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ABSTRACT

Recent theoretical studies of the signal to noise ratio (SNR) of photon
limited speckle (image plane) interferometry are reviewed. The SNR of an
estimate of the object power spectrum is evaluated for both the single and
double aperture cases, for arbitrary light levels. The SNR for the auto-
correlation function method of analysis is also given for the low light level
case and applied to the special case of binary star observations. The SNRs
for the power spectrum and autocorrelation function analyses are compared and
a comparison is also made between speckle (image plane) and amplitude (pupil
or aperture plane) interferometry. Limiting observable magnitudes are

estimated for some relevant cases.

1. INTRODUCTION

The aim of stellar interferometry is to determine information about the
intensity distribution, o(x), across an object. In the methods described here
this information is either an estimate of the object power spectrum, ¢O(v), or
of the object autocorrelation function Co(x)J Given an interferometer which
is instrumentally perfect, the error in an estimate of the power spectrum or
autocorrelation function is determined by the fluctuations of atmospheric
seeing and by the quantum nature of the radiation. One way of expressing the
error in an estimated quantity Q is by the signal to noise ratio (SNR) defined

as

expected value of quantity
standard deviation of estimate

<@ (1)
(<Q%> - <@>P)?

SNR
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The estimated quantity Q might, for example, be the value of the power
spectrum at a point, an integrated value of the power spectrum or the auto-
correlation function at a point. 1In all cases the SNRs given here relate to
an estimate of Q based on a single record(frame) of data. Normally, one would
repeat the experiment many times in order to improve the overall SNR. The SNR
obtained using M statistical}y independent frames, denoted (SNR)M, is greater
than (SNR)l by a factor of MZ. |

General reviews of the technique of speckle interferometry are given in
references 1-3. In this review one dimensional notation will be used for

simplicity, the extension to two dimensions being trivial.

2. POWER SPECTRUM ANALYSIS

2.1 The Transfer Function

In speckle interferometry many short exposure, narrow bandwidth records
of the image intensity, i(x), are taken. At high light levels each record is
a realisation of a random process that may be assumed to be ergodic (and hence
stationary) in time, but nonstationary in space. The power, or Wiener,

spectrum of the process is defined as

6 (v) = <|1(w) | 2)

where I(v) is the Fourier transform of i(x) and the ensemble average <.> may
also be interpreted as a time average. The power spectrum of the image

A
intensity, normalised to unity at the origin (v=0) and written as ¢i(v), is

related to the normalised object power spectrum, $o(v), by
A A 2
o; (V) = ¢ (V) <|TW)|%> (3)

‘where T(v) is the instantaneous transfer function defined by

o]

Tov) = [ H (Afv') Z (Afv') HOAE[v'+v]) Z(AE[v'+v]) dv’ (4)

o]
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where
H(.) 1is the pupil function of the telescope aperture
Z( ) 1is the complex amplitude fluctuation in the telescope pupil due to.
atmospheric turbulence
is the wavelength of the light and
f is the focal length of the telescope

The form of the speckle transfer function, <|T(v)|2>, has been investig-

ated by several authors and, in general, depends upon the model used for Z(.)

If we model Z( ) as a complex Gaussian process, then providing that
(D/ro)2 >> 1 and telescope aberrations are negligible over regions of dimension

T the normalised transfer function is given by4

2 2 2 1
<t 7> = [T (0 |7 T ()7 + 0.435 (59 T(V) (5)

where
Ts(v) is the long exposure seeing transfer function
To(v) is the OTF of the telescope
TD(v) is the diffraction limited OTF of the telescope

. . . . 5
T is Fried's seeing coherence diameter™ and

D is the diameter of the (unobscured) telescope pupil

Since Ts(v) decreases rapidly with increasing spatial frequency and is
effectively zero for frequencies very much greater than the seeing limit (i.e.

v >> ro/Af), we may write

2 2
<|T(v)| > = 0.435 (BQ 'HJOO 5 D/ro >> 1, v > ro/Af (6)

Although analysis using the more realistic log-normal distribution for
Z( ) yields an expression for <|T(v)|2> differing from equation(5), the result
in the limit D/rO >> 1, v >> ro/Af is identical to equation (6) (see equation

(37) of reference 6).
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It is sometimes helpful to define the average number of speckles per

frame,ns, as

n _¢(D 1 (7)
S (r) 0.435
o
giving
<|T(v)|2> =1 . TD(v) ; ng >> 1, v >> ro/Af (8)
n
s

2.2 SNR at a Point - The General Expression

The SNR at a point in the power spectrum in speckle interferometry was
first derived by Roddier7 for the case in which N, the average number of
detected photons per frame, satisfies N >> 1. A more detailed analysis is

given by Goodman and Belsher8’9 and the problem is also discussed in 10—12E

The jth image record, dj(x), is modelled as an inhomogeneous, or compound,

Poisson process which has a rate proportional to the classical image intensity
i(x).
'Nj
d.(x) = §(x-x, 9)
500 Zk=1 (x4 (

where each delta function represents a photon event; xjk is the location of
the kth event in the jth frame and Nj is the total number of detected photons
in the jth frame. Experimentally, the squared modulus of the Fourier trans-
form, !Dj(v)|2, is computed for each frame.

Several authorsg_11 have evaluated SNRs for the estimate Ql’ defined by

_ 2§
q = [, [” - N (10)

With this definition of the measured quantity one has
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<Q1> ==N: $i(v) (11)
and
62 =N+ N2 + 202402 6. (v) + N2 . (2v) + N* 32 (v) (12)
Q1 i 1 i

As in all problems of this type, it should be noted that the fluctuations
of the estimate at spatial frequency v are influenced by the value of the
power spectrum at 2v. At exceedingly low light levels, N << 1, the SNR per

frame for estimate Q1 is given by
_— A —
(SNR), =N b. (V) ; N << 1 (13)

The use of definition (10) for the experimentally estimated quantity has
the disadvantage that the noise associated with Q1 contains contributions
arising from the fluctuations in N,, the actual number of photons detected per
frame. These fluctuations are relgted to the brightness of the object but not
to its structure. If one is interested in the morphology of the object a

better estimate is Q2, defined by

2
= 1D, (v - N, 14
Q, = D, 5 (14)
With this definition we find that. 2
<0>=N° 3 (15)
Q 3,
and
. ! Z A A
2 = N+ N . (2v) + 2N 4. (v) + N 82 (16)
Qz 1 1 1

yielding a SNR per frame given by

N §.(v)

(17)
{(1+N'$i(v))2 + 31(2v)}%

(SNR)1 =
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We shall now apply equation (17) to single aperture and double aperture
(long baseline) speckle interferometry using the transfer function relation-
ships (3) and (8).

2.3 Single Aperture Case

Using equations (3) and (8) the relationship between the normalised

image and object power spectra is

. (v) = Tpv) ¢ _(v) s ng >> 1, v >> 1 /)f (18)

Substituting equation (18) into (17), ignoring the 2v term (valid for

v > D/2)f) and defining the average number of detected photons per speckle as

n= N (19)
n
s
the expression for the SNR per frame becomes
TT.(v) & (v
o nTp0) e ) ; n_ > 1, v > D/2Af (20)
(SNR), = — < s =
1+ Ty(v) ¢ (v)
Two limiting cases are of interest :
(i) H'TD(v) $o(v) >> 1, e.g. very bright objects
(SNR)1 1 (21)

— A
(ii) n TD(v) ¢o(v) << 1, e.g. faint objects yielding, on average, less
than one detected photon per speckle.
— N
(SNR)1 +> n TD(V) ¢o(v) (22)

Note that the 3/2 power law (equation (13)) predicted by the Q1 measure
in the low limit, does not occur when Q2 is the estimated quantity: this limit
N <<1, is in any case of academic interest in speckle interferometry since
there is insufficient observing time available in a single night to be able to

observe such faint objects.
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A
Equation (20) is plotted in figures 1 and 2 for TD(v) ¢0(v) equal to 0.5
and 0.05, and for values of (D/ro) equal to 10, 20 and 40 in each case.

Other definitions of Q are possible. For example, frames containing less
than q detected photons (i.e- Nj < q) may be excluded from the analysis: since
clearly any frames containing either zero or one detected photons cannot
contribute usefully in a spatial power spectrum analysis. With q = 2 it can be
shown12 that the limiting equations (21) and (22) apply However, at inter-

mediate levels the SNR with this analysis is marginally lower than for Q2

2.4 Double Aperture Case

_ Equations (20) - (22) are equally
do;:‘brzgw,‘ >

applicable to double (large) aperture
speckle interferometry of the type
undertaken by Labeyrie and his group

(ref 13), provided that n is defined

§w
* in a suitable way. If d is the size
02 (diameter) of each (unobscured) pupil
then the total collector area is
ﬁt¢1 , " 02 03 o equal to W d2/2 , and thus the

Photons per frame N e a4 oy . .
correct definition of n 1is given by

Figure 3 equation (23)

https://doi.org/10.1017/50252921100118822 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118822

23-8

= 0.22 N’(ro/d)2 (23)

The maximum SNR value occurs for the spatial frequency corresponding to
the interferometer baseline, for which TD(v) = 0.5 Using this value for TD
and equation (23) for n, equation (22) has been plotted for the double aperture

case in figure 3, with (d/ro) = 20 and for QB =1, 0.1 and 0.01.

2.5 The Integrated SNR

The SNR values given so far refer to a single point in the measured power
spectrum. In practice, particularly in double aperture (long baseline) inter-
ferometry, one may wish to integrate over a region of the power spectrum either
to increase the SNR, to obtain ''seeing independent" measurements14 or for the
sake of operational simplicity In speckle (image plane) interferometry,
integration over the image power spectrum leads to a smoothing of the estimate
of the object power spectrum: in the results presented below it is assumed

la)
that ¢O(v) is constant over the region of integration.

The SNR can be evaluated by a similar method to that used for the point-

wise case, except that we now define the estimated quantity to be QS’ where
— 2
Q = [ (ID;M [ - Ny) W) dv (24)

where W(v) is a weighting function that is applied to the measured result It

can be shown that15

Q> = N° [ W) $i(v) dv (25)
and
aé = [ [ W) W) {<Ipm [ b |®> - N, D) |- <N; e |%
3
. <N§> -V $i(v) Qi(v') } dv dv' (26)

Further evaluation of equation (26) is difficult. For very bright
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objects the SNR tends to the expression

(SNR). » n'Z ; no>>1 (27)
1 s

where né is a measure of the effective number of independent speckles within

the weighting function. For faint objects, n << 1, the SNR is given approx-

imately by

- 3 )
(SNR) | >~ s §(v) ’

n << 1 (28)

where X > 1 is a factor that depends on the form of the weighting function;

for W(v) ==TD(v), the value of X is approximately 3-5.

The essential point to notice is that in both cases the improvement in
SNR over the pointwise result is of the order of the square root of the
effective number of speckles within the weighting function. If an integrated
version of the Q1 measure is used this result holds only for very bright

objects.

3. AUTOCORRELATION FUNCTION ANALYSIS

3.1 General Low Light Level Case

Autocorrelation function analysis of sparse photon images is an operation-
ally simple process that can be carried out in real time using either special
hardware or a microprogrammed computer16’17 The calculation of the SNR is
therefore of particular interest at low light levels (n << 1) and this case is

considered below; several authors have studied this probleml’z’m'21

The essential features of the SNR of the autocorrelation technique are
illustrated by the following much simplified analysis. Assume that the seeing
disc is a top hat function containing.ns speckles (Airy discs) and n, detector
elements matched to the speckle size: if the object under study is small
compared to the size of the seeing disc, the background in the autocorrelation

function may be assumed to be independent of the lag T
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The value of the background is equal,at low light levels, to the probab-
ility that a photon is detected at each of two points 1 and 2 separated by a
distance 1, multiplied by the number of times such separations occur in the

image; this gives

B=n n ;N o<< 1 (29)

Defining the normalised autocorrelation function of the image intensity,

A . )
Ci(T) _ < J i(x) i(x+1) dg >
29 < [ i(x) dx >
with
< I1 I2 > _ < N1 N2 > 1o
<Il><12> <Nl><N2>

where N1 and N2 are the photon counts at the points 1 and 2, we may write the

estimate of the photon-counting autocorrelation function as
Cy(t) =B C. (1) ;T #0 (30)

The signal is equal to the value of C (T) minus the background B and the

noise is simply {C (T)}* at low light levels, thus

B ( Ci(T) - 1)

(SNR) , = L s T#0
L (B & (n))®
1
ot _ C.(0) -1 B
(SNR)1 =T n_ ~ 3 ;T F0, n<<1 (31)
(C; (1))

In practice, the seeing disc has a Gaussian-like profile and therefore
the background, B, is a function of the lag 1; consideration of this factor
has the effect of altering the definition of the number of speckles per frame.
Note that no assumptions about the atmospheric statistics, other than those
given above, are necessary to derive equation (31) Other assumptions about

A o)
the atmosphere are, however, required to relate Ci(T) to CO(T).
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3.2 Application to Binary Stars

The autocorrelation function of the instantaneous image intensity for

binary star objects has a particularly simple form, consisting of peaks at
T = ta, where a is the separation of the binary. Defining the signal as the
height of these peaks above their local background and the noise as the
standard deviation of the background, it can be shown that the single frame
SNR for close binaries and Gaussian seeing disc is given by
—nﬁ £ -

I 5 ; n << 1 (32)

2 1 +2f + £

(SNR), =

where f is related to the magnitude difference Am by
£ = (2.5)70m

4. DISCUSSION

4.1 Comparison of Power Spectrum and Autocorrelation Function SNRs

In this section we compare the single frame SNRs for faint objects (i.e.
n << 1) for the power spectrum (Q2, Q3 estimates) and the autocorrelation

function method of analysis. The pointwise SNRs are given by

(SNR)I,ps =n T (v) ¢ (V) (22)
(SNR)| . =T ni‘ Cf(v) ; (31)
(C; (v))
in which
n is the average number of detected photons per speckle
n_ is the number of speckles per frame
TD(v) is the diffraction limited OTF of the telescope
io(vJ is the normalised object power spectrum
C.(v) is the normalised image autocorrelation function

The first point to note is that for both cases the SNR achieved depends
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upon the argument, T or Vv, thus on the point at which the autocorrelation or
power spectrum is evaluated. Thus any comparison between these methods should
be a global one. The value at a point in the autocorrelation function is
equal to the Fourier transform of the power spectrum (and visa versa) Thus
one possible comparison is between the SNR of the autocorrelation function at
a point (equation (31)) and the SNR of the weighted integral of the power

spectrum, where the weighting function W(v) is given by
W(Vv) = exp(-2mivT)

Unfortunately, the evaluation of the integrated SNR, using the Q3 form

as described in §2.5, is somewhat complicated 5
Consider, however, the case of an unresolved binary object, such that

¢0(V) = 1 ; over the region of integration
and |

R

C,(») =1+ 8(t-8)

where A is the (unresolvable) separation of the object components.

Using equation (28) of §2.5, i.e.

— 1
nnz
S

o(v) (28)

©->

(SNR)l,ps,integrated - X

we see that the integrated SNR of a power spectrum measurement for this object
is of the order of n n%/x where X is in the range 3-5. The SNR at 1 = A in
the autocorrelation functlon is of the order of n n%/4/2 thus for this object

(SNR) = (SNR)} oo

,ps,integrated

The above heuristic arguments are not strictly valid, but it is possible
to showls that, in general, there is no essential difference in the SNR for

the two types of analysis. Suboptimum data analysis, such as that using the

https://doi.org/10.1017/50252921100118822 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118822

23-13

Q1 measure in the power spectral analysis, would change this conclusion.

4.2 Comparison with Pupil Plane Interferometers

A detailed comparison of large aperture, long-baseline speckle (image

plane) and amplitude (pupil plane) interferometry has been given inll

If the statistics of the complex amplitude in the pupil plane are taken
to be complex Gaussian, the expression for the pointwise SNRs in long-baseline
image and pupil plane interferometers are essentially the same, differing only
in the form of the transfer function; at the central frequency of the bandpass

islands the expressions are identical for this model.

A more realistic, but mathematically still convenient model, is the low-
scintillation, log-normal model11 for the atmospheric fluctuations, in which
the phase is a zero-mean Gaussian process and the intensity is a non-zero-mean
Gaussian process. For bright objects this leads to single frame SNRs greater
than unity in pupil plane interferometry (as predicted ing) with a limiting
value of approximately (20)—%, where ¢ << 1 is the contrast of the scintill-
ation. The SNR at low light levels, i.e. those of particular interest in

stellar interferometry, is unaffected.

Thus, apart from minor factors, the SNRs of image and pupil plane inter-
ferometers are very similar for equal collecting apertures and equal numbers
of detected photons; in this context it is worth noting that image plane
interferometry is commonly believed to be able to tolerate longer exposure
times than its pupil space rival. On the other hand, the pupil space design
may be able to tolerate wider bandwidths as correction for chromatic dispersion
is easier in the pupil space design. The pupil plane interferometer also has
the advantages of a more favourable transfer function and that integration over
the pupil does not lead to a smoothing of the estimate of the object spectrum.
It is believed that wavefront-folding interferometersg’24 give a similar SNR

to that of speckle interferometry
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4.3 Limiting Magnitudes

There are as many different estimates of the limiting magnitude of
speckle interferometry as there publications on the subject. We shall
consider three typical cases: (i) single aperture binary star observation,
(ii) single aperture power spectrum measurement and (iii) long baseline

integrated power spectrum measurements.

(i) Single aperture binary star observation. In this case we shall use the
criterion that the information is just measurable if the SNR at a point in the
autocorrelation function is equal to 5; equation (32) is the relevant equation
for the SNR. If F is defined as the product of the optical bandwidth AX in nm,
the exposure time At in seconds and the quantum efficiency q of the detector

(where 02g<1), i.e
F = At AM g
then a source of visual magnitude m gives rise to2

NA=F.10(8 - 0.4m,) (33)
detected photons per m2 per frame. Assuming a clear aperture of diameter D,

equation (32) may be re-arranged to give, for an equal magnitude binary (f = 1)

m, 17.8 + 2.5 log F - 2.5 log (.SNR)M - 1.25 log n_ + 1.25 log M

+ 5 log D (34)

where (SNR)M is the signal to noise ratio for M independent frames at the
limiting magnitude m . For D = 4m, n ==103, M ==105, At = 0.02s, AX = 25nm,
q =0.1 and a limiting (SNR)M = 5, this gives a limiting magnitude of approx.
m = 18, corresponding to an average of 3 detected pgotons per frame (N = 3).
By increasing the number of independent frames to 10  and slightly increasing
the bandwidth or exposure time (as experimental conditions permit) binaries as

faint as 20th magnitude may be observable.
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(ii) Single aperture, power spectrum measurements. A reliable estimate at
every point in the power spectrum clearly requires a brighter object than for
the single-parameter measurement of binary stars Equation (22) is the
relevant equation for n << 1 and using equations (7) and (33) it may be

written as

mv ~ 18.8 + 2.5 log F - 2.5 log (SNR)M + 1.25 log M

+ 2.5 log (TD(v).$0(v)) +5 log T, (35)

Note that the limiting magnitude is independent of the diameter of the
telescope in this case; of course, a larger telescope gives more independent
estimates (and higher resolution) for a given seeing condition. For ry = 0.1m
M =:105, At = 0.02s, AA = 25nm, q = 0.1, TD(v).$0(v) = 0.2 and a limiting
(SNR)M = 5, this yields a limiting magnitude of approximately m = 13.2, which
corresponds to 320 detected photons per frame (N = 320) in a 4m telescope (or

N =20 in a 1lm telescope).

(1iii) Long baseline integrated power spectrum measurements. Equation (28)

may be used for estimating the limiting magnitude; with the factor X = 5 we

obtain

m, = 18 + 2.5 log F - 2.5 log (SNR), + 1.25 log M + 2.5 log ($o(v))

- 1.25 log n, o+ 5 log D (36)

In practice, the usable bandwidth AX might be as small as 0. 1lnm for a
100m baseline26. For T, = 0.1m, D = 1.5m (the diameter for Labeyrie's inter-

'ferometerls), M ==105, At = 0.02s, q = 0 1, $O(v) ==0.5_and a limiting (SNR)M

= 5, the limiting magnitude is approximately m o= 9.6, corresponding to 5

detected photons per frame (N =5).

It should be noted that in all of the above examples an increase in the
quantity F = At AX q by a factor of 10 will increase the limiting magnitude

by 2.5 magnitudes; for example, in the long baseline case a limiting
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magnitude of approximately m = 12.1 could be expected if the bandwidth used

could be increased to 1nm.

4.4 Space-Time analysis

Throughout this review we have assumed that the separate frames are
analysed individually and that no attempt is made to cross-correlate frames
in the time domain. Intuitively, we would expect that a knowledge of the
spatio-temporal power spectrum of the seeing could be used in a processing
scheme in which the full space-time correlation function or power spectrum is
evaluated, to ultimately achieve fainter limiting magnitudes or higher SNR

for a given object.
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DISCUSSION

L. Mertz: What is the effect of sky background for the limiting magnitude

at which the presence of a star can be detected?

J.C. Dainty: It is not too bad; see Ref 20.

L. Mertz: There is nothing sacred about power spectrum or autocorrelation

averaging. Can you comment on how the SNR might compare using logarithmic

averaging of the spectrum, 2 la homomorphic (cepstrum) filtering?

J.C. Dainty: I don't know how it would compare. It would certainly be

interesting to investigate it.
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J.E. Walker: How are you defining the signal, in the autocorrelation

function, for an unresolved object?

J.C. Dainty: 1It's a hand-waving argument, but we look near, but not at,

the origin. A rigorous analysis is in preparation.

J.E. Walker: As the value of the SNR you use to define the limiting

magnitude is somewhat arbitrary, might a probability type analysis be

more appropriate?

J.C. Dainty: Perhaps. It would certainly be interesting.
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