminant Ay € O(W). Let V.C W be
an open subset that has nontrivial intersection with every irreducible component
of the divisor D = div(Ay). If f is a holomorphic function on V satisfying
O(t, f(r)) =00nV, then f has a holomorphic continuation to W.
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Proof. Let W={(t,X)e WxC: Q(r, X) = 0} be the analytic hypersurface
defined by Q. The projection to the first coordinate defines a branched covering

qu—)W

of degree deg(Q). The branching locus in W is the divisor D. Since Q
is irreducible, the corresponding unbranched cover W\ pl_l(D) — W\D
is connected, and the automorphism group Aut(W/W) of the covering acts
transitively on the fibers.

Over the open subset V C W, themaps : V — W, T > (z, f(7)) defines a
holomorphic section, and, using the projection p, : W — C to the second factor,
we have f = p, os. Forevery o € Aut(W / W), the composition

fs =procgos

defines a holomorphic function on V satisfying Q(z, f,(r)) = 0. Since
Aut(W / W) acts transitively on the fibers, we find that Q(t, X) splits completely
into linear factors over V.

We now show that for every a € W the localized polynomial Q,(z, X) €
O, [X] with coefficients in the local ring at a splits completely into linear factors.
We have just shown this for all a € V. Moreover, it is clear for a € W\ D by the
theorem of implicit functions. Next we show it for all points in the regular locus
D of the branch divisor D.

Let D, be an irreducible component of D™, and let a € D,. Choosing
holomorphic coordinates appropriately, we may assume that there is a small
polycylinder U C W around a in which DyNU =DNU ={reU: 1, =0}
Then, according to Satz 10 and Hilfssatz 2 in Section 2.5 of [15], every
irreducible component of wn pf' (U) is a winding covering, that is, isomorphic
to a covering of the form {(z, X) : X¢— 1, = 0}, where c is the covering degree.
This implies that Q,(t, X) € O,[X] factors into linear factors if and only if
0, (t, X) € O,[X] factors into linear factors for all b in a full open neighborhood
of a in D,. Hence

U ={a € Dy: Q,(t, X) decomposes into linear factors in O,[X]},
U, ={a € Dy: Q.(t, X) does not decompose into linear factors in O,[X]}

are disjoint open subsets of Dy whose union is Dy. Since D is connected, and
since Uy NV # (, we find that U; = D,

Since the singular locus of D is a closed analytic subset of W of codimension
> 2, Hartogs’ theorem (see for example [14, Ch. VI, Theorem 2.5]) implies
that Q,(t, X) splits completely into linear factors for all a € W. Therefore,
by [14, Ch. III, Proposition 4.10], W\ pl_l(D) decomposes into d connected
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components which are biholomorphically mapped onto W\ D by p,. Thereby
we obtain the desired continuation of f to a holomorphic function on W\ D
solving the polynomial Q(z, X). Since the continuation is locally bounded, it
extends to all of W. (|

THEOREM 4.5. Let Q = Z;i:o a; X' € M@ [X] be a nonzero polynomial of
degree d with coefficients a; € My, —iy, and let

f=Y " bu(ti. gy € FIMY

be a formal Fourier—Jacobi expansion of cogenus 1 such that Q(f) = 0. Then
f converges absolutely on H, and defines an element of M,(f) .

Proof. Without loss of generality we may assume that Q is irreducible. First, we
assume that Q is also monic (and therefore ky = 0). According to Lemma 4.3,
there exists an open neighborhood U C X, of the boundary divisor 9¥, C X, on
which f converges absolutely. Hence f defines a holomorphic function of the
inverse image V C H, of U under the natural map H, — X,.

The discriminant Ay of Q is a holomorphic Siegel modular form of weight
d(d — 1)k. According to Proposition 4.1, every irreducible component of D =
divA, has nontrivial intersection with V. Employing Lemma 4.4, we find that
f has a holomorphic continuation to all of H,.

If the polynomial Q has leading coefficient a; not equal to 1, then by a
standard argument there is a monic polynomial R € M®[X] of degree d such
that R(a, - f) = 0. Replacing f in the above argument by 4 = a, - f, we see that
h has a holomorphic continuation to H,. Therefore f is a meromorphic Siegel
modular form which is holomorphic on V. By Proposition 4.1, its polar divisor
must be trivial, and therefore f is in fact holomorphic on H,.

This implies that the formal Fourier—Jacobi expansion of f converges on all
of H,. Since Mp,,(Z) is generated by the embedded Jacobi group [ and

the embedded group GL,(Z), we find that f € M,(Cg). O

REMARK 4.6. If g > 3, then in the above proof the open neighborhood U of the
boundary dY, can be replaced by an open neighborhood U of the boundary of
the partial compactification X{" = ¥, U X,_,/{£1}. In fact, an inspection of the
proof shows that the crucial point is that the analog of Proposition 4.1 must hold.
This follows from the fact that a holomorphic Siegel modular form of genus g of
positive weight vanishes at some point of the genus-g — 1 boundary stratum of
the Satake compactification, since the Satake compactification is normal.
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COROLLARY 4.7. The graded ring M® is algebraically closed in the graded
ring FM(®).

5. Modularity of symmetric formal Fourier-Jacobi series

We start this section with a direct consequence of Corollary 4.7 and
Theorem 3.11.

THEOREM 5.1. Forany g > 2, we have

FM® = M®.

Proof. Theorem 3.11 shows that FM(®) has finite rank as a graded M®) module.

Hence every element f € FM,((g) satisfies a nontrivial algebraic relation as in
Theorem 4.5, which then implies that f belongs to M&. O

To extend this to symmetric formal Fourier—Jacobi series of arbitrary type and
cogenus 1 </ < g, we apply induction on g. Our main theorem is a consequence
of both Lemma 5.2 and Lemma 5.4.

LEMMA 5.2. Fix g > 3, and assume that FM$’ (p) = M%"(p) holds for all
2 < ¢’ < g and for all representations p of Mp,, (Z) with finite-index kernel.
Then we have FM®) = M® forall 1 <1 < g.

Proof. In Theorem 5.1, we have established that FM&D = M®. We use
induction on / to establish all other cases. That is, we now suppose that 1 </ < g
and FM®/=D = M®. We will argue that FM{$) = M®).

We adopt the notation of Section 3.1. In particular, we put I’ = [ — 1, and fix
a symmetric formal Fourier—Jacobi series of weight k and cogenus /:

— Ti2 222
/o= mes;:l«@) Pnten Zl)e(m<1122 T2>)'

We consider its formal Fourier—Jacobi coefficients v, for m’ € Sym, (Q) as in
(11). We will show that the formal series

D (T, Dem'n)
m’€Symy (Q)

is a symmetric formal Fourier—Jacobi series of cogenus /’. Symmetry of Fourier
coefficients is immediate, and so we are reduced to establishing convergence of

all v,,, thereby proving that ¥, € J,(f',;,l .
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First, consider the case det m’ = 0. If m’ is of the form

("Z) 8), m" € Sym,_,(Q), (20)

then Lemma 3.3 in conjunction with our assumptions implies that v,,» converges.
We reduce the case of general degenerate m' to the above one. For every m’ with
det m’ = O thereis au’ € GL;(Z) such that ‘u’'m’u’ is of the form (20). Invariance
of f under the action of

((1) 3) € GL,(Z), u' € GL/(Z)

shows that

, 10
I/I‘u’m’u’(flﬁ Z) = det(u )k 1//m' <tls Z (0 tu/>> .

This establishes the convergence of 1, in the case when det m’ = 0.

Next, we consider the case of invertible m’. We use Lemma 3.4 to represent
¥,y in terms of a vector-valued symmetric formal Fourier—Jacobi series (A, )
of genus g — 1. By the assumptions, it converges, and hence so does v,,,. O

LEMMA 5.3. Let p be a finite-dimensional representation of Mp,,(Z) with
finite-index kernel. Then there exists a k € %Z such that M,((g) (pY) separates
points of V(p) at every t € H, which is not an elliptic fixed point. That is,
for every such t and every v € V(p) there is an f € M,(f)(pv) such that

f(@ ) #0.

Proof. This is proved in [8, Proposition 2.4] for g = 2. The proof literally carries
over to the case of arbitrary genus. O

LEMMA 54. Fix g > 2 and 0 < [ < g. Assume that FM&®) = M®. Then
EMED(p) = ME (p) for all finite-dimensional representations p of Mp,,(Z)
with finite-index kernel.

Proof. We proceed as in the proof of Theorem 1.2 of [8]: employing Lemma 5.3,

choose &’ such that M,(f) (p") separates points of V (p) at every T € H, which is

not an elliptic fixed point. Write (, ) for the canonical bilinear pairing
FME" () x M (p") — FM)

k+k'

induced by the evaluation map V (p) x V(p") — C.
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Fix f € FM*"(p), and for all f' € M® (p") consider (f, f'), which by
assumptions is a Siegel modular form of weight k 4+ k’. This allows us to identify
f with a meromorphic Siegel modular form of weight k. By the choice of &/,
M,/ (p") separates points of V (p), and therefore f has no singularities. [

THEOREM 5.5. Suppose that2 < g, 0 <l < g, andk € %Z. Let p be a finite-
dimensional representation of Mp,,(Z) that factors through a finite quotient.
Then we have

EM () = M (p).

Proof. The assertion follows by combining Lemmas 5.2 and 5.4 and
Theorem 5.1. 0

6. Applications and possible extensions

6.1. Kudla’s modularity conjecture. We briefly explain how Theorem 5.5
can be applied in the context of Kudla’s conjecture on modularity of the
generating series of special cycles on Shimura varieties associated with
orthogonal groups [22, Section 3, Problem 3]. For the case of genus 2 see
also [8, 29].

Let (V, Q) be a quadratic space over Q of signature (n, 2), and write (-, -) for
the bilinear form corresponding to Q. The hermitian symmetric space associated
with the orthogonal group of V can be realized as

D={zeV®yC:(z,z) =0and (z,2) <0} /C*.

This domain has two connected components. We fix one of them, and denote
itby DT. Let L C V be an even lattice, and write L’ for the dual lattice. Let
I' C O(L) be a subgroup of finite index which acts trivially on the discriminant
group L'/L and which takes D™ to itself. The quotient

Xp=I\D"

has a structure as a quasiprojective algebraic variety of dimension n. It has a
canonical model defined over a cyclotomic extension of Q.

For 1 < g < n,let S, , be the complex vector space of functions (L'/L)% —
C. The group Mp,,(Z) acts on S, , through the Weil representation w,, ,. For
every positive semidefinite 7 € Sym, (Q) of rank r(¢) and every ¢ € S, , there
is a special cycle class Z(t, ¢) in the Chow group CH®(X )¢ of codimension
g cycles on X with complex coefficients; see [21, 22]. We denote by Z(¢) the
element ¢ — Z(t, ¢) of Hom(S; ,, CH*(X)c¢).
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CONJECTURE 6.1 (Kudla). The formal generating series

A= Y Ziq'

teSym, (Q)
>0

with coefficients in SZ,g ®c CH* (X )¢ is a Siegel modular form in Ml(i)n/z(w\L/,g)
with values in CH® (X ).

The analogous statement for the cohomology classes in H?¢(X ) of the Z(t)
was proved by Kudla and Millson in [23].

THEOREM 6.2. Conjecture 6.1 is true.

Proof. Form € Sym,_, (Q) positive semidefinite and (t;, z) € H x C4~!, denote
by

bt = Y Z([r”;zrr{f),e(ntl—i-rlz)

neQxo
reMat ¢ 1(Q)
the mth formal Fourier—Jacobi coefficient of cogenus g — 1. It was proved by
Zhang in [39] that ¢,, (7}, z) is a Jacobi form of weight 1 + n/2 and index m
with values in CH® (X )¢, that is, an element of J l(i)n 2m(@f ) ®c CH! (X r)c.
Hence A,(7) can be viewed as a formal Fourier—Jacobi series of cogenus g — 1.
Its coefficients trivially satisfy the symmetry condition, and therefore

Ay (1) e FMES (0] ) ®c CH (X p)c.
Consequently, the assertion follows from Theorem 5.5. |

COROLLARY 6.3. The subgroup of CH®(X[) generated by the classes
Z(t,p) for t € Sym,(Q) positive semidefinite and ¢ € Sp, has rank

< dim(M(%, 5 (@) ).

Note that it is not known in general whether the rank of CH® (X ) is finite.
6.2. Vector-valued factors of automorphy. Every finite-dimensional
representation p,, of the connected double cover of GL,(C) corresponds to

a K -type of Siegel modular forms. Most prominently, symmetric powers of
the standard representation are included by this definition. See van der Geer’s
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introduction into the subject in [9] for details. Along the very same lines as
Lemma 5.4, one can prove that symmetric formal Fourier—Jacobi series of
vector-valued Siegel modular forms in this sense converge.

Indeed, let p., be a finite-dimensional representation of the connected double
cover of GL,(C), and let p be a representation of Mp,, (Z) with finite-index
kernel. Without further restriction, we may assume that g > 2. Then we call a
holomorphic function f : H, — V(0s)® V (p) a (doubly) vector-valued Siegel
modular form if, for every y € Mp,,(Z), we have

fy1) = poslct +d)p(y) f(T).

We write M® (p,,, p) for the space of such functions. There is an obvious analog
FM®) (p, p) in the formal setting. We find that

FM®? (0, p) = M® (0o, p), (21)
if0<Il <g.

6.3. Computation of Siegel modular forms. Symmetric formal Fourier—
Jacobi series have appeared in [17, 29] in computations of Siegel modular forms
and paramodular forms of genus 2. Using the approach presented in this paper,
we can formulate an algorithm to compute Siegel modular forms of arbitrary
genus, weight, and type.

We define symmetric formal Fourier—Jacobi polynomials. Given my € Q,
write f =) @,, e(m1,) for an element of @ngmoJ,ﬂﬁ; Y (). Define its Fourier
coefficients as in the case of symmetric formal Fourier—Jacobi series. We say
that f is symmetric if ¢(f; 1) = w* p(rot(u), w)c(f; ‘utu) for all u € GL,(Z)
whenever the bottom right entry of 7 and the bottom right entry of ‘utu are both
less than m. Denote the space of symmetric formal Fourier—Jacobi polynomials
by FM,, (o).

One can reason as in [29] that the natural map

FM.,. (p) — FM¥_ (p)

k,<mq k,<my,

is injective if mg > m{ > m(()g) for some még) that depends on g, p, and k. Further,

Theorem 5.5 implies that
M¥ (p) = proj imFM* (p).

k,<mq
O<mo€eZ

Both statements together imply that M,(f> (p) = FMf(ng ,(p) for some m;.

An algorithm to compute (truncated) Fourier expansions of Siegel modular
forms can thus be deduced along the lines of [29, Section 8]. It would
be interesting to have an implementation of this algorithm and to study its

performance in practice.
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6.4. Hermitian modular forms and other kinds of automorphic forms.
Classical automorphic forms that behave very much like Siegel modular forms
can be defined over imaginary quadratic number fields, totally real fields, and
quaternion algebras that are ramified at infinity. The subject is covered by
Siegel [33] in one of the most general ways, and has been studied by Shimura
in a series of papers (see for example [32] and the references therein). For an
exposition specifically on Hermitian modular forms and quaternion modular
forms, see for example [7] and [20], respectively. Symmetric formal Fourier—
Jacobi series can be defined for all of them. Our approach is applicable to several
of these automorphic forms, but it does not seem suitable to cover all of them.
In fact, we expect that Hermitian modular forms over the integers of Q(\/—_l ),
Q(/=2), and Q(+~/=3), and quaternion modular forms over maximal orders of
rational quaternion algebras of discriminant 2 and 3 can be dealt with in the same
way as Siegel modular forms.

If modularity of symmetric formal Fourier—Jacobi series of Hermitian modular
forms can be proved, the unitary Kudla conjecture should follow along the lines
of Section 6.1.
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