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Abstract

For an unramified reductive group, we determine the connected components of affine
Deligne–Lusztig varieties in the affine flag variety. Based on work of Hamacher, Kim,
and Zhou, this result allows us to verify, in the unramified group case, the He–Rapoport
axioms, the almost product structure of Newton strata, and the precise description of
isogeny classes predicted by the Langlands–Rapoport conjecture, for the Kisin–Pappas
integral models of Shimura varieties of Hodge type with parahoric level structure.

Introduction

0.1 Background
Let F be a non-Archimedean local field with valuation ring OF and residue field Fq, where q is
a power of some prime p. Let F̆ be the completion of a maximal unramified extension of F , and
denote by σ the Frobenius automorphism of F̆ /F .

Let G be a connected reductive group defined over F . Fix an element b ∈ G(F̆ ), a geo-
metric cocharacter λ of G, and a σ-stable parahoric subgroup K ⊆ G(F̆ ). The attached affine
Deligne–Lusztig variety is defined by

X(λ, b)K = XG(λ, b)K = {g ∈ G(F̆ )/K; g−1bσ(g) ∈ KAdm(λ)K},
where Adm(λ) is the admissible set associated to the geometric conjugacy class of λ. If F is of
equal characteristic, X(λ, b)K is a locally closed and locally finite-type subvariety of the partial
affine flag variety G(F̆ )/K. If F is of mixed characteristic, X(λ, b)K is a perfect subscheme of the
Witt vector partial affine flag variety, in the sense of Bhatt and Scholze [BS17] and Zhu [Zhu17].

The variety X(λ, b)K , first introduced by Rapoport [Rap05], encodes important arithmetic
information of Shimura varieties. Let (G, X) be a Shimura datum with G = GQp and λ the
inverse of the Hodge cocharacter. Suppose there is a suitable integral model for the correspond-
ing Shimura variety with parahoric level structure. Langlands [Lan76], and latter refined by
Langlands and Rapoport [LR87] and Rapoport [Rap05], conjectured a precise description of
Fp-points of the integral model in terms of the varieties X(λ, b)K . In the case of PEL Shimura
varieties, X(λ, b)K is also the set of Fp-points of a moduli space of p-divisible groups defined by
Rapoport and Zink [RZ96].
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0.2 Main result
The main purpose of this paper is to study the set π0(X(λ, b)K) of connected components of
X(λ, b)K . Note that X(λ, b)K only depends on λ and the σ-conjugacy class [b] of b. Thanks
to He [He16], X(λ, b)K is non-empty if and only if [b] belongs to the set B(G, λ) of ‘neutral
acceptable’ σ-conjugacy classes of G(F̆ ) with respect to λ.

Let π1(G)Γ0 be the set of coinvariants of the fundamental group π1(G) under the Galois
group Γ0 = Gal(F̆ /F̆ ). Denote by ηG : G(F̆ )→ π1(G)Γ0 the natural group homomorphism. It
factors through a map G(F̆ )/K → π1(G)Γ0 which we still denote by ηG. Let Gad denote the
adjoint group of G. Then we have the following Cartesian diagram (see [HZ20, Corollary 4.4]):

π0(XG(λ, b)K)

ηG

��

�� π0(XGad(λad, bad)Kad
)

ηGad

��
π1(G)Γ0

�� π1(Gad)Γ0

where bad and Kad are the natural images of b and K in Gad(F̆ ), respectively.
Therefore, to compute π0(X(λ, b)K) we may and do assume that G is adjoint and, hence,

simple. Note that the map ηG gives a natural obstruction to the connectedness of X(λ, b)K .
Another more technical obstruction is given by the following Hodge–Newton decomposition
theorem.

Theorem 0.1 [GHN19, Theorem 4.17]. Suppose G is adjoint and simple. If the pair (λ, b) is
Hodge–Newton decomposable (with respect to some proper Levi subgroup M) in the sense
of [GHN19, § 2.5.5], then X(λ, b)K is a disjoint union of open and closed subsets, which are
isomorphic to certain affine Deligne–Lusztig varieties attached to M .

By Theorem 0.1 and induction on the dimension of G, it suffices to consider the
Hodge–Newton indecomposable case. This means that either λ is a central cocharacter or the
pair (λ, b) Hodge–Newton irreducible, see [Zho20, Lemma 5.3]. In the former case,

X(λ, b)K
∼= Jb/(K ∩ Jb)

is a discrete set, where Jb denotes the σ-centralizer of b. In the latter case, we have the following
conjecture.

Conjecture 0.1 (See [Zho20, Conjecture 5.4]). Assume G is adjoint and simple. If (λ, b) is
Hodge–Newton irreducible, then there exists a natural bijection

π0(X(λ, b)K) ∼= π1(G)σ
Γ0

,

where π1(G)σ
Γ0

is the set of σ-fixed points of π1(G)Γ0 .

If G is unramified and K is hyperspecial, Conjecture 0.1 is established by Viehmann [Vie08],
Chen, Kisin, and Viehmann [CKV15], and the present author [Nie15]. If b is basic, it is proved
by He and Zhou [HZ20]. If G is split or G = ResE/F GLn with E/F a finite unramified field
extension, it was proved by Chen and the present author in [CN19] and [CN20].

The main result of this paper is the following.

Theorem 0.2. Conjecture 0.1 is true if G is unramified.

In particular, Theorem 0.2 completes the computation of connected components of affine
Deligne–Lusztig varieties for unramified groups.
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0.3 Applications
We discuss some applications. Assume p �= 2. Let (G, X) be a Shimura datum of Hodge type with
parahoric level structure such that p � |π1(Gder)|, GQp is tamely ramified, and the corresponding
parahoric subgroup K at p is a connected parahoric. Let SK = SK(G, X) be the Kisin–Pappas
integral model constructed in [KP18]. Let F = Qp, G = GQp , and λ be the inverse of the Hodge
cocharacter.

Remark 0.3. In [PR21], Pappas and Rapoport obtained a new construction of integral models for
Hodge-type Shimura varieties with parahoric level structure, without the tameness assumption
on G. It would be desirable to extend the applications discussed below to their integral models
in the unramified group case.

0.3.1 The Langlands–Rapoport conjecture. A major motivation to study π0(X(λ, b)K) comes
from the Langlands–Rapoport conjecture mentioned in § 0.1. In the hyperspecial level structure
case, the conjecture is proved by Kottwitz [Kot92] for PEL Shimura varieties of types A and
C, and by Kisin [Kis17] for his integral models [Kis10] of Shimura varieties of abelian type. For
the Kisin–Pappas integral models of Hodge type, Zhou [Zho20] proved that each mod p isogeny
class has the predicted form when G is residually split. Recently, van Hoften [vH20] proved the
Langlands–Rapoport conjecture for a large family of Shimura varieties of abelian type (including
the Hodge type) when G is unramified (as well as some other cases), by reducing the problem
to the hyperspecial case.

One of the key ingredients in the proofs of Kisin and Zhou is to construct certain lifting maps
from the varieties X(λ, b)K to the corresponding isogeny classes of SK(Fp) (see also [HK19,
Axiom A]), which uses in a crucial way the descriptions of π0(X(λ, b)K) in [CKV15] and [HZ20],
respectively. Combining [Zho20, Proposition 6.5] with Theorem 0.2, we deduce that such lifting
maps always exist if G is unramified.

Proposition 0.4. If G is unramified, then the Rapoport–Zink uniformization map admits a
unique lift on Fp-points

X(λ, b)K → SK(Fp),

which respects canonical crystalline Tate tensors on both sides.

If G is unramified and K is hyperspecial, Proposition 0.4 is proved by Kisin [Kis17]. If b is
basic or G is residually split, it is proved by Zhou [Zho20]. If G is quasi-split and K is absolutely
special, it is proved by Zhou in [vH20, Theorem A.4.3].

Combining the methods in [Zho20] and Proposition 0.4, one can extend [Zho20, Theorem 1.1]
to the unramified group case. This was pointed out to us by Zhou.

Corollary 0.5 (van Hoften). If G is unramified, then the isogeny classes in SK(Fp) has the
form predicted by the Langlands–Rapoport conjecture. Moreover, each isogeny class contains a
point which lifts to a special point in the corresponding Shimura variety.

0.3.2 The He–Rapoport axioms. In [HR17], He and Rapoport formulated five axioms on
Shimura varieties with parahoric level structure, which provide a group-theoretic way to study
certain characteristic subsets (such as Newton strata, Ekedahl–Oort strata, Kottwitz–Rapoport
strata, and so on) in the mod p reductions of Shimura varieties. Based on this axiomatic approach,
Zhou [Zho20] proved that all the expected Newton strata are non-empty (see [KMS22] using a
different approach). For more applications of these axioms, we refer the reader to [HR17], [HN17],
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[GHN19], [Zho20], and [SYZ21]. Combining [Zho20, Theorem 8.1] with Proposition 0.4 we have
the following result.

Corollary 0.6. The He–Rapoport axioms hold if G is unramified.

These axioms are verified by He and Rapoport [HR17] in the Siegel case, and by He and
Zhou [HZ20] for certain PEL Shimura varieties (unramified of types A and C and odd ramified
unitary groups). In [Zho20], Zhou proved that all the axioms except the surjectivity in Axiom 4(c)
of [HR17] hold in the general case, and, moreover, if G is residually split, then all of them hold.
For PEL Shimura varieties, Axiom 4(c) is verified by Shen, Yu, and Zhang [SYZ21].

0.3.3 The almost product structure. In [Man05], Mantovan established a formula expressing
the l-adic cohomology of proper PEL Shimura varieties in terms of the l-adic cohomology with
compact supports of the Igusa varieties and of the Rapoport–Zink spaces for any prime l �= p.
This formula encodes nicely the local–global compatibility of the Langlands correspondence.
A key part of its proof is to show that the products of reduced fibers of Igusa varieties and
Rapoport–Zink spaces form nice ‘pro-étale covers up to perfection’ for the Newton strata, of
PEL Shimura varieties with hyperspecial level structure. This is referred as the almost product
structure of Newton strata. In [HK19], Hamacher and Kim extended Mantovan’s results to the
Kisin–Pappas integral models under some mild assumptions. Combining [HK19, Theorem 2] with
Proposition 0.4 we have the following result.

Corollary 0.7. The almost product structure of Newton strata holds if G is unramified.

When K is hyperspecial, the almost product structure of Newton strata is established by
Mantovan [Man05] for PEL Shimura varieties, and by Hamacher [Ham19] for Shimura varieties of
Hodge type. The general case is proved by Hamacher–Kim provided the lifting property [HK19,
Axiom A] holds. We refer to [CS17], [Ham19], [Ham17], and [Kim19] for the Caraiani–Scholze-
type product structure of Newton strata.

0.4 Strategy
We describe the strategy of the proof. Note that the σ-centralizer Jb acts on X(λ, b)K by left
multiplication. First we show that Jb acts transitively on π0(X(λ, b)K). Then we show that the
stabilizer of each connected component is the normal subgroup Jb ∩ ker(ηG) of Jb. Combining
these two results we deduce that π0(X(λ, b)K) ∼= Jb/(Jb ∩ ker(ηG)) ∼= π1(G)σ as desired.

The stabilizers can be determined by adapting the computations in [Nie18]. The crucial part
is to show the transitivity of the Jb-action. Our starting point is the following natural surjection
(see Theorem 2.2) ⊔

w̃∈Sλ,b

Jb,w̃ � π0(X(λ, b)K),

where Sλ,b is the set of semi-standard elements (see § 1.7) contained in Adm(λ) ∩ [b], and
Jb,w̃ = {g ∈ G(F̆ ); g−1bσ(g) = w̃} on which Jb acts transitively by left multiplication. Thus, it
remains to connect all the subsets Jb,w̃K/K in X(λ, b)K . To this end, we consider the following
decomposition

Sλ,b =
⊔

x∈S+
λ,b

Sλ,b,x,

where S+
λ,b consists of standard elements in Sλ,b, and Sλ,b,x consists of elements in Sλ,b that are

σ-conjugate to x ∈ S+
λ,b under the Weyl group of G. Note that S+

λ,b can be naturally identified
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with a subset of cocharacters dominated by λ, whose structure has been studied extensively
in [Nie18]. Thus, we can use the connecting algorithm in [Nie18] as a guideline to connect the
pieces Jb,xK/K for x ∈ S+

λ,b with each other. To finish the proof, it remains to connect (for
each x ∈ S+

λ,b) the pieces Jb,w̃K/K for w̃ ∈ Sλ,b,x with each other. This is an essential difficulty
because the structure of Sλ,b,x is much more mysterious. To overcome it, we show that each
set Sλ,b,x contains a unique (distinguished) element xdist which is of minimal length in its Weyl
group coset, and then connect Jb,w̃K/K with Jb,xdist

K/K for all w̃ ∈ Sλ,b,x. This new connecting
algorithm, motivated from the partial conjugation method by He in [He07] and [He10], is the
major innovation of the paper.

0.5 Organization
The paper is organized as follows. In § 1 we recall some basic notions and introduce the semi-
standard elements. In § 2 we outline the proof of the main result. In § 3 we introduce the set Pw̃

which will play an essential role in our new connecting algorithm. In § 4, we introduce the new
connecting algorithm and use it to connect Jb,w̃K/K for w̃ ∈ Sλ,b,x with each other. In § 5 we
connect Jb,xK/K for x ∈ S+

λ,b with each other. In §§ 6–8 we compute the stabilizer in Jb of each
connected component of X(λ, b)K .

1. Preliminaries

In the body of the paper we assume that G is unramified, simple, and adjoint. Without loss of
generality, we assume further that F = Fq((t)). Then F̆ = k((t)) with valuation ring OF̆ = k[[t]]
and residue field k = Fq.

1.1 Root datum
Let T ⊆ B be a maximal torus and a Borel subgroup defined over OF . Let R = (Y, Φ∨, X, Φ, S0)
be the root datum associated to the triple (T, B, G), where X and Y are the character group and
cocharacter group of T respectively equipped with a perfect pairing 〈, 〉 : Y ×X → Z; Φ = ΦG ⊆
X (respectively, Φ∨ ⊆ Y ) is the set of roots (respectively, coroots); S0 is the set of simple roots
appearing in B. Let Φ+ = Φ ∩ Z�0S0 be the set of positive roots. Then we have Φ = Φ+ 
 Φ−

with Φ− = −Φ+. For α ∈ Φ, we denote by sα the reflection which sends μ ∈ Y to μ− 〈μ, α〉α∨,
where α∨ ∈ Φ∨ denotes the coroot of α. Via the bijection α↔ sα, we also denote by S0 the set
of simple reflections.

Let V = Y ⊗Z R. We say v ∈ V is dominant if 〈v, α〉 � 0 for each α ∈ Φ+. Let Y + and
V + be the set of dominant vectors in Y and V , respectively. For v, v′ ∈ V we write v′ � v if
v − v′ ∈ R�0(Φ+)∨. For μ, λ ∈ Y we write λ  μ if μ− λ ∈ ZΦ∨ and λ̄ � μ̄. Here for w ∈ V we
denote by v̄ the unique dominant W0-conjugate of v.

Let Φ̃ = Φ̃G = Φ× Z be the set of (real) affine roots. Let α̃ = α + k ∈ Φ̃. Then α̃ is an affine
function on V such that α̃(v) = −〈α, v〉+ k. Let

a = {v ∈ YR; 0 < 〈α, v〉 < 1, α ∈ Φ+}
be the base alcove. Set Φ̃+ = Φ̃+

G = {α̃ ∈ Φ̃; α̃(a) > 0} and Φ̃− = −Φ̃+. Then Φ̃ = Φ̃+ 
 Φ̃−. Note
that Φ± ⊆ Φ̃∓.

1.2 Iwahori–Weyl group
Let W0 = WG = NT (F̆ )/T (F̆ ) be the Weyl group of G, where NT is the normalizer of T in G.
The Iwahori–Weyl group of G is given by

W̃ = W̃G = NT (F̆ )/T (OF̆ ) = Y � W0 = {tμw; μ ∈ Y, w ∈W0}.
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We can view W̃ as a subgroup of affine transformations of V such that the action of w̃ = tμw is
given by v �→ μ + w(v) for v ∈ V . The induced action of W̃ on Φ̃ is given by w̃(α̃)(v) = α̃(w̃−1(v)).
More precisely, if w̃ = tμw and α̃ = α + k, then w̃(α̃) = w(α) + 〈w(α), μ〉+ k.

Let α̃ = α + k ∈ Φ̃ and let sα̃ = tkα∨
sα ∈ W̃ be the corresponding affine reflection. Then

{sα̃; α̃ ∈ Φ̃} generates the affine Weyl group

W a = W a
G = ZΦ∨ � W0 = {tμw; μ ∈ ZΦ∨, w ∈W0}.

Moreover, we have W̃ = W a � Ω, where Ω = ΩG = {ω ∈ W̃ ; ω(a) = a}. Let � : W̃ → N be the
length function given by �(w̃) = |Φ̃− ∩ w̃(Φ̃+)|. Let Sa = {sα̃; α̃ ∈ Φ̃, �(sα̃) = 1} be the set of
simple affine reflections. Then (W a, Sa) is a Coxeter system, and denote by ≤=≤G the associated
Bruhat order on W̃ = W a � Ω. We frequently use the following fact on Bruhat order.

Lemma 1.1. Let w̃ and α̃ ∈ Φ̃+. Then w̃sα̃ ≤ w̃ if and only if w̃(α̃) ∈ Φ̃−.

By abuse of notation, we freely identify an element of W̃ with one of its lifts in NT (F̆ ),
according to the context.

1.3 σ-conjugacy classes
Recall that σ is the Frobenius automorphism of G(F̆ ). We also denote by σ the induced automor-
phism of the root datum R. Then σ acts on V as a linear transformation of finite order fixing
a. For w̃ ∈ W̃ there exists a nonzero integer m such that (w̃σ)m = tξ for some ξ ∈ Y . Define
νw̃ = ξ/m ∈ V , which does not depend on the choice of m.

Let b ∈ G(L). We denote by [b] = [b]G = {g−1bσ(g); g ∈ G(L)} the σ-conjugate class of b.
By [Kot85], the σ-conjugacy class [b] is determined by two invariants: the Kottwitz point κG(b) ∈
π1(G)σ and the Newton point νG(b) ∈ (V +)σ. Here κG : G(F̆ )→ π1(G)σ = π1(G)/(σ − 1)π1(G)
is the natural projection. To define νG(b), we note that there exists w̃ ∈ W̃ such that w̃ ∈ [b].
Then νG(b) = ν̄w̃, which does not depend on the choice of w̃.

1.4 Affine Deligne–Lusztig varieties
For γ ∈ Φ let uγ : Ga → G be the corresponding root subgroup. Let

I = T (OF̆ )
∏

α∈Φ+

uα(tOF̆ )
∏

β∈Φ−
uβ(OF̆ ) ⊆ G(F̆ )

be the Iwahori subgroup associated to the base alcove a.
For w̃ ∈ W̃ and b ∈ G(F̆ ) the associated affine Deligne–Lusztig variety is given by

Xw̃(b) = {g ∈ G(F̆ )/I; g−1bσ(g) ∈ Iw̃I}.
We are interested in the following union of affine Deligne–Lusztig varieties

X(λ, b) = XG(λ, b)I = ∪x∈Adm(λ)Xx(b),

where Adm(λ) is the λ-admissible set defined by

Adm(λ) = {x ∈ W̃ ; x ≤ tw(λ) for some w ∈W0}.
By [He16], X(λ, b) �= ∅ if and only if κG(tλ) = κG(b) and νG(b) � λ�, where λ� is the σ-average
of λ. We say the pair (λ, b) is Hodge–Newton irreducible if κG(tλ) = κG(b) and λ� − νG(b) ∈∑

α∈S0
R>0α

∨.
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1.5 Levi subgroups
Let M be a semi-standard Levi subgroup of G, that is, a Levi subgroup containing T . Then
B ∩M is a Borel subgroup of M . By replacing the triple (T, B, G) with (T, B ∩M, M), we can
define, as in previous subsections, Φ+

M , W̃M , Sa
M , ΩM , Φ̃+

M , IM , κM , ≤M , and so on.
For v ∈ V we set Φv = {α ∈ Φ; α(v) = 0} and let Mv ⊆ G be the Levi subgroup generated by

T and the root subgroups Uα for α ∈ Φv. We set W̃v = W̃Mv , Φ̃v = Φ̃Mv , and so on. If v ∈ V +,
let Jv = {s ∈ S0; s(v) = v}.

Let J ⊆ S0. Then there exists some v′ ∈ V + such that Jv′ = J . We put MJ = Mv′ , ΦJ =
ΦMJ

, W̃J = W̃MJ
, W a

J = W a
MJ

, ΩJ = ΩMJ
, ≤J=≤MJ

, and so on. We say μ ∈ Y is J-dominant
(respectively, J-minuscule) if 〈α, μ〉 � 0 (respectively, 〈α, μ〉 ∈ {0,±1}) for α ∈ Φ+

J .

1.6 The left cyclic shift ⇀
Let K ⊆ Sa. Denote by WK ∈W a the parabolic subgroup generated by K. Set KW̃ = {w̃ ∈
W̃ ; w̃ < sw̃ for s ∈ K} and W̃K = (KW̃ )−1.

Lemma 1.2. Let K ⊆ Sa and w̃ ∈ KW̃ . Then:

(1) if w̃ < w̃s with s ∈ Sa, then w̃s ∈ KW̃ or w̃s = s′w̃ for some s′ ∈ K;
(2) if w̃′ ∈ KW̃ lies in the WK-σ-conjugacy class of w̃, then w̃′ = w̃.

Proof. If w̃s /∈ KW̃ , then there exits s′ ∈ K such that s′w̃s < w̃s, that is, sw̃−1(α̃′) ∈ Φ̃−, where
α̃′ ∈ Φ̃+ is the simple affine root of s′. Note that w̃−1(α̃′) ∈ Φ̃+ (since w̃ ∈ KW̃ ) and that s is
a simple reflection, it follows that w̃−1(α̃′) is the affine simple root of s. Thus s′w̃ = w̃s and
statement (1) is proved. The statement (2) is proved in [He07, Corollary 2.6]. �

Let w̃, w̃′ ∈ W̃ and s ∈ Sa. Write w̃ ⇀s w̃′ (respectively, w̃ →s w̃′) if w̃′ = sw̃σ(s) and sw̃ < w̃
(respectively, �(w̃′) � �(w̃)). Note that w̃ ⇀s w̃′ implies that w̃ →s w̃′. For K ⊆ Sa we write
w̃ ⇀K w̃′ if there is a sequence w̃ = w̃0 ⇀s0 w̃1 ⇀s1 · · ·⇀sn w̃n+1 = w̃′ with si ∈ K for 0 � i � n.
We can define w̃ →K w̃′ in a similar way.

For x ∈ KW̃ we define I(K, x) = max{K ′ ⊆ K; xσ(K ′)x−1 = K ′}. Note that I(K, x) is
unique by definition. It also can be an empty set.

Lemma 1.3. For K ⊆ Sa and x ∈ KW̃ we have I(K, x) ⊆Wνx .

Proof. As I(K, x) is a finite set, there exists n ∈ Z�1 such that (xσ)n = tnνx fixes each element
of I(K, x), that is, p(s)(νx) = νx for s ∈ I(K, x). Here p : W̃ � 〈σ〉 →W0 � 〈σ〉 is the natural
projection. Thus, I(K, x) ⊆Wνx as desired. �

Theorem 1.4 [He07, § 3]. Let K ⊆ Sa and w̃ ∈ W̃ . If WK is finite, then there exist x ∈ KW̃
and u ∈WI(x,K) such that w̃ →K ux. Moreover, the element x ∈ KW̃ is uniquely determined by
the WK-σ-conjugacy class of w̃, which may be empty.

1.7 Semi-standard elements
We say w̃ ∈ W̃ is semi-standard if w̃σ(Φ̃+

νw̃
) = Φ̃+

νw̃
, or equivalently, w̃σIMνw̃

:= w̃σ(IMνw̃
)w̃−1 =

IMνw̃
. We say w̃ is standard if it is semi-standard and νw̃ is dominant. Let S and S+ denote the

set of semi-standard elements and standard elements respectively.

Lemma 1.5. Let w̃ ∈ S. Then:

(1) zw̃σ(z)−1 ∈ S if z ∈ W̃ such that z(Φ̃+
νw̃

) ⊆ Φ̃+;
(2) there is a unique w̃′ ∈ S+ in the W0-σ-conjugacy class of w̃, and moreover, there is a unique

element z′ ∈W
Jν̄w̃
0 such that w̃ = z′w̃′σ(z′)−1;
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(3) w̃′ ∈ S if w̃ →Sa w̃′;
(4) Jw̃ is generated by I ∩ Jw̃ and W̃ ∩ Jw̃;
(5) w̃ ∈ ΩJνw̃

if w̃ ∈ S+;
(6) w̃ ≤ uw̃ for any u ∈Wνw̃ .

Proof. Note that νzw̃σ(z)−1 = p(z)(νw̃) and, hence, z(Φ̃νw̃) = Φ̃νzw̃σ(z)−1 , where p : W̃ � 〈σ〉 →
W0 � 〈σ〉 is the natural projection. Thus, z(Φ̃±

νw̃
) = Φ̃±

νzw̃σ(z)−1
, and part (1) follows by definition.

Let z′ ∈W
Jν̄w̃
0 such that z′(ν̄w̃) = νw̃. Let w̃′ = z′−1w̃σ(z′). Note that z′(Φ̃+

ν̄w̃
) = Φ̃+

νw̃
. So

w̃′ ∈ S+ by (1). Assume there is another w̃′′ ∈ S+ such that w̃ = ww̃′′σ(w)−1 for some w ∈W0.
Write w = z′′u with z′′ ∈W

Jν̄w̃
0 and u ∈WJν̄w̃

. Then νw̃′ = νw̃′′ = ν̄w̃ and z′−1z′′ ∈WJν̄w̃
. Thus,

z′ = z′′ ∈W
Jν̄w̃
0 , and w̃′′, w̃′ ∈ ΩJν̄w̃

are σ-conjugate by WJν̄w̃
. Thus, w̃′ = w̃′′ as desired.

To prove part (3) we can assume w̃ →s w̃′ for some s ∈ Sa and w̃ �= w̃′. Thus, either sw̃ < w̃ or
w̃σ(s) < w̃. In view of part (1) it suffices to show s(Φ̃+

νw̃
) ⊆ Φ̃+. Otherwise, the simple affine root

of s lies in Φ̃+
νw̃

. Hence, sw̃, w̃σ(s) > w̃ (since w̃σ(Φ̃+
νw̃

) = Φ̃+
νw̃

), contradicting our assumption.
Note that Jw̃ ⊆Mνw̃ . Then part (4) follows from that w̃σIMνw̃

= IMνw̃
, w̃σW̃Mνw̃

= W̃Mνw̃
,

and the Bruhat decomposition Mνw̃(F̆ ) = IMνw̃
W̃Mνw̃

IMνw̃
.

Assume w̃ ∈ S+, that is, νw̃ = σ(νw̃) is dominant. As p(w̃σ)(νw̃) = νw̃, we have p(w̃)(νw̃) =
νw̃ and, hence, w̃ ∈ W̃νw̃ = W̃Jνw̃

. Moreover, w̃(Φ̃+
Jνw̃

) = w̃σ(Φ̃+
Jνw̃

) = Φ̃+
Jνw̃

by definition. This
means that w̃ ∈ ΩJνw̃

and part (5) is proved.
By part (2) there exits z ∈ Jν̄w̃ W0 and w̃′ ∈ S+ such that w̃′ = z−1w̃σ(z). Let u ∈Wνw̃ . Then

z−1uz ∈W a
Jν̄w̃

since z(νw̃) = νν̄w̃ . By part (5) we have w̃′′ ∈ ΩJνw̃
and, hence, w̃′′ ≤ (z−1uz). It

follows from [CN19, Lemma 1.3] that

w̃ = zw̃′σ(z)−1 ≤ z(z−1uz)w̃′σ(z)−1 = uw̃

and part (b) follows. �

2. Outline of the proof

We fix λ ∈ Y + and b ∈ G(F̆ ) such that X(λ, b) �= ∅. Let J = JνG(b) ⊆ S0. We may and do assume
that b ∈MJ(F̆ ) and νMJ

(b) = νG(b). As b is basic in MJ(F̆ ) we assume further that b ∈ ΩJ . Set
Sλ,b = Adm(λ) ∩ S ∩ [b].

For x ∈ ΩJ
∼= π1(MJ) ∼= Y/ZΦ∨

J we set μx ∈ Y such that x = tμxp(x), where p : W̃ � 〈σ〉 →
W0 � 〈σ〉 is the natural projection. Define

S+
λ,b = {x ∈ ΩJ ; κMJ

(x) = κMJ
(b), μx  λ},

Sλ,b,x = {zxσ(z)−1 ∈ Adm(λ); x ∈ S+
λ,b, z ∈W J

0 }.
Lemma 2.1. We have S+

λ,b = S+ ∩ Sλ,b ⊆ ΩJ and Sλ,b =
⊔

x∈S+
λ,b
Sλ,b,x. In particular, x ∈ Sλ,b,x

for x ∈ S+
λ,b.

Proof. Let x ∈ S+
λ,b ⊆ ΩJ . Then κMJ

(x) = κMJ
(b) ∈ π1(MJ)/(1− σ)π1(MJ) by definition. In

view of the natural identification ΩJ
∼= π1(MJ), the previous equality means that x ≡ b

mod (1− σ)ΩJ , or equivalently, x and b are ΩJ -σ-conjugate. In particular, νx = νMJ
(b) = νG(b)

is dominant and x ∈ S+. Moreover, as x ∈ ΩJ , x ≤J tμx ∈ Adm(λ) (since μx  λ). Thus, x ∈
S+ and S+

λ,b ⊆ S+ ∩ Sλ,b. Let x′ ∈ S+ ∩ Sλ,b. Then νx′ is dominant and, hence, νx′ = νG(b)
(since x′ ∈ [b]). In particular, we have x′ ∈ ΩJ (by Lemma 1.5(5)) and κMJ

(x′) = κMJ
(b)
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(by [CKV15, Remark 2.5.8]). Since x′ ∈ Adm(λ), it follows that μx′  λ. Therefore, x′ ∈ S+
λ,b

and, hence, S+
λ,b = S+ ∩ Sλ,b.

Let w̃ ∈ Sλ,b. Then ν̄w̃ = νG(b). By Lemma 1.5 there exist x ∈ S+ and z ∈W J
0 such that

w̃ = zxσ(z)−1. As w̃ ∈ [b], we have νx = ν̄w̃ = νG(b) and κG(x) = κG(w̃) = κG(b). By the proof of
[GHN15, Proposition 3.5.1] we have κMJ

(x) = κMJ
(b). Moreover, as w̃ ∈ Adm(λ) and W0w̃W0 =

W0xW0 = W0t
μxW0, we have μx  λ. Thus, x ∈ S+

λ,b and the second statement follows. �

For b′ ∈ G(F̆ ) we set Jb,b′ = JG
b,b′ = {g ∈ G(F̆ ); g−1bσ(g) = b′} and put Jb = Jb,b′ if b = b′.

Then Jb acts on Jb,b′ and X(λ, b) by left multiplication.

Theorem 2.2 [HZ20]. Each connected component of X(λ, b) intersects Jb,w̃I/I for some w̃ ∈
Sλ,b.

Proof. By [HZ20, Theorem 4.1], each connected component of X(λ, b) intersects Xw̃(b) for some
σ-straight element w̃ ∈ Adm(λ) which is σ-conjugate to b. Then the statement follows from
[He14, Proposition 4.5] and the proof of [Nie15, Theorem 1.3] that Xw̃(b) = Jb,w̃I/I and w̃ ∈ Sλ,b,
respectively. �

For g, g′ ∈ G(F̆ ) we write gI ∼λ,b g′I if they are in the same connected component of X(λ, b).
For w̃, w̃′ ∈ Sλ,b, we write Jb,w̃ ∼λ,b Jb,w̃′ if their natural images in π0(X(λ, b)) coincide.

In the following four propositions, we retain the assumptions in Theorem 0.2. The proofs are
given in the remaining sections.

Proposition 2.3. For x ∈ S+
λ,b and w̃, w̃′ ∈ Sλ,b,x we have Jb,w̃ ∼λ,b Jb,w̃′ .

Proposition 2.4. For x, x′ ∈ S+
λ,b we have Jb,x ∼λ,b Jb,x′ .

Proposition 2.5. The natural action of ker(ηMJ
) ∩ Jb on π0(X(λ, b)) is trivial.

Proposition 2.6. The natural action of

(ker(ηG) ∩ Jb)/(ker(ηMJ
) ∩ Jb) ∼= (ZΦ∨/ZΦ∨

J )σ

on π0(X(λ, b)) is trivial.

Proof of Theorem 0.2. By [He16, Theorem 1.1], it suffices to consider the Iwahori case K = I.
By Proposition 2.2, the natural projection

∪w̃∈Sλ,b
Jb,w̃ → π0(X(λ, b))

is surjective. Note that Sλ,b = ∪x∈S+
λ,x
Sλ,b,x. It follows from Propositions 2.3 and 2.4 that the

natural projection
Jb,w̃ → π0(X(λ, b))

is surjective for any w̃ ∈ Sλ,b. Since Jb acts on Jb,w̃ transitively, Jb also acts on π0(X(λ, b))
transitively. Thus, by Propositions 2.5 and 2.6,

π0(X(λ, b)) ∼= Jb/(ker(ηG) ∩ Jb).

As b ∈ ΩJ and Jb = JMJ
b , it follows by Lemma 1.5(4) that Jb is generated by IMJ

∩ Jb, W a
MJ
∩ Jb

and ΩJ ∩ Jb = Ωσ
J . Hence, Jb = (ker(ηMJ

) ∩ Jb) � Ωσ
J . Since ker(ηMJ

) ⊆ ker(ηG), ker(ηG) ∩ Jb =
(ker(ηMJ

) ∩ Jb) � (ker(ηG) ∩ Ωσ
J). Thus, we have

Jb/(ker(ηG) ∩ Jb) ∼= Ωσ
J/(ker(ηG) ∩ Ωσ

J) ∼= π1(G)σ,

where the last isomorphism follows from [CKV15, Lemma 2.5.11] that the natural map Y σ →
π1(MJ)σ ∼= Ωσ

J → π1(G)σ is surjective. The proof is finished. �
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3. The set Pw̃

In the rest of the paper, we assume that G is adjoint, simple, and its root system Φ has d
irreducible factors.

3.1 The set Pw̃

For w̃ ∈ Adm(λ) we denote by Pw̃ the set of roots α ∈ Φ+ \ Φνw̃ such that w̃σ(sα) ∈ Adm(λ)
and (w̃σ)−mα,w̃(α) ∈ Φ̃+. Here

mα,w̃ = min{i ∈ Z�1; (w̃σ)−i(α) ∈ Φ̃ \ Φ},
= min{i ∈ Z�1; 〈α, p(w̃σ)i−1(μw̃)〉 �= 0},

where μw̃ ∈ Y such that w̃ ∈ tμw̃W0. Note that mα,w̃ is well defined since 〈α, νw̃〉 �= 0, and α ∈ Pw̃

if and only if 〈α, p(w̃σ)mα,w̃−1(μw̃)〉 � −1.
The sets Pw̃ will be used to construct affine lines of X(λ, b) in the next section. The main

result of this section is as follows.

Proposition 3.1. Assume (λ, b) is Hodge–Newton irreducible. Then Pw̃ �= ∅ for w̃ ∈ Sλ,b \ S0W̃ .

The proposition is proved in § 3.4. The proof is based on induction on left cyclic shifts studied
in § 3.3. In a single induction step, we will come up against an extreme (and harder) case, which
involves distinct elements introduced in § 3.2.

3.2 Distinct elements
Let R be a σ-orbit of S0. We say w̃ ∈ Adm(λ) is left R-distinct (respectively, right R-distinct)
if sw̃ /∈ Adm(λ) (respectively, w̃s /∈ Adm(λ)) for s ∈ R. Let wR denote the longest root of WR.
As σ(R) = R we have σ(wR) = wR.

Lemma 3.2. Let R be a σ-orbit of S0. If w̃ ∈ Adm(λ) is left R-distinct, then w̃ ∈ RW̃ . Moreover:
(1) wRw̃wR ∈ Adm(λ) is right R-distinct; and (2) PwRw̃wR �= ∅ if Pw̃ �= ∅.
Proof. Let s ∈ R. If sw̃ < w̃, then sw̃ ∈ Adm(λ) since w̃ ∈ Adm(λ), which is a contradiction.
Thus, sw̃ > w̃ and, hence, w̃ ∈ RW̃ .

To show part (1) we can assume d = 1. Then one checks that R is either commutative or is
of type A2. Thus, part (1) follows from Lemma A.4.

Now we show part (2). Let α ∈ Pw̃ and set αi = (w̃σ)i(α) ∈ Φ̃ for i ∈ Z. Let

nα = min{i ∈ Z�0; α−i /∈ Φ+
R} � mα,w̃.

It suffices to show that wR(α−nα) ∈ PwRw̃wR . First we check that

α−nα ∈ Φ+ and wRw̃wRσ(swR(α−nα )) = wRw̃σ(sα−nα )wR ∈ Adm(λ).(a)

If nα = 0, then α−nα = α ∈ Φ+ \ ΦR, and part (a) follows from Corollary A.6. Otherwise,
α−nα+1 ∈ Φ+

R ⊆ Φ̃−. Noting that w̃ ∈ RW̃ (since w̃ ∈ Adm(λ) is left R-distinct), by Lemma 1.1
we have α−nα = (w̃σ)−1(α−nα+1) ∈ Φ̃−. Hence, α−nα ∈ Φ+ since nα � mα,w̃ and α−mα,w̃ ∈ Φ̃+.
Moreover,

wRw̃wRσ(wR(α−nα)) = wR(α−nα+1) ∈ Φ−
R ⊆ Φ̃+.

By Lemma 1.1, wRw̃wRσ(swR(α−nα )) ≤ wRw̃wR ∈ Adm(λ), and part (a) follows.
Note the following three facts: (wRw̃wR)i(wR(α−nα)) = wR(α−nα+i) for i ∈ Z; wR ∈

W0 preserves Φ̃ \ Φ; and nα < nα,w̃ (since α−nα ∈ Φ). Then it follows, by definition, that
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nwR(α−nα ),wRw̃wR
= nα,w̃ − nα and

(wRw̃wR)−nwR(α−nα ),wRw̃wR (wR(α−nα)) = wR(α−nα,w̃) ∈ Φ̃+ \ Φ,

where the inclusion follows from α−nα,w̃ ∈ Φ̃+ \ Φ. Therefore, we have wR(α−nα) ∈ PwRw̃wR as
desired. �
Lemma 3.3. Let R be a σ-orbit of S0. Let w̃ ∈ Adm(λ) ∩ S. If w̃ /∈ RW̃ and w̃ is not right
R-distinct. Then Pw̃ �= ∅.
Proof. By assumption, there exist s′ ∈ R and 0 � i � |R| − 1 such that σ−i(s′)w̃ < w̃ and
w̃σ(s′) ∈ Adm(λ). Thus, we can define

k = min{0 � i � |R| − 1; σ−i(s′)w̃ < w̃, w̃σ(s′) ∈ Adm(λ) for some s′ ∈ R}.
Choose s ∈ R such that σ−k(s)w̃ < w̃ and w̃σ(s) ∈ Adm(λ). Let α ∈ Φ+ be the simple root of s.
Set γi = (w̃σ)i(γ) ∈ Φ̃ for γ ∈ Φ and i ∈ Z. We claim that

α−i = σ−i(α) for 0 � i � k, and hence mα,w̃ � k + 1.(a)

Let 0 � i � k − 1. By the choice of k we have w̃ < σ−i(s)w̃ and w̃σ−i(s) /∈ Adm(λ), which means
that w̃σ−i(s) = σ−i(s)w̃ by Lemma A.2, that is, σ−i(α) = w̃σ−i(α) (since w̃ < σ−i(s)w̃). Thus,

α−i−1 = (σ−1w̃−1)i+1(α) = (σ−1w̃−1)iσ−1(α) = · · · = (σ−1w̃−1)σ−i(α) = σ−i−1(α).

Thus, part (a) is proved.
By part (a) we have α−k ∈ Φ+. Thus, α−k−1 = (w̃σ)−1(α−k) ∈ Φ̃+ since σ−k(s)w̃ < w̃. As

w̃ ∈ S, it follows that α−k /∈ Φνw̃ and, hence, αi /∈ Φνw̃ for i ∈ Z. If α /∈ Pw̃, then α−mα,w̃ ∈
Φ̃− \ Φ by definition. Thus, α−k−1 ∈ Φ̃+ ∩ Φ = Φ− since k + 1 � mα,w̃ by part (a). Let
β = −α−k−1 ∈ Φ+ \ Φνw̃ . Then β−mβ,w̃ = −α−mα,w̃ ∈ Φ̃+ \ Φ, and w̃σ(sβ) < w̃ ∈ Adm(λ) since
w̃σ(β) = −α−k ∈ Φ−. Thus, β ∈ Pw̃ as desired. �

3.3 Reduction by cyclic shifts
To show Proposition 3.1, we introduce a reduction method via the left cyclic shift. We adopt the
notation from § 1.6.

Proposition 3.4. Let K ⊆ S0 and w̃ ∈ Sλ,b. Then there exists a unique semi-standard element
w̃′ ∈ KW̃ which is σ-conjugate to w̃ by WK . If, moreover, K = S0 and (λ, b) is Hodge–Newton
irreducible, then w̃′ is not left R-distinct for any σ-orbit R of S0.

Proof. By Theorem 1.4, there exist unique w̃′ ∈ KW̃ and some u ∈ I(K, w̃′) such that w̃ →K uw̃′.
Thus, ΦI(K,w̃′) ⊆ Φνw̃′ (by Lemma 1.3) and �(uw̃′) = �(u) + �(w̃′). As w̃ ∈ S, by Lemma 1.5(3)
and (6) we have uw̃′ ∈ S and uw̃′ ≤ u−1uw̃′ = w̃′. Thus, u = 1, and the first statement follows.
The second statement is proved in [CN19, Lemma 6.11]. �
Lemma 3.5. Let K ⊆ S0 and w̃ ∈ S. Then is no infinite sequence

w̃ = w̃0 ⇀s1 w̃1 ⇀s2 · · · ,
where si ∈ K for i ∈ Z�0. In particular, w̃ ⇀K w̃′ for some w̃′ ∈ S ∩ KW̃ .

Proof. We argue by induction on |K|. If K = ∅, the statement is trivial. Assume |K| � 1. Suppose
there exists such an infinite sequence. As w̃ ∈ S, w̃i ∈ S for i ∈ Z�0 by Lemma 1.5(3). Noting
that �(w̃0) � �(w̃1) � · · · , we can assume that: (a) �(w̃0) = �(w̃1) = · · · . Write w̃i = uiyi with
ui ∈WK and yi ∈ KW̃ . Then si+1ui < ui and, hence, yiσ(si+1) > yi. By Lemma 1.2(1), for each
i ∈ Z�0 we have yi ≤ yi+1, and more precisely, either yi+1 = yiσ(si+1) > yi or yi+1 = yi and
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yiσ(si+1)y−1
i ∈ K. Thus, we can assume further that y0 = y1 = · · · , that is: (b) there exists

y ∈ KW̃ such that w̃i ∈WKy and yσ(si)y−1 ∈ K for i ∈ Z�1. Let K ′ = {si; i ∈ Z�1} ⊆ K. If
K ′ = K, then by part (b) we have K = I(K, y) ⊆Wνw̃ , see § 1.5. Thus, w̃i = y ∈ KW̃ since
w̃i ∈ S, which is impossible. Otherwise, K ′ � K and it contradicts the induction hypothesis for
the proper subset K ′. �

Proposition 3.6 [CN19, Proposition 6.16]. Let w̃ ∈ S and let w̃′ ∈ S0W̃ be the unique element
in the W0-σ-conjugacy class of w̃. Then there is a sequence

w̃ = w̃0 ⇀R1 w̃1 ⇀R2 · · ·⇀Rn w̃n = w̃′,

where Ri ⊆ K is a σ-orbit and w̃i ∈ S ∩ RiW̃ for 1 � i � n.

Proof. Assume otherwise. Then by Lemma 3.5 there is an infinite sequence

w̃ = w̃0 ⇀R0 w̃1 ⇀R1 · · · ,
where w̃i+1 ∈ RiW̃ and Ri is some σ-orbit of S0 for i ∈ Z�0. This contradicts Lemma 3.5. Thus,
the statement follows. �

3.4 Proof of Proposition 3.1
By Proposition 3.6, there exists a sequence

w̃ = w̃0 ⇀R1 w̃1 ⇀R2 · · ·⇀Rn w̃n = w̃′,

where w̃0, . . . , w̃n ∈ S are distinct elements, R0, . . . , Rn are σ-orbits of S0, w̃′ ∈ S0W̃ , and w̃i ∈
RiW̃ for 1 � i � n.

We argue by induction on n. If n = 0, then w̃ ∈ S0W̃ and there is nothing to prove. Assume
n � 1. If w̃ ∈ R1W̃ , then w̃ = w̃1 by Lemma 1.2(2), contradicting our assumption that w̃ = w̃0 �=
w̃1. Thus, w̃ /∈ R1W̃ . If w̃ = w̃0 is not right R1-distinct, then Pw̃ �= ∅ by Lemma 3.3. Otherwise,
by Lemma A.4, wR1w̃wR1 ∈ Adm(λ) is left R1-distinct, where wR1 is the longest element of WR1 .
In view of Lemmas 3.2 and 1.2(2), we have wR1w̃wR1 = w̃1 ∈ R1W̃ . Thus, w̃1 ∈ Sλ,b. Moreover,
w̃1 /∈ S0W̃ by Proposition 3.4. Thus, Pw̃1 �= ∅ by the induction hypothesis, which implies that
Pw̃ �= ∅ by Lemma 3.2.

4. Proof of Proposition 2.3

In this section, we prove Proposition 2.3 for all x ∈ S+
λ,b. We introduce a new algorithm in § 4.3

to construct affine lines connecting the sets Jb,w̃ for w̃ ∈ Sλ,b,x with each other. This algorithm
is based on an induction on the vectors ν


w̃ introduced in § 4.1. The construction of affine lines is
given in § 4.2, which relies on the sets Pw̃ studied in previous section.

Assume that (λ, b) is Hodge–Newton irreducible. Recall that d is the number of connected
components of S0.

4.1 The vector ν�
w̃

Let η ∈ Y +. Let A = max{|〈α, η〉|; α ∈ Φ}. Fix M ∈ Z�2 such that M |〈α, η〉| > 2A for any α ∈ Φ
with 〈α, η〉 �= 0. Motivated from the a-function in [He10], for w̃ ∈ tμW0 ⊆W0t

ηW0 we define

ν

w̃ =

N−1∑
i=0

p(w̃σ)i(μ)
M i

∈ V,

where N is the order of the natural projection image p(w̃σ) ∈W0σ.
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Lemma 4.1. Let α ∈ Φ and 0 � n � N − 1 such that 〈α, p(w̃σ)n(μ)〉 �= 0 and 〈α, p(w̃σ)i(μ)〉 = 0
for 0 � i � n− 1. Then 〈α, ν


w̃〉〈α, p(w̃σ)n(μ)〉 > 0. In particular, if α ∈ Φ \ Φνw̃ , then 〈α, ν

w̃〉 < 0

if and only if (w̃σ)−mα,w̃(α) ∈ Φ̃+ \ Φ.

Proof. Note that μ, η are conjugate by W0. By the choice of M � 2 we have∣∣∣∣〈α, p(w̃σ)n(μ)〉
Mn

∣∣∣∣ >
2A

Mn+1
>

A

Mn+1

N−1∑
i=n+1

1
M i−n−1

�
N−1∑

i=n+1

∣∣∣∣〈α, p(w̃σ)i(μ)〉
M i

∣∣∣∣.
Thus, the statement follows. �
Corollary 4.2. We have the following properties:

(1) 〈α, ν

w̃〉 = 0 if and only if 〈α, p(w̃σ)i(μ)〉 = 0 for i ∈ Z;

(2) ν

w̃ is dominant for Φ+

νw̃
if w̃ ∈ S;

(3) ν

zw̃σ(z)−1 = z(ν


w̃) for z ∈W0;

(4) w̃σ(Φ̃±
ν�

w̃

) = Φ̃±
ν�

w̃

if w̃ ∈ S;

(5) if α ∈ Pw̃, then the roots (w̃σ)i(α) ∈ Φ for 1−mα,w̃ � i � 0 are linearly independent, and
moreover, 〈(w̃σ)i(α), ν


w̃〉 < 0 for 1−mα,w̃ � i � 0.

Proof. Statement (1) follows from Lemma 4.1 and the definition of ν

w̃.

Suppose there exists α ∈ Φ+
νw̃
⊆ Φ̃− such that 〈α, ν


w̃〉 < 0. By Lemma 4.1, there exists
n ∈ Z�0 such that 〈α, p(w̃σ)n(μ)〉 < 0 and 〈α, p(w̃σ)i(μ)〉 = 0 for 0 � i � n− 1. In particular,
we have (w̃σ)−i(α) = p(w̃σ)−i(α) for 1 � i � n and (w̃σ)−n−1(α) ∈ Φ̃+ \ Φ, contradicting that
w̃ ∈ S. Thus, statement (2) follows.

Statement (3) follows by definition.
By statement (1) we have Φ̃ν�

w̃
= w̃σ(Φ̃ν�

w̃
) ⊆ Φ̃νw̃ . As w̃ ∈ S, we have w̃σ(Φ̃±

νw̃
) = Φ̃±

νw̃
. Thus,

statement (4) follows from that Φ̃±
ν�

w̃

= Φ̃ν�
w̃
∩ Φ̃±

νw̃
.

Let α ∈ Pw̃. Set m = mα,w̃ and αi = (w̃σ)i(α) for i ∈ Z. By definition, 〈α1−m, μ〉 < 0,
α−i = p(w̃σ)−i(α), and 〈α1−i, μ〉 = 〈α, p(w̃σ)i−1(μ)〉 = 0 for 1 � i � m− 1. Thus, it follows from
Lemma 4.1 that 〈αi, ν


w̃〉 < 0 for 1−m � i � 0. Suppose
∑1−m

i=0 ciα
i = 0, where the coefficients

ci ∈ R are not all zero. Let i0 = min{1−m � i � 0; ci �= 0}. Then

0 =
〈

p(w̃σ)1−m−i0

(1−m∑
i=0

ciα
i

)
, μ

〉
=

i0∑
i=0

ci〈α1−m−i0+i, μ〉 = ci0〈α1−m, μ〉 �= 0,

which is a contradiction. Thus, statement (5) follows. �
Lemma 4.3. Let w̃ ∈ S. Then w̃ ∈ S0W̃ if ν


w̃ is dominant.

Proof. Assume ν

w̃ is dominant. Let μ ∈ Y such that w̃ ∈ tμW0. Then μ is dominant by

Lemma 4.1. We show w̃ < sαw̃ for α ∈ Φ+. If 〈α, ν

w̃〉 > 0, then either 〈α, μ〉 > 0, or 〈α, μ〉 = 0

and 〈p(w̃σ)−1(α), ν

w̃〉 > 0 (hence, p(w̃σ)−1(α) ∈ Φ+) by Corollary 4.2, which means w̃ < sαw̃ as

desired. Suppose 〈α, ν

w̃〉 = 0, that is, α ∈ Φ+

ν�
w̃

⊆ Φ̃−. Thus, (w̃σ)−1(α) ∈ Φ̃−
ν�

w̃

by Corollary 4.2(4),
which also means w̃ < sαw̃ as desired. �

4.2 Construction of affine lines
Let α̃ = α + k ∈ Φ̃. We denote by Uα̃ ⊆ LG be the corresponding affine root subgroup of the loop
subgroup LG associated to G. More precisely, Uα̃(z) = uα(ztk) for z ∈ k, where uα : Ga → G is
the root subgroup corresponding to α. For simplicity we write Uα̃ = Uα̃(k) ⊆ G(F̆ ) if no confusion
is caused.
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For g ∈ G(F̆ ), γ̃ ∈ Φ̃, w̃ ∈ W̃ , and m ∈ Z�0, we define

gg,γ̃,w̃,m : A1 → G(F̆ )/I, z �→ g(w̃σ)1−m
Uγ̃(z) · · · (w̃σ)−1

Uγ̃(z)Uγ̃(z)I.

It extends to a unique morphism from P1 = A1 ∪ {∞} to G(F̆ )/I which we still denoted by
gg,γ̃,w̃,m. Here gσi

Uγ̃(z) = gσi(Uγ̃(z))g−1 for g ∈ G(F̆ ) and i ∈ Z.

Hypothesis 4.1. Recall that Fq is the residue field of F . Assume that qd > 2 (respec-
tively, qd > 3) if some/any connected component of S0 is non-simply-laced except of type G2

(respectively, is of type G2).

Note that if Hypothesis 4.1 is not true, then d = 1 and S0 is non-simply-laced, which implies
that G is residually split, and hence split (since G is unramified).

Lemma 4.4. Suppose Hypothesis 4.1 holds. Let w̃ ∈ W̃ , γ ∈ Φ, and m ∈ Z�0 such that the roots
γi := (w̃σ)i(γ) ∈ Φ for 1−m � i � 0 are linearly independent. Let g = g1,γ,w̃,m. Then there exist
a sequence of integers 1−m � ir < · · · < i0 � 0 (which may be empty) such that

g(∞) = sγir · · · sγi0 I, and sγi0 · · · sγik−1 (γ
ik) ∈ Φ+ for 0 � k � r.

Moreover, if there exists v ∈ V such that 〈γi, v〉 < 0 for 1−m � i � 0, then v �
(sγir · · · sγi0 )−1(v), where the equality holds if and only if the sequence ir, . . . , i0 is empty, or

equivalently, γi ∈ Φ− for 1−m � i � 0.

Proof. By assumption, we have
(w̃σ)i

Uγ(z) = Uγi(ciz
qi

) with ci ∈ O×
F̆

for 1−m � i � 0.(a)

For α �= −α′ ∈ Φ there exist constants cα,α′,i,j ∈ OF̆ for i, j ∈ Z�1 such that

Uα(x)Uα′(y)Uα(−x) = Uα′(y)
∏

i,j∈Z�1

Uiα+jα′(cα,α′,i,jx
iyj).(b)

Now we argue by induction on m. If m = 0, the statement is trivial. Assume m � 1. If γ ∈
Φ−, then Uγ(z) ∈ I and, hence, g(∞) = g1,γ−1,w̃,m−1(∞), from which the statement follows by
induction hypothesis. Otherwise, we have

g(z) = (w̃σ)1−m
Uγ(z) · · · (w̃σ)−1

Uγ(z)U−γ(z−1)sγI for z �= 0.

As the roots γi for 1−m � i � 0 are linearly independent, it follows by parts (a) and (b) that
(w̃σ)1−m

Uγ(z)···(w̃σ)−1
Uγ(z)U−γ(z−1) =

∏
(β,a•)

Uβ(ca•z
na• ),

where a• = (ai)0�i�m−1 ∈ (Z�0)m with a0 � 1, β = −a0γ +
∑m−1

i=1 aiγ
−i ∈ Φ, ca• ∈ OF̆ and

na• = −a0 +
∑m−1

i=1 aiq
−i. Note that ai = 0 unless i ∈ dZ since β ∈ Φ. Moreover, ajd/a0 � 1

(respectively, ajd/a0 � 2; respectively, ajd/a0 � 3) for j � 1 if some/any connected component
of S0 is simply-laced (respectively, is non-simply-laced except of type G2; respectively, is of
type G2). Thus, by Hypothesis 4.1 we have ajd/a0 � qd − 1 for j � 1, which implies that na• < 0
and, hence,

lim
z→∞

(w̃σ)1−m
Uγ(z)···(w̃σ)−1

Uγ(z)U−γ(z−1) = 1.

Then we have

g(∞) = sγg1,sγ(γ−1),sγw̃σ(sγ),m−1(∞).
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By the induction hypothesis, there exist a sequence 2−m � jr < · · · < j1 � 0 of integers such
that

g1,sγ(γ−1),sγw̃σ(sγ),m−1(∞)

= s(sγw̃σsγ)jr (sγ(γ−1)) · · · s(sγw̃σsγ)j1 (sγ(γ−1))I = sγsγjr−1 · · · sγj1−1sγI,

and for 1 � k � r,

s(sγw̃σsγ)j1 (sγ(γ−1)) · · · s(sγw̃σsγ)jk−1(sγ(γ−1))
((sγw̃σsγ)jk(sγ(γ−1)))

= sγsγj1−1 · · · sγjk−1−1(γjk−1) ∈ Φ+.

Take i0 = 0 and ik = jk − 1 for 1 � k � r. Then one checks directly that the first statement is
true.

Set βk = sγi0 · · · sγik−1 (γik) ∈ Φ+ and vk = sγi0 · · · sγik (v) for 0 � k � r. As 〈γik , v〉 < 0 we
have

vk = sβk
(vk−1) = vk−1 − 〈βk, vk−1〉β∨

k = vk−1 − 〈γik , v〉β∨
k > vk−1.

Thus, the ‘Moreover’ part follows. �

Remark 4.5. In view of Corollary 4.2(5), we apply the above lemma (by taking (γ, m, v) =
(α, mw̃,α, ν


w̃) for w̃ ∈ Sλ,b and α ∈ Pw̃) to construct affine lines in X(λ, b).

4.3 A connecting algorithm
Let J = JνG(b). Let x ∈ S+

λ,b. Let Jx,0 = σ(Jx,0) ⊆ J be the union of connected components K

of J such that σi(μx) is central on K for all i ∈ Z. Let Jx,1 = J \ Jx,0. Let Hx ⊆MJ(F̆ ) be the
subgroup generated by IMJ

, WJx,0 , and W a
Jx,1

, see § 1.5. By definition, Jx,1 commutes with Jx,0,
and x ∈ W̃Jx,1 .

Remark 4.6. The reason for distinguishing Jx,0 and Jx,1 is that we will employ different methods
to study the actions of two normal subgroups of ker(ηMJ

) ∩ Jb on X0(X(λ, b)) coming from
Jx,1 and Jx,0 in § 6. Moreover, this distinction also plays a delicate role in handling the case of
Lemma 6.5, see § 6.3.

Note that W̃ =
⊔

z∈W J
0

zW̃J =
⊔

z∈W J
0

⊔
ω∈ΩJ

zω−1W a
J .

Lemma 4.7. Let x ∈ S+
λ,b, w̃ ∈ Sλ,b,x, z ∈W J

0 with w̃ = zxσ(z)−1. Let y ∈ W̃ (respectively,

y ∈W0) such that yw̃σ(y)−1 ∈ Adm(λ). Let z′ ∈W J
0 , ω ∈ ΩJ such that yz ∈ z′ω−1W a

J . Let
x′ = ω−1xσ(ω) and w̃′ = z′x′σ(z′)−1. Then:

(1) x′ ∈ S+
λ,b and w̃′ ∈ Sλ,b;

(2) yw̃σ(y)−1 and w̃′ are σ-conjugate under W a
νw̃′ (respectively, Wνw̃′);

(3) there exists h ∈ ker(ηMJ
) ∩ Jx (respectively, h ∈ Hx ∩ Jx) such that gy−1I ∼λ,b gzhωz′−1I

for g ∈ Jb,w̃.

Proof. Write yz = z′ω−1u with u ∈W a
J . Let δ = uxσ(u)−1x−1 ∈W a

J . Then x ≤J δx (see § 1.5)
since x ∈ ΩJ . As z′ω−1(Φ̃+

J ) ⊆ Φ̃+, it follows from [CN19, Lemma 1.3] that

w̃′ = (z′ω−1)xσ(z′ω−1)−1 ≤ (z′ω−1)δxσ(z′ω−1)−1 = yw̃σ(y)−1 ∈ Adm(λ).

Thus, w̃′ ∈ Adm(λ) ∩ S by Lemma 1.5. Note that w̃′ ∈W0t
μx′W0 and x′ ∈ ΩJ . Then μx′  λ

and x′ ≤J tμx′ ∈ Adm(λ), which means x′ ∈ Adm(λ) and x′ ∈ S+
λ,b. Thus, part (1) follows.

2065

https://doi.org/10.1112/S0010437X23007339 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007339


S. Nie

Note that J = Jνx = Jνx′ . By definition yw̃σ(y)−1, w̃′ are σ-conjugate by

z′ω−1uωz′−1 ∈ z′W a
J z′−1 = z′W a

νx′z
′−1 = W a

νw̃′ .

Moreover, if y ∈W0, then ω = 1, u ∈WJ and hence z′ω−1uωz′−1 ∈Wνw̃′ . Thus, part (2) follows.
Now we consider the following closed affine Deligne–Lusztig variety

XMJ
≤Jδx(x) = {m ∈MJ(F̆ )/IMJ

; m−1xσ(m) ∈ ∪δ′≤JδIMJ
δ′xIMJ

}.
Note that u−1IMJ

∈ XMJ
≤Jδx(x). As x ∈ ΩJ , by [HZ20, Theorem 4.1] (respectively, [CN20,

Lemma 6.13]), there exists h ∈ ker(ηMJ
) ∩ Jx (respectively, h ∈ Hx ∩ Jx if y ∈W0) such that

u−1IMJ
, hIMJ

are connected in XMJ
≤Jδx(x). For g ∈ Jb,w̃ there is an embedding

XMJ
≤Jδx(x) ↪→ X(λ, b), mIMJ

�→ gzmωz′−1
I,

from which we have gy−1I = gzu−1ωz′−1I ∼λ,b gzhωz′−1I as desired. �
Lemma 4.8. Assume Hypothesis 4.1 holds. Let x ∈ S+

λ,b and w̃ ∈ Sλ,b,x. If w̃ /∈ S0W̃ , then there

exist h ∈ Hx ∩ Jx and w̃′ ∈ Sλ,b,x such that ν

w̃ < ν


w̃′ and gI ∼λ,b gzhz′−1I for g ∈ Jb,w̃. Here
z, z′ ∈W J

0 such that w̃ = zxσ(z)−1 and w̃′ = z′xσ(z′)−1.

Proof. By Proposition 3.1, there exists α ∈ Pw̃. Set m = mα,w̃ and αi = (w̃σ)i(α) for i ∈ Z.
Let g = gg,α,w̃,m for g ∈ Jb,w̃. Let A ⊆ I be the kernel of the natural reduction map G(OF̆ ) t
→0→
G(k). Since α−m ∈ Φ̃+ \ Φ and αi ∈ Φ for 1−m � i � 0, we have (w̃σ)−m

Uα = Uα−m ⊆ A and
(w̃σ)i

Uα = Uαi ⊆ G(OF̆ ) for 1−m � i � 0. Thus, for z ∈ k we have

F (z) := ((w̃σ)1−m
Uα(z)···Uα(z))−1(w̃σ)−m

Uα(−z)) ∈ A ⊆ I.

Now one computes that

g(z)−1bσg(z) = Uα(−z) · · · (w̃σ)1−m
Uα(−z)w̃σ(w̃σ)1−m

Uα(z) · · ·Uα(z)

= Uα(−z) · · · (w̃σ)2−m
Uα(−z)w̃σ(w̃σ)−m

Uα(−z)(w̃σ)1−m
Uα(z) · · ·Uα(z)

= Uα(−z) · · · (w̃σ)2−m
Uα(−z)w̃σ(w̃σ)1−m

Uα(z) · · ·Uα(z)F (z)

⊆ Uα(−z) · · · (w̃σ)2−m
Uα(−z)w̃σ(w̃σ)1−m

Uα(z) · · ·Uα(z)I

= w̃σUα(z)I ⊆ I{w̃σ, w̃σsα}I ⊆ IAdm(λ)σI.

By Hypothesis 4.1 and Corollary 4.2(5), the conditions in Lemma 4.4 are satisfied (for
(γ, m, v) = (α, mw̃,α, ν


w̃)). Thus, by Lemma 4.4 we have gI = g(0) ∼λ,b g(∞) = gy−1I for some
y ∈W0 such that y(ν


w̃) > ν

w̃. Then yw̃σ(y)−1 ∈ Adm(λ) and ν


w̃ < y(ν

w̃) = ν


yw̃σ(y)−1 . Let h ∈
Hx, w̃′ ∈ Sλ,b,x, and z′ ∈W J

0 be as in Lemma 4.7 such that gI ∼λ,b gy−1I ∼λ,b gzhz′−1I. Then
yw̃σ(y)−1 and w̃′ are σ-conjugate by Wνw̃′ , and, hence, ν


w̃′ and ν

yw̃σ(y)−1 are conjugate by Wνw̃′ .

By Corollary 4.2(2), ν

w̃′ is dominant for Φ+

νw̃′ , which means ν

w̃ < ν


yw̃σ(y)−1 � ν

w̃′ as desired. �

Corollary 4.9. Let x ∈ S+
λ,b and w̃, w̃′ ∈ Sλ,b,x with w̃′ the unique element in S0W̃ . Then there

exists h ∈ Hx ∩ Jx such that gI ∼λ,b gzhz′−1I for g ∈ Jb,w̃, where z, z′ ∈W J
0 such that w̃ =

zxσ(z)−1 and w̃′ = z′xσ(z′)−1.

Proof. Note that the statement follows from Theorem 0.2, which is proved in [CN19] when
G is split. Thus, we can assume G is not split and Hypothesis 4.1 holds. If w̃ /∈ S0W̃ , by
Lemma 4.8, there exist h ∈ Hx ∩ Jx and w̃′ ∈ Sλ,b,x such that ν


w̃ < ν

w̃′ and gI ∼λ,b gzhz′−1I
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for g ∈ Jb,w̃, where z′ ∈W J
0 such that w̃′ = z′xσ(z′)−1. Thus, the statement follows by repeating

this process. �

Proposition 2.3 is a consequence of the following result.

Proposition 4.10. Let x ∈ S+
λ,b and w̃ ∈ Sλ,b,x. Then there exists h ∈ Hx ∩ Jx such that gI ∼λ,b

ghz−1I or, equivalently, gh−1I ∼λ,b gz−1I for g ∈ Jb,x, where z ∈W J
0 such that w̃ = zxσ(z)−1.

In particular, Jb,w̃ ∼λ,b Jb,x.

Proof. By Proposition 3.6 and Lemma 1.5(2), there exists z′ ∈W0 such that z′xσ(z′)−1 ∈ S ∩
S0W̃ . By Corollary 4.9, there exist h1, h2 ∈ Hx ∩ Jx such that gI ∼λ,b gh1z

′−1I and gz−1I ∼λ,b

gh2z
′−1I for g ∈ Jb,x. Then we have

ghz−1I = jgz−1I ∼λ,b jgh2z
′−1

I = gh1z
′−1

I ∼λ,b gI,

where h = h1h
−1
2 ∈ Hx ∩ Jx and j = gh1h

−1
2 g−1 ∈ Jb. �

The following result will be used to compute the stabilizers of connected components of
X(λ, b) in the remaining sections.

Proposition 4.11. Let x ∈ S+
λ,b and y ∈ W̃ (respectively, y ∈W0) such that yxσ(y)−1 ∈

Adm(λ). Then there exists h ∈ ker(ηMJ
) ∩ Jx (respectively, h ∈ Hx ∩ Jx) such that gy−1I ∼λ,b

ghωI (respectively, gy−1I ∼λ,b ghI) for g ∈ Jb,x, where ω ∈ ΩJ such that y ∈W J
0 ω−1W a

J .

Proof. It follows from Lemma 4.7 and Proposition 4.10. �

5. Proof of Proposition 2.4

In this section we show Proposition 2.4, which is based on an algorithm introduced in [CKV15],
see § 5.3. To this end, we need a detailed study on a single reduction step. This is carried out in
§§ 5.1 and 5.2.

Recall that d is the number of connected components of S0.

5.1 The set Adm(λ)
We collect more properties on Adm(λ). For K ⊆ S0 we denote by prK : RΦ∨ → (RΦ∨

K)⊥ the
orthogonal projection with respect to the usual Killing form ( , ) on RΦ∨ such that 〈α, β∨〉 =
2(α, β)/(β, β) for α, β ∈ Φ.

Lemma 5.1. Let x ∈ S+
λ,b and let O be a σ-orbit of J-anti-dominant roots in Φ+ \ ΦJ with

J = JνG(b). Then we have: (1)
∑

α∈O〈α, prJ(μx)〉 > 0; and (2) 〈wJ(β), μx〉 � 1 for some β ∈ O.
Here wJ is the longest element of WJ .

Proof. Let γ ∈ O. By definition, 〈γ, νG(b)〉 = 〈γ, prJ(μx)�〉 > 0, where prJ(μx)� is the σ-average
of prJ(μx). Thus, part (1) follows since∑

α∈O
〈α, prJ(μx)〉 =

∑
α∈O
〈α, prJ(μx)�〉 = |O|〈γ, νG(b)〉 > 0.

By part (1), there exists β ∈ O such that 〈β, prJ(μx)〉 > 0. As wJ(β) is J-dominant and μx −
prJ(μx) ∈ R�0(Φ+

J )∨, we have

〈wJ(β), μx〉 � 〈wJ(β), prJ(μx)〉 = 〈β, prJ(μx)〉 > 0.

Thus, part (2) follows. �
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Lemma 5.2 [CN20, Lemma 1.6]. Let K ⊆ S0 and w̃ = (tμWK) ∩ ΩK with μ ∈ Y . Let α ∈ Φ+ be
K-anti-dominant. Then: (1) sαw̃ ∈ Adm(λ) if μ + α∨  λ; (2) w̃sα ∈ Adm(λ) if μ− p(w̃)(α)∨ 
λ; and (3) zw̃z−1 ∈ Adm(λ) for z ∈ W̃K .

Lemma 5.3. Let K ⊆ S0, w̃ = (tμWK) ∩ ΩK with μ ∈ Y . Let r ∈ Z�0 and γ ∈ Φ+ \ ΦK with γ∨

K-dominant and K-minuscule such that

μ, μ− γ∨, μ + p(w̃)σr(γ∨), μ− γ∨ + p(w̃)σr(γ∨)  λ.

Let γ̃ = γ + 1 ∈ Φ̃+. Then we have:

(1) μ− γ∨, μ + p(w̃)(σr(γ∨)), μ− γ∨ + p(w̃)σr(γ∨) are K-minuscule;
(2) w̃, sγ̃w̃, w̃sσr(γ̃), sγ̃w̃sγ̃ ∈ Adm(λ);
(3) sγ̃w̃sσr(γ̃) ∈ Adm(λ) if γ �= σr(γ) and 〈p(w̃)σr(γ), μ〉, 〈γ, μ〉 � −1;

Proof. Note that parts (1) and (2) were proved in [CKV15, Lemma 4.4.6] and [CN20, Lemma 1.5],
respectively. To show part (3) we claim that

there exists η ∈WK(μ) such that η − γ∨ + σr(γ∨) is K-minuscule.(a)

Indeed, let η be a WK-conjugate of μ such that η − γ∨ + σr(γ∨) is minimal under the partial
order . If η − γ∨ + σr(γ∨) is not K-minuscule, then there exists α ∈ ΦK such that 〈α, η − γ∨ +
σr(γ∨)〉 � 2. As η is K-minuscule, and γ∨, σr(γ∨) are K-dominant and K-minuscule, we deduce
that 〈α, η〉 = 1. Let η′ = sα(η) = η − α∨. Then we have

η′ − γ∨ + σr(γ∨) = η − γ∨ + σr(γ∨)− α∨ ≺ η − γ∨ + σr(γ∨),

which contradicts the choice of η. Thus, part (a) is proved.
Let w = p(w̃) ∈WK . By parts (1) and (a), η − γ∨ + σr(γ∨), μ− γ∨ + wσr(γ∨) are conjugate

by WK . In particular, η − γ∨ + σr(γ∨)  λ. Then part (3) follows from that

sγ̃w̃sσr(γ̃) ≤ sγ̃tηsσr(γ̃) = sγtη−γ∨+σr(γ∨)sσr(γ) ≤ tη−γ∨+σr(γ∨) ∈ Adm(λ),

where the first ≤ follows from [CN19, Lemma 1.3], and the second ≤ follows from that

〈γ, σr(γ∨)〉 � 0 since γ �= σr(γ);

〈γ, η − γ∨ + σr(γ∨)〉 � 〈γ, μ〉 − 2 � −1;

〈σr(γ), η − γ∨ + σr(γ∨)〉 � 〈wσr(γ), μ〉+ 2 � 1.

The proof is finished. �

5.2 Strongly K-minuscule coroots
For K ⊆ S0 we say γ∨ ∈ Φ∨,+ \ Φ∨

K is strongly K-minuscule if γ∨ is K-minuscule, and moreover,
γ is a long root if: (1) some/any connected component of S0 is of type G2; and (2) K is the set
of short simple roots.

For any K ⊆ S0 there is a natural isomorphism ΩK
∼= π1(MK). We identify these two sets

according to the context.

Lemma 5.4. Let K, w̃, γ, γ̃, and r be as in Lemma 5.3. Assume further that γ∨ is strongly
K-minuscule. Then U−γ̃w̃U−σr(γ̃) ⊆ IAdm(λ)I unless

〈γ, μ〉 = −〈p(w̃)σr(γ), μ〉 = 1 and 〈γ, p(w̃)σr(γ∨)〉 = −1.(∗)
Moreover, if (∗) holds, then

w̃ �= w̃′, U−σr(γ̃)w̃
′U−γ̃ ⊆ IAdm(λ)I, and μ± (γ + p(w̃)σr(γ))∨  λ,

where w̃′ = μ− γ∨ + σr(γ∨) ∈ π1(MK) ∼= ΩK .
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Proof. Let w = p(w̃) ∈WK . First we claim that

Ψ := Φ ∩ (Zγ + Zwσr(γ)) is of type A2, or A1 ×A1, or A1.(a)

Otherwise, then Ψ is of type B2 or G2. In particular, γ = σr(γ) (since σd = id with d the number
of connected components of S0), γ �= wσr(γ) = w(γ) are short roots, and, hence, K �= ∅. If Ψ is
of B2, then γ ± wσr(γ) ∈ Φ and 〈γ, wσr(γ∨)〉 = 0 since γ, wσr(γ) are of the same length. Thus,
γ − wσr(γ) ∈ ΦK and 〈γ − wσr(γ), γ∨〉 = 2, contradicting that γ∨ is K-minuscule. Thus, Ψ is
of type G2. As γ �= wσr(γ) are short roots and γ∨ is strongly K-minuscule, we deduce that K
consists of long simple roots. This contradicts that γ∨ is K-minuscule. Thus, part (a) is proved.

Now we claim that

U−γ̃w̃U−σr(γ̃) ⊆ IAdm(λ)I if one of the following holds:(b)

either 〈γ, μ〉 � 2 or 〈γ, μ〉 = 1 and 〈γ, wσ(γ∨)〉 � 0;(b1)

either 〈wσr(γ), μ〉 � −2 or 〈wσr(γ), μ〉 = −1 and 〈γ, wσr(γ∨)〉 � 0.(b2)

By symmetry we may assume (b1) occurs. By part (a) we have

U−w̃−1(γ̃), [U−w̃−1(γ̃), U−σr(γ̃)] ⊆ I,

where [g, g′] = gg′g−1g′−1 denotes the commutator of g, g′ ∈ G(F̆ ). Thus,

U−γ̃w̃U−σr(γ̃) ⊆ w̃U−σr(γ̃)I ⊆ I{w̃, w̃sσr(γ̃)} ⊆ IAdm(λ)I,

where the last inclusion follows from Lemma 5.3(2). Thus, part (b) is proved.
Suppose U−γ̃w̃U−σr(γ̃) � IAdm(λ)I. Then−〈wσr(γ), μ〉, 〈γ, μ〉 � 1 by (b), which implies that

w̃−1(γ) �= σr(γ). Assume 〈γ, μ〉 � 0. We claim that

Uw̃−1(γ̃), [Uw̃−1(γ̃), U−σr(γ̃)] ⊆ I.

The first inclusion follows from that w̃−1(γ̃) = w−1(γ) + 1− 〈γ, μ〉 ∈ Φ̃+. Note that [Uw̃−1(γ̃),
U−σr(γ̃)] = Uw̃−1(γ̃)−σr(γ̃) by part (a). Thus, we can assume that Uw̃−1(γ̃)−σr(γ̃) is nontrivial,
that is,

w̃−1(γ̃)− σr(γ̃) = w−1(γ)− σr(γ)− 〈γ, μ〉 ∈ Φ̃.

As γ is K-dominant and w ∈WK , w−1(γ)− γ ∈ Z�0Φ−
K . Thus, the σ-average of w−1(γ)− σr(γ),

which equals the σ-average of w−1(γ)− γ, lies in R�0Φ−. This means that w−1(γ)− σr(γ) ∈ Φ−

and, hence, w̃−1(γ̃)− σr(γ̃) ∈ Φ̃+ (since 〈γ, μ〉 � 0). Thus, the second inclusion follows, and the
claim is proved.

Thus, by Lemma 5.3 we compute that

U−γ̃w̃U−σr(γ̃) ⊆ Isγ̃w̃U−σr(γ̃)I ⊆ I{sγ̃w̃, sγ̃w̃sσr(γ̃)}I ⊆ IAdm(λ)I,

which contradicts our assumption. Thus, 〈γ, μ〉 = 1, and 〈wσr(γ), μ〉 = −1 by symmetry.
Moreover, we have 〈γ, wσr(γ∨)〉 = −1 by parts (b) and (a).

Write w̃′ = tμ
′
w′ ∈ ΩK with μ′ ∈ Y and w′ ∈WK . Applying Lemma 5.3(1) to w̃ and w̃′ we

deduce that

μ′, μ− γ∨ + wσr(γ∨), μ′ − σr(γ∨), μ− γ∨, μ′ + w′(γ∨), μ + wσr(γ∨)

are K-minuscule, and, hence, are conjugate by WK . Since

〈γ, μ〉 = −〈wσr(γ), μ〉 = −〈γ, wσr(γ∨)〉 = 1,
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it follows that μ− γ∨ + wσr(γ∨) and μ± (γ∨ + wσr(γ∨)) are conjugate by W0. Hence, μ± (γ∨ +
wσr(γ∨)), μ′  λ. As wK(γ) (with wK the longest element of WK) is K-anti-dominant, we have

〈w′(γ), μ′〉 = 〈wK(γ), μ′〉 � 〈γ, μ− γ∨ + wσr(γ∨)〉 = −2.

Thus, σr(γ) �= γ (which means w̃ �= w̃′) and U−σr(γ̃)w̃
′U−γ̃ ⊆ IAdm(λ)I by (b2). �

5.3 The second connecting algorithm

Let J = JνG(b). Let x, x′ ∈ S+
λ,b ⊆ π1(MJ). Write x

(γ,r)→ x′ for some γ ∈ Φ \ ΦJ and r ∈ Z�1 if

x′ − x = σr(γ∨)− γ∨ and μx−γ∨ , μx+σr(γ∨)  λ, see § 2. Moreover, write x
(γ,r)
� x′ if x

(γ,r)→ x′,
and for each 1 � i � r − 1 we have

neither x
(γ,i)→ x− γ∨ + σi(γ∨)

(σi(γ),r−i)→ x′,

nor x
(σi(γ),r−i)→ x− σi(γ∨) + σr(γ∨)

(γ,i)→ x′.

Note that x
(γ,r)→ x′ is equivalent to x′ (−γ,r)→ x.

Lemma 5.5 [CKV15, Remark 4.5.2]. Let x �= x′ ∈ S+
λ,b such that x

(γ,r)
� x′ for some γ ∈ Φ \ ΦJ

and r ∈ Z�1. Then xσi(δ) = σi(δ) for any W0-conjugate δ of γ and 1 � i � r − 1 with i, i− r /∈
dZ.

For γ ∈ Φ we denote by Oγ the σ-orbit of γ.

Proposition 5.6 [Nie18, Lemma 6.7]. Let x �= x′ ∈ S+
λ,b. Then there exist distinct elements x =

x0, x1, . . . , xm = x′ ∈ S+
λ,b such that for each 1 � i � m we have:

(1) xi−1

(γi,ri)� xi with γi ∈ Φ \ ΦJ such that γ∨
i J-dominant and J-minuscule;

(2) 1 � ri � d− 1 if |Oγi | = d; 1 � ri � d if |Oγi | = 2d; 1 � ri � 2d− 1 if |Oγi | � 3d.

Proof of Proposition 2.4. The case when σ has order 3d is handled in § 8.2. We consider the
case when σ has order � 2d. Without loss of generality, we can assume that |Oγ | = 2d. By

Proposition 5.6 and symmetry, we may assume x
(γ,r)→ x′ for some 1 � r � d and γ ∈ Φ+ \ ΦJ

with γ∨ J-dominant and J-minuscule. Then γ∨ is also strongly J-minuscule since |Oγ | = 2d.
Moreover, we can assume that

U−γ̃xU−σr(γ̃) ⊆ IAdm(λ)I.(a)

Indeed, if 1 � r � d− 1, part (a) follows from Lemma 5.3(2). If r = d, by Lemma 5.4 we can
switch the pairs (x, γ) and (x′, σd(γ)) if necessary so that part (a) still holds.

Now we can assume further that x
(γ,r)
� x′. Let γ̃ = γ + 1 ∈ Φ̃+, and let g = gg,−σr−1(γ̃),x,r for

g ∈ Jb,x (see § 4). By Lemma 5.5, (xσ)i(γ) = σi(γ) for 1 � i � r − 1. Then by part (a) we have
g−1bσ(g) ⊆ U−γ̃xU−σr(γ̃) ⊆ IAdm(λ)I, which means that gI = g(0) ∼λ,b g(∞) = gsI, where s =
sγ̃ · · · sσr−1(γ̃). By [CN20, Lemma 1.3] we can write s = ωz−1, where z ∈W J

0 and ω = γ∨ + · · ·+
σr−1(γ∨) ∈ ΩJ

∼= π1(MJ). By Proposition 4.11, there is h ∈ Jb,x such that gI ∼λ,b∼λ,b ghωI. So
Jb,x ∼λ,b Jb,x′ as desired. �
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6. Proof of Proposition 2.5

In this section we prove Proposition 2.5, that is, ker(ηMJ
) ∩ Jb acts trivially on π1(X(λ, b)).

To this end, we divide ker(ηMJ
) ∩ Jb into two part: the J1-part and the J0-part, see § 6.1. The

triviality of the action of J1-part follows from a main result in [HZ20], see Lemma 6.3. For the
J0-part, we first use Lemma 6.4 to reduce it to the situation of Lemma 6.5. Finally in § 6.3 we
addressing this remaining case in an ad hoc way.

Assume that (λ, b) is Hodge–Newton irreducible. Let J = JνG(b).

6.1 The stabilizer
Define J1 = ∪x∈S+

λ,b
Jx,1 (see § 4.3) and J0 = J \ J1. Note that Ji = σ(Ji) is a union of connected

components of J for i ∈ {0, 1}. By definition, x ∈ ΩJ1 and μx is central on J0 for all x ∈ S+
λ,b. Let

Ki (with i ∈ {0, 1}) be the set of subsets K ⊆ Ji such that K = ∪i∈Zσi(K ′) with K ′ a connected
component of J . Set K = K1 
 K0.

Theorem 6.1 [HZ20, Theorem 6.3]. Let x ∈ S+
λ,b. Then ker(ηMJx,1

) ∩ Jx fixes each connected

components of X
MJx,1 (μx, x).

Let Ja denote the set of simple reflections of W a
J = W a

MJ
. For x ∈ ΩJ the group W a

J ∩ Jx

is a Coxeter group whose simple reflections are parameterized by the (Ad(x) ◦ σ)-orbits of Ja.
For w ∈W a

J ∩ Jx denote by suppx(w) the set of simple reflections of W a
J ∩ Jx which appear in

some/any reduced expression of w. Moreover, for h ∈ ker(ηMJ
) ∩ Jx we set suppx(h) = suppx(u),

where u ∈W a
J ∩ Jx such that h ∈ IMJ

uIMJ
.

Lemma 6.2. Let C be a connected component of X(λ, b). Let x ∈ S+
λ,b. Then there exists g ∈ Jb,x

such that gI ∈ C. Moreover, the stabilizer StabJb
(C) of C in Jb equals gQg−1 with Q ⊆ Jx a

subgroup containing I ∩ Jx = IMJ
∩ Jx. In particular, suppx(h) ⊆ Q for h ∈ ker(ηMJ

) ∩Q.

Proof. The existence of g follows from Proposition 2.4. As g(IMJ
∩ Jx)g−1 fixes gI, it also fixes C.

Let Q = g−1StabJb
(C)g. Then IMJ

∩ Jx ⊆ Q as desired. Note that the conjugation by x preserves
the standard Bruhat decomposition MJ(F̆ ) = IMJ

W̃JIMJ
of MJ(F̆ ). Thus, IMJ

∩ Jx is a stan-
dard Iwahori subgroup of Jx. Hence, there exists a unique subset E = xσ(E)x−1 ⊆ Ja such that
Q = (IMJ

∩ Jx)(WE ∩ Jx)(IMJ
∩ Jx), from which the ‘In particular’ part follows. �

Let K be a union of connected components of J . We denote by LK ⊆MJ the normal subgroup
generated by Uα for α ∈ ΦK .

Lemma 6.3. For x ∈ S+
λ,b the group LJx,1(F̆ ) ∩ Jb fixes each connected component of X(λ, b).

Proof. Let C, x, g be as in Lemma 6.2. Moreover, gI lies in the image of the embedding

X
MJx,1 (μx, x) ↪→ X(λ, b), hIMJx,1

�→ ghI.

By Theorem 6.1, LJx,1(F̆ ) ∩ Jx ⊆ ker(ηJx,1) ∩ Jx fixes the connected component of X
MJx,1 (μx, x)

containing IMJx,1
. Thus, g(LJx,1(F̆ ) ∩ Jx)g−1 = LJx,1(F̆ ) ∩ Jb fixes C. �

Lemma 6.4. Let K ∈ K0. If μx + α∨  λ for some x ∈ S+
λ,b and some α ∈ K, then LK(F̆ ) ∩ Jb

fixes each connected component of X(λ, b).

Proof. Let C, x, g, Q be as in Lemma 6.2. Then IMJ
∩ Jx ⊆ Q. Note that LK(F̆ ) ∩ Jx is contained

in the subgroup generated by IMJ
∩ Jx and W a

K ∩ Jx, it suffices to show W a
K ∩ Jx ⊆ Q.

As μx is central on ΦK (since K ∈ K0), by replacing α with a suitable WK-conjugate we can
assume α is K-dominant and, hence, σd(α) = α. Moreover, the action Ad(x) ◦ σ restricts to σ
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on W a
J0
⊇W a

K . Let g = gg,α,x,d and g′ = gg,−α−1,x,d be as in § 4. By Lemmas 5.2 and 5.3,

g−1bσ(g) ⊆ Uαx ⊆ IAdm(λ)I and g′−1
bσ(g′) ⊆ xU−α−1 ⊆ IAdm(λ)I,

which means
gsI = g(∞) ∼λ,b g(0) = g′(0) ∼λ,b g′(∞) = gs′I,

where s = sα · · · sσd−1(α), s
′ = sα+1 · · · sσd−1(α)+1 ∈ Jx. Thus, s, s′ ∈ Q.

As α is a highest root of Φ+
K , suppx(s) ∪ suppx(s′) consists of all simple reflections of W a

K ∩ Jx.
Hence, W a

K ∩ Jx ⊆ Q by Lemma 6.2. �

6.2 A technical lemma
Let O be a σ-orbit of Φ+ \ ΦJ whose roots are J-anti-dominant and J-minuscule. We define
ΨJ,O = Φ ∩ Z(J ∪ O). If Φ is simply laced, then J ∪ O is a set of simple roots of ΨJ,O.

The following lemma is proved in Appendix B.

Lemma 6.5. Let K ∈ K0. Suppose μx′′ + δ∨ � λ for any x′′ ∈ S+
λ,b and any δ ∈ K. Then there

exist x ∈ S+
λ,b and β ∈ Φ+ \ ΦJ with β∨ J-anti-dominant and J-minuscule such that:

(1) μx + β∨  λ, and β∨ is non-central on K;
(2) xσi(β) = σi(β) for i ∈ Z \ nZ;
(3) 〈p(x)σn(β), μx〉 � 1;
(4) if σn does not act trivially on Ψβ ∩ J0, then Ψ = Φ, Ψβ is of type E6, Ψβ ∩ J0 = {α1, α6},

Ψβ ∩ J1 = {α2, α4}, β = α3, μx|Ψβ
= ω∨

4 − ω∨
3 , and μx|Ψ\Ψβ

= 0.

Here, Ψ = ΨJ,Oβ
with Oβ the σ-orbit of β; Ψβ is the irreducible factor of Ψ containing β;

n ∈ {d, 2d, 3d} is the minimal integer such that σn(β) ∈ Ψβ; and in part (4) the simple roots αi

(with ω∨
i the corresponding fundamental coweights) for the root system of type E6 are labeled

as in [Hum72].

Lemma 6.6. Retain the situation of Lemma 6.5. Let α = σ(α) ∈ Φ+
K such that 〈α, β∨〉 = −1.

Then UβxUσn(β), Uαsβxsσn(β)Uα ⊆ IAdm(λ)I.

Proof. As K ∈ K0, α ∈ ΦK , and x ∈ ΩJ1 , we have x(α) = α and

μx + β∨ + α∨ = μx + sα(β∨) = sα(μx + β∨)  λ.

Moreover, since β∨, α∨ and sα(β∨) = α∨ + β∨ are J1-anti-dominant, we have sα, sβ, ssα(β) ∈
W J1

0 . By Lemma 5.2, sβx, ssα(β)x ∈ Adm(λ). By Lemma 6.5(3) we have xσn(β) ∈ Φ̃+ \ Φ.
Moreover, as x(α) = α = σn(α) we have

sβxsσn(β)(α) = sβxσnsβ(α) = sβxσn(α + β) = sβ(α) + sβxσn(β) ∈ Φ̃+ \ Φ,

where the inclusion follows from that xσn(β) ∈ Φ̃+ \ Φ. Therefore,

UβxUσn(β) ⊆ IUβx, Uαsβxsσn(β)Uα ⊆ IUαsβxsσn(β).

Then it remains to show sαsβxsσn(β), sβxsσn(β) ∈ Adm(λ). As xσn(β) ∈ Φ̃+ \ Φ, we have
wxσn(β) ∈ w(Φ̃+ \ Φ) = Φ̃+ \ Φ and, hence, wxsσn(β) < wx for any w ∈W0. In particular,
sβxsσn(β) ≤ sβx ∈ Adm(λ) and

sαsβxsσn(β) < sαsβx < sαsβxsα = sαsβsαx = ssα(β)x ∈ Adm(λ),

where the second inequality follows from that sαsβx(α) = sαsβ(α) ∈ Φ+. The proof is
finished. �
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6.3 The action of ker(ηMJ
) ∩ Jb

We are ready to show that ker(ηMJ
) ∩ Jb acts on π0(X(λ, b)) trivially.

Lemma 6.7. If LK(F̆ ) ∩ Jb fixes each connected component of X(λ, b) for K ∈ K, then so does
ker(ηMJ

) ∩ Jb.

Proof. Let C, x, g, Q be as in Lemma 6.2. Then IMJ
∩ Jx ⊆ Q. By assumption, g−1(LK(F̆ ) ∩

Jb)g = LK(F̆ ) ∩ Jx ⊆ Q for K ∈ K. Note that ker(ηMJ
) ∩ Jx is generated by IMJ

∩ Jx and
LK(F̆ ) ∩ Jx for K ∈ K. Thus, ker(ηMJ

) ∩ Jx ⊆ Q, which means that g(ker(ηMJ
) ∩ Jx)g−1 =

ker(ηMJ
) ∩ Jb fixes C as desired. �

Proof of Proposition 2.5. Let C be a connected component of X(λ, b). By Lemma 6.7 it suffices
to show LK(F̆ ) ∩ Jb fixes C for all K ∈ K. If K ∈ K1, by definition K ⊆ Jx′,1 for some x′ ∈ S+

λ,b,
and the statement follows from Lemma 6.3. Now we assume K ∈ K0. If νx′ + α∨  λ for some
x′ ∈ S+

λ,x and some α ∈ ΦK , it follows from Lemma 6.4. Thus, it remains to handle the situation
of Lemma 6.5. Let x, β,Ψ, Ψβ, n be as in Lemma 6.5. Let g ∈ Jb,x with gI ∈ C and Q ⊆ Jx be as
in Lemma 6.2. As in the proof of Lemma 6.4, it remains to show W a

K ∩ Jx ⊆ Q.

Case (1): σn acts trivially on Ψβ ∩ J0. As β∨ is noncentral on K, there exists a highest root
α ∈ Φ+

K such that 〈α, β∨〉 = −1. As in proof of Lemma 6.4 it suffices to show s, s′ ∈ Q, where
s = sα · · · sσn−1(α), s

′ = sα+1 · · · sσn−1(α)+1 ∈ Jx.
Let r = sβ · · ·σn−1(sβ). We claim that

gI ∼λ,b grI ∼λ,b grsI ∼λ,b gsI, and, hence, s ∈ Q.(a)

To show the first relation ∼λ,b in part (a) we define g = gg,σn−1(β),x,n. By Lemmas 6.5(2) and 6.6
we have

g−1bσ(g) ⊆ UβxUσn(β) ⊆ IAdm(λ)I,

which means gI = g(0) ∼λ,b g(∞) = grI as desired. The last relation ∼λ,b in part (a) follows the
same way by replacing g, β with gs, sα(β), respectively.

To show the second relation ∼λ,b in (a) we define g′ = ggr,σn−1(α),x,n. Note that r−1w̃xσ(r) =
sβxsσn(β). Then by Lemma 6.6 we have

g′−1
bσ(g′) ⊆ Uαsβxsσn(β)Uα ⊆ IAdm(λ)I,

which means grI = g′(0) ∼λ,b g′(∞) = grsI. Thus, part (a) is proved.
Let x′ = x + β∨ − σn(β)∨ ∈ π1(MJ). We claim that

if β �= σn(β) then 〈w(β), σn(β)∨〉 = 0 for any w ∈WJ1 .(b)

Indeed, as β �= σn(β), Φ is simply laced and, hence, J ∪ Oβ is the set of simple roots of Ψ+. Thus,
β, σn(β) are neighbors of Ψβ ∩K (in the Dynkin diagram J ∪ Oβ) on which σn acts trivially.
This means they are in distinct connected components of (J ∪ Oβ) \K ⊇ J1. Thus, part (b)
follows.

By Lemma 6.5(1) and (3) and part (b) we have x′ ∈ S+
λ,b. Moreover, μx′ and μx + β∨ −

p(x)(β∨) are conjugate by WJ1 as they are conjugate by WJ and μx′ is central on J0. Let
γ1 = wJ1(β) and γ2 = wJ1(sα(β)) which are J1-dominant (since α ∈ ΦJ0 is central on J1). By
Lemma 5.3(1) and that σn acts trivially on Ψβ ∩ J0,

μx, μx − σn(γ∨
i ), μx + p(x)(γ∨

i ), μx − σn(γ∨
i ) + p(x)(γ∨

i )  λ

are conjugate to

μx′ − γ∨
i + p(x′)σn(γ∨

i ), μx′ − γ∨
i , μx′ + p(x′)σn(γ∨

i ), μx′  λ

under WJ1 , respectively.
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Let τ = β∨ + · · ·+ σn−1(β)∨ ∈ π1(MJ1) ∼= ΩJ1 . Then x = τ−1x′σ(τ) and, hence, gτ−1 ∈ Jb,x′ .
Define gi = ggτ−1,−σn−1(γi)−1,x′,n. As J0 �= ∅, γ∨

i is strongly J1-minuscule. By Lemmas 6.5(2)
and 5.4 and part (b) we have

gi
−1bσ(gi) ⊆ U−γi−1x

′U−σn(γi)−1 ⊆ IAdm(λ)I,

which means gτ−1I = gi(0) ∼λ,b gi(∞) = gτ−1siI with si = sγi+1 · · · sσn−1(γi)+1. As γ∨
i is J1-

minuscule and J1-dominant, we have si = τiy
−1
i , where τi ∈ ΩJ1 and yi ∈W0. Note that gτ−1τi ∈

Jb,x, τ = τ1, and τ−1τ2 = s′s ∈ Jx. By Proposition 4.11, there exist hi ∈ Hx ∩ Jx for i ∈ {1, 2}
such that

gτ−1siI = gτ−1τiy
−1
i I ∼λ,b gτ−1τihiI.

In particular, gh1I ∼λ,b gτ−1I ∼λ,b gτ−1τ2h2I, that is, gI ∼λ,b h−1
1 ττ−1

2 h2I and, hence,

h−1
1 τ−1τ2h2 = h−1

1 s′sh2 ∈ Q.

Note that s, h1, h2 belong to the subgroup Hx ∩ Jx generated by IMJ
∩ Jx and (W a

J1
WJ0) ∩

Jx, while s′ is a simple reflection of W a
J ∩ Jx not contained in (W a

J1
WJ0) ∩ Jx. Thus, s′ ∈

suppx(h−1
1 s′sh2). By Lemma 6.2 we have s′ ∈ Q as desired.

Case (2): σn acts non-trivially on Ψβ ∩ J0. By Lemma 6.5(4), Ψ = Φ and μx|Ψ\Ψβ
= 0. Thus,

we can assume that n = d = 1, σ is of order 2, and Φ is of type E6. Then p(x) = sα4sα2 , and it
suffices to show s, s′ ∈ Q, where s = sα1sα6 and s′ = sα1+1sα6+1 are all the simple reflections of
W a

J ∩ Jx.
Let θ0 = α2 + α4 + α5 + α6, θ1 = α2 + α4 + α5, ηi = (p(xσ)−1(θi) and ϑi = ηi + θi. Define

gi = gg,−θi−1,x,2 for g ∈ Jb,x. As μ + α∨
3 , μ + α∨

3 + α∨
1  λ, we have w̃xsσ(θi)+1 ∈ Adm(λ) by

Lemma 5.3. Then

g−1
i bσ(gi) ⊆ IU−ϑi−1xU−σ(θi)−1 ⊆ IxU−σ(θi)−1I ⊆ IAdm(λ)I,

which means

gsϑ0+1sη0I = g0(∞) ∼λ,b g0(0) = gI = g1(0) ∼λ,b g1(∞) = gsϑ1+1sη1I.

As ϑ∨
0 is J-dominant and J-minuscule, sϑ0+1sη0 = ωy−1

0 , where ω = ϑ∨
0 ∈ ΩJ ∩ Jx and y0 ∈W0.

Then sϑ1+1sη1 = ssϑ0+1sη0s = sωy−1
1 for some y1 ∈W0. By Proposition 4.11, there exist h0, h1 ∈

Hx ∩ Jx such that gωh0I ∼λ,b gI ∼λ,b gsωh1I. Thus, ωh0, sωh1 ∈ Q and

sωh1h
−1
0 ω−1 ∈ Q.(c)

As h0h
−1
1 ∈ Hx ∩ Jx ⊆ IMJ

{1, s}IMJ
and ωsω−1 = s′, by part (c) we have sωh0h

−1
1 ω−1 ∈

I{s, ss′}I and s ∈ suppx(sωh1h
−1
0 ω−1). By Lemma 6.2, we have s ∈ Q. Noting that (W a

J1
WJ0) ∩

Jx = {1, s}, we have Hx ∩ Jx ⊆ Q, ω ∈ Q, and s′ = ωsω−1 ∈ Q as desired. �

7. Proof of Proposition 2.6

In this section we show that (ZΦ∨/ZΦ∨
J )σ acts trivially on π0(X(λ, b)). We follow closely the

strategy of [CKV15, § 4]. This is based on the connecting algorithm in the previous section and
together with a delicate analysis on the sets Cλ,b,x for x ∈ S+

λ,b introduced in the following.
Assume that (λ, b) is Hodge–Newton irreducible. Let J = JνG(b) and let wJ denote the longest

element of WJ . Let O be a σ-orbit of Φ+. We set

ωO =
∑
α∈O

α∨ ∈ π1(MJ)σ ∼= Ωσ
J ⊆ ΩJ ∩ Jb.
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Let Ψ = Φ ∩ Z(O ∪ J). We say O is of type I (respectively, type II; respectively, type III) if |O|
equals n (respectively, 2n; respectively, 3n). Here n ∈ {d, 2d, 3d} is the minimal positive integer
such that α, σn(α) are in the same connected component of Ψ for some/any α ∈ O. If O is of
type II or III, then n = d, Φ is simply-laced, and O ∪ J is a set of simple roots for Ψ. In this
case, for α ∈ O we denote by ϑα ∈ Φ+ the sum of simple roots in the (unique) minimal σn-stable
connected subset of O ∪ J which contains α, see [CKV15, § 4.7].

Let x ∈ S+
λ,b. Following [CKV15, Proposition 4.19] and [Nie18, Lemma 7.1] we define

Cλ,b,x = {α ∈ Φ+ \ ΦJ ; μx + α∨  λ, α∨ is J-anti-dominant and strongly J-minuscule},
where strongly J-minuscule coroots are defined in § 5.2. As in [Nie18] the sets Cλ,b,x will be used
to construct affine lines connecting gI and gωOI for g ∈ Jb,x and various σ-orbits O of Φ+.

Once affine lines are constructed, we will use the following result to detect elements in
ker(ηG) ∩ Ωσ

J that fix any/some connected components of X(λ, b).

Proposition 7.1. Let x ∈ S+
λ,b, g ∈ Jb,x, and y ∈ W̃ such that gI ∼λ,b gy−1I. Then we have

gI ∼λ,b ghωz−1I ∼λ,b gωI, where z ∈W J
0 and ω ∈ ΩJ such that y ∈ zω−1W a

J .

Proof. The proof follows from Propositions 4.11 and 2.5. �

7.1 Computation of stabilizers
Fix a σ-orbit O of roots in Φ+ \ ΦJ which are J-anti-dominant and J-minuscule.

Lemma 7.2. Assume x
(γ,r)→ x′ with x′ = x− γ∨ + σr(γ)∨ ∈ S+

λ,b for some γ ∈ O and 1 � r �
n. Let ω = γ∨ + · · ·+ σr−1(γ)∨ ∈ π1(MJ) ∼= ΩJ . If U−wJ (γ)−1xU−wJσr(γ)−1 ⊆ IAdm(λ)I, then
gI ∼λ,b gωI for g ∈ Jb,x. Recall that wJ is the longest element of WJ .

Moreover, if O = Oα for some α ∈ Cλ,b,x, the inclusion condition above holds if: (1) 1 � r �
n− 1; (2) x = x′; or (3) μx + ϑ∨

γ � λ when O is of type II and r = n.

Proof. Let θ̃ = wJσr−1(γ) + 1 ∈ Φ̃+. Suppose we have

U−σ1−r(θ̃)xU−σ(θ̃) = U−wJ (γ)−1xU−wJσr(γ)−1 ⊆ IAdm(λ)I.(a)

By [Nie18, Lemma 6.5] and that 1 � r � n, we can assume further that

x
(γ,r)
� x′, and, hence, (xσ)i(θ̃) = σi(θ̃) for 1− r � i � 0.(b)

Define g = gg,−θ̃,x,r for g ∈ Jb,x. By parts (a) and (b) we have

g−1bσ(g) ⊆ U−σ1−r(θ̃)xU−σ(θ̃) ⊆ IAdm(λ)I,

which means
gI = g(0) ∼λ,b g(∞) = gsθ̃ · · · sσr−1(θ̃)I = gωu−1I

for some u ∈W0 = W J
0 WJ . So gI ∼λ,b gωu−1I ∼λ,b gωI by Proposition 7.1.

If O is of type II and r = n, then ϑ∨
γ is J-anti-dominant and J-minuscule, which means

μx + ϑ∨
γ is J-minuscule and, hence,

μx + ϑ∨
γ  μx + (wJ(γ) + p(x)wJσr(γ))∨.

Thus, the second statement follows from Lemma 5.4(∗) by noting that 〈wJ(γ), p(x)wJσr(γ∨)〉 = 0
if 1 � r � n− 1. �

Let Aλ,b be the group of elements ω ∈ π1(MJ)σ ∼= Ωσ
J which fix some/any connected

component of X(λ, b).
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Lemma 7.3. Suppose O = Oξ for some ξ ∈ Cλ,b,x. If O is of type I, then there exist γ ∈ O,

1 � r � n, and x′ ∈ S+
λ,b such that x

(γ,r)→ x′. Moreover, ωO ∈ Aλ,b.

Proof. Note that μ + α∨  λ. If 〈wJσr(α), μx〉 � 1 for some 1 � r � n− 1, then 〈wJσr(α),

α∨〉 = 0, which means x
(σr(α),n−r)→ x′ (α,r)→ x with x′ = x− σr(α∨) + α∨ ∈ S+

λ,b. Otherwise,

〈wJσi(α), μx〉 � 0 for 1 � i � n− 1, which means 〈wJ(α), μx〉 � 1 by Lemma 5.1. Thus, x
(α,n)→

x and the first statement follows. As O is of type I, the second statement follows from
Proposition 7.1 and Lemma 7.2(1) (respectively, Lemma 7.2(2)) if r �= n (respectively, r = n). �

Lemma 7.4. Suppose O is of type II. Assume μx′′ + ϑ∨
β � λ for any x′′ ∈ S+

λ,b and β ∈ O. If there

exist γ ∈ O, n + 1 � r � 2n− 1, and x′ ∈ S+
λ,b such that x

(γ,r)
� x′, then:

(1) 〈σi(γ), μx〉 = 0, p(x)σi(γ) = σi(γ) for 1 � i �= r − n � r − 1;
(2) p(x)σr−n(γ) = σr−n(ϑγ − σn(γ)) and 〈p(x)σr−n(γ), μx〉 = 1;
(3) 〈p(x)(ϑγ − σn(γ)), μx〉 � 1.

Moreover, gI ∼λ,b gωI for g ∈ Jb,x, where ω = γ∨ + · · ·σr−1(γ∨) ∈ π1(MJ) ∼= ΩJ .

Proof. Write x′ = x + σr(γ∨)− σ−r(σr(γ∨)). Then parts (1), (2), and (3) follow from [Nie18,
Lemma 8.2] by using σ−1 instead of σ. Let θ̃ = wJσr−1(γ) + 1 ∈ Φ̃+ and ϑ̃γ = ϑγ + 1 ∈ Φ̃+.
Note that p(x)−1wJ = wJp(x) since x ∈ ΩJ . By parts (1) and (2) we have (xσ)i(θ̃) = σi(θ̃) =
wJσi+r−1(γ) + 1 for 1− n � i � 0, and

(xσ)i(θ̃) = σi+n−1p(x)−1wJσr−n(γ) = σi+n−1wJp(x)σr−n(γ) = wJσi+r−1(ϑγ − σn(γ))

for 1− r � i � −n. Define g = gg,−θ̃,x,r for g ∈ Jb,x. Then we have

g−1bσ(g) ⊆ IU−wJ (ϑ̃γ)xU−σ(θ̃)I ⊆ IxU−σ(θ̃)I ⊆ IAdm(λ)I,

where the second inclusion follows from parts (1) and (3) that 〈wx(ϑγ), μx〉 � 1. Thus,

gI = g(0) ∼λ,b g(∞) = gs(xσ)1−r(θ̃) · · · s(xσ)−1(θ̃)sθ̃I = gωu−1I,

where u ∈W0 and ω = γ∨ + · · ·+ σr−1(γ∨) ∈ π1(MJ) ∼= ΩJ . It follows from Proposition 7.1 that
gI ∼λ,b gωI as desired. �

Lemma 7.5. Suppose O = Oξ for some ξ ∈ Cλ,b,x and O is of type II. Assume μx′′ + ϑ∨
β � λ for

any x′′ ∈ S+
λ,b and β ∈ O. If there do not exist γ ∈ O, 1 � r � 2n− 1, and x′ ∈ S+

λ,b such that

x
(γ,r)
� x′, then there exists α ∈ O such that:

(1) 〈σi(α), μx〉 = 0, p(x)σi(α) = σi(α) for 1 � i �= n � 2n− 1;
(2) p(x)σn(α) = ϑα − α and 〈wJσn(α), μx〉 = 1;
(3) 〈p(x)(ϑα), μx + α∨〉 � 1;
(4) 〈p(x)(ϑα), μx〉 � 1.

As a consequence, ωO ∈ Aλ,b.

Proof. Statements (1), (2), and (3) follow from [Nie18, Lemmas 8.3 and 8.4]. Note that ϑα is
J-anti-dominant. Thus, statement (4) follows from statement (1) and Lemma 5.1. By statements
(3) and (4) we have

〈p(x)(ϑα), μx〉 � 1, and either 〈p(x)(ϑα), μx〉 � 2 or 〈p(x)(ϑα), α∨〉 � 0.(a)
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Let g ∈ Jb,x and θ̃ = wJσ−1(α) + 1 ∈ Φ̃+, and ϑ̃ = wJσ−1(ϑα) + 1 ∈ Φ̃+. By statements (1) and
(2) we have (xσ)1−n(ϑ̃) = σ1−n(ϑ̃) = wJ(ϑα) and

(xσ)−n(θ̃) = σ−1p(x)−1wJσ−n(α) = σ−1wJp(x)σ−n(α) = wJσ−1(ϑα − α).

Define g : P1 → G(F̆ )/I by

g(z) = gU−θ̃(z) · · · (xσ)1−n
U−θ̃(z)U−ϑ̃(cz1+q−n

) · · · (xσ)1−n
U−ϑ̃(cz1+q−n

)I,

where c ∈ O×
F̆

(as Φ is simply-laced) such that

(xσ)−n
U−θ̃(z)U−θ̃(z)U−ϑ̃(cz1+q−n

) = U−θ̃(z)(xσ)−n
U−θ̃(z).

Then by statement (1) we compute that

g−1bσ(g) = U−wJ (ϑ̃α)xU−σ(θ̃)I ⊆ IxU−σ(θ̃)I ⊆ IAdm(λ)I,

where the first inclusion follows from part (a) that

x−1
U−wJ (ϑ̃α), [

x−1
U−wJ (ϑ̃α), U−σ(θ̃)] ⊆ I.

Thus, we have

gI = g(0) ∼λ,b g(∞) = g(sϑ̃sθ′) · · ·σ1−n(sϑ̃sθ′)I = gωOu−1I,

where θ′ = (xσ)1−n(ϑ̃) ∈ Φ and u ∈W0. By Proposition 7.1, gI ∼λ,b gωOI and ωO ∈ Aλ,b as
desired. �

7.2 The action of ker(ηG) ∩ Jb

Now we have the following result.

Proposition 7.6. Let O be the σ-orbit of some element in ∪x∈S+
λ,b

Cλ,b,x. Then ωO ∈ Aλ,b.

Proof. IfO is of type I, the statement follows from Lemma 7.3. If μx′′ + ϑ∨
β  λ for some x′′ ∈ S+

λ,b

and β ∈ O, then we also have ωO = ωOϑβ
∈ Aλ,b since Oϑβ

is of type I. Assume μx′′ + ϑ∨
β � λ

for any x′′ ∈ S+
λ,b and β ∈ O. If O is of type III, the statement is proved in § 8.2. Suppose

O is of type II. By Lemma 7.5 we can assume that there exist γ ∈ O, 1 � r � 2n− 1, and

x′ ∈ S+
λ,b such that x

(γ,r)→ x′, and, hence, x′ (σr(γ),2n−r)→ x. If n + 1 � r � 2n− 1 (respectively,
1 � r � n), we have gI ∼λ,b gωI by Lemma 7.4 (respectively, by Lemma 7.2(1) and (3)), where
ω = γ∨ + · · ·σr−1(γ∨) ∈ π1(MJ) ∼= ΩJ . Similarly, we have gω ∼λ,b gωω′I = gωOI, where ω′ =
σr(γ∨) + · · ·+ σ2n−1(γ∨) ∈ π1(MJ) ∼= ΩJ . Thus, gI ∼λ,b gωOI and ωO ∈ Aλ,b as desired. �

Proof of Proposition 2.6. First note that (ZΦ∨/ZΦ∨
J )σ is spanned by ωO, where O ranges over

σ-orbits of S0. Let J ⊆ S′
0 ⊆ S0 be such that ωO ∈ Aλ,b for each σ-orbit of S′

0. It suffices to
show S′

0 = S0. Assume otherwise. Following the proof of [Nie18, Proposition 4.3, p. 1381], we can
assume that Φ is simply-laced, and there exist α = σd(α) ∈ S0 \ S′

0, ϑ = σd(ϑ) ∈ Φ+ such that

ϑ∨ − α∨ ∈ ZΦ∨
S′
0

and either: (b1) ϑ ∈ ∪x∈S+
λ,b

Cλ,b,x; or (b2) x
(β,d)→ x′ and x

(ϑ+β,d)→ x′ for some

x ∈ S+
λ,b and β ∈ ΦS′

0
\ ΦJ such that x′ = x− β∨ + σd(β∨) ∈ S+

λ,b and ϑ + β ∈ Φ+.
Note that |Oα| = |Oϑ| = d and ω−1

Oα
ωOϑ

∈ (ZΦ∨
S′
0
/ZΦ∨

J )σ ⊆ Aλ,b. If part (b1) occurs,
then ωOϑ

∈ Aλ,b by Proposition 7.6. Hence, ωO ∈ Aλ,b and α ∈ S′
0, which is a con-

tradiction. Suppose part (b2) occurs. Let ω = β∨ + · · ·+ σd−1(β∨) ∈ π1(MJ) ∼= ΩJ . Then
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ωωOϑ
= (β + ϑ)∨ + · · ·+ σd−1((β + ϑ)∨) ∈ π1(MJ) ∼= ΩJ . We claim that

gωI ∼λ,b gI ∼λ,b gωωOϑ
I for g ∈ Jb,x.(a)

Given part (a) we have gωI ∼λ,b gωωOϑ
I, and, hence, ωOϑ

∈ Aλ,b, which is again a contradiction.
Thus, S′

0 = S0 as desired.
It remains to show part (a). By symmetry, it suffices to show gI ∼λ,b gωI. By switching

x with x′ we can assume β ∈ Φ+ \ ΦJ and β is J-anti-dominant and J-minuscule (see [Nie18,
Lemma 6.6]). In particular, σd(β) ∈ Cλ,b,x. If Oβ is of type I, it follows from Lemma 7.2. If Oβ

is of type III, it follows from Lemma 8.1. If Oβ is of type II, by Lemmas 5.4 and 7.2 we have

either gI ∼λ,b gωI or gωI ∼λ,b gωω′I = gωOβ
I for g ∈ Jb,x,

where ω′ = σd(β∨) + · · ·+ σ2d−1(β∨) ∈ π1(MJ). Note that gI ∼λ,b gωOβ
I by Proposition 7.6.

Thus, we always have gI ∼λ,b gωI as desired. Hence, part (a) is proved. �

8. The case when σ has order 3d

In this section we handle the case when σ has order 3d. We follow the strategy of [CKV15, § 4.7.7].
However, more details are involved. Note that in this case some/any connected component of S0

is of type D4. Let J = JνG(b).

8.1 Construction of affine lines
Let α, β ∈ S0 such that 〈α, β∨〉 = −1 and β = σd(β). Then the subset {α, σd(α), σ2d(α), β} is a
connected component of S0. In this subsection, we assume that J = JνG(b) = Oβ .

Let x, x′ ∈ S+
λ,b such that x

(α,r)→ x′ for some J-anti-dominant root α ∈ Φ+ \ ΦJ and 1 � r �
3d− 1. Let ω = γ∨ + · · ·+ σr−1(γ)∨ ∈ π1(MJ) ∼= ΩJ .

Lemma 8.1. If 1 � r � d, then gI ∼λ,b gy−1I for g ∈ Jb,x and some y ∈W J
0 ω−1W a

J .

Proof. As in the proof Lemma 7.2, we can assume x
(α,r)
� x′, and it suffices to show

U−(α+β)−1xU−σr(α+β)−1 ⊆ IAdm(λ)I.

Assume otherwise. Then r = d. Moreover, by Lemma 5.4(∗) we have 〈α + β, p(x)σd(α + β)∨〉 =
−1 (which implies 〈β, μx〉 = 1 and p(x)σd(α + β) = sβ(σd(α) + β) = σd(α)) and

〈β, μx〉 = 〈α + β, μx〉 = −〈σd(α), μx〉 = 1, and μx ± δ∨  λ,

where δ = α + β + σd(α). As δ is central for J = Oβ , by Lemma 5.3(2) we have

U−(α+β)−1xU−σr(α+β)−1 ⊆ IU−(δ+1)xI ⊆ I{sδ+1x, x}I ⊆ IAdm(λ)I,

which is a contradiction. �
Lemma 8.2. Suppose 2d � r � 3d− 1 and the following conditions hold:

(1) 〈α, μx〉 � 1;
(2) if r = 2d, then 〈σd(α), μx〉 = 0;
(3) if 2d + 1 � r � 3d− 1, then 〈σr(β), μx〉 = 1, 〈β, μx〉 = 0, and 〈σi(α), μx〉 = 0 for i ∈ {r − d,

r − 2d, d, 2d};
(4) xσi(α) = σi(α) for 1 � i � r − 1 with i /∈ {r − d, r − 2d, d, 2d}.
Then we have gI ∼λ,b gy−1I for g ∈ Jb,x and some y ∈W J

0 ω−1W a
J .
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Proof. Let θ̃ = σr−1(α + β) + 1 ∈ Φ̃+. Define g = gg,−θ̃,x,r for g ∈ Jb,x.

Case (1): r = 2d. By conditions (2) and (4) we have

g−1bσ(g) ⊆
{

IU−(α+β+σd(α))−1xU−σr(α+β)−1I, if 〈β, μx〉 = 1;
IU−(α+β)−1xU−σr(α+β)−1I, if 〈β, μx〉 = 0;

By conditions (1) and (2), 〈α + β, μx〉 = 〈α + β + σd(α), μx〉 � 〈β, μx〉+ 1, which means

g−1bσ(g) ⊆ xU−σr(α+β)−1I ⊆ IAdm(λ)I.

Thus, g = g(0) ∼λ,b g(∞) = gsI, where s =
∏d−1

i=0 sσi(α+β+σd(α))+1

∏d−1
i=0 sσi(α) if 〈β, μx〉 = 1, and

s =
∏2d−1

i=0 sσi(α+β)+1 if 〈β, μx〉 = 0.

Case (2): 2d + 1 � r � 3d− 1. Let ϑ = α + σd(α) + σ2d(α) + 2β. By conditions (3) and (4),

g−1bσ(g) ⊆ IU−ϑ−1xU−σr(α+β)−1I ⊆ IxU−σr(α+β)−1I ⊆ IAdm(λ)I,

which means gI = g(0) ∼λ,b g(∞) = gsI, where

s =
r−1∏
i=0

sσi(ϑ)+1sσi(α+β)sσi+d(α)

d−1∏
i=r

sσi(α+β+σd(α))+1sσi(α+β).

The proof is complete. �

The following two lemmas follow from the same construction as in Lemma 8.2.

Lemma 8.3. Assume d + 1 � r � 2d− 1 and the following conditions hold:

(1) 〈β, μx〉 = 0 and 〈σr(β), μx〉 ∈ {0, 1};
(2) 〈σd(α), μx〉 = 〈σr−d(α), μx〉 = 0, and 〈α, μx〉 � 1;
(3) xσi(α) = σi(α) for 1 � i � r − 1 with i /∈ {r − d, d}.
Then we have gI ∼λ,b gy−1I for g ∈ Jb,x and some y ∈W J

0 ω−1W a
J .

Lemma 8.4 [Nie18, Lemma 8.6]. If 〈β, μx〉 = 1, 〈σd(α), μx〉 = 〈σ2d(α), μx〉 = 0, 〈α, μx〉 � −1,
and xσi(α) = α for i ∈ Z \ dZ, then gI ∼λ,b gy−1I for g ∈ Jb,x and some y ∈W0ω

−1
Oα

W a
J . Here

ωOα = α∨ + · · ·σ3d−1(α∨) ∈ π1(MJ) ∼= ΩJ .

Lemma 8.5. Let x1, x2 ∈ S+
λ,b, δ = α + β + σ2d(α), and 1 � k � 3d− 1 such that x1

(δ,k)→ x2.

Then we have gI ∼λ,b gy−1I for g ∈ Jb,x1 and some y ∈W J
0 ω−1W a

J . Here ω = δ∨ + · · ·σk−1(δ∨) ∈
π1(MJ) ∼= ΩJ .

Proof. It follows from Lemma 7.3 by noticing that Oδ is of type I. �

Lemma 8.6. Assume d + 1 � r � 2d− 1 and the following conditions hold:

(1) 〈β, μx〉 = 1 and 〈σr(β), μx〉 = 0;
(2) 〈σd(α), μx〉 = −1, 〈σr−d(α), μx〉 = 0, 〈α, μx〉 � 0, and 〈σr(α), μx〉 � −1;
(3) xσi(α) = σi(α) for 1 � i � r − 1 with i /∈ {r − d, d}.
Then we have Jb,x ∼λ,b Jb,x′ .
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Proof. Let δ = α + β + σ2d(α). Assume μx − δ∨  λ. By condition (2) we have

x
(δ,r)→ x′′ := x− δ∨ + σr(δ∨)

(σr−d(α),3d−r)→ x′.

Thus, Jb,x ∼λ,b Jb,x′′ by Lemma 8.5. It suffices to show Jb,x′′ ∼λ,b Jb,x′ . If 〈σr(σ), μx′′〉 � −1, then

x′′ (σr−d,d)→ x′′ − σr−d(α∨) + σr(α∨)
(σr(α),2d−r)→ x′,

and the statement follows from Lemma 8.1 that Jb,x′′ ∼λ,b Jb,x′ . Otherwise, by condition (2) we
have 〈σr(α), μx〉 = −1, that is, 〈σr(σ), μx′′〉 = 0. The statement follows from Lemma 8.3 that
Jb,x′′ ∼λ,b Jb,x′ . Let l = min{r + 1 � i � 2d− 1; 〈σi(α), μx〉 �= 0}. If 〈σl(α), μx〉 � 1, then

x′′ (σl(α),2d−1)→ x′′ − σl(α∨) + σ2d(α∨)
(σr−d(α),l+d−r)→ x′,

and the statement follows from Lemmas 8.1 and 8.3. If 〈σl(α), μx〉 � −1, then

x′′ (σr−d(α),k+d−r)→ x′′ − σr−d(α∨) + σl(α∨)
(σl(α),2d−l)→ x′,

and the statement also follows from Lemmas 8.1 and 8.3.
Now we assume μx − δ∨ � λ, which means (as μx − α∨ − β∨ = μx−α∨  λ) that

〈σ2d(α), μx〉 � −1.(a)

If 〈σr+d(α), μx〉 � 1, then we have

x
(σr−d(δ),d)→ x− σr+d(α)∨ + σr(α)∨

(σr+d(α),2d−r)← x′,

and the statement follows from Lemmas 8.5 and 8.1. Thus, we assume

〈σr+d(α), μx〉 � 0.(b)

By parts (a), (b), (1), and (2), we have∑
i∈{r−d,r,r+d,0,d,2d}

〈σi(α), prJ(μx)〉 < 0.

By Lemma 5.1, there exists r + 1 � k � 3d− 1 with k /∈ {2d, r + d} such that

k = min{r + 1 � i � 3d− 1; 〈σi(α), μx〉 � 1}.(c)

Suppose 〈σj(α), μx〉 � −1 for some r + 1 � j � 3d− 1 with j /∈ {2d, k + d, k − d, r + d}. Let

z = x− σk1(δ)∨ + σj1(δ)∨, z′ = x′ − σk1(δ)∨ + σj1(δ)∨ ∈ S+
λ,b,

where k1 = k + d if k > 2d and k1 = k otherwise, and j1 is defined in the same way. By
Lemma 8.5, we have Jb,x ∼λ,b Jb,z and Jb,x′ ∼λ,b Jb,z′ . Moreover, there exist z1, z2 ∈ S+

λ,b such
that

z
(α,k−2d)→ z1

(σk−2d(α),2d+r−k)→ z′ if r + d + 1 � k � 3d− 1;

z
(α,k−d)→ z1

(σk−2d(α),d+r−k)→ z′, if r + 1 � k � 2d− 1;

z
(α,k−2d)→ z1

(σk−d(α),d+r−k)→ z2
(σk−2d(α),d)→ z′, if 2d + 1 � k � r + d− 1.

By Lemma 8.1, Jb,z ∼λ,b Jb,z′ and the statement follows. Thus, we can assume

〈σi(α), μx〉 = 0 for 1 � i � k − 1 with i /∈ {r − d, r, r + d, d, 2d}.(d)

As 〈σr−d(α), μx′〉 = −1, we have y := x′ + σr−d(α)∨ − σk(α)∨ ∈ S+
λ,b.
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Case (1): r + 1 � k � 2d− 1. Then

x
(σk(δ),r−k)→ x− σk(δ)∨ + σr(δ)∨

(α,k−d)→ y
(σr−d(α),k−r+d)→ x′.

By Lemma 8.1, it suffices to show Jb,y ∼λ,b Jb,x′ . If 〈σr(α), μx〉 � −2, that is, 〈σr(α), μy〉 � −1,
it follows from that

y
(σr−d(α),d)→ x′ + σr(α)∨ − σk(α)∨

(σr(α),k−r)→ x′.

Otherwise, we have 〈σr(α), μx〉 = −1 by (2), that is, 〈σr(α), μy〉 = 0. Then the statement follows
from Lemma 8.3.

Case (2): 2d + 1 � k � 3d− 1. Then we have

x
(σk+d(δ),r−k−d)→ x− σk+d(δ)∨ + σr(δ)∨

(α,k−2d)→ y
(σr−d(α),k−r+d)→ x′.

Again, it suffices to show Jb,y ∼λ,b Jb,x′ . If k � r + d− 1, it follows similarly as in case (1).
Otherwise, it follows from that

y
(σk−d(α),r+2d−k)→ y − σk−d(α)∨ + σr+d(α)∨

(σk−2d(α),d)→ y − σk−2d(α)∨ + σr+d(α)∨

(σr−d(α),k−r−d)→ y − σr−d(α)∨ + σr+d(α)∨
(σr+d(α),k−r−d)→ x′,

where the first arrow follows from part (b) that 〈σr+d(α), μy〉 = 〈σr+d(α), μx〉 − 1 � −1. �

8.2 Proofs of the main results
Recall that J = JνG(b). We are ready to finish the proofs when σ is of order 3d.

Proof of Proposition 2.4. Let x, x′ ∈ S+
λ,b. To show Jb,x ∼λ,b Jb,x′ , by Proposition 5.6 we can

assume x
(γ,r)
� x′ for some 1 � r � 2d− 1 and γ ∈ Φ+ \ ΦJ with γ∨ is J-anti-dominant and J-

minuscule. In particular, σr(γ) ∈ Cλ,b,x. If Oγ is of type I, the statement follows from Lemma 7.2
and Proposition 4.11. Otherwise, we can assume J = Oβ and γ = α as in § 8.1. If 1 � r � d,
the statement follows from Lemma 8.1 and Proposition 4.11. Otherwise, by the proof of [Nie18,
Proposition 6.8, p. 1378, Case 2], either Lemma 8.3 or Lemma 8.6 applies. Thus, the statement
also follows. �

Proof of Proposition 7.6. As O is of type III, we can assume O = Oα and J = Oβ , where α, β
are as in § 8.1. Again we can assume that μx′′ + ϑ∨

γ � λ for any x′′ ∈ S+
λ,b and γ ∈ O. If there

do not exist γ ∈ O, 1 � r � 3d− 1, and x′ ∈ S+
λ,b such that x

(γ,r)
� x′, by [Nie18, Lemma 8.6] the

statement follows from Lemma 8.2 and Proposition 7.1. Assume otherwise. Then there exists xi ∈
S+

λ,b, γi ∈ O, and 1 � ri � 3d− 1 for 1 � i � m such that ωO =
∑m

i=1

∑ri−1
j=0 σj(γ∨

i ) ∈ π1(MJ)
and

x = x0
(γ1,r1)→ x1

(γ2,r1)→ · · · (γm,rm)→ xm = x.

If d + 1 � ri � 2d− 1, then either Lemma 8.3 or Lemma 8.6 occurs. If for each 1 � i � m we
have either ri � d or 2d � ri � 3d− 1 or Lemma 8.3 (for (x, x′, α, r) = (xi−1, xi, γi, ri)) occurs,
it follows that ωO ∈ Aλ,b by Lemmas 8.1, 8.2, and 8.3 and Proposition 7.1. Otherwise, by the
proof of [Nie18, Proposition 6.8, p. 1378, Case 2], there exists 1 � i � m such that the situation
of Lemma 8.6 occurs (for (x, x′, α, r) = (xi−1, xi, γi, ri)).
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Let x, x′, α, r be as in Lemma 8.6. If 〈σr+d(α), μx〉 � 0, then we have 〈σr(ϑα), μx〉 � −1,
which contradicts our assumption. Thus, 〈σr+d(α), μx〉 � 1, and, hence,

x
(σd+r(α),3d−r)→ y := x− σr+d(α)∨ + σd(α)∨

(σd(α),r)→ x.

Then it suffices to show that

g2I ∼λ,b g2ω2I for g2 ∈ Jb,y;(a)

g1I ∼λ,b g1ω1I for g1 ∈ Jb,x,(b)

where ω1 = σr+d(α)∨ + · · ·+ σ4d−1(α)∨, ω2 = σd(α)∨ + · · ·+ σr+d−1(α)∨ ∈ π1(MJ) ∼= ΩJ .
First we show part (a). Note that 〈σr(α), μy〉 = 〈σr(α), μx〉 � −1. We have

y
(σd(α),r−d)→ y − σd(α)∨ + σr(α)∨

(σr(α),d)→ x,

and part (a) follows from Lemma 8.1 and Proposition 7.1.
Now we show part (b). If 〈α, μx〉 � −1, the statement follows from that

x
(σr+d(α),2d−r)→ x− σr+d(α) + α∨ (α,d)→ y.

Thus, we can assume 〈α, μx〉 = 0. If 〈σi(α), μx〉 = 0 for r + d + 1 � i � 3d− 1, it follows from
Lemma 8.3. Otherwise, let

k = max{r + d + 1 � i � 3d− 1; 〈σi(α), μx〉 �= 0}.
If 〈σk(α), μx〉 = −1, then 〈σk−d(α), μx〉 � 1 since 〈σk(ϑα), μx〉 � 0, which means

x
(σk−d(δ),2d)→ x1 := x + σk(α)∨ − σk−d(α)∨

y
(σk−d(δ),2d)→ y1 := y + σk(α)∨ − σk−d(α)∨.

By Lemma 7.3, we have

g1I ∼λ,b g1ω
′I for g1 ∈ Jb,x, g2I ∼λ,b g2ω

′I for g2 ∈ Jb,y,

where ω′ = σk−d(δ∨) + · · ·+ σk+d(δ∨) ∈ π1(MJ) ∼= ΩJ . Thus, we can replace the pair (x, y) with
(x1, y1) so that 〈σk(α), μx〉 � 1. Then

x
(σk(α),4d−k)→ x− σk(α)∨ + σd(α)∨

(σr+d(α),k−r−d)→ y,

and part (b) follows from Lemmas 8.3 and 8.1 and Proposition 7.1. �
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Appendix A. Distinct elements in Adm(λ)

In this appendix, we study the distinct elements defined in § 3.

A.1
First we recall the following lemmas.

Lemma A.1. Let s, s′ ∈ Sa and w̃ ∈ W̃ such that �(sw̃) = �(w̃s′) and �(sw̃s′) = �(w̃). Then w̃ =
sw̃s′.

Lemma A.2 ([CN20, Lemmas 1.8 and 1.9] and [Hai01, Lemma 4.5]). Let s ∈ Sa and w̃ ∈ Adm(λ)
with λ ∈ Y such that w̃ < sw̃. Then we have:

(1) w̃s ∈ Adm(λ) if w̃s < sw̃s;
(2) w̃s = sw̃ if w̃s /∈ Adm(λ);
(3) sw̃s ∈ Adm(λ) if �(sw̃s) = �(w̃).

Lemma A.3. Let w̃ /∈ Adm(λ) and s ∈ Sa such that w̃s > w̃. Then sw̃s /∈ Adm(λ).

Proof. Assume sw̃s ∈ Adm(λ), then sw̃s < w̃s and, hence, �(sw̃s) = �(w̃). By Lemma A.2(3),
we have w̃ ∈ Adm(λ), contradicting the assumption that w̃ /∈ Adm(λ). �

A.2
Fix λ ∈ Y +. Let R ⊆ S0 and w̃ ∈ Adm(λ). We say w̃ is left R-distinct (respectively, right R-
distinct) if sw̃ /∈ Adm(λ) (respectively, w̃s /∈ Adm(λ)) for all s ∈ R. Let wR denote the longest
element of WR.

For a reflection s ∈W0 we denote by αs ∈ Φ+ the corresponding simple root.

Lemma A.4. Let R ⊆ S0 be commutative or of type A2. Let w̃ ∈ Adm(λ) be right (respectively,
left) R-distinct. Let u, u′ ∈WR with �(u′) � �(u). Then u′w̃u−1 ∈ Adm(λ) (respectively, u−1w̃u′)
if and only if u = u′. As a consequence, wRw̃wR ∈ Adm(λ) is left (respectively, right) R-distinct.

Proof. By symmetry, it suffices to handle the case when w̃ is right R-distinct. Suppose the
‘only if’ part is true, we show the ‘if’ part, that is, uw̃u−1 ∈ Adm(λ) for u ∈WR. We argue by
induction on �(u). If u = 1, the statement is true. Let u = su1 > u1 with u1 ∈WR and s ∈ R. We
assume u1w̃u−1

1 ∈ Adm(λ) by induction hypothesis. It remains to show that uw̃u−1 ∈ Adm(λ).
Otherwise, we have �(uw̃u−1) = �(u1w̃u−1

1 ) + 2 and u1w̃u−1 ∈ Adm(λ) by Lemma A.2(1) and
(3), which contradicts the ‘only if’ part.

Now we show the ‘only if’ part. Note that w̃ ∈ W̃R, see § 1.1.

Case (1): R is of type A1 ×A1 or A2. Without loss of generality, we can assume R = {s1, s2} is
of type A2. By symmetry, it suffices to consider the following cases.

Suppose sw̃s′ ∈ Adm(λ). Then sw̃s′ < w̃s′ and sw̃s′s /∈ Adm(λ) (see Lemma A.3). By
Lemma A.2(2) we have sw̃s′(αs) = αs, that is, w̃(αs + αs′) = −αs. This is impossible since
w̃ ∈ W̃R.

Suppose sw̃ss′ ∈ Adm(λ). Then sw̃ss′ < sw̃s′ (as sw̃s′ /∈ Adm(λ)), that is, sw̃s′(s′(αs)) =
sw̃(αs) ∈ Φ̃+. Since w̃(αs) ∈ Φ̃− (as w̃ ∈ W̃R), we have w̃(αs) = αs. This means sw̃ss′ = w̃s′ /∈
Adm(λ), a contradiction. Note that sw̃s′s /∈ Adm(λ) by Lemma A.3.

Suppose ss′w̃ss′ ∈ Adm(λ). Then ss′w̃ss′ < s′w̃ss′. If s′w̃ss′ < s′w̃ss′s, then ss′w̃ss′s /∈
Adm(λ) by Lemma A.3. Otherwise, by Lemma A.1 we have s′w̃ss′s = w̃ss′ (since w̃ss′ < w̃ss′s)
and hence ss′w̃ss′s = sw̃ss′ /∈ Adm(λ). Thus, we always have ss′w̃ss′s /∈ Adm(λ). By Lemma A.2
we have ss′w̃ss′(αs) = αs, that is, w̃(αs′) = −(αs + αs′), which is impossible as w̃ ∈ W̃R.
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Suppose ss′w̃ss′s ∈ Adm(λ). Then ss′w̃ss′s < s′w̃ss′s. Since ss′w̃ss′ /∈ Adm(λ), by
Lemma A.2 we have ss′w̃ss′s(αs) = αs, that is, w̃(αs′) = αs + αs′ . This means ss′w̃ss′s =
s′w̃ss′ ∈ Adm(λ), a contradiction.

Case (2): R is commutative. We argue by induction on |R| and �(u′). If R = ∅ or u′ = 1, the state-
ment is trivial. Assume �(u′) � 1. Let s ∈ R such that su′ < u′. If su < u, then sw̃s ∈ Adm(λ)
is right (R \ {s})-distinct by case (1), and, hence, the statement follows by induction hypoth-
esis. Assume su > u. We need to show that u′w̃u−1 /∈ Adm(λ). By the induction hypothesis
and the previous discussion we have su′w̃u−1, u′w̃u−1s /∈ Adm(λ). Applying Lemma A.2(2) we
have u′w̃u−1(αs) = αs, that is, w̃(αs) = −αs (as R is commutative), which is impossible since
w̃ ∈ W̃R. �

Lemma A.5. Let w̃ ∈ Adm(λ) and s ∈ S0 such that sw̃s ∈ Adm(λ) and sw̃ /∈ Adm(λ). Let α ∈
Φ+ \ {αs} such that w̃sα ∈ Adm(λ). Then sw̃sαs ∈ Adm(λ)

Proof. Suppose sw̃sαs /∈ Adm(λ), then sw̃sα ∈ Adm(λ) by Lemma A.2. As sw̃ /∈ Adm(λ), we
have sw̃(α) ∈ Φ̃+. On the other hand, as s(α) ∈ Φ+, sw̃sαs /∈ Adm(λ) and sw̃s ∈ Adm(λ), we
have sw̃(α) ∈ Φ̃−, which is a contradiction. �

Corollary A.6. Let R be as in Lemma A.4. Let w̃ ∈ Adm(λ) be left R-distinct. Let α ∈
Φ+ \ ΦR such that w̃sα ∈ Adm(λ). Then uw̃sαu−1 ∈ Adm(λ) for u ∈WR.

Proof. We argue by induction on �(u). If u = 1, the statement follows by assumption. Supposing it
is true for u1, that is, u1w̃u−1

1 su1(α) = u1w̃sαu−1
1 ∈ Adm(λ), we show it is also true for u = su1 >

u1 with s ∈ R. By Lemma A.4 we have u1w̃u−1
1 , su1w̃u−1

1 s ∈ Adm(λ) and su1w̃u−1
1 /∈ Adm(λ).

Moreover, we have u1(α) �= αs since α ∈ Φ+ \ ΦR. Thus, uw̃sαu−1 = su1w̃u−1
1 su1(α)s ∈ Adm(λ)

by Lemma A.5. �

Appendix B. Proof of Lemma 6.5

We start with a general lemma on root systems.

Lemma B.1. Let μ ∈ Y , λ ∈ Y + and α ∈ Φ+ such that μ  λ, μ + α∨ � λ, and μ + α∨ � λ.
Then there exists β ∈ Φ+ such that 〈β, μ + α∨〉 � −2, and either μ + β∨  λ or μ + α∨ + β∨ � λ.

Proof. We argue by induction on μ + α∨ via the partial order �. If μ + α∨ ∈ Y +, then μ +
α∨  λ, contradicting our assumption. Thus, there exists β ∈ S0 such that 〈β, μ + α∨〉 � −1
and, hence, μ + α∨ + β∨ � λ (by [Gas10, Proposition 2.2]). If 〈β, μ + α∨〉 � −2, the statement
follows. Assume 〈β, μ + α∨〉 = −1. Then μ + α∨ < sβ(μ + α∨) � λ. If β = α, then 〈α, μ〉 = −3
and μ + α∨  μ  λ, a contradiction. Thus, β �= α and sβ(α) ∈ Φ+. By the induction hypothesis,
for the pair (sβ(μ), sβ(α)) there exists γ ∈ Φ+ such that

〈γ, sβ(μ + α∨)〉 = 〈sβ(γ), μ + α∨〉 � −2

(which means β �= γ and sβ(γ) ∈ Φ+), and either sβ(μ) + γ∨  λ or sβ(μ + α∨) + γ∨ � λ. If the
former case occurs, we have μ + sβ(γ∨)  λ, and the statement follows. Otherwise, 〈sβ(γ), μ〉 � 0
and the latter case occurs. In particular, 〈sβ(γ), α∨〉 � −2, and, hence, means γ is a long root.
Thus, we have

μ + α∨ + sβ(γ∨) � μ + α∨ + γ∨ + β∨ = sβ(μ + α∨) + γ∨ � λ,

and the statement also follows. �
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Proof of Lemma 6.5. By [Nie18, Lemma 3.3], there exists x ∈ S+
λ,b such that μx is weakly

dominant, that is, 〈δ, μx〉 � −1 for δ ∈ Φ+. As (λ, b) is Hodge–Newton irreducible, λ� − νx ∈∑
α∈S0

R>0α
∨. As p(x) ∈WJ1 , we have μ�

x − νx ∈ RΦ∨
J1

. Note that μx � λ. Thus, there exists
α ∈ K = σ(K) ⊆ J0 such that μx + α∨ � λ. We show that

(a1) there is ξ ∈ Φ+ \ ΦJ such that 〈α, ξ∨〉 � −1 and μ + ξ∨  λ;(a)

(a2) if, moreover, Φ is simply laced then, 〈ξ, μx〉 = −1.

By assumption, μx + α∨ � λ. By Lemma B.1, there exists ζ ∈ Φ+ such that 〈ζ, μx + α∨〉 � −2,
and either μx + ζ∨  λ or μx + α∨ + ζ∨ � λ. As μx is weakly dominant, we have: (i) 〈ζ, α∨〉 �
〈ζ, μx〉 = −1; (ii) 〈ζ, α∨〉 � −2 and 〈ζ, μx〉 = 0; or (iii) 〈ζ, α∨〉 = −3 and 〈ζ, μx〉 = 1. Take ξ = ζ
if choice (i) occurs. Assume choice (ii) or (iii) occurs. Then Φ is non-simply-laced and 〈α, ζ∨〉 =
−1. If μx + ζ∨  λ, take ξ = ζ. Otherwise, μx + ζ∨ � λ is not weakly dominant (by [Gas10,
Proposition 2.2]). Thus, there exists γ ∈ Φ+ such that 〈γ, μx + ζ∨〉 � −2, which means 〈γ, ζ∨〉 =
〈γ, μx〉 = −1 since μx is weakly dominant and ζ is a long root. Then γ ∈ Φ+ \ ΦJ and μx + γ∨ 
λ. Note that α is a short root and 〈α, μx〉 = 0. If 〈α, γ∨〉 = −1, we take ξ = γ. If 〈α, γ∨〉 =
0, then choice (ii) occurs (since if choice (iii) occurs, then γ = −3α− 2ζ, contradicting that
〈γ, μx〉 = −1), which means μx + γ∨ + ζ∨  λ. Thus, we take ξ = sγ(ζ). If 〈α, γ∨〉 = 1, we take
ξ = sα(γ). It remains to show ξ ∈ Φ+ \ Φ+

J . Otherwise, ξ ∈ ΦK since 〈α, ξ∨〉 �= 0, contradicting
our assumption that μ + ξ∨ � λ. Thus, part (a) is proved.

Let β be the J-anti-dominant conjugate of ξ under WJ . Let K0 ⊆ Ψβ be the connected
component of K containing α. By part (a) we have

〈β, μx〉 = −1 if Φ is simply laced;(b)

μx + β∨  λ;(c)

β∨ is non-central on K0.(d)

We claim that

β∨ is K-minuscule.(e)

Otherwise, 〈θ, β∨〉 � −2 for some θ ∈ Φ+
K . Then μx + β∨ + θ∨  λ. If 〈β, μx〉 � 0, then 〈β, μx +

β∨ + θ∨〉 � 1 and μx + θ∨  λ, contradicting our assumption. Otherwise, we have

〈β, μx〉 = −1 and 〈sβ(θ), μx〉 = −〈θ, β∨〉〈β, μx〉 � −2,

which contradicts that μx is weakly dominant. Thus, part (e) follows.
Applying [Nie18, Lemma 6.6] we can assume furthermore that β∨ is J-anti-dominant and

J-minuscule. Hence, Lemma 6.5(1) is proved.
If 〈p(x)σi(β), μx〉 � 1 for some i ∈ Z \ nZ, then

μ1 := μx + β∨ − p(x)σi(β)∨  λ and hence x1 := x + β∨ − σi(β)∨ ∈ S+
λ,b.

By part (d), μ1 is non-central on K0. As μx1 , μ1 are conjugate by WJ (see Lemma 5.3),
μx1 is also non-central on K0, contradicting that K0 ⊆ J0. Thus, 〈p(x)σi(β), μx〉 � 0 for i ∈
Z \ nZ. If 〈σi(β), μx〉 � −1 for some i ∈ Z \ nZ, by Lemma 5.1 there exists j ∈ nZ such that
〈p(x)σj(β), μx〉 � 1. Then

μ2 := μx − p(x)σj(β)∨ + σi(β)∨  λ and, hence, x2 := x− σj(β)∨ + σi(β)∨ ∈ S+
λ,b,

which is also impossible since μ2 is non-central on σj(K0). So 〈σi(β), μx〉 = 〈p(x)σi(β), μx〉 = 0
for i ∈ Z \ nZ and Lemma 6.5(2) is proved.
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If σ2n(β) �= β, then Φ = Ψ and Ψβ is of type D4, whose simple roots are β, σn(β), σ2n(β), α
with σn(α) = α. Moreover, J = J0 = Oα. By Lemma 6.5(2), we have μx|Ψ\Ψβ

= 0. Thus,∑n
i=0〈σi(β), μx〉 � 1 by Lemma 5.1. If 〈σn(β), μx〉 � 1, then part (3) follows. If 〈σn(β), μx〉 �

−1, it follows by replacing β with σn(β). If 〈σn(β), μx〉 = 0, it follows by replacing x with
x− σ2n(β)∨ + σn(β)∨ ∈ S+

λ,b.
Now we assume σ2n(β) = β. By Lemmas 6.5(2) and 5.1,

〈β + σn(β), prJ(μx)〉 = 〈β + σn(β), prJ1
(μx)〉 > 0.(f)

Thus, Lemma 6.5(3) follows if β = σn(β). Assume β �= σn(β). Then Φ is simply-laced, and,
hence, 〈β, μx〉 = −1 by part (b). Moreover, Oβ ∪ J is a set of simple roots of Ψ by [CKV15,
Proposition 4.2.11]. As β is a neighbor of K0 in Ψβ and 〈β, μx〉 = −1, one checks (on the type of
Ψβ) that 〈β, prJ1

(μx)〉 < 0. By part (f), we have 〈p(x)σn(β), μx〉 � 1 and Lemma 6.5(3) follows.
Assume σn does not act trivially on Ψβ ∩ J0. Then Φ is simply-laced and 〈β, μx〉 = −1. We

may assume σn does not fix each point of K0. Let α ∈ K0 such that 〈β, α∨〉 = −1. If σn(β) = β,
then one checks directly (on the type of Ψβ and using the assumption on K0) that 〈β, prJ(μx)〉 <
0, which contradicts part (f). Thus, β �= σn(β) ∈ Ψβ. Let x3 = x + β∨ − σn(β)∨ ∈ π1(MJ). If
β, σn(β) are in distinct connected components of Oβ ∪ J \ {α, σn(α)} ⊇ Oβ ∪ J1, then x3 ∈ S+

λ,b

by Lemma 6.5(2) that 〈p(x)σn(β), μx〉 � 1. As 〈α, μx3〉 = 0, we deduce that α = σn(α) is the
common neighbor of β, σn(β) in Ψβ , which implies that σn fixes each point of K0, contradicting
our assumption. Thus, β, σn(β) are connected in Oβ ∪ J \ {α, σn(α)}. Then α �= σn(α), and it
follows from part (f) that either 〈p(x)σn(β), μx〉 � 2 or the case in Lemma 6.5(4) occurs. The
former case does not occur since x3 ∈ S+

λ,b but μx3 is non-central on K0. Thus, Lemma 6.5(4)
follows. �
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