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NON-STANDARD, NORMAL SUBGROUPS AND NON-NORMAL,
STANDARD SUBGROUPS OF THE MODULAR GROUP

BY
A.W. MASON

ABSTRACT. Let R be a commutative ring with identity. A subgroup S
of GLn(R), where n 2 2, is said to be standard if and only if S contains all
the q-elementary matrices and all conjugates of those matrices by products
of elementary matrices, where q is the ideal in R generated by x;; x;; —
x;i (i # j), for all (xjj) € S. It is known that, when n 2 3, the standard
subgroups of GL,(R) are precisely those normalized by the elementary
matrices. To demonstrate how completely this result can break down for
n = 2 we prove that GL,(Z), where Z is the ring of rational integers, has
uncountably many non-normal, standard subgroups and uncountably many
non-standard, normal subgroups.

1. Introduction. Let R be a commutative ring with identity and let q be an ideal
in R. For each n 2 2 let E,(R) be the subgroup of GL,(R) generated by the ele-
mentary matrices and let E,(R, q) be the normal subgroup of E,(R) generated by the
q-elementary matrices. The order of a subgroup S of GL,(R), denoted by o(S), is the
ideal in R generated by all x;;, x; — x;; (i # j), where (x;) € S. The subgroup S is
called standard if and only if E,(R,q,) = S, where q, = 0o(S). We say that S has
level zero if and only if E,(R,q) < S, only when q = {0}. Let S (n,R) be the set of
standard subgroups of GL,(R) and ‘E (n, R) be the set of subgroups of GL,(R) normal-
ized by E,(R). Vaserstein [15] has proved that S (n,R) = E(n,R), for all n 2 3. (He
has extended this result [15], [16], [17] to subgroups of GI,(S), for particular classes
of non-commutative rings S, where n = 3.)

For Vaserstein’s result (or an even weaker version of his result) to carry over to
the case where n = 2 it appears that R has to contain “sufficiently many units”. We
recall that R is said to be an SR, -ring if and only if R satisfies Bass’s stable range
condition “(7.2),,”, for some integer m = 2. (See [2] p. 106.) Let A be an SR;-ring.
(Semi-local rings, for example, are SR,-rings, by [2] Theorem 7.4.). If N € S(2,R)
and q = o(N), then the commutator subgroup [Gl;(A),N] is contained in E,(A, q),
by [2] Theorems 7.4, 7.5(b). It follows that S(2,A) C E(2,A). Costa and Keller [4]
Theorem 2.6 have shown that S (2,A) = E(2,A), when % € R. On the other hand it
is also known that (in general) S(2,4) # E(2,A) when { & A or 3 & A. (See [9]
Theorems 2.4, 4.1).
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Suppose now that B is a Dedekind ring of arithmetic type [2] p. 83 with infinitely
many units. (Every Dedekind ring is an SR3-ring by [2] Theorem 7.4) It is known
[10] Corollary 1.3 that S(2,B) C E(2,B). It is also known [10] Theorem 2.2 that
S(2,B) = E(2,B) when % € B. Although in general S(2,B) # E(2,B) (see [10]
Examples 2.3, 2.4) Serre [14] Proposition 2, p. 492 has proved that every member
of E(2,B) is “almost standard”. More precisely he proves that if N € E(2,B) and
o(N) # {0} then, E;(B,q,) = N, for some non-zero q,. (We note .that the only
subgroups of GI/,(R) of order zero are central subgroups.)

To see how completely Vaserstein’s result breaks down for n = 2 when R has a
“small number of units”, we consider now the case where R is a Dedekind ring of
arithmetic type with only finitely many units. It follows then that either (i) R = Z,
the ring of rational integers, (ii) R is the ring of integers of an imaginary quadratic
number field or (iii) R is the coordinate ring of an affine curve obtained by removing a
point from a projective curve over a finite field. In this note we prove that GL,(Z) has
uncountably many normal subgroups of level zero contained in the modular group,
SL,(Z) = E»(Z). We also prove that, for all but finitely many q, there exist uncountably
many non-normal subgroups of SL»(Z) which are standard subgroups of order q. It
follows that both E(2,Z)\S(2,Z) and S(2,Z)\E(2,Z) are uncountable. (We note
that GL,(Z) is countable.

The author [8] §3 has proved similar results for the case where R is of type
(iii). Serre [14, Corollaire 2, p. 519] has provided (non-trivial) examples of normal
subgroups of level zero of GL,(R), for all but finitely many R of type (ii).

2. Results We simplify our notation. Let the ideal q in Z have non-negative
generator m. In our terminology we replace “order q” with “order m.” We put
G = GLy(Z), T = SLy(Z),A(m) = Ey(Z,q) and I"(m) = ker(SL,(Z) — SL»(Z/q)).
(By definition we have I'(1) = A(1) = I".) We denote PSL,(Z) by I' and the image
of any subgroup S of I in I' by S. We note that § = §, when —I, ZS.

Let H,K be subgroups of a group L. As usual [H,K] denotes the subgroup gen-
erated by all the commutators [A, k] = h~'k~'hk, where h € H,k € K.

We recall [11] that a group L is said to be SQ-universal if and only if every
countable group is embeddable in some factor group of L. (The author wishes to
thank Dr. S.J. Pride for referring him to [11].)

THEOREM 1. There exist 2% normal subgroups of G which have level zero.

ProoF. Choose m > 2. Then I'(m) = I’ (m) and so I'(m) is free, non-cyclic by
[13] Theorem VIIIL. 7, p. 144. It is well known that every such group is SQ-universal
and so G is SQ-universal by a result of Neumann, [11] Lemma. It follows from a
remark of Neumann [11] p. 4 that G has 2% normal subgroups.

Now we put

Ni={N:N<dG}and N, = {N € N, : N =T'(m)}.
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Consider the surjective map p: N; — N,, defined by
p(N)y=T(m)NN.

Let M € N,. If N € p~!(M) then |N : M| < |G : T (m)|. It follows that p~!(M) is
at most countably infinite and hence that

card N, = 2%,

Let N3 = {N' = [N,N] : N € N,}. Then each element of N3 is a normal subgroup
of G which has level zero by [6] Corollary 8. By a theorem of Auslander and Lyndon
[1] it follows that

N{ =Nj < Ny, =Ny,

where N;, N, € N3. We conclude that card N3 = 2% ]

The set {I'(m)' : m > 1} is a countably infinite set of normal subgroups of G of
level zero.

THEOREM 2. Every standard subgroup of G of order m, where m = 5, is normal in
G.

Proor. Let S be a subgroup of G of order m. Then [G,S] < I' (m). The result
follows since I' (m) = A (m) when m < 5, by [3] Lemmas 8, 9 ]

THEOREM 3. Let S (m) be the set of non-normal subgroups of I' which are standard
subgroups (of G) of order m. Then

(a) card S (6) = 2%.
(b) card S (m) = 2%, when m > 6.

Proor. For each m 2 6 we have
T (m)/A(m) =T (m)/A(m) = @,

where .
(I)g = <al,b1, e ,(lg,bg . H[a,-,b,«] = 1>,

i=1

with
g =1+p(m—6)/12m,

and p = |I' : T (m)|. (See, for example, [13] §22, p. 156, and [18] p. 532.) Clearly
every subgroup of G lying between I' (m) and A (m) is a standard subgroup of order
m.

(@) When m = 6, g = 1 and so card S (6) = 2%. Now Newman [12] has classified
all the normal subgroups of r lying between I'" and A (6), which include all those
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lying between ) (6) and A (6). From his classification it is clear that card S (6) = 2%.
Hence result.

(b) When m > 6,g = 2. Let X be the normal subgroup of ®, generated by by, b,
and ay, b;, where i > 2. Then ¢, /X is the free group on 2 generators, F,. (See [5] p.
257 for the case g = 2.) In the proof of [8] Theorem 3.2 it is shown that F, has 2%
non-normal subgroups. The result follows O

We note that every standard subgroup of G of level (6) is contained in the subgroup
(=1,T (6)). It follows that G has countably many non- normal standard subgroups of
level 6, by Theorem 3(a).

3. ReMarks. Let A (n,R) be the set of normal subgroups of GL,(R). The only
general result relating A’ (n,R) and S (n, R) (or ‘E(n,r)) is the trivial observation that
N (n,R) C E(n,R). We mention some known results.

(a) Suppose that R is an SR,-ring. Then (as in the introduction) it is known
[2] Theorems 7.4, 7.5(b) that Al (n,R) = S(n,R)(= E(n,R)), for all n = 3,
and that S(2,R) C A_(2,R). It is also known [4] Theorem 2.6 the S(2,R) =
EQ2,R) = AL(2,R), when é € R. By [9] Theorem 2.4 it is possible to have
N (2,R) #5(2,R) and N (2,R) # E(2,R).

(b) Suppose that R is a Dedekind ring of arithmetic type with infinitely many
units. Then by [10] Theorem 3.1, Example 3.4 it is possible to have (5(n,R) =
E(n,R) = N (n,R), for all n > 2) or (A (n,R) # E(n,R), for infinitely many n,
and, simultaneously, S (n,R) = E(n,R), for all n > 2).

(c) Suppose finally that R is a Dedekind ring of arithmetic type with only finitely
many units. (See introduction.) It is known [7] Theorem 8 that, if, R = Z or R is
a type (iii), then A (n,R) = S(n,R)(= E(n,R)), for all n 2 3. It is also known
[6] §4 that E(2,Z)\N (2,Z) is infinite. By Theorem 1 of this note it follows that
AN (2,Z)\S (2,Z) is uncountable. For R of type (ii) it is possible [7] Theorems 15, 16
to have A (n,R) # ‘E(n,R), for infinitely many n 2 3, and Serre [14] Corollaire 2,
p- 519 has proved that (in general) AL (2,R) # S(2,R).
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