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SUMMARY

Human illness attribution is recognized as an important metric for prioritizing and informing
food-safety decisions and for monitoring progress towards long-term food-safety goals. Inferences
regarding the proportion of illnesses attributed to a specific commodity class are often based on
analyses of datasets describing the number of outbreaks in a given year or combination of years.
In many countries, the total number of pathogen-related outbreaks reported nationwide for an
implicated food source is often fewer than 50 instances in a given year and the number of years
for which data are available can be fewer than 10. Therefore, a high degree of uncertainty is
associated with the estimated fraction of pathogen-related outbreaks attributed to a general food
commodity. Although it is possible to make inferences using only data from the most recent year,
this type of estimation strategy ignores the data collected in previous years. Thus, a strong
argument exists for an estimator that could ‘borrow strength’ from data collected in the previous
years by combining the current data with the data from previous years. While many estimators
exist for combining multiple years of data, most either require more data than is currently
available or lack an objective and biologically plausible theoretical basis. This study introduces
an estimation strategy that progressively reduces the influence of data collected in past years in
accordance with the degree of departure from a Poisson process. The methodology is applied to
the estimation of the attribution fraction for Salmonella and Escherichia coli O157:H7 for
common food commodities and the estimates are compared against two alternative estimators.
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INTRODUCTION

Every year millions of cases of foodborne illness occur
globally [1].Determining thenumberofpathogen-specific

illnesses associated with a particular food commodity
requires a measure of attribution. Population attribut-
able fraction is the statistic that characterizes the frac-
tion of illnesses prevented if a risk factor is removed
from the population. Given the limited empirical evi-
dence, however, a less formal definition of attributable
fraction is typically employed [2], i.e. the ratio of ill-
nesses associated with a food commodity to the total
illnesses from all sources for the specific pathogen.
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This paper will refer to that ratio as the attribution
fraction.

Government food-safety authorities often rely on
attribution estimates derived from annual foodborne
disease outbreak investigations. Each year, govern-
ment personnel investigate reported outbreaks of
foodborne illness. These investigations can result in
a determination of the most probable food source of
an outbreak. The outbreaks in a given year attributed
to a particular food commodity represent only a frac-
tion of all foodborne illnesses associated with the com-
modity [3–5]. Therefore, government officials are
interested in monitoring attribution fractions across
time to determine if food safety efforts influence out-
break occurrences. Attribution estimates are essential
for risk assessment applications that estimate the num-
ber of illnesses that might be avoided by a change in
food safety policy [6].

Epidemiological investigations can provide empiric-
al evidence of the causative link between a particular
contaminated food product and human illness. No
standardized approach exists for the estimation of an
attribution fraction, but most studies use epidemio-
logical data to support estimation. Examples include
a microbial subtyping approach [7, 8] and the analysis
of outbreak data [3–5].

In the United States, the counts of reported food-
borne disease outbreaks nationwide are generally
fewer than 100 per pathogen per year; with <50% of
these outbreaks being successfully linked to an impli-
cated food source. Therefore, the estimated fraction of
outbreaks attributed to a general food commodity
using data from a single year is highly uncertain. In
addition to the small number of outbreaks per year,
many outbreak surveillance systems have been oper-
ational and collecting data in a consistent manner
for relatively short periods of time, so attribution frac-
tion estimates are often based on between 2 and 10
years of data [4, 8]. To improve the precision of
such estimates, analysts consider incorporating data
from previous years or incorporating new data into
existing estimates. Nevertheless, questions arise
about the validity of including historical data in cur-
rent estimates and the number of years of data to in-
clude in such estimates.

While it is possible to make inferences using only
data from the most recent year, such an estimation
strategy would ignore the data collected in previous
years. Thus, an argument exists for an estimator of
the current attribution fraction that could ‘borrow
strength’ from data collected in the previous years.

The origins of this concept date back to the rolling
sample designs in the late 1950s that combine data
from a set number of the most recent years of data [9].

An equally weighted moving average estimator is
one of the simplest solutions, where a certain number
of the most recent years of data are combined without
consideration of the age of the data. This estimator
usually exhibits the smallest mean square error
among rolling sample estimators when applied to
populations with small trend components [10], but
the number of years of data to use remains subjective.
More sophisticated estimation methods, such as time
series and non-parametric smoothers, could be
employed [10], but annual outbreak counts rarely
demonstrate autocorrelation and many surveillance
systems are relatively new and lack sufficient temporal
data for reliable estimation [11].

In economics, the concept of the time-value of
money is well established. For example, discounting
is used to adjust future cash values to a present
value to account for the opportunity to earn on
today’s money in the future. Because data collected
in the past may be less valuable than data collected
more recently, the information supplied by historical
surveillance data should also be adjusted for its time
value [12, 13]. Nevertheless, the practice of valuing
historical data often ranges between extremes –

using current data and ignoring past data or accumu-
lating and treating equally all past data. At its roots,
the latter approach is Bayesian in that the analyst is
sequentially updating data across time; the posterior
distribution estimated for time t is proportional to
the likelihood at time t multiplied by the prior distri-
bution informed by time t− 1. This posterior distribu-
tion itself becomes a prior for inferences about time
t+ 1.

If data represent a stochastic process that is station-
ary (i.e. the rate at which events occur across time is
constant), then Bayesian thinking is correct. If data
are accumulated across years to estimate a rate param-
eter that is fundamentally unchanging, then the cur-
rent inference about the parameter should be more
certain than past inferences based on less data. This
is similar conceptually to the confidence we gain
about the fairness of a coin as we observe an increas-
ing number of flips of the coin with the fraction of
heads among flips stabilizing at 0·50.

In the case of a stationary Poisson process, no jus-
tification exists for discounting past data, because
those data are just as relevant to our estimate as cur-
rent data. This treatment is also theoretically
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appropriate because the sum of independent Poisson
random variables is itself a Poisson random variable,
where the rate parameter is the sum of the previous
observations. Therefore, the observed count of out-
breaks can be averaged to model the annual rate.

Epidemiological data are sometimes stationary but
often dynamic. If historical surveillance data refer to a
period of time during which the underlying infection
process is markedly different from the current period,
then the historical data may have minimal relevance
to estimating current disease occurrence. For example,
substantial past surveillance evidence for disease free-
dom within a population may have no relevance to
current inferences if the infectious agent only recently
entered the population. Alternatively, successful inten-
tional efforts to control an infectious agent would
make past evidence about occurrence less relevant to
an inference about its occurrence today.

This paper outlines an approach to estimating attri-
bution fractions when the available data are limited.
The method assumes a simple point process model
to discount the historical data according to objective
statistical principles. This approach is illustrated
using Salmonella and Escherichia coli O157:H7 out-
break data from the United States that are attributed
to common food commodities.

Data description

State and local health departments report foodborne
disease outbreaks to the United States Centers for
Disease Control and Prevention (CDC) through the
Foodborne Disease Outbreak Surveillance System
(FDOSS) [14]. Reports include, when available, the
number of persons ill, the outbreak aetiology, a de-
scription of the implicated food vehicle(s), lists of
ingredients, and identification of the contaminated in-
gredient(s). Each outbreak is assigned to one of
CDC’s food commodity classes [3]. This study only
includes outbreak data beginning in 1998, because
1998 was the first year when detailed information on
food ingredients was available. The last year for
which data are available was 2011. For this analysis,
all outbreaks were included where a single aetiological
agent and implicated food vehicle were identified. The
number of outbreak counts per year attributed to
Salmonella and E. coli O157:H7 for the CDC food
commodity classes are summarized in Tables 1 and 2.

The outbreak counts for each commodity represent
time-series data, and illness and outbreak counts for
both of these pathogens demonstrate strong seasonal

patterns [15, 16]. A summarization of temporal pat-
terns is beneficial for motivating the chosen estimation
strategy. Significant temporal patterns in annual out-
break counts would suggest that time-series methods
could be used in the estimation of attribution frac-
tions. An assessment of temporal patterns was per-
formed using ARMA(p,q) models, where (p,q) are
the autoregressive and moving average orders, re-
spectively [17]. The best-fitting ARMA model, based
on Akaike’s Information Criterion, was determined
for each commodity to demonstrate the general lack
of annual patterns in the data (Tables 1 and 2). For
27 out of the 29 pathogen–commodity pairings, the
best-fitting model is an ARMA(p= 0, q= 0). The
only two commodities to demonstrate significant tem-
poral patterns were the eggs and grains/beans com-
modities for Salmonella, where the best-fitting model
is an ARMA(0,1). The mean and variance of the out-
break counts for each commodity–pathogen pair are
given in Table 3. The pathogen–commodity classes
of Salmonella–eggs, Salmonella–poultry, and E. coli
O157:H7–beef represent roughly half of all outbreaks
for the two pathogens.

METHODS

The proposed method is based on the observation that
if the number of outbreaks were a completely random
process, the annual number of outbreaks would follow
a Poisson distribution. In this situation, the appropri-
ate estimator of the annual rate parameter is the sum
of annual outbreaks divided by the total number of
years, because the sum of a Poisson-distributed ran-
dom variable is itself a Poisson random variable
[18]. This implies that the data from previous years
are just as relevant as the current year’s data and
that the data from all years should be averaged to es-
timate the attribution fraction. If the number of out-
breaks does not follow a Poisson distribution, the
data from the previous years are less relevant, and
their influence on the current year’s attribution frac-
tion should be reduced. This discounting is accom-
plished by reducing the effective number of
outbreaks as a function of the number of years since
their occurrence. For example, if seven outbreaks oc-
curred at time t− 2, the estimator would reduce this
number to something less than 7 as a function of the
degree of departure of the counts from a Poisson ran-
dom variable.

In the first step of our analysis, we assess annual
counts of outbreaks associated with a particular
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commodity to determine if these follow a random
Poisson process. A χ2 goodness-of-fit test was com-
pleted to determine if a commodity’s annual outbreak
counts followed a Poisson process [19]. The Poisson
test statistic is

∑T
t=1

(st − �s)2

�s
,

where st is the number of outbreaks in year t and �s is
the mean number of outbreaks per year. The statistic
is assumed to be distributed according to a χ2(T –1),
where T is the number of years of data considered
(e.g. 14 in this study).

Commodities for which the χ2 test failed to reject
the hypothesis that outbreak counts follow a Poisson
process were ignored for the remainder of this ana-
lysis, because no discounting of that data was neces-
sary. Commodities for which the χ2 test rejected the
null hypothesis were assumed to be overdispersed.
Overdispersion relative to a Poisson distribution sug-
gests that the variability in annual counts is larger
than that explained by a Poisson random variable.

The second step in our analysis applies to commodities
with overdispersed outbreak counts. This step estimates
discount rates for the historical data that inform the attri-
bution fractions for those commodities. We do this by
interpreting the parameters of fitted beta distributions
as measures of implied sample sizes (or sample values)

Table 1. Salmonella outbreak counts from 1998 to 2011 for those outbreaks that identified a food commodity [14]

Commodity ARMA 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Beef (0,0) 1 3 2 3 6 9 4 4 3 3 3 4 1 2
Crustacean (0,0) 1 0 0 0 0 1 1 1 0 0 0 0 1 0
Dairy (0,0) 3 2 0 3 3 1 2 3 3 4 1 0 0 1
Eggs (0,1) 8 24 22 9 7 12 9 12 3 5 7 7 7 2
Finfish (0,0) 1 0 5 1 0 0 2 0 0 1 2 2 1 0
Fruits/nuts (0,0) 1 7 4 6 3 4 0 1 4 1 5 2 3 8
Fungus (0,0) 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Game (0,0) 1 1 0 0 2 1 0 0 0 0 0 1 0 0
Grains/beans (0,1) 1 1 0 0 0 1 1 0 0 1 1 0 0 0
Leafy (0,0) 0 1 0 1 2 1 2 1 1 2 0 2 1 0
Mollusc (0,0) 0 0 0 0 0 1 0 1 1 0 0 0 0 0
Oil/sugar (0,0) 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Pork (0,0) 3 2 6 6 3 3 6 3 4 7 4 6 6 11
Poultry (0,0) 13 21 17 14 14 12 24 12 10 7 11 4 8 12
Root (0,0) 0 0 2 0 0 0 2 2 1 0 0 0 1 0
Sprout (0,0) 1 6 2 3 1 2 1 1 1 3 1 4 4 3
Vine (0,0) 1 0 1 0 5 1 2 3 4 2 3 4 4 3
Grand total (0,0) 35 68 61 46 47 49 56 44 35 37 38 36 37 42

Table 2. E. coliO157:H7 outbreak counts from 1998 to 2011 for those outbreaks that identified a food commodity
[14]

Commodity ARMA 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Beef (0,0) 1 14 9 0 8 1 7 5 6 15 12 11 4 5
Dairy (0,0) 2 0 0 1 0 1 1 1 3 1 3 1 7 2
Fruits/nuts (0,0) 1 1 3 1 0 0 1 1 1 1 1 0 2 2
Game (0,0) 0 0 0 0 0 0 2 0 1 0 1 0 2 2
Grains/beans (0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Leafy (0,0) 1 5 0 1 2 2 1 1 4 2 4 3 1 3
Mollusc (0,0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Poultry (0,0) 0 0 2 0 0 0 0 0 0 0 0 1 0 0
Sprout (0,0) 1 0 0 0 1 3 1 0 0 0 0 0 0 2
Vine (0,0) 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Grand total (0,0) 7 20 14 3 11 7 14 8 15 19 21 16 16 17
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and evaluating the ratio of the sample value for the
overdispersed case to the sample value for a Poisson-
distributed case. Because the sample value in the overdis-
persed case is always less than the Poisson-distributed
case, this generates a discount rate of <1.

Previous examples for discounting historical informa-
tion have assumed the specific process by which overdis-
persion might occur [12, 13]. Conceptually, historical
data that measures the occurrence of a phenomenon in
the past should have its contribution to a present-day es-
timate depreciated by its proportional reduction in sam-
ple value. Therefore, a sample collected at time t−1, of
size nt−1, would have its sample value reduced to
1− d( ) × nt−1 = nt|t−1, where d is a discount factor
and nt|t−1 is the value of the t−1 sample at time t. This
current approach does not explain the process by
which overdispersion might occur. We simply estimate
d= 1− (nt|t−1/nt−1) from available data by assuming
that the overdispersed sample value (nt|t−1) reflects the
annual reduction in sample value relative to its value if
it were generated by a stationary Poisson process (nt−1).

This approach relies on a common interpretation of
the beta(a,b) distribution’s parameters as a= s+ 1 and
b= n− s+ 1 where s represents the counts of some
characteristic among a sample of size n. This par-
ameterization is a common application of Bayes

Theorem [20, 21] such that this posterior beta distribu-
tion results from a binomial distribution likelihood
function and a conjugate prior beta(1,1) distribution.

The annual attribution fraction for a particular
commodity, αf (where f indexes commodities), is a
random variable that reflects the influence of the
year-to-year variability in counts and the uncertainty
inherent in an estimate based on sampling evidence.
In our analysis, we parameterize beta(st+ 1, nt− st+ 1)
to simulate the sampling uncertainty about αf, where
st is a number of outbreaks attributed to commodity
f for a given year, and nt is the total count of out-
breaks in a given year. As discussed next, there are
two approaches to deriving values of st and nt, but
both require Monte Carlo simulations that generate
random variables as outcomes. Because these simu-
lated outcomes are generated from a beta distribution,
we assume the mean and variance of these outcome
variables can themselves be fitted to a beta(a,b)
distribution. For the sake of convenience, the
method-of-moments approach is used where:

a = E[αf ]
(
E[αf ](1− E[αf ])

V [αf ] − 1
)

b = (1− E[αf ])
(
E[αf ](1− E[αf ])

V [αf ] − 1
)
,

Table 3. Summary statistics regarding outbreak counts. The Poisson test P values for significant departure from a
Poisson stationary process are shown

Salmonella E. coli O157:H7

Outbreak counts per year Outbreak counts per year

Commodity Mean Variance P value Mean Variance P value

Beef 3·4 4·3 0·24 7·0 22·9 0·00
Crustacean 0·4 0·2 0·77
Dairy 1·9 1·8 0·47 1·6 3·3 0·02
Eggs 9·6 40·4 0·00
Finfish 1·1 1·9 0·04
Fruit/ nuts 3·5 5·8 0·06 1·1 0·7 0·82
Fungus 0·1 0·1 0·45
Game 0·4 0·4 0·47 0·6 0·7 0·22
Grains/beans 0·4 0·3 0·84 0·1 0·1 0·45
Leafy 1·0 0·6 0·84 2·1 2·1 0·45
Mollusk 0·2 0·2 0·61 0·1 0·1 0·45
Oil/sugar 0·1 0·1 0·45
Pork 5·0 5·5 0·35
Poultry 12·8 27·7 0·01 0·2 0·3 0·09
Root 0·6 0·7 0·22
Sprout 2·4 2·4 0·43 0·6 0·9 0·10
Vine 2·4 2·6 0·37 0·1 0·1 0·45
Grand total 45·1 107·3 0·00 13·4 29·8 0·01
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and E[αf] and V[αf] are the mean and variance esti-
mates from the Monte Carlo simulation. The param-
eters of this fitted beta(a,b) are then re-interpreted as a
measure of the underlying effective sample value be-
cause a+ b= s+ n− s= n [ignoring the 1’s contributed
by the original beta(1,1) prior].

For the commodities where the assumption of the
Poisson process is rejected, there are two alternatives
for αf to consider. The first, αf |Poisson, reflects a distri-
bution that would result if an underlying Poisson pro-
cess for outbreak counts were true. The second, αf |data,
reflects the distribution generated from the actual
overdispersed data. We reason that the effective sam-
ple value for αf |Poisson is greater than αf |data because the
variance of αf |Poisson is less than the variance of αf |data.
This is obvious if we use a beta(s, n− s) parameteriza-
tion and recognize that s is some fraction, r, of n (i.e.
s= r× n), where in our case r is the same for either the
Poisson or overdispersed case because both random
variables will have roughly the same expected value.
It can be shown that the resulting variance of the
beta distribution is just r – r2/n (i.e. if α ∼ beta(s,n – s)
then

Variance α( ) ≈ s n− s( )
n3

= rn n− rn( )
n3

= r− r2

n
.

Therefore, for a fixed value of r, the variance of the
beta distribution is inversely proportional to the sam-
ple size n.

To estimate αf |Poisson, we implement the following
Monte Carlo simulation:

(1) Sample st ∼ Poisson(λf) and nt ∼ Poisson(λn),
where λf and λn are the average annual number
of commodity-specific outbreaks and total out-
breaks, respectively, estimated from the 14 years
of data. Because st and nt are necessarily depend-
ent we correlate the Poisson random draws of st
and nt based on their estimated correlation coeffi-
cient [using the RiskCorrel and RiskCorrMat
functions in @Risk (Palisade Corp., USA)].

(2) On each iteration, the simulated st and nt are
entered as parameters in a beta(st +1, nt – s + 1) dis-
tribution from which a random draw is simulated.

(3) This process is repeated for 100000 iterations to
generate an output for αf |Poisson. The mean and
variance of this output is back-fit to a beta distri-
bution, and the a and b parameters are interpreted
as above.

To estimate αf|data from the available overdispersed
data, the process is the same as above except random

pairs of si and ni for a commodity are selected itera-
tively across the 14 years of data (i.e. the first element
above is replaced with simple random sampling of the
si and ni pairs from the data). All simulation work was
performed in @Risk (Palisade Corp.) and then vali-
dated using R [22].

Let αf |data ∼ beta(adata, bdata) be the estimate result-
ing from simulating s and n from the empirical evi-
dence in Tables 1 or 2 for a particular food
commodity. Let αf |Poisson ∼ beta(aPoisson, bPoisson) be
the estimate resulting from simulating s and n as cor-
related Poisson random variables. If the data follow a
Poisson assumption, then

α f |data ≈ α f |Poisson and
adata + bdata

aPoisson + bPoisson
≈ 1

(i.e. both distributions result from the same Poisson
process and, therefore, must be equivalent). This
would be the result if the commodities eliminated in
step 1 of our analysis (i.e. those for which the
Poisson assumption was not rejected) were analysed
in step 2. Nevertheless, for the commodities in which
the Poisson assumption was rejected (i.e. the data
reflect a process that is overdispersed), then

adata + bdata
aPoisson + bPoisson

, 1,

and the results imply a reduction in sample value. In
this latter case, the effective sample size implied by
the Poisson assumption will be larger than that of
the actual data. The difference in this ratio suggests
how annual attribution fractions might vary beyond
a stationary process.

Discounting historical data

We assume the annual discount rate applicable to his-
torical data is

d = 1− adata + bdata
aPoisson + bPoisson

.

This is the magnitude of adjustment applied to data
collected 1 year previously. It reflects how much the
effective sample size at time t−1 is reduced at time t,
because the process varies beyond what is expected
of a Poisson process. For data collected at time t= 1
(n1), its value at time t (nt) is computed as nt =
n1(1−d)t−1 based on standard compounding methods.

The following example illustrates the calculations
needed to discount surveillance data to estimate αf
for the current year. Assume we have 3 years of data
so that t= 1,2,3, where t= T= 3 is the current year.
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The estimator αf,t = 3, is modelled as:

α f ,t=3 � beta(s∗ + 1, n∗ − s∗ + 1),
where s∗ = st=1(1− d)3−1 + st=2(1− d)3−2

+ st=3(1− d)3−3

and

n∗ = nt=1(1− d)3−1 + nt=2(1− d)3−2 + nt=3(1− d)3−3.

Using the commodity-specific outbreak counts yield
the general formula

s∗ =
∑T
t=1

(1− d)T−tst.

Note that the estimator for s* and n* resembles the
estimator for an exponential smoother, which can also
be used to describe the time-value of historical infor-
mation [23]. Where the exponential smoother differs
is the lack of the normalizing constant d and the neces-
sary selection of an initial value for the smoothing
process [11, 24]. While an estimator based on the ex-
ponential smoother was tested in this study, the results
are not presented because the selection of the initial
value adversely affected the performance of the esti-
mator. This effect reflects the limited number of
years of data.

Examples

The examples compare the implications of estimating
αf using just the current year of data, aggregating all
prior years of data without discounting, and aggregat-
ing all prior years of data using the proposed discount-
ing methodology. The methodology is applied to the
estimation of attribution fractions for the United

States. The selected pathogen–commodity pairs for
Salmonella and E. coli O157:H7 are ones with out-
break counts that exhibit a significant overdispersion
relative to the Poisson distribution.

RESULTS

The Poisson test finds that the Salmonella outbreak
counts for eggs, finfish, and poultry are not Poisson
distributed (Table 3). Similarly, this test finds that
the E. coli O157:H7 outbreak counts for beef and
dairy are not Poisson distributed. In these cases, the
variance is greater than the mean such that the data
appear overdispersed relative to a Poisson random
variable.

The Salmonella outbreak data demonstrate that
poultry and egg outbreak counts are highly correlated
with the total outbreak count per year (Fig. 1). In
both cases, a Pearson correlation of r> 0·8 was calcu-
lated. By contrast, counts of finfish outbreaks are poorly
correlated with total outbreak counts (r= 0·2). The
E. coli O157:H7 outbreak data (Fig. 2) demonstrate a
high correspondence between beef outbreak and total
outbreak counts (r= 0·82), but little correspondence
exists between dairy and total outbreak counts (r= 0·2).

Table 4 presents the discount rate for those patho-
gen–commodity pairs whose outbreak counts are sig-
nificantly overdispersed. The largest discount rate
applies for Salmonella–eggs and E. coli O157:H7–
beef. In both cases, the resulting respective d values
of 0·5 and 0·6 imply that prior evidence concerning
these pathogen–commodity pairs should be sharply
discounted such that data much older than 4 years
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Fig. 1. Time-series data for Salmonella outbreak counts.
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will have little influence on current estimates. For ex-
ample, a discount rate of 0·6 implies that data from
four years ago will only be worth about 4% of its ori-
ginal value, i.e. (1 – 0·6)4≈ 0·04. The lowest discount
rate was applicable to Salmonella-finfish. This dis-
count rate of 0·1 suggests that decade-old data may
still have relevance to current estimates; in this case
(1 – 0·1)10≈ 0·37 such that 10-year-old data maintains
37% of its value.

Two applications of the computed discount rates
are illustrated in Figures 3 and 4. In the case of
Salmonella–poultry (Fig. 3), we see that each year’s at-
tribution fraction estimate changes somewhat with
sharp deviations occurring (e.g. see 2004 and 2009 in
Fig. 3). If the outbreak data are aggregated sequential-
ly without any discounting, then the limits of the cred-
ible interval about the attribution fraction get

progressively tighter across time. By contrast, if the
outbreak data are discounted sequentially, then the
credible intervals initially become tighter but stabilize
and remain wider than the undiscounted illustration.
As expected, the credible intervals for the aggregated
data (undiscounted or discounted) are narrower than
the intervals based on each year’s data; although
these limits are exactly the same in 1998 because no
aggregation has occurred in the first year.

In Figure 3, comparing the results for 2009 illustrates
the statistical merit of discounting aggregated data. In
that year, the observed fraction of poultry-associated
outbreaks was about 0·13. Nevertheless, the credible
interval about that estimate overlaps with the credible
interval for the aggregated with discount estimate.
By contrast, no overlap exists with the credible inter-
val estimated by aggregating without discounting.

Table 4. Summary results for determining the discount rates for annual outbreak data are shown for those
commodities with overdispersed outbreak count data

Pathogen (commodity) Model

Attribution
fraction
mean

Attribution
fraction
variance

Effective
sample
value

Annual
discount
rate, d

Salmonella (poultry) Poisson 0·29 0·007 30 0·3
Overdispersed 0·29 0·009 22

Salmonella (eggs) Poisson 0·22 0·005 31 0·5
Overdispersed 0·21 0·010 16

Salmonella (finfish) Poisson 0·04 0·001 30 0·1
Overdispersed 0·04 0·002 27

E. coli O157:H7 (beef) Poisson 0·51 0·026 9 0·6
Overdispersed 0·48 0·052 4

E. coli O157:H7 (dairy) Poisson 0·18 0·017 7 0·3
Overdispersed 0·19 0·026 5
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Fig. 2. Time-series data for E. coli O157:H7 outbreaks.
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Therefore, discounting historical data reduces the influ-
ence of older data relative to new data and generates
credible intervals that, at least for these examples, over-
lap the credible intervals of the new data.

Figure 4 allows similar comparisons for the E. coli
O157:H7–beef pairing. Individual year attribution
fraction estimates fluctuate wildly across time.

Aggregating data without discounting implies pro-
gressively increased credibility (Fig. 4) while aggregat-
ing data with discounting suggests relatively stable
credibility across time. Furthermore, the discounted
credible intervals overlap estimates for each year bet-
ter than the undiscounted intervals. In particular, the
discounted credible interval overlaps the interval
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Fig. 3. Illustrative example of the evolution of the estimated attribution fraction from Salmonella–poultry outbreaks.
Single year estimates are contrasted with aggregated estimates with or without discounting. In all cases, lower and upper
credible limits are the 5th and 95th percentiles.
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Fig. 4. Illustrative example of the evolution of the estimated attribution fraction from E. coli O157:H7–beef outbreaks.
Single year estimates are contrasted with aggregated estimates with or without discounting. In all cases, lower and upper
credible limits are the 5th and 95th percentiles.
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estimated for the 2010 data while the undiscounted
interval does not overlap.

DISCUSSION

This approach to time valuation of historical outbreak
data provides epidemiologists and risk analysts with
an objective estimate of food source attribution.
Governments rely on attribution fractions for priori-
tizing control strategies to reduce foodborne illnesses.
For example, the European Food Safety Authority
risk rankings across foods and pathogens [25], the
US decision to ban the use of fluoroquinolone antibio-
tics in poultry [26] and the US decisions to reduce
Salmonella contamination on poultry carcasses [6]
were all based on attribution fraction estimates.
Improved methods for estimating food source attribu-
tion from available outbreak evidence will increase the
accuracy and reliability of these inputs to government
decision-making.

For the majority of commodity classes considered
here, we found no evidence to suggest that outbreak
data should be discounted across time. For example, for
14/17 commodity classes associated withSalmonella out-
breaks, we determined there was no justification for dis-
counting historical evidence when estimating the
current attribution fraction. This was also true for 8/10
commodity classes associated with E. coliO157:H7 out-
breaks. In their estimation of attribution fractions from
foodbornedisease outbreaks, Painter et al. [4 ] did not dis-
count outbreak illness data. Our results support this non-
discounting approach generally. Nevertheless, our ana-
lysis does suggest that discounting of historical data is ap-
propriate for some of the commodity classes for the
pathogens we evaluated.

Estimating the attribution fraction for commodity
classes for which discounting of historical information
is warranted (e.g. Salmonella–poultry, Salmonella–
eggs, Salmonella–finfish, E. coli O157:H7–beef,
E. coli O157:H7–dairy) can be accomplished object-
ively using our methods. In these cases, our approach
estimates current attribution fractions that are more
certain than an approach that only uses the current
year’s information; and it is likely more accurate
than an approach that aggregates all historical infor-
mation without any accounting of the time value of
those data. Furthermore, in comparison with a non-
discounted aggregation of data, our methods generate
wider credible intervals that imply less certainty about
the true attribution fraction for a food source. When
these wider intervals are used to estimate the annual

number of a pathogen’s illnesses associated with a
particular food, the result is a less certain estimate
of the illnesses available annually for prevention by
a policy. Consequently, a proposed policy for redu-
cing annual illnesses associated with a food might re-
quire a more substantive change to achieve some
threshold benefit relative to an estimate based on non-
discounted attribution estimates. With respect to
monitoring illnesses across time, the wider limits of
the discount-based attribution fractions imply that
changes of a larger magnitude are necessary to con-
clude there has been a true change in illnesses due to
a particular food.

When warranted, we determine the appropriate dis-
count rate for a commodity class’s data by deriving
beta distributions for a hypothetical stationary process
and a non-stationary process based on the observed
data. Each distribution reflects how the attribution
fraction randomly varies from year to year while
also accounting for the uncertainty inherent in the
sampling evidence. Each estimated beta distribution
implies an underlying sample size that informs the an-
nual attribution fraction. Because it reflects a more
variable process, the non-stationary beta distribution
implies a smaller sample size than the stationary
beta distribution. The ratio of these two sample sizes
implies how much to discount annual data from the
non-stationary process.

Our method uses the discount rate to reduce the
value of historical outbreak attribution data. These
data reflect the counts of outbreaks attributed to par-
ticular foods. Therefore, counts from past years are
discounted as they are aggregated to the present.
The older the count data, the more it is discounted.
It should be noted that these methods are only applic-
able to outbreak counts; previous estimates of food
source attribution in the United States were based
on aggregating the illnesses associated with outbreaks
(e.g. [4]) while estimates for other countries have been
based on outbreak counts like the approach used here
(e.g. [5]). Because the number of illnesses associated
with an outbreak varies with the severity of the out-
break (i.e. cases per outbreak), the convolution of out-
break frequency and severity would need to be
considered when using illnesses for attribution estima-
tion. The lack of a theoretic argument for what consti-
tutes a stationary pattern for total outbreak-associated
illnesses per year suggests that our approach would
not be amenable to use of illness counts for determin-
ing the appropriate discount rate to apply to those
data.
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Aggregating data across time is consistent with
Bayesian thinking. In Bayesian analysis, the prior dis-
tribution reflects information known before collection
of new data. The Bayesian updating process estimates
a posterior distribution about a parameter by consid-
ering both the new data and the prior information. If
the prior distribution is very narrow, then the poster-
ior distribution for the parameter is very similar to
the prior unless an overwhelming amount of new
data is available. A very broad prior distribution can
generate a very different posterior distribution that is
more reflective of the new data.

Our methods make prior distributions more broad
by reducing the value of historical count data while
still maintaining their central tendencies. In this man-
ner, the prior distribution has less influence on the
resulting attribution fraction estimate than it would
if no discounting occurred. Nevertheless, the dis-
counted prior distribution still generates more
informed distributions compared to a completely un-
informed prior distribution. Practically, an unin-
formed prior distribution would be the result of a
discount rate that approaches 1.

This method is a more objective relative to alterna-
tive approaches that either make assumptions about
how to discount historical data or choose to ignore
it. Previous research has explained that the time
value of epidemiological information depends on the
dynamics of infectious processes [12, 13]. Given
some historical sampling evidence, it is possible to
model how the infectious disease might evolve from
its time of collection to the current time of inference.
Given the various pathways infection might take, the
resulting current time estimate is necessarily more un-
certain than the inference made at the time the data
were collected.

The proposed method is statistically rigorous in that
it relies on goodness of fit methods to examine the ap-
propriateness of a stationary process assumption. If
the Poisson test fails to reject the assumed stationary
Poisson process for a product–pathogen pair, then it
is recommended that historical data not be dis-
counted. If the variability observed among outbreaks
is consistent with a Poisson process, then there is no
reason to think historical data are less relevant than
data that are more current. Nevertheless, if the test
rejects the stationary Poisson process, then the attribu-
tion fraction is more dynamic, and its changes beyond
a Poisson process can result in a degradation of value
of historical evidence. The use of the beta distributions
in our approach serves to quantify the implied

reduction in sample size that attends the increased
variability in hyper-Poisson processes.
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