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Abstract

We study some classes of planar harmonic mappings produced with the shear construction devised by
Clunie and Sheil-Small in 1984. The first section reviews the basic concepts and describes the shear
construction. The main body of the paper deals with the geometry of the classes constructed.
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1. Introduction

A complex-valued function f on the unit disk D ={z:|z|] <1} that is twice
continuously differentiable and satisfies Laplace’s equation f,z =0 will be called
harmonic. By a theorem of Lewy [3], the Jacobian J; = | foI> — | f=? of a locally
univalent harmonic mapping never vanishes, so we may assume that J > 0 (that is, f
is orientation-preserving), and consequently |f;| > O everywhere in D. It is easily
verified that f = h 4 g, where h and g are analytic on ID. Since f, =’ and fr =g/,
we see that w = fz/f, = g’/ I’ is analytic and that |w(z)| < 1 on . By analogy with
the complex dilation u = fz/f, the function w will be called the analytic (or second
complex) dilation of f.

Clunie and Sheil-Small introduced an effective tool for constructing univalent
harmonic mappings with prescribed dilation. For completeness, we quote their
theorem.

THEOREM 1.1 [1]. Suppose that f = h + g is harmonic and locally univalent on the
unit disk D. Then f is univalent and its range is convex in the horizontal direction if
and only if the analytic function ¢ = h — g is a univalent mapping of D onto a domain
that is convex in the horizontal direction.
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Henceforth, a domain 2 C C is said to be convex in the horizontal direction if its
intersection with each horizontal line is connected (or empty).

According to the theorem above, one begins with a conformal mapping ¢ of D
onto a domain that is convex in the horizontal direction, such that ¢(0) =0, and an
analytic function w such that |@(z)| < 1 on D and w(0) = 0. The relations p =h — g
and w = g’/ ' lead to a pair of linear equations for 4’ and g’ that, together with the
initial conditions 4 (0) = g(0) = 0, determine /4 and g. It follows immediately that

f(z)=h<z)+m=Re/0so’(c>p(;>dz+i1mgo(z> VzeD, (1.1

where p = (1 4+ w)/(1 — w); furthermore, p belongs to the class P of all analytic
functions ¢ with positive real part in D such that ¢ (0) = 1.

For any p € P, the harmonic mapping f defined by (1.1) is orientation-preserving
and univalent on ID. Moreover, Theorem 1.1 shows that the range of f is convex in
the horizontal direction. On account of the remark above, it is natural to consider the
family

F={K(,p)lpeP}

of univalent and orientation-preserving harmonic mappings, where

K(z, p)=Re/O @' (@)p@)dt +ilme(z) VzeD.

The Riesz—Herglotz representation theorem states that

1 +nz

p(2) =/ du(m) VzeD, (1.2)
=1 1 —=nz

where © € P, the family of all Borel probability measures on the boundary T of D.

Hence, if we set

Z , 1_|_
k(z,m) = / 7O 7S
0 —ng

then it may be concluded from (1.2) that, for each f € F,

f(z)=Re/ k(z, ) du(n) +iIme(z) VzeD,
[nl=1

for a unique © € PT. On the other hand, P is a weak-star compact and convex set,
and all of its extreme points are unit point masses. Since

MHRB/H lk(', n) du(n)
n:

is a linear homeomorphism, it follows that F is convex and compact (with respect to
the topology of locally uniform convergence), and finally that

ExtF = {ky() =Rek(:, m) +ilme(): |n| =1}

where Ext F denotes the set of extreme points of F.
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2. Main results

Fix a number o € (0, %yr), and consider the function ¢, : D — C given by

1 1
Ya(2) = 3 sin2a10g< +Z) + cos?

_
1—z (1—-2)?%

where log denotes the principal branch of the logarithm. Note that
Re{(1 —2)%¢,(2)} >0 VzeD,

so a theorem of Royster and Ziegler [5, Theorem 1] shows that for each « in (0, %71),
the function ¢, maps D univalently onto a domain that is convex in the horizontal
direction. By direct calculation,

¢a(D) =C\{w e C|Rew < A(@) A [Im w| = 7 sin? &},

where .
A(@) =Re gy (—e~**) = } sin” o log(tan &) — 3.

For a fixed o € (0, %rr), let F(«) be the class of all mappings of the form

f(Z)=Re/O @, (Op)de +ilmey(z) VzeD,

where p € P. Theorem 1.1 and our preliminary considerations prove the following
result.

LEMMA 2.1. Suppose that f € F(a). Then f is harmonic, orientation-preserving
and univalent on D, and f (D) is convex in the horizontal direction. Moreover, F ()
is convex and compact (with respect to the topology of locally uniform convergence),
and the set of its extreme points is {k; : [n| = 1}, where

ky(z) =Rek(z,n) +ilmey(z) VzeD,

and

Z , 1+
k(z, n)z/ %,({)1 né d; VzeD.
0 —n¢

A simple calculation shows that for any mapping f € F (),
f0)=0, f(O0)=1 fz(0)=0, 2.1

and the following corollary is immediate.

COROLLARY 2.2. Let S?{ denote the class of all harmonic, orientation-preserving
and univalent mappings f that are normalized by (2.1). For any fixed a € (0, %n), the
inclusion F(a) C S% holds.
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Note also that, for each f € F(w), f(z) is real if and only if z is real. Since
Rep>0in D and ¢, >0 in (—1, 1), the function f is increasing on (—1, 1).
Therefore the (possibly infinite) radial limits

f=1= im0, fy= lim £(r)

exist, and f((—1, 1)) = (f(—l), f(l)). This leads to the following lemma.

LEMMA 2.3. Fix a number o € (0, %JT) and let f € F(a). Then:

(a) f is a typically-real harmonic mapping;
(®) k_1(r) = f(r) <ki(r) forallr € (-1, 1)
© f(=D elk_1(=D, ki(=D]=[—o00, =4 (1 +2sin® )], f(1) =00

PROOF. Part (a) of the lemma is evident. Assume that

f(r)=Re /rgofx(t)p(t) dt Vre(-1,1),
0

for some function p € P. From the well-known inequality

|Z| + lz|
p(z )_
1+|Z| 1 — |z

VzeD,
it follows that
r 1—1t r 1+1¢
k—1(r)=/ w&(t)—dtsf(r)S/ w&(t)Ldt=k1(r) vr e (0, 1),
0 141t 0 1—1¢

and
fr)= RC/O Qo (D p(1) dt = —RC/O Qo (=) p(—1) dt
—r 1—
< _/0 ga&(—t)l—_i_i dt =ki(r) Vre(-1,0),

justifying inequality (b). Finally, letting » — 1~ and » — —17 in (b), we obtain (c). O

Lemma 2.1 is useful for describing the family F (). Roughly speaking, further
properties of f € F (o) can be obtained by studying the ranges k,, (ID). We first observe
that

Re kj7(z) =Re k(z, ) =Re k(z, n) =Re ky(z) VzeD, VneT. (2.2)
Since Im ¢, (z) = —Im ¢, (Z) for any « € (0, %n) and z € D, equality (2.2) shows that

the sets k) (D) and k7(ID) are symmetric with respect to the real axis. We are now ready
to describe some geometric properties of the extreme points.
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THEOREM 2.4. Fix a € (0, %n). Suppose that k, € Ext F(a), where n = eP, and
define

M(c, o, B) = ( tan — ,3— 2sli3n,3)sm2a

psin g 1 (4c — 7 sin® a)cot%ﬂ 5
Al a2 1lg 1o cos“a,
8sin" 58  2sin” 58 cos2 o
Aa(c, a, B) ¢ nip— P e
6o p)= an - p — ~— sin“or
? sin? o 2 2 sin B
+< 'B,ST{} - 5 )cosza,
8sin® 58 2sin” 57
_ s |
r(e, o, B) = (——tan B P )szoH_ ((ﬂ . Z)lsmﬂ o
4 2sin B 8sin” 5 2sin” 5B
(4c+nm sin? oz)cot%ﬂ )
- cos“«,
4 cos? a
and
Dife, B) = {(u.v) € R* |v < di(u, o, B) Av = fw sin’ ),
Do@, ) = {(u, v) € R? | v < Aa(u, @, B) A lv] < y sin® ),
Ds(a, ) = {(u, v) e R? | v < 3(u, @, B) Av < —1m sin? a}.
Then:

(i) forall B (0, m —2a), ky;(D) is equal to

Di(a, B) UDz(a, B) UDs(a, B)

U{u — zns1n2a u>r(—1

77 sin® @, «, B}
(ii) forall B € [m —2a, ), ky(D) is equal to

Di(a, p) UDz(a, B) UDs(e, B)
Ulu—iz nsm2a u>r3(—z Lrsin? a, @, B8)};

(iii) k(D) is equal to
C\fweC:Rew < —%(1 + 2 sin? ) A Im w| < %n sin’ al;
(iv) k_1(D) is equal to

{we(C:Rewf—%cosZa/\|Imw|<}Tﬂsin2a}

U{we(C:Rew>—%cosZa}.
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PROOF. We treat case (i) only. Fix 8 € (0, ) and let n = e'#. Then, after integration,

Re k;(2)
sin? & 1 1 2
= [cot(§ﬁ>arg(l —2)+ tan<§ﬂ>arg(1 +2z) — ﬂarg(l — nz):|

2 sin

i 1— 1 1 2.3
+ cos? oc|: - /31 arg( nz) - cot(—ﬂ)lm—2 @3)
4 sin* 5B l—z 2 (I-2)

P W t( ! ﬁ)l < }
e cot| =B |Im ,
sin? % B 11—z 2 1—z
where we assume that arg(-) € (—m, r]. Since any mapping from F(«) is convex in
the horizontal direction, we may assume that

Imky(z) =Imgy(z) =c¢ (2.4)

for some ¢ € R, and find the bounds on Re k;(z). The main idea of the proof

is to set ret’ =(14+z)/(1 —z), where r >0 and 0 € (—%T[, %n), and replace
the variable z by the variables r and 6. This transforms (2.4) to the form
Im @q ((re — 1)/(rei9 + 1)) = ¢, or equivalently,

20 sin® o + r2 cos? a sin 26 = 4c. (2.5)

Ifc> }171 sin? «, then (for given « and c¢) the positive solution
4e — 20 sin o\ /2
cos? « sin 26

r=re(0) = (

of (2.5) is defined on (0, %JT). Substituting r.(6) into Re kn((rem - 1)/(rei9 + 1))
(see (2.3)) yields .
re(0)e'? — 1)

(0) =Rek, (L2~
8:(0) =Re ”<rc(9)el9+1

All mappings k; € Ext F(«) are open, and consequently the function g.(@) cannot
assume boundary values inside the interval (0, %n). Calculation shows that
limy_, ¢+ g¢(0) = +o0 and

li ) Lt 1,3 P in’
1m . = —mtan -p — Sin-o
o8¢ 47 P T oGin B

057~

n ( Bsinp 1 _ (e—m sin’ a)cot%ﬂ)cosza
8sin*1p  2sin? 1B 4 cos?
=r(c a, B).
1

Hence if Imk;(z) =c and ¢ > 77 sin? «, then Re ky(z) varies over the interval
(A1(c, @, B), +00), and finally

ky() N {w € C|Imw > {7 sin” o/}

={(u,v)€R2|v<)q(u,a, ,B)/\v>}171 sinza}.
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Next, if we choose ¢ € (0, }171 sin? «), then the function r. is defined on the interval
(0, 6;(c)), where 01 (c) = 2¢ cosec? «. This, in turn, forces limg_, o+ gc(@) = 400 and

I ©) ( ¢ tansp- L ) in’
im = an —f8 — sin“o
6—0;(c)~ ge sin? « 2 2 sin B

i 1
—I—( 'B'ST{Q T >cos2a
8sin® 58 2sin” 58

= )"2(C7 «a, ﬂ)7

which gives
ky(D) N {w e C|0<Imw < 7 sin’ o}

={(u,v)eR2|v<A2(u,a,ﬂ)/\0<v<%nsinza}.

In the case where Im k,,(z) = %JT sin® «, the function 1 gn? 18 defined in (O, %n).
1

We see at once that
lim gi__.2 (0)=-400

9—0+ 7rs1n o

and

lim g1 o (0) = rMmGrsin® o, o, B) =ro(dn sin® o, o, B) =as (), (2.6)

JT sin” o
60— 1 T
say, which is due to the fact that

0) = 11m ri 2 (f) =tana.

hm rlnsm Dl( JTSIII o

6—0% o—1n-
From this it may be concluded that
kyM) N{w eC|Imw = le” sin? a}={u+ i}Tn sin” o |u > ay(B)}.
Application of Lemma 2.3 enables us to write
ky (=1, 1) = (ky(=1), ky(1)) = (ky(—1), +00),

where

127,(—1)=A2(0, a, ,3)=—'Bsm * +( psinp _ ! ﬁ)cosza.

2sin 8 sin* 1,3 2sin? 4

Now we take Im k;,(z) = ¢, where ¢ € (— 7 sin? «, 0). In this case, the function 7. is
defined in (01 (c), 0) and it is easy to Ver1fy that

lim r.(0) =0, lim r.(0) = +4o0.
6—01(c)* 6—0~

Thus
lim  g.(0) = Aa2(c, a, B), elirgfgc(9)=+00

0—01(c)T
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and therefore
k() N{w e C| — g sin’ @ < Imw < 0}
= {(u, v)eR2|v<A2(uaﬂ)/\ ns1n2a<v<0}
Let us now assume that ¢ < —%n sin® o, It is easy to check that r. is defined on
—%n, 0), and moreover, limg_,o- g.(0) = +00, while lime_)_%ﬂ+ gc(0) is equal to

1 1 -2
<_4_17T tan -8 — P i )sinza

2 2sin 8
(B — 2m)sin 1 (4c + 7 sin* a)cots B\
+ . 41 - .21, 5 cos o
8sin” 58 2sin” 58 4 cos” o
= )\‘3(67 ay ﬂ)'
This clearly forces
ky() N {w e C|Imw < — 17 sin® a}
={(u,v)eR2|v<A3(u,a,ﬂ)Av< jn sin’ ol.
When Im k() = _Z” sin® «, the function r_; x sin2 o (0) 1s defined on (— , 0),
—Z
and one can show that
91_1)%1 8_ 171 sm2a(9) = +00,
and
)»2(— 7 sin® , «, B)=cy(B) ifBe0, 7 —2a)
lim g 1 G026 (0) = ) o 2.7)
6—0~ Ag(— wsin“ o, o, B) =dy(B) ifBe(m—2a, )
(observe that ¢y (8) = dy (B) when B = m — 2«). This completes the proof. O

REMARK 2.5. Itis easy to check (see (2.6) and (2.7)) that

7 cos(a — %,B)c:os(oz + %,3)
2 sin’ %,B cos %,B

do(B) — ca(B) = —

7(cot? a — sin® % ﬁ)sinza

o —dq =
aaF) ) 2 sin? %ﬁ tan %ﬂ

This gives:
(1) for any fixed « € (0, %n),

do(B) <ca(B) VBe (0, m—2)
do(B) > ca(B) VP € (m =20, 1);
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(i) for any fixed « € (0, 41'1”]’
do(B) < au(B) VB € (0, 7);
(iii) for any fixed @ € (37, 370,

do(B) < au(B) VB € (0, Bo(a))
do(B) > au(B) VB € (Bo(a), 7),

where Bo(a) = 2 arcsin(cot «).
The following lemma will be extremely useful in proving our next results.

LEMMA 2.6. Suppose that ay, cq, dy are given by (2.6) and (2.7), and that By(a) =
2 arcsin(cot ). Then:

(i) forany fixed a € (%n, %n), the function ay is increasing on (Bo(e), )5

(i1) for any fixed a € (0, %n), the function cy is decreasing on (0, m);

(iii) for any fixed o € (0, %7{], the function d, is increasing on (0, 7);

(iv) for any fixed a € (%71, %n), the function dy is increasing on (wr — 2, Bo(@)).

PROOF. We justify case (ii) only. Fix o € (0, %71). By straightforward computation,

SlIl2 o 0082 o

cu(B) = iy —— 1. /1(8) t3 ﬁfz(ﬁ)

where
fi(B)=—m —2cot $B + B(cot® 18— 1),
f(B)=6cot 18— B3 cot? 18+ 1).
It is evident that f1(8) < O for 8 € (%n, ). Write 8 = 2 arccot ¢, where S € (0, %n);
then
fi(2arccott) = —mw — 2t + 2(t2 — 1) arccott Vre (1, 4+00).

The inequality
1
arccot t < " vVt € (1, +00),

implies that f](2 arccott) < —m — 2/t <O for all # > 1. By the above, f] < 0 holds
in (0, 7). Similarly, f> < 0 in the interval (0, ), and finally ¢,, < 0 in (0, 7).
Parts (i), (iii) and (iv) follow in the same way, so we leave details to the reader. O

We illustrate our considerations concerning the sets &, (ID) in Figure 1. Note that
Ae(B) =ag(B) +igmsin®a, Cy(B)=co(B) — iy sin’a

and

Dy (B) =dy(B) — zzrsmzoz

Making use of Theorem 2.4 and Lemma 2.6, we shall now prove the main theorem
of this section.
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Aa(B)' Aa()» Aa(B)»
Da(B) %z Ca(B) Ca(B) < Cal(B) -4 Dal(B)
B e (0,7 —2a) f=7- 2« B e (m—2a,m)

FIGURE 1. Domains k,(ID), where arg n = B.

THEOREM 2.7. Fixa € (0, %n), and suppose that () = Uy gy Fla) k(D). Then
K@)=C\fweC:Rew < —%n sin 2«0 — % A [Im w| = }171 sin’ }. (2.8)
PROOF. We first observe that
C\{w € C: [Im w| = 7 sin* &} € k1 (D) Uk_1 (D),
for any fixed @ € (0, %71). Consequently, it is enough to find the set

U k@) N {weC: [Im w| = jr sin® o).
Inl=1

Due to the symmetry of the domains k,(ID) and k7(ID), we need only consider the case

where argn = B € [0, w]. By Theorem 2.4, k(D) N{w € C|Imw = %7‘[ sin? o} is

equal to
{, 37 sin® @) |u>—1(1+2sin* @)} if =0,
{(u, 7 sin® @) | u > ay(B)} if B € (0, 7),
{(u, Alfn sin? «) | u > —% cos 2u} if B=m,
and ki, D) N{weC|Imw = —%71 sin? a} is equal to

{(, =t sin @) |u>—L(1+2sin @)} ifp=0

{(u, —§7 sin® @) | u > co(B)} if B (0, 7 — 2a]
{(u, —37 sin® &) | u > do(B)} if B € (m —2a, )
{(u,—%n sinza)|u>—%cos2a} if B =m,

where cq (T — 200) = dy(m — 20) = —g7 sin2a — 5. When B =argn, let T,(p)
denote the projection of the set

kyD)N{w eC: Imw| = JTJT sin? o}
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71

onto the real axis. Note that ay(8) — ¢ (B) > 0 for any « € (0, %n) and B8 € (0, ).
Therefore 7,(8) = (cy(B), 00) for all B € (0, ¥ — 2«), by Remark 2.5. Lemma 2.6

now implies that

U  Z® =(alr —2a), ).

Be(0,7—2)

The case where 8 € [ — 2«, 7) depends on «. If @ € (0, %n], then

U  Z® = (clr —2a), ).

Belr—2a,m)

Ifae (%yr, %71), then Remark 2.5 and Lemma 2.6 show that 7, (8) = (dy(B), 00),

for any g € [t — 2«a, Bo(®)), and

1o(B) = (do(m — 2a0), 00).
Beln—2a.fo(@))

Similarly,

U Z®= J @) o0)=(@Bo@), o).
BelBo(a),m) BelBo(a),m)

Since
ag(Bo(a)) = dy(Bo(@)) > du(m — 2a) = cu(w — 2a),

we finally have

U Z) = o —20), 00),

Be(0,m)
for o € (0, %n). Moreover, Theorem 2.4 gives
T.(0) = (—g(1 + 2sin® @), 00), Ty () = (=3 cos 2a, 00).
Combining (2.9) with (2.10), we conclude that

U 7B =T(@) = (@dalr - 20), 00).

Bel0,7]
Consequently,
U ky(M) N{w eC: [Imw| = ‘l‘n sin® o}

Inl=1

={weC:Rew e T () Allmw| = {7 sin® a},

which completes the proof.
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We can now formulate our main result.

THEOREM 2.8. Fixa, o € (0, %7‘[), and suppose that KC(«) is given by (2.8). Then

U rm=K@.

feF()

PROOF. We first recall that for any fixed « € (0, %n), the family F (o) is convex and
compact. By the Krein—Milman theorem, the closed convex hull conv(Ext F(«)) is
all of F(«). Hence, the convex hull conv(Ext F(«)) is dense in F(«) in the topology
of locally uniform convergence (which makes F (o) compact). This implies that each
function f € F(«) can be locally uniformly approximated by functions f, of the form

n
fo=" sk, 2.12)
j=1

where pus >0, s=1,2,...,n, > i ;us=1 and k, €ExtF(«x). Taking any
mapping k, € Ext F(«), we see that Im k;(z) =Im ¢,(z) for all z €D, so for f,
defined by (2.12),

Im f,(z) =Im ga(z). Re fu(z) =) juyReky,(z) VzeD.

s=1
Observe that if we restrict ourselves to the set {z € D | Im ¢4 (z) = %n sin® a}, then
Im f,(z) = }‘n sin® & and Re f;,(z) € T («), and this follows from Theorem 2.7.

The same reasoning applies to the case {z € D | Im ¢, (z) = —17 sin? a}. O

Our knowledge of extreme points is very useful for solving extremal problems on
F (). In particular, if A is a real continuous convex functional on F(«), it is sufficient
(by the Krein—Milman theorem) to find the maximum of A over the set of extreme
points Ext F(«). Repeating the arguments in the proof of Theorem 2.7, we can prove
the following result.

LEMMA 2.9. Fix a number a € (0, %n), and suppose that f € F(«). Then
IRe f(—e %) < |Re k_,zia (—e 2¥)| = |ca (7 — 2a)| = g7 sin 2 + 5.

From this lemma we deduce that

—2ia

|IRe o (—e™ )] <%n sin2a+% Yo e (0, %n),
and hence establish the following corollary.

COROLLARY 2.10. Fixa € (0, %n) and let ¢, be the generating function for the class
F(a). Then
¢a(D) C K(a),

where K(a) is given by (2.8).

https://doi.org/10.1017/51446788709000391 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788709000391

[13] Univalent harmonic mappings into two-slit domains 73

Note that when o« — %n_, conformal slits vanish and we obtain the class F (%n) of
harmonic univalent functions related to the strip 2 = {z € C : |Im z| < }Tn} =g, (D).
2

In fact, Hengartner and Schober [2] showed that F (%7‘[) is the closure of the family
of harmonic orientation-preserving univalent mappings from DD onto €2, normalized by
f(0) = fz(0) =0and f;(0) > 0. On the other hand, ¢ is the Koebe function and

U r@=0c\(~c0. -1].

fEF(0)

so the family F(0) is related to the whole plane C slit along an infinite ray (—oo, a]
where a < 0 (see [4]).
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