NON-STANDARD, NORMAL SUBGROUPS AND NON-NORMAL, STANDARD SUBGROUPS OF THE MODULAR GROUP

BY A.W. MASON

ABSTRACT. Let R be a commutative ring with identity. A subgroup S of $GL_n(R)$, where $n \ge 2$, is said to be *standard* if and only if S contains all the **q**-elementary matrices and all conjugates of those matrices by products of elementary matrices, where **q** is the ideal in R generated by $x_{ij}, x_{ii} - x_{jj}$ ($i \ne j$), for all $(x_{ij}) \in S$. It is known that, when $n \ge 3$, the standard subgroups of $GL_n(R)$ are precisely those normalized by the elementary matrices. To demonstrate how completely this result can break down for n = 2 we prove that $GL_2(\mathbf{Z})$, where \mathbf{Z} is the ring of rational integers, has uncountably many non-normal, standard subgroups and uncountably many non-standard, normal subgroups.

1. **Introduction**. Let R be a commutative ring with identity and let \mathbf{q} be an ideal in R. For each $n \geq 2$ let $E_n(R)$ be the subgroup of $GL_n(R)$ generated by the elementary matrices and let $E_n(R, \mathbf{q})$ be the normal subgroup of $E_n(R)$ generated by the \mathbf{q} -elementary matrices. The *order* of a subgroup S of $GL_n(R)$, denoted by o(S), is the ideal in R generated by all $x_{ij}, x_{ii} - x_{jj}$ ($i \neq j$), where $(x_{ij}) \in S$. The subgroup S is called *standard* if and only if $E_n(R, \mathbf{q}_o) \leq S$, where $\mathbf{q}_o = o(S)$. We say that S has level zero if and only if $E_n(R, \mathbf{q}) \leq S$, only when $\mathbf{q} = \{0\}$. Let S(n, R) be the set of standard subgroups of $GL_n(R)$ and E(n, R) be the set of subgroups of $GL_n(R)$ normalized by $E_n(R)$. Vaserstein [15] has proved that S(n, R) = E(n, R), for all $n \geq 3$. (He has extended this result [15], [16], [17] to subgroups of $GL_n(S)$, for particular classes of non-commutative rings S, where $n \geq 3$.)

For Vaserstein's result (or an even weaker version of his result) to carry over to the case where n=2 it appears that R has to contain "sufficiently many units". We recall that R is said to be an SR_m -ring if and only if R satisfies Bass's stable range condition " $(7.2)_m$ ", for some integer $m \ge 2$. (See [2] p. 106.) Let R be an R-ring. (Semi-local rings, for example, are R-rings, by [2] Theorem 7.4.). If R is contained in R-rings, by [2] Theorems 7.4, 7.5(b). It follows that R-rings (R-rings) is contained in R-rings (R-rings) [3] Theorems 7.4, 7.5(b). It follows that R-rings (R-rings) is contained in R-rings (R-rings) [4] Theorem 2.6 have shown that R-rings (R-rings) [5] R-rings (R-rings) [6] R-rings (R-rings) [7] Theorems 2.6 have shown that R-rings (R-rings) [8] R-rings (R-rings) [8] R-rings (R-rings) [8] R-rings (R-rings) [9] Theorems 2.6 have shown that R-rings (R-rings) [9] R-rings (R-rings) [10] R-rings (R-rings) [11] R-rings) [12] R-rings) [13] R-r

Received by the editors July 5, 1987, and in revised form, March 8, 1989.

AMS Subject Classification 1980 20H05

[©] Canadian Mathematical Society 1988.

Suppose now that B is a Dedekind ring of arithmetic type [2] p. 83 with infinitely many units. (Every Dedekind ring is an SR_3 -ring by [2] Theorem 7.4) It is known [10] Corollary 1.3 that $S(2,B) \subseteq \mathcal{E}(2,B)$. It is also known [10] Theorem 2.2 that $S(2,B) = \mathcal{E}(2,B)$ when $\frac{1}{6} \in B$. Although in general $S(2,B) \neq \mathcal{E}(2,B)$ (see [10] Examples 2.3, 2.4) Serre [14] Proposition 2, p. 492 has proved that every member of $\mathcal{E}(2,B)$ is "almost standard". More precisely he proves that if $N \in \mathcal{E}(2,B)$ and $o(N) \neq \{0\}$ then, $E_2(B,\mathbf{q}_o) \leq N$, for some *non-zero* \mathbf{q}_o . (We note that the only subgroups of $Gl_n(R)$ of order zero are central subgroups.)

To see how completely Vaserstein's result breaks down for n=2 when R has a "small number of units", we consider now the case where R is a Dedekind ring of arithmetic type with only finitely many units. It follows then that either (i) $R=\mathbf{Z}$, the ring of rational integers, (ii) R is the ring of integers of an imaginary quadratic number field or (iii) R is the coordinate ring of an affine curve obtained by removing a point from a projective curve over a finite field. In this note we prove that $GL_2(\mathbf{Z})$ has uncountably many normal subgroups of level zero contained in the modular group, $SL_2(\mathbf{Z}) = E_2(\mathbf{Z})$. We also prove that, for all but finitely many \mathbf{q} , there exist uncountably many non-normal subgroups of $SL_2(\mathbf{Z})$ which are standard subgroups of order \mathbf{q} . It follows that both $\mathcal{E}(2,\mathbf{Z})\backslash \mathcal{S}(2,\mathbf{Z})$ and $\mathcal{S}(2,\mathbf{Z})\backslash \mathcal{E}(2,\mathbf{Z})$ are uncountable. (We note that $GL_2(\mathbf{Z})$ is countable.

The author [8] §3 has proved similar results for the case where R is of type (iii). Serre [14, Corollaire 2, p. 519] has provided (non-trivial) examples of normal subgroups of level zero of $GL_2(R)$, for all but finitely many R of type (ii).

2. **Results** We simplify our notation. Let the ideal \mathbf{q} in \mathbf{Z} have non-negative generator m. In our terminology we replace "order \mathbf{q} " with "order m." We put $G = GL_2(\mathbf{Z})$, $\Gamma = SL_2(\mathbf{Z})$, $\Delta(m) = E_2(\mathbf{Z}, \mathbf{q})$ and $\Gamma(m) = \ker(SL_2(\mathbf{Z}) \to SL_2(\mathbf{Z}/\mathbf{q}))$. (By definition we have $\Gamma(1) = \Delta(1) = \Gamma$.) We denote $PSL_2(\mathbf{Z})$ by $\hat{\Gamma}$ and the image of any subgroup S of Γ in $\hat{\Gamma}$ by \hat{S} . We note that $S \cong \hat{S}$, when $-I_2 \not\in S$.

Let H, K be subgroups of a group L. As usual [H, K] denotes the subgroup generated by all the commutators $[h, k] = h^{-1}k^{-1}hk$, where $h \in H, k \in K$.

We recall [11] that a group L is said to be SQ-universal if and only if every countable group is embeddable in some factor group of L. (The author wishes to thank Dr. S.J. Pride for referring him to [11].)

THEOREM 1. There exist 2^{\aleph_0} normal subgroups of G which have level zero.

PROOF. Choose m > 2. Then $\Gamma(m) \cong \hat{\Gamma}(m)$ and so $\Gamma(m)$ is free, non-cyclic by [13] Theorem VIII. 7, p. 144. It is well known that every such group is SQ-universal and so G is SQ-universal by a result of Neumann, [11] Lemma. It follows from a remark of Neumann [11] p. 4 that G has 2^{\aleph_0} normal subgroups.

Now we put

$$N_1 = \{N : N \triangleleft G\} \text{ and } N_2 = \{N \in N_1 : N \leq \Gamma(m)\}.$$

Consider the surjective map $p: N_1 \to N_2$, defined by

$$p(N) = \Gamma(m) \cap N$$
.

Let $M \in N_2$. If $N \in p^{-1}(M)$ then $|N:M| \le |G:\Gamma(m)|$. It follows that $p^{-1}(M)$ is at most countably infinite and hence that

card
$$N_2 = 2^{\aleph_0}$$
.

Let $N_3 = \{N' = [N, N] : N \in N_2\}$. Then each element of N_3 is a normal subgroup of G which has level zero by [6] Corollary 8. By a theorem of Auslander and Lyndon [1] it follows that

$$N_1' = N_2' \leftrightarrow N_1 = N_2$$

where $N_1, N_2 \in N_3$. We conclude that card $N_3 = 2^{\aleph_0}$

The set $\{\Gamma(m)': m > 1\}$ is a countably infinite set of normal subgroups of G of level zero.

Theorem 2. Every standard subgroup of G of order m, where $m \leq 5$, is normal in G.

PROOF. Let S be a subgroup of G of order m. Then $[G,S] \leq \Gamma(m)$. The result follows since $\Gamma(m) = \Delta(m)$ when $m \leq 5$, by [3] Lemmas 8, 9

Theorem 3. Let S(m) be the set of non-normal subgroups of Γ which are standard subgroups (of G) of order m. Then

- (a) card $S(6) = 2^{\aleph_0}$.
- (b) card $S(m) = 2^{\aleph_0}$, when m > 6.

PROOF. For each $m \ge 6$ we have

$$\Gamma(m)/\Delta(m) \cong \hat{\Gamma}(m)/\hat{\Delta}(m) \cong \Phi_g$$

where

$$\Phi_g = \langle a_1, b_1, \dots, a_g, b_g : \prod_{i=1}^g [a_i, b_i] = 1 \rangle,$$

with

$$g = 1 + \mu(m-6)/12m$$

and $\mu = |\hat{\Gamma}: \hat{\Gamma}(m)|$. (See, for example, [13] §22, p. 156, and [18] p. 532.) Clearly every subgroup of G lying between $\Gamma(m)$ and $\Delta(m)$ is a standard subgroup of order m.

(a) When m = 6, g = 1 and so card $S(6) \le 2^{\aleph_0}$. Now Newman [12] has classified all the normal subgroups of $\hat{\Gamma}$ lying between $\hat{\Gamma}'$ and $\hat{\Delta}(6)$, which include all those

lying between $\hat{\Gamma}(6)$ and $\hat{\Delta}(6)$. From his classification it is clear that card $S(6) \ge 2^{\aleph_0}$. Hence result.

(b) When m > 6, $g \ge 2$. Let X be the normal subgroup of Φ_g generated by b_1, b_2 and a_1, b_i , where i > 2. Then ϕ_g/X is the free group on 2 generators, F_2 . (See [5] p. 257 for the case g = 2.) In the proof of [8] Theorem 3.2 it is shown that F_2 has 2^{\aleph_0} non-normal subgroups. The result follows

We note that every standard subgroup of G of level (6) is contained in the subgroup $\langle -I_2, \Gamma(6) \rangle$. It follows that G has countably many non-normal standard subgroups of level 6, by Theorem 3(a).

- 3. Remarks. Let $\mathcal{N}(n,R)$ be the set of normal subgroups of $GL_n(R)$. The only general result relating $\mathcal{N}(n,R)$ and $\mathcal{S}(n,R)$ (or $\mathcal{E}(n,r)$) is the trivial observation that $\mathcal{N}(n,R) \subseteq \mathcal{E}(n,R)$. We mention some known results.
- (a) Suppose that R is an SR_2 -ring. Then (as in the introduction) it is known [2] Theorems 7.4, 7.5(b) that $\mathcal{N}(n,R) = \mathcal{S}(n,R) (= \mathcal{E}(n,R))$, for all $n \geq 3$, and that $\mathcal{S}(2,R) \subseteq \mathcal{N}(2,R)$. It is also known [4] Theorem 2.6 the $\mathcal{S}(2,R) = \mathcal{E}(2,R) = \mathcal{N}(2,R)$, when $\frac{1}{6} \in R$. By [9] Theorem 2.4 it is possible to have $\mathcal{N}(2,R) \neq \mathcal{S}(2,R)$ and $\mathcal{N}(2,R) \neq \mathcal{E}(2,R)$.
- (b) Suppose that R is a Dedekind ring of arithmetic type with infinitely many units. Then by [10] Theorem 3.1, Example 3.4 it is possible to have $(S(n,R) = \mathcal{E}(n,R) = \mathcal{N}(n,R)$, for all n > 2) or $(\mathcal{N}(n,R) \neq \mathcal{E}(n,R)$, for infinitely many n, and, simultaneously, $S(n,R) = \mathcal{E}(n,R)$, for all n > 2).
- (c) Suppose finally that R is a Dedekind ring of arithmetic type with only finitely many units. (See introduction.) It is known [7] Theorem 8 that, if, $R = \mathbb{Z}$ or R is a type (iii), then $\mathcal{N}(n,R) = \mathcal{S}(n,R) = \mathcal{E}(n,R)$, for all $n \geq 3$. It is also known [6] §4 that $\mathcal{E}(2,\mathbb{Z}) \setminus \mathcal{N}(2,\mathbb{Z})$ is infinite. By Theorem 1 of this note it follows that $\mathcal{N}(2,\mathbb{Z}) \setminus \mathcal{S}(2,\mathbb{Z})$ is uncountable. For R of type (ii) it is possible [7] Theorems 15, 16 to have $\mathcal{N}(n,R) \neq \mathcal{E}(n,R)$, for infinitely many $n \geq 3$, and Serre [14] Corollaire 2, p. 519 has proved that (in general) $\mathcal{N}(2,R) \neq \mathcal{S}(2,R)$.

REFERENCES

- M. Auslander and R.C. Lyndon, Commutator subgroups of free groups Amer. J. Math. 77 (1955), 929–931.
- 2. H. Bass, J. Milnor and J-P. Serre, Solution of the congruence subgroup problem for $SL_n(n \ge 3)$ and $Sp_{2n}(n \ge 2)$, Publ. Math. I.H.E.S. 33 (1967), 59–137.
 - 3. J. L. Brenner, The linear homogeneous group, III, Ann. of Math. 71 (1960), 210-223.
 - 4. D.L. Costa and G.E. Keller, On the normal subgroups of SL(2,A), to appear in J. Pure Appl. Algebra.
- 5. L. Goeritz, Die Abbildungen der Brezelfläche und der Volbrezel vom Geschlecht 2, Abl. Math. Sem. Univ. Hamburg 9 (1933), 244–259.
- A.W. Mason, Anomalous normal subgroups of the modular group, Comm. Algebra 11 (1983), 2555– 2573.
- 7. A. W. Mason, On non-normal subgroups of $GL_n(A)$ which are normalized by elementary matrices, Illinois J. Math. 28 (1984), 125–138.
- 8. A. W. Mason, Free quotients of congruence subgroups of SL₂ over a Dedekind ring of arithmetic type contained in a function field, Math. Proc. Camb. Phil. Soc. 101 (1987), 421-429.

- 9. A. W. Mason, On GL_2 of a local ring in which 2 is not a unit, Canad. Math. Bull. 30 (1987), 165–176.
 - 10. A. W. Mason, Standard subgroups of GL₂(A), Proc. Edinburgh Math. Soc. 30 (1987), 341-349.
- 11. P. M. Neumann, *The SQ-universality of some finitely presented groups*, J. Australian Math. Soc. **16** (1973), 1–6.
- 12. M. Newman, A complete description of the normal subgroups of genus one of the modular group, Amer. J. Math. 86 (1964), 17–24.
 - 13. M. Newman, Integral matrices Academic Press, London, 1972.
 - 14. J-P. Serre, Le problème des groupes de congruence pour SL₂, Ann. of Math. 92 (1970), 489-527.
- 15. L. N. Vaserstein, On the normal subgroups of GL_n over a ring, In Lecture Notes in Math. 854 (Springer 1981), pp 456-465.
- 16. L. N. Vaserstein, Normal subgroups of the general linear groups over von Neumann regular rings. Proc. Amer. Math. Soc. **96** (1986), 209–214.
- 17. L. N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure Appl. Algebra 41 (1986), 99-112.
 - 18. K. Wohlfahrt, An extension of F. Klein's level concept, Illinois J. Math. 8 (1964), 529-535.

Department of Mathematics University of Glasgow Glasgow G12 8QW