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The topic of this session is "physical randomness", It might be
doubted whether such a subject exists, for definitions of randomness
have hitherto almost all been mathematical in nature. The only excep-
tions of which I am aware are the preceding paper by Beniof£ I1J and a
paper by Wesley Salmon [8]2. These attempts to inject some empirical
content into randomness are highly desirable. But anyone attempting
to formulate a physically based definition of randomness should at
some point make clear what the connection is (if any) with a more
traditional notion of disorder - that of indeterminism. Repeated
reference to quantum mechanical examples whenever physical randomness
is discussed indicates that a primary motivation for considering
physical randomness to be important is because of the current belief
that data sequences associated with quantum mechanical experiments
are irreducitly random. (As an indication of this, in any situation
in which physical randomness is discussed, translate the remarks about
quantum phenomena into remarks about coin tossing, and they will lose
much of their interest.) We already have a large and growing litera-
ture concerned with the question of whether quantum mechanics is an
indeterministic theory or not. The small, but also growing literature
on randomness looks to be a potential contribution to that question.
And so we surely ought to inquire whether physical randomness has any
connection with indeterminism, and if so, whether' the two are in fact
separable concepts. I hope to show here what that connection between
randomness and indeterminism is.

First, some terminological matters. We speak of indeterministic
theories, but not of random theories. Phenomena or systems can behave
both indeterministically and randomly, but sequences are only elliptic-
ally indeterministic, although often random. To tidy up the termin-
ology, it is best to take indeterministic theories as basic. Systems
can then be represented by model-theoretic structures, some of which
will be models of those theories. Elements of sequences will be time
slices of structures. If the structure is <U,F,,..., Fn>, an element
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of a sequence will be <Fi;L (tk) ,... ,Fj_. (tk) > for ij < n.
noting that we can easily incorporate3data other than o
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It is worth
outcome results

of experiments in this format. The binary 0-1 representation for
sequences usually discussed is merely for convenience and to avoid
inessential technical complexities. One thing we do not want is to
distinguish randomness and indeterminism on the grounds that the
former ordinarily involves only values of observable quantities,
while the latter uses values of unobservable quantities. The
empiricist origins of randomness naturally led to a focus on experi-
mental outcomes, but I., shall consider here a more general type of
randomness, and the above representation allows for that. Most
importantly, the state variables of the system can be among the F^..
Also, the n-tuples comprising the sequence elements could contain
values of parameters representing environmental conditions. This will
allow, for example, the use of statistical tests employing information
about the physical surroundings of the system. It is obvious that a
coding function from n-tuples into {0,1} will allow a transformation
into the standard binary form.

Following a distinction I made in 12], we can find two principal
reasons for having a philosophical interest in definitions of
randomness. Our curiosity might be aroused because a satisfactory
definition of randomness will help in solving difficulties in the
foundations of probability, in particular with relative frequency
interpretations and their problem of the single case. Such a defini-
tion would also aid in deciding what is to count as a model of the
measure theoretic theory of probability, and also perhaps with models
of statistical explanation and statistical laws. This type of
interest relates to the domain approach to randomness, which claims
that random sequences constitute the correct domain of the theory of
probability. Alternatively, investigation might be stimulated by the
belief that an adequate definition of randomness will go some way
towards formulating a suggestive definition of disorder, irregularity,
and hence perhaps of indeterminism. This approach we can call the
irregularity approach. It is from this second interest that a
connection between indeterminism and randomness under some physical
guise is likely to come. Yet the inferred connection is based, I
think, on the following simple but erroneous argument. While this
argument may rarely be voiced explicitly, it seems to underlie many
of the beliefs that randomness of some sort is relevant to indetermin-
ism. The argument is: (Laplacian) determinism implies predictability,
hence unpredictability must imply indeterminism. Both the complexity
definitions of randomness, and the place selection function approaches
have formalized, in their different ways, the idea that random se-
quences are unpredictable. Hence at least certain types of randomness
should imply indeterminism, and so determinism should entail non-
randomness. This quick argument is wrong, and the reason it is wrong
is instructive. The incorrectness of the argument can most easily
be seen for the case of the von Mises/Church definition of randomness
which uses the invariance of the limiting frequency under recursive
place selection functions as the central tool. Because we are con-
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cerned here with lack of predictability, we need a definition of
indeterminism which, like all definitions of randomness, is
essentially linguistic in form. The definition must thus avoid
causal talk, or talk of laws, or talk of anything but the logical
and mathematical structure of the theory covering the data sequences
in question. It may thus, of course, characterize classes of
systems which are correctly described by the theory, but it will not
use any metaphysical attributes of the systems. The obvious candi-
date for the job is Richard Montague's definition of a deterministic
theory, given in his 1962 paper of the same name [5]. This, roughly
speaking, formalizes the idea that a theory is deterministic if,
given two models of the theory which are in the same state at some
time, then they are in the same state at all times. A system is
deterministic if it is a model for a deterministic theory. Montague
conjectured in the paper that a system which is covered by a deter-
ministic theory can produce sequences which are random in the von
Mises/Church sense, but did not prove it. The conjecture is indeed
correct. We thus have, reformulating the claim slightly:

Theorem: There is a theory which is deterministic in the sense of
Montague which has as a model a system which produces sequences which
are random in the sense of von Mises/Church.

Proof: (See Appendix)

This result is much stronger than the usual claims that, classical,
and hence presumably deterministic, processes such as coin flipping
can give us random sequences, for in the present case, even given
complete information about the state variables, we still have random
outputs. There is no lack of knowledge at the root of this randomness.
What moral can we draw•from this result? The evident conclusion is
that exactly the same kind of decisions which have proved troublesome
in formulating a satisfactory definition of randomness have also been
centrally important in the attempt to find an adequate definition of a
deterministic theory. The theory which was constructed in the proof of
the above theorem is such that the sequences satisfying the theory are
arithmetically definable, but not effectively computable. Whether or
not the lack of effective coroputability is a deficiency in a scientific
theory is a serious question, and not one which I wish to pursue here.
(For a discussion of this question, see Kreisel [3]). The important
point is that some decision about the level of complexity beyond which
a functional relationship is no longer a candidate for a scientific
theory has to be made. Ever since Russell [7] pointed out that an un-
restricted form of Laplacian determinism can be trivially satisfied,
efforts to avoid his criticism have run into the difficulty of stipulat-
ing the level of simplicity which distinguishes scientific from non-
scientific deterministic theories. There seems to be no reason to
assume that a deterministic universe would be simple. Yet this is the
same difficulty with which workers in randomness have been faced when
deciding which characterization of the sets of random sequences should
be used. When the heuristic idea of gambling systems was available,
this was perhaps not too difficult, but fortunately, gambling and
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science have little in common. The survey of attempts to find the
"correct" characterization of the measure one sets in Benioff [1] in-
dicates the difficulty of the task.

Returning to the theorem, we see that as a general procedure, inferr-
ing indeterminism from randomness is unwarranted. Inferences of any
other implication relations are easily shown to be equally risky. It
is trivial that systems described by deterministic theories can give
non-random outputs. What of the connection between indeterministic
systems and their output sequences? Here the special case of indeter-
ministic theories which are used to generate probability distributions
over the output sequences immediately provides the answer, for it is
well known that with probability one, such systems will produce random
sequences, and with probability zero will produce non-random sequences,
where "random" can be taken in the sense of any of the approaches which
use sets of measure zero as their basis. Hence we may conclude that
neither randomness (in the senses specified) nor indeterminism (again
in the senses specified) implies the other.

The above arguments involved particular definitions of indeterminism
and randomness, some of which., such- as the place selection function
approach, are flawed. We can, however, provide a more general argument
to show that indeterminism does not imply physical randomness. To
formulate this argument, I shall use only those features of randomness
and indeterminism which either occur in the Majority of definitions of
the two concepts, or in terms of which most of the remaining definitions
can be recast. For indeterminism, the only feature we shall need is
that a system is indeterministic if two replicas of that system which
are in the same state at some time are in different states at some other
time. For randomness, the relevant feature we need is that a sequence
is random if it belongs to a specified class of sets of measure one.
Most.of the modern definitions of randomness can be put into this
canonical form, with an accompanying class of measure zero sets contain-
ing the non-random sequences. For example, definitions of physical
randomness will have empirical predicates occurring in the definition
of the unit measure sets, whereas for mathematical randomness, no such
empirical considerations will be used. We do not need any more specific
characterization of the classes of random sequences than this. The im-
portant thing to bring out is that the set measure is not just any
measure, but is a probability measure. Without, I think, putting a mis-
leading interpretation on the enterprise, we can call any definition of
randomness which is explicitly in the canonical form, or may be reduced
to it, a "statistical definition of randomness". (See [2], pp.418-419
for examples of how to recast definitions which are not obviously
canonical into the statistical form.) The point at issue is now simply
this: if we wish to use randomness criteria as a guide to indeterminism,
we must not conflate the properties of "arising from an indeterministic
process" and "arising from a stochastic process". There are at least
two reasons why such a conflation must not be made.

First, good sense can be made of the notion of indeterminism without
having to resort to probability. Secondly, in the very area in which

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192464 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192464


102

the theory of physical randomness is seen to be so important, (i.e.,
quantum mechanics) the classical Kolmogorovian theory of probability
cannot be uncritically applied. I want to make just one point about
the second reason here, which I think is extremely important. The
modern propensity interpretation of the theory of probability was
originally introduced with the aim of clarifying the role played by
probability in quantum mechanical systems (See [6]). There is good
reason to believe that in order to be different from other types of
dispositional property, propensities of a genuinely chancy sort only
occur in indeterrrdnistic systems. Further, some attempts have now
been made to show that propensities are indeed probabilities, by show-
ing that they satisfy the axioms of the theory of probability. But
quantum mechanical propensities, if they exist, cannot be an inter-
pretation of ordinary theories of probability, simply because the
algebraic structure of quantum mechanical events is non-Boolean. In-
deed, it would be surprising if propensities could give such an
interpretation of classical probabilities, for it is evident that
propensities do not give a satisfactory interpretation of inverse
probability relations, such as Bayes1 theorem. The causal force of
propensity statements renders them directional, in a way that prob-
ability statements are not. Hence the challenge "Show that propen-
sities are probabilities" is potentially misleading if we think there
is a unique theory of probability to be interpreted. The significant
feature of propensities may yet turn out to be the fact that they are
not (ordinary) probabilities.

Let me now detail the first of these claims. Consider the following
hypothetical situation: A new type of phenomenon has been observed,
and disordered sequences of results from identically prepared systems
are observed. Taking a cue from quantum mechanics, we claim all the
systems are in the same "pure" state which is not an "eigenstate" of
the observable in question, and make the further assumption that the
preparation procedure for the different systems leaves the systems in-
dependent in some reasonable physical sense. Then in multiple repeti-
tions of the above experiment, the following sequence of results is
always obtained:

X.

X.

D
X.

= 1

= 0

= 1

if

if

if

m. <

mi <

1 <

j <

j <

j <

"iH

m i ,

mi

^ 1

h 1

for

for

even I

odd i

n. '• •

where m. = 2 and {n.}._-, is an infinite sequence which is not

recursively enumerable, and neither is its complement. The above out-
come sequences are not random on any statistical definition of random-
ness, simply because the independent and identically distributed systems
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have not given rise to a convergent relative frequency. Faced with
this, we might try these ploys:

1) the systems changed state during the course of the experiment,

most likely at each point m..

2) the systems are not independent.

3) the systems are not covered by a probability distribution at all,

even though they are indeterministic.

After further testing, we might well eliminate 1) and 2) , and be
forced to the conclusion that the class of indeterministic phenomena
is not coextensive with the class of probabilistic phenomena. Hence
any attempt to formulate a definition of physical randomness which is
statistical in nature will not provide necessary conditions for indeter-
minism. Another, simpler, example illustrates why much less is required

! to conclude that a system is indeterministic. than using an elaborate
I system of randomness tests. Suppose we observe the pattern 0000...010
J ...0000...which is generated under conditions similar to those mention-
i ed in the first example. Here a single deviant result stands out
j against a vast background of uniformity. Holding to the supposition

that each measurement was made on a system prepared in the same state,
i we have to conclude that the systems are indeterministic, and we do this
I irrespective of how non-random the sequence is. Recall that it is

sufficient for two systems in the same state to give different outcomes
under identical measurement procedures, when they have been prepared,in
the same initial state. We count the result of a measurement on a
system as a state of a system here, so that even if the initial state

| is statistical, the final state, that is the result of the measurement,
| will still be different. It is very tempting when considering sequences
I to look upon randomness tests as providing the basis for a kind of crude
^ inductivism where the game is to guess the "law" covering the sequence.
j But we are not looking at the analogue of a planetary orbit observed at
! successive instants here. The relevant state for examining the
] determinism or indeterminism of the system is usually not contained in

the previous experimental outcomes, but is rather a state which is a
function of external variables. In most cases detailed knowledge of
the internal structure of the sequence is not needed to decide whether
the systems are indeterministic or not.

What role does randomness of a physical sort play in indeterministic
contexts? Primarily, it acts as a potential falsifier for probability
hypotheses covering the phenomena. The original intention of the
relative frequentists was that the sequence of results should be
generated under identical conditions, i.e., that the initial state of
the systems should be the same on each repetition. If the systems are
deterministic, the same result will be got each time. If they are
statistical states, then the sequence should satisfy the theorems of
probability theory for the particular distribution covering the systems.
The point of trying to pick out a subsequence with different probability
characteristics, for example, was to show that the probability distribu-

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192464 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192464


104

tion covering that subsequence was different from that covering the
rest of the sequence, and since the distribution is a function of the
statistical state, the initial states for that subsequence must have
been different. Generalizing the framework, we can incorporate
probability measures which allow different states on different trials
into the statistical definitions of randomness. Then, if the sequence
passes the tests for randomness, we infer that we have the correct
probability distribution over the sequence. But this, of course, is a
more detailed piece of information than we need for deciding that the
systems are indeterministic. For that, it is sufficient that the
sequence is covered by some probability distribution—we do not need to
know which it is. So in general, physical randomness can act in an
important way in taking us past the crude appellation of indeterminism,
and providing distinctions among various types of indeterminisra. Thus,
we can consider whether we have probabilistic indeterminism or non-
probabilistic indeterminism; whether it is a type of probabilistic
indeterminism where the distribution has statistically relevant factors
or whether it has an invariant distribution; whether there are
necessary conditions in the environment for producing an outcome, or
whether it is an indeterminism devoid of necessary conditions and hence
truly spontaneous. Clearly there is a great variety of indeterministic
systems, and one merit of physical randomness will be that it allows us
to classify at least some of them via the probability hypotheses cover-
ing the systems.

As a final point, I do want to mention one area of philosophy of
science which is indirectly affected by randomness considerations.
This is the area of axiomatics. One of the most persuasive arguments
offered in favour of adopting the set-theoretic approach to axiomatizing
scientific theories by, for example, Suppes, is that using this type of
axiomatization enables theories which contain probability apparatus to
be formalized much more easily than by restricting ourselves to axiom
systems in first order languages. This is simply because most of the
set-theoretic apparatus is already built into the structures which are
defined by the axiomatization. It was considered, however, that the
use of naive set theory would be sufficient to adequately handle any
mathematical aspects of a physical theory. As the examples cited at the
beginning of Benioff's paper indicate, this is not at all an unjustified
assumption. Nevertheless, the result of Solovay [10] to the effect that
some models of set theory do not contain sequences which are random
under certain "strong" definitions of randomness, raises doubt about
this assumption. Ĵf_ the strong definitions of randomness mentioned are
taken as having some use in physics, it is clear that more attention
will need to be paid to the set-theoretic foundations of the "semantic"
view of theories, simply because difficulties will arise in just that
area (i.e., of probabilistic theories) which was originally pointed to as
illustrating the advantages of the set-theoretic approach. This is not,
of course, a criticism of that approach, but merely an indication that
caution may be needed in certain cases.
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Appendix

Theorem: There is a theory which is deterministic in the sense of
Montague and which has as a model a sequence which is random in the
sense of von Mises/Church.

Proof: The construction of a von Mises Kollectiv is given overleaf,
where the relevant notation will be found. We have to show two things
here. First that the sequence is given by a theory, and second that
the theory is deterministic in Montague's sense. The explicit des-
cription of the theory governing the generated Kollectiv is:

'Vt {R+(t) ->• ( 6(t) = 0 v S(t) = l)\6(0) = l*[N(t) -»•

(3!y{N(y) A G(y,m(y),t) = l N % ' ( t ' < t A G(y,m(y) ,f) = 1) }-*-

6(t)= 11 v at'(t' < tNG(y,m(y),f) = lis^ftt 1 < t"< t *

G(y,m(y),t") = 1}+ S(t) = 1- 6(t')] v [̂ N(t) ̂  S (t) = 0]

In order for a theory to be Montague deterministic, it must be
definable in terms of R,N,t,., together with individual constants and
state-variables for the theory. Further, it must have the property
that for any two models of the theory M , M , if they are in the same
state at some time t, then they are in the same state for all times t.
Formally, this is given by: if D , D , D ,....are the (single-place)
state variables for the theory, then the state of a system s at time t
is st (t) = < D (t),...,D (t)>. For the theory ..at hand we have only a
single state variable, given in the theory by 6. So if s, s1 are
models of the theory, and st (t,.) = st . (t ) for some t,>0, then st (t)

s 0 s 0 0 s
= st '(t) for all t>0. It is clear that the above theory is deter-
ministic in this sense. To show that the theory is definable in terms
of R,N,+,., it is enough to check that each part of the theory(exclud-
ing the initial stipulation of R (t)) is in the arithmetic hierarchy.
For then each part will be definable in elementary arithmetic. The
only difficulty's with G(y,m(y),t) = (f^ (t). By examining the
definition of G we see that m is recursive, multiplication and
complementationnare the only operations used in forming G , and n is a
function of the enumeration of the recursive functions used. This
enumeration is 7r£. Hence G(y,m(y),t) is arithmetically definable, and
thus the theory itself is definable in terms of R,N, + ,. . We let "3%.
denote the total recursive functions.

To construct the random sequence, which satisfies the theory, we
adopt a technique of Jean Ville ([11]pp. 58-63). Let'jR.be enumerated
(non-effectively) as {F , F ,. . . } . We construct a new set of selection
functions {G-̂ , G2,...} and then construct a sequence x using these new
functions. This sequence is first shown to have a limiting frequency
of 1/2 which is invariant under selection by the G^'s. It is then shown
to be invariant under selection by the F^'s.

We subscript the G^ by the binary expression of its index, i.e.,
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G where a.e{O,l}. The F. are in fact represented by F.={f.}.
ar..an i i P i 3 3=1

where f. is a (recursive) function from -{0,l}3-»-{0f 1}. Informally, f.

operates on the initial segment of length j of a sequence. If f.(x(j))=l,

the element x is selected. If f (x(j))=0, x is rejected.

Denote by aF the function F itself when a=l, and F when a=0, where F

is the selection function such that for every f.eF, f.(x(j))=0 iff
/ \ 3 3

f.(x(j))=l. Further,denote by F the function which selects the first
m members that F does and then is identically zero afterward, i.e.,
F ( ™ ) = {g^} where

i
g. = f. if S f. <_ m
1 1 j=l 3

i
= 0 if £ f. > m.

j=l J

Then, for every finite sequence a^.-.a e{0,l} ,

G = a_Fn
a x 1 1

(m ) (i"-) 'mn>-l
= G G ... G ... a.F.a F ...a F (i)

•ari a l a i a 2 a l an-l 1 1 2 2 n n

(m )
=G n - 1 a F G

a i - V i nnar--an-i

where m. = 2

Multiplication of selection functions is pointwise as follows

FG = { f ^ } " = r

Hence FG picks x. if and only if both F and G do.

Theorem 1. For any infinite 0-1 sequence x, an element x. is selected

(mn)

by at most one G .
a a

n

Proof • Suppose not. There are two cases: either G G
- V'-V a

(in ) k'n+k*
both pick x., or G G ' pick, x..

i a . . . a , a, ...a a* ••a , -iJ 1 n 1 n n+1 n+k J
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First case: a.... a , a, ...a must differ in at least one element', say
1 n 1 n

°v
a f a . But G picks x. only if G does. This occurs
m m a,...a n a,...a

I n J I n

only if a F picks x.. But then a F cannot, and so G and hence
m m 3 mm o^. - -a

n

(mn) (mn+k)
G cannot. Contradiction. Second case: Again if G
v--a

n
 ai-aa;;i'

picks x., then G does. But by (1), G
^ j a,...a a...a a ...a

I n n+i n+k J- n
does not. Contradiction.

Theorem 2. Every element x. of an infinite sequence x is selected by

(m ) %)
some G n . Proof: Suppose x. is picked by no G. .

aa 3 a...a

Every x. is picked by either F. or F.. Since each F. is recur-

sive, determine which is the case, and then acquire the sequences a ,aja ,

n (mn)

..., i a. ...where a.=0 or 1, and the corresponding G . Then it
. i • l a r . .a
1=1 I n

m
is clear that all G must pick x., since n a.F. picks it, by defini-

a ... a / \ n . 1 1

1 » (Vl' 1=1

tion of a4, and none of the G do, by hypothesis. But since the
^ a.... a .,

I m-1

m -*•«>, the initial segment of some G must choose x., i.e., some
a ... a n
1 m J

(m )
G m . Contradiction,
a. ...a
1 m

Corollary. For every infinite sequence x, each element x.is picked by

(mn)
one and only one G . With this, we can now construct the random

In
sequence. Put x =1. The following method constructs the sequence.

(m )
To determine the value of x' first find the G which selects it.

n+1' a,...a
1 r
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(mr>
If x is the first element selected by G , put x =1. Other-

n+x a_ ...a n+1

(m )
wise, inspect the previous selection of G : if it is 1, put x =0,

a r..a r n+1

otherwise put x + 1
= 1 - The construction continues in this way.

Theorem 2- lirn̂  i = 1 = 1/2 i n any subsequence picked by a G..

n

Proof: Consider an arbitrary selection function G . Denote by
a . • • • a
1 n

G (x(m)) the sequence extracted from x(m) by G . Consider a
a ... a a, • • • a
In InlW

selection of the form G . From the inductive definition
V" an 31"-Bm

(1), it is clear that any element selected by this must be selected by
G also. From the corollary, any element in G (x(m)) be-

longs to exactly one G . Since G (x(m)) is finite,a , . . . a p., • • > p a., . . . a
1 n 1 m In

( mn+m»
let G be the highest indexed such G which picks an element

a1...anB1... 6r

o
(m.)

from x(m). (Note that we don't need to look at G for i < n.)
aa

n

Lemma. If the sequence G (x'(m)) i s non-empty, each of the
a a

i
sequences G (x(m))contains exactly m.terms, where 1< i< n.

a ...a 1

Proof: Take arbitrary i < n. Then if G selects an element of x(m)
a ... a
1 n •

(m ) (m.)
so does G . But also if G does, G i does not. So since

a.—a. an...a a....a.
1 1 • 1 n 1 1

picks the first ia. choices of G , this means all m
l a a x
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choices have already been made.

'Vi'
So, since each. G . lx(m)) contains m terms, we have,

a1...an61...Bi n + i

where t is the total number of elements selected from x(m) by G %
ci_ • • • a
I n

"o"1 2(n+m +2)

°
m

There are 2 sequences of type G (x(m)! hence
a .. .a B .. .B
1 n 1 m

o
m

t < E° 2 1 m ,. .
— i=0 n+i

The number of non-empty sequences of type G „ „ (x(m)) is r,

where
m m +1

If each such sequence has t1...t terms respectively, of which d ...d

are equal to 1,

d = d +..+d .

By the way we constructed x, we have

So

From

so

2

1 ~

0
m

2 °

t <
2

we

+nH

d

2

have

1-1
<

< t
2

2

+ r

/ t

+ /t

~ 2

2 " n .

m +1

Hence, as t + « lim d_ = 1/2 .
t-*» t

Theorem. The constructed sequence is invariant under selection by the
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F.'s.

Proof: Consider an arbitrary F . We show the limiting frequency of l's
- n

in the subsequence selected by F is 1/2. First, we assume that F

selects an infinite number of elements from x. Note that this entails

that such functions as the identically zero function are excluded by

this restriction. However, the notion of invariance under place

selection is intended to apply only to selection functions which do

select an infinite subsequence, so this is not a serious restriction.

1 2 n_i
By definition, G r r = w = p

a.....a — G G .. .(* a r ...a F
1 n a. a-,a_ a ...a 1 1 n n

1 1 2 1 n-1
Thus, for fixed n, and each index a ...a the G are disjoint

1 n—J. a1... a _ ±
1 n-1

in the sense that no two G ,, G , , , pick the same
a,...a ,1 a'...a' 1 *
1 n-1 1 n-1

element of x. Further, except for a finite number of elements of x,

each element of x, say x., is chosen by some G 1. Why? Because
3 _ al"-an-l

for each F., either F. picks x. or F. does. So for some index a ...a .1

a F ...,a F all pick x.. Further, each G picks only
1 Jc

tiL elements from x. Thus after some finite point of the sequence,

(m )
G (x(j-l)) G ' (x(j-l)).J3 " " (x(j-l) must all be equal to 1.
1 1 2 I*" n-1

Let the number of elements not picked by any G be N. Hence
ot ... a ±
1 n-1

we can represent F as Z G . + N where the summation is over
n a,.. .a , 1

1 n-1

all values of a ...a , and the sum is over disjoint elements. Note

that none of the N elements are picked by a G . Now, let t.(k)
1'"' n-1 " .

be the number of elements picked by G. , where 1 <_ i £ 2 from

x(k), and let di(k) be the number of l's amongst the t. (k). If F (x(kl)

contains t (k) terms, and d(k) l's, then
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= I t . (k) + N
i=l 1

n-1
and d(k) = | = 1 d± (kl + V where V is the number of l's

amongst the N. We must have N/2 <_ V+N/2 <_ N+N/2 .
Now, by the construction of x for each i,

<_ d±(k) -; / " "

Hence summing, we have .

2 n- l 2 n- l 2 n-l 2 n-l

Z t±(k) <_Z d^k) < Z t±(k) + Z / t ± 2 " n •
i=l — 1=1 1=1 — 1=1

2 n-l
t(k) - N < d(k) - V < t(k) - N + Z / t . 2 ~ " .

2 2 i = 1 X

Then if t(k) + • as k + » , we also have t . (k) -* », and

jL - N . _< d(k) - V < i ~ N + E 2""/ / t . (k)
2 2t(k) t(k) t(k) 2 2t(k) i=l X

and hence lim d(k) = 1/2 .
K^ » t(k)

Since n was arbitrary, the sequence x has limiting frequency 1/2 for
any subsequence selected by any F . Note, however, that x converges
to 1/2 from above. n

Notes

The research for this paper was partially supported by NSF grant
# S0C77-08837. I should also like to thank Leonard Monk and Zeno
Swijtink for helpful discussions.

Salmon has now formulated an improved version of this paper.

See for example Mackie [4] Chapter 9 and Salmon [9J. Many of
Mackie's difficulties with the notion of "distributiveness" of stat-
istical laws would be resolved if a satisfactory definition of random-
ness were available.

4
Montague's definition refers to cases where the domain of the models
is fixed. He later proves a result connecting this situation with one
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where different domains are allowed. Although I retain his approach
in the proof of the theorem, it seems preferable when considering
these kinds of definitions of indeterminism to take the different
domains idea as central, in order to avoid having to consider possible
worlds. When I use an unformalized version of Montague's approach
later in the paper, it is to be taken in that sense, so replicas of
systems can be considered. Further, some elementary assumptions
about the invariance of theories under linear time transformations
seems desirable so that these repetitions need not be done simult-
aneously.

This example is based on one suggested by Zeno Swijtink.
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