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Abstract

The congruent number elliptic curves are defined by Ed : y2 = x3 − d2 x, where d ∈ N. We give a simple
proof of a formula for L(Sym2(Ed), 3) in terms of the determinant of the elliptic trilogarithm evaluated at
some degree zero divisors supported on the torsion points on Ed(Q).
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1. Introduction

Let E be an elliptic curve defined over C. Then there exist τ ∈ C such that Im(τ) > 0
and isomorphisms

E(C) ˜−→ C/Λ ˜−→ C×/qZ,(
℘Λ(u), ℘′Λ(u)

)
7−→ u (mod Λ) 7−→ e2πiu,

(1.1)

where Λ = Z + Zτ, ℘Λ is the Weierstrass ℘-function and q = e2πiτ. Zagier and Gangl
[13, Section 10] defined the two functions LE

3, j : E(C)→ R, j = 1, 2, by

LE
3,1(P) : = LE

3,1(x) =

∞∑
n=−∞

L3(qnx),

LE
3,2(P) : = LE

3,2(x) =

∞∑
n=0

J3(qnx) +

∞∑
n=1

J3(qnx−1) +
log2 |x| log2 |qx−1|

4 log |q|
,

where L3(z) = Re(Li3(z) − log |z| Li2(z) + 1
3 log2 |z| Li1(z)), Lim(z) =

∑∞
n=1 zn/nm is

the classical mth polylogarithm function, J3(x) = log2 |x| log |1 − x| and x ∈ C× is the
image of the point P on E(C) under the composition of the isomorphisms above.
The function LE

3,1 is called the elliptic trilogarithm. These two functions serve as
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14 D. Samart [2]

higher-dimensional analogues of the elliptic dilogarithm DE and the function JE

defined by

DE(x) =

∞∑
n=−∞

L2(qnx),

JE(x) =

∞∑
n=0

J(qnx) −
∞∑

n=1

J(qnx−1) +
1
3

log2 |q|B3

( log |x|
log |q|

)
,

where L2(z) = Im(Li2(z) + log |z| log(1 − z)) is known as the Bloch–Wigner
dilogarithm, J(z) = log |z| log |1 − z| and B3(X) = X3 − 3X2/2 + X/2.

For a, b ∈ N, the series

Ka,b(τ; u) =
∑′

m,n∈Z

e2πi(nξ−mη)

(mτ + n)a(mτ̄ + n)b ,

where u = ξτ + η and ξ, η ∈ R/Z, is called the Eisenstein–Kronecker series. Here and
throughout,

∑′ means (m, n) , (0, 0) in the summation. Bloch [1] defined the regulator
function RE : E(C)→ R by

RE(e2πiu) =
Im(τ)2

π
K2,1(τ; u).

One can extend the functions DE , JE , RE ,LE
3,1 and LE

3,2 to the group of divisors on
E(C) by linearity. Also, it can be shown that Re(RE) = DE and Im(RE) = JE . In
[4], Goncharov and Levin proved the following theorem, formerly known as Zagier’s
conjecture on L(E, 2).

Theorem 1.1. Let E be a modular elliptic curve over Q. Then there exists a divisor
P =

∑
n j(P j) on E(Q̄) satisfying the following conditions.

(a) We have ∑
n jP j ⊗ P j ⊗ P j = 0 in Sym3(E).

(b) For any valuation v of the field Q(P) generated by the coordinates of the points
P j, ∑

n jhv(P j) · P j = 0 on E,

where hv is the local height associated with the valuation v.
(c) For every prime p where E has a split multiplicative reduction, P satisfies a

certain integrality condition (see [4, Theorem 1.1]).

Moreover, for such a divisor P,

L(E, 2) ∼Q× π · DE(P),

where A ∼Q× B means A = cB for some c ∈ Q×.
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The critical values of the symmetric square L-function attached to a weight k
cusp form are those at the odd integers in {1, 2, . . . , k − 1} and the even integers in
{k, k + 1, . . . , 2k − 2}. In particular, L(Sym2(E), 2) and L(Sym2(E), 1) are the only
critical values of the symmetric square L-function of an elliptic curve. There are
several numerical results and conjectures relating noncritical values of L-series of
symmetric powers of an elliptic curve over Q to higher elliptic polylogarithms
including those due to Mestre and Schappacher [7], Goncharov [3] and Wildeshaus
[11]. Inspired by these examples and their numerical experiments, Zagier and
Gangl [13, Section 10] formulated the following conjecture, which is an analogue
of Theorem 1.1.

Conjecture 1.2. Let E be an elliptic curve overQ. For any ξ =
∑

ni(Pi) ∈ Z[E(Q̄)] and
any homomorphism φ : E(Q̄)→ Z, let ιφ(ξ) =

∑
niφ(Pi)(Pi). Also define

C2(E/Q) =

〈
( f ) � (1 − f ), (P) + (−P), (2P) − 2

∑
T∈E[2]

(P + T ) | f ∈ Q(E), P ∈ E(Q)
〉

as a subgroup of Z[E(Q̄)]Gal(Q̄/Q) where, for ( f ) =
∑

mi(Pi) and (g) =
∑

n j(Q j), the
diamond operator � is defined by ( f ) � (g) =

∑
min j(ai − b j). If ιφ(ξ) ∈ C2(E/Q) for

all homomorphisms φ : E(Q̄)→ Q, then ~LE
3 (ξ) := (LE

3,1(ξ),LE
3,2(ξ)) belongs to a two-

dimensional lattice whose covolume is related to L(Sym2(E), 3).

Zagier and Gangl verified numerically that if E is the conductor 37 elliptic curve
defined by y2 − y = x3 − x, E � C/(Z + Zτ), and

η4 = 3(4P) − 13(3P) + 18(2P) − 3(P) − 5(O),
η6 = 2(6P) − 45(3P) + 60(2P) + 93(P) − 110(O),

where P = [0, 0], then

Reg3(E) :=

∣∣∣∣∣∣LE
3,1(η4) LE

3,2(η4)
LE

3,1(η6) LE
3,2(η6)

∣∣∣∣∣∣ ?
= −

373

4
Im(τ)2L(Sym2(E), 3). (1.2)

Here A ?
= B means A and B are equal to at least 15 decimal places. (Note that

the negative sign in the above identity is missing in [13].) Recall from [2] that
L(Sym2(E), s) satisfies the functional equation

Λ(Sym2(E), s) = Λ(Sym2(E), 3 − s),

where Λ(Sym2(E), s) = C s/2π−s/2Γ(s/2)(2π)−sΓ(s)L(Sym2(E), s) and C is the
conductor of the Galois representation associated with the symmetric square of the
Tate module of E. Therefore, (1.2) can be rephrased as

Reg3(E) ?
= 2π4 Im(τ)2L′′(Sym2(E), 0).

This conjecture is consistent with a special case of [3, Conjecture 6.8] that, for any
elliptic curve E over Q, there exist degree zero divisors ξ1 and ξ2 on E(Q̄) such that∣∣∣∣∣∣Re

(
K1,3(τ; ξ1)

)
K2,2(τ; ξ1)

Re
(
K1,3(τ; ξ2)

)
K2,2(τ; ξ2)

∣∣∣∣∣∣ ?
∼Q×

π6

Im(τ)4 L′′(Sym2(E), 0).
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The relationship between the determinant above and the one in (1.2) was established
in [9, Section 4] and can be stated as follows.

Proposition 1.3. Let E be an elliptic curve over C and suppose that E � C/(Z + Zτ).
If ξ1 and ξ2 are divisors of degree zero on E, then∣∣∣∣∣∣LE

3,1(ξ1) LE
3,2(ξ1)

LE
3,1(ξ2) LE

3,2(ξ2)

∣∣∣∣∣∣ = −
2 Im(τ)6

π2

∣∣∣∣∣∣Re
(
K1,3(τ; ξ1)

)
K2,2(τ; ξ1)

Re
(
K1,3(τ; ξ2)

)
K2,2(τ; ξ2)

∣∣∣∣∣∣ ,
where Ka,b(τ; ξ) =

∑
P∈E nPKa,b(τ; uP) if ξ =

∑
P∈E nP(P) and uP is the image of P in

C/(Z + Zτ).

A square-free positive integer n is called a congruent number if it is the area of a
right triangle all of whose sides are rational numbers. The congruent number problem,
one of the oldest unsolved problems in number theory, asks if there is an algorithm
for determining whether any given number is a congruent number in a finite number
of steps. The main result in this paper concerns a symmetric square L-value of the
congruent number elliptic curves, which are defined by

Ed : y2 = x3 − d2x for all d ∈ N. (1.3)

These curves play a crucial role in the study of the congruent number problem. In
fact, assuming the Birch and Swinnerton-Dyer conjecture, it can be proved that a
square-free positive integer d is a congruent number if and only if L(Ed,1) = 0 (see, for
example, [6]). Some useful facts about Ed include Ed � C/(Z + Z

√
−1), that Ed has

complex multiplication by Z[
√
−1] and that Ed is a quadratic twist of E1. We will give

a rigorous proof of a formula for L(Sym2(Ed), 3), which provides evidence supporting
Conjecture 1.2.

Theorem 1.4. For any positive integer d, let E := Ed be the elliptic curve defined
by (1.3) and let P, Q and O be points on E(Q̄) corresponding to 1

2

√
−1, 1

4 and 1,
respectively, via the isomorphism E � C/(Z + Z

√
−1). If ξ1 = (Q) + (P + Q) − 2(O)

and ξ2 = (2Q) − (P), then∣∣∣∣∣∣LE
3,1(ξ1) LE

3,2(ξ1)
LE

3,1(ξ2) LE
3,2(ξ2)

∣∣∣∣∣∣ = −
43
2

L(Sym2(E), 3) = −
43π4

128
L′′(Sym2(E), 0). (1.4)

Remark 1.5. (i) The points P and Q in Theorem 1.4 can be written explicitly as

P = [d, 0], Q = [−d(1 +
√

2),
√
−(6 + 4

√
2)d3].

This can be checked using a computer algebra system such as PARI/GP or SAGE.
(ii) Since the symmetric square L-function is invariant under a quadratic twist (by

[2, Section 1.1]), it suffices to prove Theorem 1.4 for a particular value of d. As the
reader will see in Sections 3 and 4, we choose d = 2.
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2. Some identities involving LE
3,1

and LE
3,2

Before proving the main result, we shall state some useful facts about the functions
LE

3,1 and LE
3,2. The reader is referred to [9] and [12] for further details.

Proposition 2.1 [9, Corollary 2.3]. Suppose that E � C/(Z + Zτ) with τ ∈ H and let
q = e2πiτ and x = e2πiu, where u = ξτ + η and ξ, η ∈ R/Z. Then

LE
3,1(x) =

4 Im(τ)5

3π
Re

(∑′

m,n∈Z

e2πi(nξ−mη) m2

|mτ + n|6

)
, (2.1)

LE
3,2(x) =

Im(τ)3

π

[∑′

m,n∈Z

e2πi(nξ−mη)

|mτ + n|4
+ 2 Re

(∑′

m,n∈Z

e2πi(nξ−mη) (mτ + n)2

|mτ + n|6

)]
+

log3 |q|
120

.

(2.2)

The following result is an immediate consequence of (2.1).

Proposition 2.2. Let E be an elliptic curve isomorphic to C/(Z + Zτ). If P and Q are
the points on E corresponding to τ/2 and 1/4, respectively, via the isomorphism (1.1),
then

LE
3,1((Q) + (P + Q)) = 1

8L
E
3,1(2Q). (2.3)

Proof. Using (2.1) and the fact that emπi/2 = im for any m ∈ Z,

LE
3,1(8(Q) + 8(P + Q)) =

32 Im(τ)5

3π
Re

(∑′

m,n∈Z

(im(1 + (−1)n))
m2

|mτ + n|6

)
=

128 Im(τ)5

3π

∑′

m,n∈Z

((−1)m(1 + (−1)n))
m2

|2mτ + n|6

=
4 Im(τ)5

3π

∑′

m,n∈Z

(−1)mm2

|mτ + n|6

= LE
3,1(2Q).

The last equality follows from the fact that 2Q is a point corresponding to 1/2. �

3. Grössencharakters and modular forms

It is well known that the L-function of an elliptic curve over Q with complex
multiplication (CM) coincides with that of a Hecke character (a Grössencharakter)
of an imaginary quadratic field. In this section, we will explicitly construct the Hecke
character corresponding to the CM elliptic curve E := E2. Then we invoke a result of
Coates and Schmidt [2] to obtain an expression of L(Sym2(E), s) in terms of a product
of L-functions attached to a weight three modular form and a Dirichlet character. More
precisely, we will prove the following identity.
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Theorem 3.1. Let E be the elliptic curve of conductor 64 defined by E : y2 = x3 − 4x.
Then, for any s ∈ C,

L(Sym2(E), s) = L(g, s)L(χ−4, s − 1),

where g(τ) = q − 6q5 + 9q9 + · · · is a weight three cusp form of level 16 and χ−4 =
(
−4
·

)
is the Dirichlet character associated with Q(

√
−1).

Proof. Let K = Q(
√
−1). Then the ring of integers of K is OK = Z[

√
−1]. Let

Λ = (4) ⊂ OK and let P(Λ) be the set of (integral) ideals of OK that are relatively
prime to Λ. It is easily seen that each element of P(Λ) can be represented uniquely by
(m + ni), where m > 0 is an odd integer and n is an even integer.

Define a map φ : P(Λ)→ C× by

φ((m + ni)) = χ−4(m)(m + ni) =

m + ni if m ≡ 1 (mod 4),
−(m + ni) if m ≡ 3 (mod 4).

Then φ((α)) = α, for any α ∈ OK such that α ≡ 1 (mod Λ). It follows that we can
extend φ multiplicatively to a Hecke character of conductor Λ. By [8, Theorem 1.31],

f(τ) =
∑
a∈P(Λ)

φ(a)qN(a)

is a weight two newform of level 64. Computing the first few terms of a, we obtain

f(τ) =
∑
m∈N
n∈Z

χ−4(m)mqm2+4n2
= q + 2q5 − 3q9 − 6q13 + · · · ,

which is the weight two newform corresponding to E via the modularity theorem.
Let φ2 be the primitive Hecke character attached to the square of φ. Then φ2 is a

Hecke character of conductor Λ′ = (2) and satisfies

φ2((α)) = α2,

for any ideal (α) in OK satisfying α ≡ 1 (mod Λ′). Moreover, it is known that
L(φ2, s) = L(g, s) (see, for example, [10, Lemma 2.3]). Finally, by a result due to
Coates and Schmidt [2, Proposition 5.1],

L(Sym2(E), s) = L(φ2, s)L( χ−4, s − 1) = L(g, s)L(χ−4, s − 1). �

It has been shown that L(χ−4, s) and L(g, s) have simple lattice sum expressions,
which will be particularly useful in the proof of our main result.

Proposition 3.2 ([10, Lemma 2.3], [5, Section IV]). Let s, t ∈ C, where Re(s) > 2 and
Re(t) > 1. Then

L(g, s) =
1
2

∑′

m,n∈Z

m2 − 4n2

(m2 + 4n2)s ,

L(χ−4, t) =
1

4ζ(t)

∑′

m,n∈Z

1
(m2 + n2)t =

1
2(1 − 2−t + 21−2t)ζ(t)

∑′

m,n∈Z

1
(m2 + 4n2)t ,

where ζ(t) is the Riemann zeta function.
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Corollary 3.3. We have

L(χ−4, 2) =
3

2π2

∑′

m,n∈Z

1
(m2 + n2)2 , (3.1)

=
24
7π2

∑′

m even
n∈Z

1
(m2 + n2)2 , (3.2)

L(g, 3) =
1
2

∑′

m∈Z
n even

m2 − n2

(m2 + n2)3 , (3.3)

=
1
2

∑
m odd
n even

m2 − n2

(m2 + n2)3 . (3.4)

4. Proof of the main result

We first give a series of identities relating values of LE
3,1 and LE

3,2 to modular and
Dirichlet L-values.

Lemma 4.1. With the same assumptions as in Theorem 1.4,

LE
3,1((Q) + (P + Q)) = −

1
3π

L(g, 3) −
π

144
L(χ−4, 2), (4.1)

LE
3,1(O) =

4π
9

L(χ−4, 2), (4.2)

LE
3,1((2Q) − (P)) = −

16
3π

L(g, 3), (4.3)

LE
3,2((2Q) − (P)) =

16
π

L(g, 3), (4.4)

LE
3,2((Q) + (P + Q) − 2(O)) =

1
π

L(g, 3) −
43π
32

L(χ−4, 2). (4.5)

Proof. First, note that, by symmetry,∑′

m,n∈Z

n2 − m2

(m2 + n2)3 = 0.

Therefore, by (2.1) and (3.1),

LE
3,1(O) =

4
3π

Re
(∑′

m,n∈Z

e−2πim m2

|n + mi|6

)
=

4
3π

∑′

m,n∈Z

m2

(m2 + n2)3

=
2

3π

∑′

m,n∈Z

( 1
(m2 + n2)2 −

n2 − m2

(m2 + n2)3

)
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=
2

3π

∑′

m,n∈Z

1
(m2 + n2)2 =

4π
9

L(χ−4, 2),

which yields (4.2).
Next, using (2.2) and (3.4),

LE
3,2((2Q) − (P)) =

1
π

(∑′

m,n∈Z

(−1)m − (−1)n

(m2 + n2)2 + 2
∑′

m,n∈Z

((−1)m − (−1)n)
n2 − m2

(m2 + n2)3

)
=

1
π

(
− 2

∑′

m odd
n even

1
(m2 + n2)2 − 4

∑′

m odd
n even

n2 − m2

(m2 + n2)3

+ 2
∑′

m even
n odd

1
(m2 + n2)2 + 4

∑′

m even
n odd

n2 − m2

(m2 + n2)3

)

=
8
π

∑′

m even
n odd

n2 − m2

(m2 + n2)3 =
16
π

L(g, 3),

which is (4.4).
On the other hand, it is easily seen by symmetry that∑′

m,n∈Z

(−1)m − (−1)n

(m2 + n2)2 = 0,

so that

LE
3,2((2Q) − (P)) =

2
π

∑′

m,n∈Z

((−1)m − (−1)n)
n2 − m2

(m2 + n2)3

= −
4
π

∑′

m,n∈Z

((−1)m − (−1)n)
m2

(m2 + n2)3 = −3LE
3,1((2Q) − (P)).

Together with (4.4), this gives (4.3).
To establish (4.1), we first employ (3.1) and (3.2) to deduce that

1
2

∑′

m,n∈Z

1
(m2 + n2)2 −

∑′

m even
n even

1
(m2 + n2)2 =

7
16

∑′

m,n∈Z

1
(m2 + n2)2 =

∑′

m even
n∈Z

1
(m2 + n2)2 .

Therefore, ∑′

m even
n even

1
(m2 + n2)2 +

∑′

m even
n∈Z

1
(m2 + n2)2 =

1
2

∑′

m,n∈Z

1
(m2 + n2)2

=
1
2

∑′

m,n∈Z

m2 + n2

(m2 + n2)3

=
∑′

m,n∈Z

m2

(m2 + n2)3 . (4.6)
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Using (4.6), ∑′

m even
n even

1
(m2 + n2)2 +

∑′

m even
n∈Z

n2

(m2 + n2)3

=
∑′

m even
n even

1
(m2 + n2)2 +

∑′

m even
n∈Z

( 1
(m2 + n2)2 −

m2

(m2 + n2)3

)

=
∑′

m,n∈Z

m2

(m2 + n2)3 −
∑′

m even
n∈Z

m2

(m2 + n2)3

=
∑′

m odd
n∈Z

m2

(m2 + n2)3 . (4.7)

By (2.3), (2.1) and (4.7),

LE
3,1((Q) + (P + Q)) =

1
6π

∑′

m,n∈Z

(−1)mm2

(m2 + n2)3

=
1

6π

∑′

m even
n∈Z

m2

(m2 + n2)3 −
1

6π

∑′

m odd
n∈Z

m2

(m2 + n2)3

=
1

6π

∑′

m even
n∈Z

m2

(m2 + n2)3 −
1

6π

∑′

m even
n∈Z

n2

(m2 + n2)3

−
1

96π

∑′

m,n∈Z

1
(m2 + n2)2

= −
1

3π
L(g, 3) −

π

144
L(χ−4, 2),

where the last equality follows from (3.3) and (3.1).
Finally, (4.5) follows from (2.2), (3.1), (3.3) and some tedious manipulations. �

Theorem 1.4 now easily follows from Lemma 4.1 and Theorem 3.1.

Proof of Theorem 1.4. Let α = L(g, 3) and β = L(χ−4, 2). By (4.1)–(4.5) and
Theorem 3.1,∣∣∣∣∣∣LE

3,1(ξ1) LE
3,2(ξ1)

LE
3,1(ξ2) LE

3,2(ξ2)

∣∣∣∣∣∣ = LE
3,1(ξ1)LE

3,2(ξ2) − LE
3,1(ξ2)LE

3,2(ξ1)

=
16
π
α
(
−

1
3π
α −

43π
48

β
)

+
16
3π
α
(1
π
α −

43π
32

β
)

= −
43
2
αβ

= −
43
2

L(Sym2(E), 3).
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The second equality in (1.4) follows from the functional equation for the symmetric
square L-function.

Acknowledgements
The original motivation for this note was to understand the possible relationship

between Mahler measures of multivariate polynomials and special L-values, which
was the main theme of the author’s PhD thesis. The author would like to thank his
adviser, Matt Papanikolas, for his encouragement and support. The author is also
grateful to Jörn Steuding for pointing out possible extensions of the main result to the
congruent number elliptic curves. Finally, the author thanks the anonymous referee
for valuable comments which helped to improve the exposition of this paper.

References
[1] S. Bloch, Higher Regulators, Algebraic K-theory, and Zeta Functions of Elliptic Curves, CRM

Monograph Series, 11 (American Mathematical Society, Providence, RI, 2000).
[2] J. Coates and C. G. Schmidt, ‘Iwasawa theory for the symmetric square of an elliptic curve’,

J. reine angew. Math. 375/376 (1987), 104–156.
[3] A. B. Goncharov, ‘Mixed elliptic motives’, in: Galois Representations in Arithmetic Algebraic

Geometry, London Mathematical Society Lecture Note Series, 243 (Cambridge University Press,
Cambridge, 1998), 147–221.

[4] A. Goncharov and A. Levin, ‘Zagier’s conjecture on L(E, 2)’, Invent. Math. 132 (1998), 393–432.
[5] M. L. Glasser and I. J. Zucker, ‘Lattice sums’, in: Theoretical Chemistry—Advances and

Perspectives. V (Academic Press, New York, 1980), 67–139.
[6] N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer, New York, 1993).
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