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Mode coupling between two different interfaces
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Shock-tube experiments and theoretical studies have been performed to highlight
mode-coupling in an air–SF6–air fluid layer. Initially, the two interfaces of the layer are
designed as single mode with different basic modes. It is found that as the two perturbed
interfaces become closer, interface coupling induces a different mode from the basic
mode on each interface. Then mode coupling further generates new modes. Based on
the linear model (Jacobs et al., J. Fluid Mech., vol. 295, 1995, pp. 23–42), a modified
model is established by considering the different accelerations of two interfaces and
the waves’ effects in the layer, and provides good predictions to the linear growth rates
of the basic modes and the modes generated by interface coupling. It is observed that
interface coupling behaves differently to the nonlinear growth of the basic modes, which
can be characterized generally by the existing or modified nonlinear model. Moreover,
a new modal model is established to quantify the mode-coupling effect in the layer.
The mode-coupling effect on the amplitude growth is negligible for the basic modes,
but is significant for the interface-coupling modes when the initial wavenumber of one
interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out
of the second single-mode interface is achieved theoretically and experimentally through
interface coupling. These findings may be helpful for designing the target in inertial
confinement fusion to suppress the hydrodynamic instabilities.

Key words: shock waves

1. Introduction

Richtmyer–Meshkov (RM) instability occurs when a perturbed interface separating
two different fluids is impacted by a shock wave (Richtmyer 1960; Meshkov 1969).
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The development of the RM instability is driven mainly by baroclinic vorticity produced
by misalignment of the pressure and density gradients. The RM instability plays essential
roles in many applications, such as inertial confinement fusion (ICF) (Lindl et al. 2014;
Qiao & Lan 2021; Zhou et al. 2021), supersonic combustion (Yang, Kubota & Zukoski
1993) and supernova explosions (Kuranz et al. 2018). Over the past decades, several
reviews have been published to conclude the achievements in the RM instability study
(Zabusky 1999; Brouillette 2002; Ranjan, Oakley & Bonazza 2011; Zhou 2017a,b; Zhai
et al. 2018).

For an initial single-mode interface, mode coupling can be ignored until the harmonics
grow significantly (Zhou 2017a; Liu et al. 2018a). A perturbation expansion model with
fourth-order accuracy (ZS model) was developed by Zhang & Sohn (1997) to calculate
the amplitudes of high-order harmonics. The perturbation expansion method was further
simplified by Vandenboomgaerde, Gauthier & Mügler (2002) to obtain higher-order
expressions of the harmonics than that in the ZS model. When the initial perturbation
is multi-mode, the different basic modes interact with each other, and mode coupling
causes the generation of new modes at the early stage (Brouillette 2002; Zhou 2017b).
Mode coupling for a multi-mode interface has been investigated widely (Rikanati, Alon
& Shvarts 1998; Di Stefano et al. 2015; McFarland et al. 2015; Mohaghar et al. 2019).
Theoretically, Haan (1991) proposed a modal model (Haan model) with second-order
accuracy to quantify the mode-coupling effect on the Rayleigh–Taylor (RT) instability
development (Rayleigh 1883; Taylor 1950). Then the applicability range of the Haan
model was extended by Ofer et al. (1996). These two models were reformulated recently
to apply them to the multi-mode RM instability (Liang et al. 2021). Experimentally, the
mode coupling on a single-interface development has been explored extensively through
shock-tube experiments (Luo et al. 2020; Liang et al. 2021; Xu et al. 2023), and several
models have been verified.

In many applications, the RM instability grows on the interfaces of a fluid layer. For
example, the RM instability in ICF occurs on both the ablator front and the interface
between the ablator and deuterium–tritium ice (Betti & Hurricane 2016; Qiao & Lan 2021).
For the RM instability of a fluid layer, most previous studies considered the perturbation
of only one mode, i.e. both single-mode interfaces of the fluid layer have the same mode
(Jacobs et al. 1995; Mikaelian 1995; Liang & Luo 2021). Theoretically, a linear analytic
theory for the RM instability in a perturbed fluid layer with only one wavenumber was
first proposed by Mikaelian (1985, 1995), and later verified by numerical simulations
(Mikaelian 1996). Through solving velocity potential functions of a heavy layer, Jacobs
et al. (1995) deduced a linear model (the J-model hereafter) for predicting the perturbation
growth rates of both interfaces, and a vortex model for predicting the width growth of the
fluid layer. The J-model was modified by Liang & Luo (2021) to predict the perturbation
linear growth rates of a heavy layer. Recently, the effect of the finite thickness of two
superimposed fluids on harmonics in the RM instability for arbitrary Atwood numbers was
also investigated (Liu et al. 2018b). Experimentally, the gas curtain technique was used by
Jacobs et al. (1993) to produce a thin SF6 layer in air, and the shocked layer evolution was
investigated. Based on the gas curtain technique, the width of the shocked gas layer was
measured (Jacobs et al. 1995), and the circulation in the curtain was calculated (Prestridge
et al. 2000) to verify the vortex model. Recently, the soap-film technique was used widely
in creating a gas layer, and extensive studies have been conducted (Liang & Luo 2021,
2023a,b; Zhang et al. 2023), focusing on the effects of initial amplitude, width of the gas
layer, and perturbation phase on a fluid layer development. When the two interfaces of a
fluid layer have the same mode, mode coupling is absent until nonlinearity is significant
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Figure 1. Schematics of (a) the soap-film interface generation, and (b) the initial interface configuration
studied. Here, IS is the incident shock, II1 is the first interface (air–SF6), II2 is the second interface (SF6–air),
and L0 is the initial width of the SF6 layer.

(Liang & Luo 2021; Liang 2022). In real scenarios, however, the interfaces of the fluid
layer often have different basic modes. The previous work always considered coupling
between modes on the same interface: whether and how the modes on the different
interfaces couple; and how to quantify mode coupling between different interfaces. Due
to difficulties in forming such a fluid layer with the specific modes on interfaces in
experiments and more complicated mechanisms involved, the related studies are rare and
these questions remain unclear.

In this work, the soap-film technique is used to create the fluid layer, in which two
different modes are present on the two initial interfaces. Seven kinds of disturbed SF6 gas
layer with different mode combinations are considered. Through one-dimensional theory
and experiments on the undisturbed layer, the wave patterns and the concentration of SF6
inside the layer are obtained. The existing linear and nonlinear models are modified to
describe the perturbation evolution of basic modes, and a new modal model is established
to quantify the mode-coupling effect. Finally, freeze-out of the amplitude growth of the
second single-mode interface is discussed.

2. Experimental methods

The soap-film technique (Liu et al. 2018a; Liang et al. 2021) is used to generate the
well-defined discontinuous interfaces of the fluid layer. As shown in figure 1(a), there
are three devices, with width 140 mm and height 6 mm. The soap-film interfaces are first
generated at both sides of the middle device. Then SF6 is pumped into the middle device
through the inflow hole, and air is discharged through the outflow hole. Once the SF6
concentration satisfies the requirement, the inflation stops. Then the three devices are
connected, and an SF6 gas layer with two interfaces is formed. For different runs, the
inflation rate and duration are the same to ensure a similar concentration of SF6 in the
gas layer as far as possible. The concentration of SF6 is determined by comparing the
velocities of the incident shock and transmitted shock, and the interface velocity jump,
measured from experiments with those predicted by one-dimensional theory.

The schematic of the initial interface configuration is shown in figure 1(b). The two
single-mode interfaces with different wavenumbers are considered. Seven kinds of fluid
layer with different wavenumber combinations and relative phase, as shown in table 1,
are studied. In this work, the initial phase of the perturbation on the second interface
(II2) is defined as positive. In the first six cases, the phase of the first interface (II1) is
positive, while the phase of II1 in the seventh case is negative. A dimensionless number
K = k1/k2 (where k1 and k2 are the wavenumbers of II1 and II2) is defined to represent
different mode-coupling effects. Here, k1a−

1 and k2a−
2 (where a−

1 and a−
2 are the initial

amplitudes of II1 and II2, respectively) are all close to 0.1, and the tiny differences among
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Case λ1 (mm) λ2 (mm) K k1a−
1 k2a−

2

20-60-IP 20 60 3 0.083 0.098
30-60-IP 30 60 2 0.091 0.098
20-30-IP 20 30 1.5 0.083 0.092
30-20-IP 30 20 1/1.5 0.092 0.083
40-20-IP 40 20 1/2 0.095 0.083
60-20-IP 60 20 1/3 0.098 0.083
60-20-AP 60 20 1/3 −0.098 0.083

Table 1. Interface parameters of perturbed cases: λ1 and λ2 (k1 and k2, a−
1 and a−

2 ) are the wavelengths
(wavenumbers, initial amplitudes) of II1 and II2, respectively, and K = k1/k2. Here, ‘IP’ (‘AP’) means the
perturbations on the two interfaces have the same (opposite) phase.

cases are caused by three-dimensionality of the soap-film interface (Wang et al. 2022).
To highlight the mode-coupling and interface-coupling effects, the initial width of the gas
layer (L0, defined as the distance between the balanced positions of two interfaces) is fixed
as 20 mm. The choice of L0 makes the interface-coupling effect strong enough but avoids
the coalescing of two interfaces (Liang & Luo 2021).

The experiments are conducted in a shock tube (Liu et al. 2018a; Guo et al. 2022), and
the incident shock Mach number is 1.31 ± 0.01. The flow field is recorded by high-speed
schlieren photography. The frame rate of the camera (FASTCAM SA-Z, Photron Ltd)
is 50 400 frames per second, and the exposure time is 0.78 µs. The spatial resolution
is ∼0.26 mm pixel−1. The ambient pressure and temperature are 101.3 ± 0.1 kPa and
295 ± 1.5 K, respectively. At least three successful experimental runs are performed for
each case to ensure the experimental repeatability. The boundary layer effect has already
been discussed (Liu et al. 2018a), and is ignored here.

3. Results and discussion

3.1. Undisturbed layer
The schlieren images of the undisturbed SF6 layer after the shock impact are presented
in figure 2(a). The initial time is defined as the moment when the incident shock (IS)
meets the average position of the first initial interface (II1). After IS impacts II1, the first
transmitted shock wave (TS1) moving downstream in SF6, the reflected shock (RS) moving
upstream in air, and a shocked air–SF6 interface (SI1) are formed (39 µs). Then TS1
impacts the second initial interface (II2), which produces a shocked SF6–air interface (SI2),
the second transmitted shock wave (TS2) moving downstream in air (277 µs), and reflected
rarefaction waves (RW) moving upstream in SF6. These RW will interact with SI1,
reflecting compression waves (CW) that subsequently interact with SI2. Both RW and CW
cannot be observed in the schlieren images of our experiments due to their weak intensity.
As studied by Liang & Luo (2021), RW and CW significantly affect the movements of SI1
and SI2, respectively. During the experimental time studied, after CW interact with SI2,
the two undisturbed interfaces move parallel, and no obvious disturbances are generated
on the interfaces.

The trajectories of shock waves and interfaces extracted from experiment and predicted
by one-dimensional theory are compared in figure 2(b), and their velocities are provided
in table 2. After CW impact SI2, the two shocked interfaces move steadily, and the
effects of other reflected waves can be ignored. Due to the similar initial conditions for
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Figure 2. (a) Schlieren images of a planar SF6 layer accelerated by a planar shock, and (b) the trajectories of
the interfaces and waves. Here, II1 and II2 (SI1 and SI2) are the first and second initial (shocked) interfaces
respectively; TS1 and TS2 are the transmitted shock waves in SF6 and in air, respectively; RS is the reflected
shock; RW is reflected rarefaction waves; CW is compression waves; and x0 is the initial position of II1.

Ms �u1 �u2 �uR �uC v1 v2 t1 tR tC c1 c2

1.31 111.2 142.6 41.7 14.5 453.1 226.2 85.9 146.2 219.4 160.9 158.3

Table 2. Theoretical parameters in undisturbed case: Ms is the Mach number of IS; �u1, �u2, �uR and �uC
are the jump velocities of II1 induced by IS, II2 induced by TS1, II1 induced by RW, and II2 induced by CW,
respectively; v1 and v2 are the velocities of IS and TS1, respectively; t1, tR and tC denote the times when TS1
impacts II2, RW impact SI1, and CW impact SI2, respectively; c1 (c2) is the sound speed of the gas between
SI1 and the RW front (between SI2 and the RW tail). The units of velocity and time are m s−1 and µs.

different cases, the parameters in table 2 are considered as the initial parameters in the
following experiments. In this work, the volume fraction of SF6 in the gas layer is 75 %.
The Atwood numbers of pre-shock (A−) and post-shock (A+) SF6 layer (A is defined as
(ρ1 − ρ2)/(ρ1 + ρ2), with ρ1 and ρ2 being the densities of gases inside and outside the
layer, respectively) equal 0.60 and 0.64, respectively. Here, three specific times are defined
to facilitate subsequent calculations: t1 denotes the time when TS1 impacts II2 and RW are
initially generated at t = t1; tR and tC denote the times when RW meet SI1 and CW meet
SI2, respectively. Here, t1, tR and tC can be calculated as

t1 = L0

v2
,

tR = t1 +
L0

(
1 − �u1

v2

)
c1

,

tC = tR +
L0

(
1 − �u1

v2

)(
1 + �u2 − �u1

c1

)
c2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where v2 is the velocity of TS1, �u1 and �u2 are the jump velocities of II1 and II2 induced
by shocks, respectively, c1 is the sound speed of the gas between SI1 and the RW front,
and c2 is the sound speed of the gas between SI2 and the RW tail.
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3.2. Perturbed layers

3.2.1. Interface morphology
Schlieren images of the developments of the shock-impacted fluid layer for seven cases
are shown in figure 3. The wave–interface interaction processes are similar to those in the
undisturbed case, and the relevant descriptions are omitted here. Taking case 30-20-IP
as an example, when CW impact SI2, the phase inversion process of the perturbation
on SI2 has been completed, and TS2 is away from SI2 (298 µs). Just after CW impact
SI2, the perturbations on two interfaces can still be considered as single mode. Later,
the multi-mode perturbations grow on SI1 and SI2 (695 µs). Finally, spikes and bubbles
arise symmetrically (1091 µs). The sizes and shapes of the bubble and spike on SI1 and
SI2 differ significantly. From the schlieren images, the interface profile is clear enough
to extract its contour, and can still be described as a single-valued function so that the
fast Fourier transform can be applied to obtain the amplitude of each mode (Liu et al.
2018a). The evolutions of the bubbles and spikes at the two interfaces are very sensitive
to the value of K. When the first interface is disturbed at a higher mode than the second
interface (K > 1), the perturbation on SI2 remains a quasi-single-mode profile, and the
bubbles and spikes develop without inclination. However, the multi-mode perturbations
on SI1 appear more significant than those on SI2, and the bubbles and spikes on SI1
develop asymmetrically. Specifically, in case 20-60-IP, the middle bubble on SI1 has a
wider spread but a smaller amplitude than the side bubbles, and the spikes on SI1 develop
with an apparent inclination to the middle bubble. In case 30-60-IP, the middle spike has a
greater scale than the side spikes, and the bubbles are inclined to the side spikes. Besides,
vortices have already arisen on the side spikes, which indicate that nonlinearity occurs
earlier on the side spike than the middle spike. In case 20-30-IP, the middle bubble has
a narrower spread but a larger amplitude than the side bubbles, and the spikes are also
inclined to the middle bubble. On the whole, if the bubble (spike) on SI1 faces directly the
spike (bubble) on SI2, then it is deformed weakly. Otherwise, the bubble (spike) on SI1
deforms greatly. When K < 1, the first interface has a lower mode disturbance than the
second one, and the multi-mode perturbations on SI2 appear more significant compared
with those on SI1. In case 30-20-IP, the middle bubble on SI1 has a larger amplitude than
the side bubbles, and two spikes develop equally, with a flattened head. The middle spike
on SI2 has a larger amplitude and a narrower head compared with the side spikes, and two
bubbles develop similarly. In cases 40-20-IP and 60-20-IP, a small middle spike on SI2
occurs, and the shape of the side spikes on SI2 is similar to the shape of the side bubbles
on SI1. For these two cases, the bubbles on SI1 behave quite differently, which illustrates
the importance of the wavenumber combination. In case 60-20-AP, in contrast, small side
spikes occur on SI2. In general, the shape of SI1 is still dominated by its initial basic mode,
while the shape of SI2 obviously presents multi-mode.

3.2.2. Linear growth of amplitude
Previous works (Jacobs et al. 1995; Mikaelian 1996) have revealed that the amplitudes
of a shocked heavy layer grow linearly after the compression stage and start-up process.
Considering a planar fluid layer (with thickness L) that is composed of a fluid of density
ρ1 being surrounded by a fluid of density ρ2, Jacobs et al. (1995) proposed the J-model
to predict the perturbation growth rates of the shocked two interfaces. When the fluids
are incompressible and irrotational, the equations that govern the growth of infinitesimal
disturbances on the interfaces of the layer can be expressed as

∇2φ = 0, (3.2)
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Figure 3. Schlieren images of the shock-induced fluid layer evolution for different cases. The symbols have
the same meanings as in figure 2. Numbers denote time in µs.

where φ is the velocity potential of the fluid, and the kinematic and pressure conditions on
the interfaces are

∂η

∂t
− ∂φ

∂y
= 0,

ρ
∂φ

∂t
− ρgη + p = P0.

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

Here, p is the pressure, g is the acceleration, η is the perturbation shape on the interfaces,
and P0 is a constant equalling the pressure at the interface in the unperturbed rest state.

As shown in figure 4, the periodic perturbations set in the layer are of the form

η1 = a1(t) cos(kx),

η2 = a2(t) cos(kx),

}
(3.4)
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Figure 4. Schematic showing the configuration analysed using linear stability theory for the double-interface
system, where ρ1 and ρ2 are the densities of the fluids inside and outside the layer, respectively, η1 and η2
represent the perturbation shapes of the two interfaces, φ1, φ2 and φ3 are the velocity potentials, L is the initial
layer thickness, and g is the acceleration of the two interfaces.

where a1(t) and a2(t) are the amplitudes of the first and second interfaces, respectively.
Then the velocity potentials in the three fluids can be obtained and expressed as

φ1 = b1(t) e−k(y−L/2) cos(kx),

φ2 = −
[

b1 + b2

2
sinh(ky)

cosh(kL/2)
+ b1 − b2

2
cosh(ky)

sinh(kL/2)

]
cos(kx),

φ3 = −b2(t) ek(y+L/2) cos(kx),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.5)

where b1 and b2 are the functions of time in the velocity potentials. Substituting (3.4) and
(3.5) into (3.3) and (3.2), the J-model (Jacobs et al. 1995) can then be deduced as

d2a1

dt2
+ d2a2

dt2
= kAtg(a1 − a2),

d2a1

dt2
− d2a2

dt2
= kAcg(a1 + a2),

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

where

At = ρ1 − ρ2

ρ1 tanh(kL/2) + ρ2
,

Ac = ρ1 − ρ2

ρ1 coth(kL/2) + ρ2
,

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

are the two modified Atwood numbers.
In this work, ρ1 = 7.98 kg m−3 (ρ2 = 1.78 kg m−3) is the fluid density inside (outside)

the layer after the reflected compression waves in the layer (CW) interact with the
shocked second interface (SI2). Here, L is chosen as the distance between the two shocked
interfaces (SI1 and SI2) after CW collide with SI2, and can be expressed as

L = L0

(
1 − �u1

v2

)(
1 + �u2 − �u1

c1

)(
1 − �u1 + �uR − �u2

c2

)
, (3.8)

where �uR is the jump velocity of SI1 induced by the reflected rarefaction waves in the
layer (RW). In previous work (Jacobs et al. 1995; Liang & Luo 2021), the accelerations g
of two interfaces of the layer were considered the same for both RT and RM instabilities.
However, when a shock encounters a gas layer with a finite thickness, the accelerations of
the two interfaces are different. Assuming that g1 and g2 represent the accelerations of the
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first and second interfaces, respectively, and then substituting (3.4) and (3.5) into (3.3) and
(3.2), yields

da1

dt
= −kb1,

da2

dt
= −kb2,

⎫⎪⎪⎬
⎪⎪⎭ (3.9)

db1

dt
+ db2

dt
= −At(g1a1 − g2a2),

db1

dt
− db2

dt
= −Ac(g1a1 + g2a2).

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

Combining (3.9) with (3.10), the J-model can be rewritten as

d2a1

dt2
+ d2a2

dt2
= kAt(g1a1 − g2a2),

d2a1

dt2
− d2a2

dt2
= kAc(g1a1 + g2a2).

⎫⎪⎪⎬
⎪⎪⎭ (3.11)

For the RM instability in this work, based on the experimental movements of the
undisturbed interfaces shown in figure 2, the two interfaces in the layer will, respectively,
experience two acceleration processes. For the first interface, the jump velocities induced
by the incident shock (IS) and the rarefaction waves (RW) are �u1 and �uR, respectively.
For the second interface, the jump velocities induced by the transmitted shock (TS1)
and the compression waves (CW) are �u2 and �uC, respectively. Due to the very short
durations of the waves interacting with the interfaces, the Dirac δ-function is always used
to model the shock impacting the gas layer (Jacobs et al. 1995; Liang & Luo 2023a).
Therefore, the accelerations g1 and g2 can be expressed as

g1 = �u1 δt + �uR δ(t − tR),

g2 = �u2 δ(t − t1) + �uC δ(t − tC),

}
(3.12)

where t1, tR and tC have been defined in (3.1). Substituting (3.12) into (3.11) and integrating
the equation, a new model for predicting the linear growth rate of the heavy layer after CW
impact SI2 is established:

da1

dt
+ da2

dt
= kAt(�u1 a+

1 + �uR aR
1 − �u2 a0

2 − �uC aC
2 ),

da1

dt
− da2

dt
= kAc(�u1 a+

1 + �uR aR
1 + �u2 a0

2 + �uC aC
2 ).

⎫⎪⎪⎬
⎪⎪⎭ (3.13)

According to the impulsive model (Richtmyer 1960) and MB model (Meyer & Blewett
1972), in (3.13), a+

1 is the amplitude of SI1 just after being impacted by IS; aR
1 is the

amplitude of SI1 just after being impacted by RW; a0
2 is the average amplitude of the

unshocked and shocked second interface; and aC
2 is the average amplitude of SI2 before

and after being impacted by CW.
Note that (3.13) is established assuming that both interfaces have the same wavenumber.

In the linear regime, no additional modes except the initial basic mode are generated
even if interface coupling is present. In this work, due to the different initial perturbation
wavenumbers on two interfaces (k1 and k2 for the first and second initial interfaces,
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SI2SI1 TS1

(a)

(b)

II2

Air

RW

RW

CW

CW

Air AirSF6

Air AirSF6

SF6Air

TS1

AirSF6Air

Figure 5. Sketches of the interactions of TS1 with II1, RW with SI1, and CW with SI2: (a) II2 is planar and
II1 is perturbed; (b) II1 is planar and II2 is perturbed.

respectively), the perturbation with k1 (k2) will be imprinted on SI2 (SI1) through such
as interface coupling. In other words, both perturbation modes are present on SI2 and SI1
even in the linear regime. Therefore, it is necessary to predict the linear growth rate of k1
on SI2 (k2 on SI1). Because mode coupling in the linear regime is weak (Luo et al. 2020),
we attempt to establish a linear model by considering separately the perturbation growth
of k1 and k2 on SI1 (SI2).

We first consider the perturbation growths of k1 on SI1 and SI2. As sketched in
figure 5(a), a single-mode perturbation with k1 is imposed on II1 and there is no
perturbation on II2. Because the jump velocities of the interfaces have been calculated
as shown in table 2, here the amplitudes of the two interfaces at the specific times are
provided to solve (3.13). After IS interacts with II1, the amplitude of SI1 (a+

1 ) can be
expressed as

a+
1 = a−

1 Z1, (3.14)

where a−
1 and Z1 = 1 − �u1/v1 are the initial amplitude of II1 and the compression factor

of IS, respectively, and v1 is the velocity of IS. In previous work (Ishizaki & Nishihara
1997), after a shock interacts with a single-mode interface in the plane geometry, the
transmitted shock will be seeded by the initial interface shape. If the initial amplitude of
the interface is small, then the transmitted shock has a sinusoidal shape, but its amplitude
decreases very quickly because of the pressure perturbation. If the initial amplitude of the
interface is high, then the triple-shock configuration will be formed on the transmitted
shock front, which is no longer a smooth one (Rikanati et al. 2003; Wang et al. 2023).
The duration of such a transmitted shock recovering to planar will be longer. In the
present work, due to the small amplitude of the initial first interface, the amplitude of
the transmitted shock when it is generated in the layer (TS1) is also small. It is believed
that TS1 will recover quickly to almost planar when it interacts with the second interface.
As a result, SI2 is still undisturbed (a0

2 = 0), and planar RW aregenerated.
The planar RW move upstream and interact with SI1. Due to the stretching of RW, the

perturbation amplitude of SI1 (aR
1 ) increases and is of the form

aR
1 = a+

1 R, (3.15)

where R = 1 + �uR/(c1 + c2) is the stretching factor of RW. After RW collide with SI1,
CW are reflected and move to SI2. Similar to TS1, the amplitude of CW is also ignored
in this work when CW encounter the planar SI2 (aC

2 = 0). In other words, considering a
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Mode coupling between two different interfaces

disturbed II1 and a planar II2 as shown in figure 5(a), because the amplitudes of both TS1
and CW are ignored in this work, both TS1 and CW will not seed the perturbation to the
second interface, and SI2 obtains the perturbation only through interface coupling. The
specific amplitudes calculated are substituted into (3.13), and the linear growth rates of the
perturbations with k1 (the wavenumber of the initial first interface) on SI1 and SI2 can be
obtained as

da1

dt
= k1[At(�u1 a+

1 + �uR aR
1 ) + Ac(�u1 a+

1 + �uR aR
1 )]

2
,

da2

dt
= k1[At(�u1 a+

1 + �uR aR
1 ) − Ac(�u1 a+

1 + �uR aR
1 )]

2
.

⎫⎪⎪⎬
⎪⎪⎭ (3.16)

Figure 6 presents the amplitude developments of k1 on SI1 and SI2 for K > 1
(figures 6a,b) and K < 1 (figures 6c,d). Note that the initial time (t = 0) here is defined
as the moment when the linear growth of perturbation starts (after CW compress SI2),
which is different from the definition earlier. On SI1, the amplitude of k1 grows fast,
and nonlinearity decreases the amplitude growth rate soon. The model can predict the
linear growth of the amplitude of k1 on SI1. The slight differences of the linear growth
rates among cases are probably ascribed to the slight differences of the initial amplitudes
and weak dependence upon k1, as indicated in figure 7. On SI2, due to the small initial
amplitude of k1, nonlinearity is weak and the linear model is sufficiently accurate to predict
the amplitude evolution, except in cases 30-60-IP and 40-20-IP. In these two cases, the
amplitudes of k1 on SI2 at late stages are promoted, as shown in figures 6(b,d), mainly
because of mode coupling, i.e. the self-coupling of k2 in case 30-60-IP generates k1, and
the mutual coupling of k2 with k1 in case 40-20-IP generates k1. Besides, the linear growth
rates of k1 on SI2 differ significantly between cases with different k1, because they are
strongly associated with k1, as indicated in figure 7. Specifically, the linear growth rate of
k1 on SI2 is greater for a smaller k1. Relatively, the amplitude of k1 on SI2 is small (large)
for K > 1 (K < 1).

If a single-mode perturbation with k2 is imposed on II2, while keeping II1 planar (a+
1 =

0), then the results will be different. As shown in figure 5(b), because both IS and II1 are
planar, TS1 is also planar. Induced by TS1, the average amplitude of II2 and SI2 just being
shocked (a0

2) can be calculated:

a0
2 = a−

2 (1 + Z2)/2, (3.17)

where a−
2 is the amplitude of II2, v2 is the velocity of TS1, and Z2 = 1 − �u2/v2 is the

compression factor of TS1. The amplitude of SI2 reduces until phase inversion is finished.
The interaction of TS1 with II2 generates perturbed RW. Note that the amplitude of RW

increases with time (Velikovich & Phillips 1996). The amplitude of the RW tail before
it impacts SI1 (aRW ) can be calculated by the model proposed by Velikovich & Phillips
(1996):

aRW = a−
2 Z2 + k2a−

2 c1ur(tR − t1), (3.18)

where ur = √
(γ + 1)(1 − c2/c1)/(γ − 1) is a factor of RW, and γ is the adiabatic

exponent of the gas before the RW front. The time and velocity parameters are all presented
in table 2. Due to the RW stretching, the perturbation with k2 arises on SI1 just being
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Figure 6. Comparisons of the amplitudes of k1 and k2 between experimental and theoretical results in cases
(a,b) K > 1, and (c,d) K < 1. For the perturbations with the same wavelength, the predictions of the linear
growth rate are the same, and only one theoretical line is provided. Here, the initial time is the moment when
the linear growth of perturbation starts (after CW compress SI2), and a0 is the amplitude of the interface at the
initial time, and similarly hereafter.

impacted by RW, and its amplitude (aR
1 ) can be expressed as

aR
1 = (a−

2 + aRW)(R − 1)

2
. (3.19)

After perturbed RW collide with II1, perturbed CW are formed, but are believed to
recover to planar before they interact with SI2 as mentioned before. The amplitude of SI2

just before being impacted by CW (aC−
2 ) differs significantly from a+

2 (amplitude of SI2
just after TS1 impact) and can be expressed as

aC−
2 = a−

2 Z2 + V0
2 (tC − t1), (3.20)

where V0
2 is the perturbation growth rate of SI2 before being impacted by CW, and can be

calculated by the MB model (Meyer & Blewett 1972) as

V0
2 = −k2a0

2A+ �u2. (3.21)

984 A38-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.232


Mode coupling between two different interfaces

10

8

6

k1 on SI1

k1 on SI2

k2 on SI1

k2 on SI2

4

|d
a/

d
t| 

(m
 s

–
1
)

2

0
20 30 40

λ (mm)

50 60

Figure 7. Dependence of linear growth rates of mode amplitudes, predicted by (3.16) and (3.25), on initial
wavelength.

Then the average amplitude of SI2 before and after being impacted by CW (aC
2 ) is

aC
2 = aC−

2 (1 + ZC)/2, (3.22)

where ZC = (1 − �uC/c2) is the compression factor of CW. Substituting a+
1 , a0

2, aR
1

and aC
2 into (3.13), the linear growth rates of perturbations with k2 on SI1 and SI2 can

be predicted. However, the predictions deviate from the experimental results, which is
probably ascribed to the assumption of deducing (3.11) that the velocity potentials of the
flow in the layer are the same. Although the different accelerations of the two interfaces
are considered, the effects of the disturbed RW and CW also need to be considered. In
other words, when considering a planar II1 and disturbed II2 as shown in figure 5(b), SI1
obtains a perturbation through both the waves’ effect and interface coupling. Actually, the
disturbed RW not only accelerates SI1 but also obviously changes the perturbation growth.
The impulsive model (Richtmyer 1960) is used to calculate the amplitude growth rate of
SI1 induced by the perturbed RW:

da1,R

dt
= k2aR

1 �uR A+. (3.23)

When CW impacts SI2, the amplitude of k2 develops significantly and the MB model
(Meyer & Blewett 1972) is used to predict the amplitude growth rate of SI2 induced by
CW:

da2,C

dt
= −k2aC

2 �uC A+. (3.24)

Combining (3.13), (3.23) with (3.24), the model that can predict the linear growth rate of
the perturbation with k2 (the wavenumber of the initial second interface) on SI1 and SI2
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Figure 8. Comparison of the dimensionless amplitudes of the perturbation with (a) k1 on SI1 and (b) k2 on
SI2.

can be written as

da1

dt
= k2[At(�uR aR

1 − �u2 a0
2 − �uC aC

2 ) + Ac(�uR aR
1 + �u2 a0

2 + �uC aC
2 )]

2
+ k2aR

1 �uR A+,

da2

dt
= k2[At(�uR aR

1 − �u2 a0
2 − �uC aC

2 ) − Ac(�uR aR
1 + �u2 a0

2 + �uC aC
2 )]

2
− k2aC

2 �uC A+.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.25)

The amplitude developments of k2 on SI1 and SI2 are also presented in figure 6 for K > 1
(figures 6a,b) and K < 1 (figures 6c,d). On SI2, the amplitude of k2 grows first linearly and
then nonlinearly. On SI1, the linear model can well predict the amplitude growth of k2.
From figure 7, the linear growth rates of k2 on both SI1 and SI2 are positively correlated
with the wavelength of II2 (λ2). As a result, the linear growth rates of k2 on both SI1 and
SI2 are greater when λ2 is larger. If the phases of two initial perturbations are opposite,
then the linear models can also predict the growth rates of both k1 and k2.

3.2.3. Nonlinear growth of amplitude
As shown in figure 6, generally, only the amplitudes of k1 (wavenumber of II1) on SI1,
and k2 (wavenumber of II2) on SI2, grow nonlinearly. The amplitude developments of
perturbation with k1 on SI1 (k2 on SI2) in dimensionless form are shown in figure 8. On
SI1, the time and amplitude of k1 are scaled as τ = k1(dal

1/dt)t and α = k1(a1 − a0
1),

where dal
1/dt is the experimental linear growth rate of k1, and a0

1 is the amplitude of k1

at t = 0. On SI2, the time and amplitude of k2 are scaled as τ = k2(dal
2/dt)t and α =

k2(a2 − a0
2), respectively, where dal

2/dt is the experimental linear growth rate of k2, and
a0

2 is the amplitude of k2 at t = 0. The nonlinear amplitude growths of k1 on SI1 for cases
collapse. However, for k2 on SI2, the amplitude growths in cases with K > 1 are different
from those in cases with K < 1.
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Mode coupling between two different interfaces

Zhang & Guo (2016) previously proposed a nonlinear model (the ZG model) to predict
the amplitude growth of a single interface. The ZG model can be described as

daZG
b/s

dt
(t) = dal

dt
1

1 + θk
dal

dt
t
, (3.26)

where k is the wavenumber of the perturbation, dal/dt is the linear growth rate of the
perturbation after the waves impact, and

θ = 3
4

(1 + A+)(3 + A+)

3 + A+ +
√

2(1 + A+)
× 4(3 + A+) + √

2(9 + A+)(1 + A+)1/2

(3 + A+)2 + 2
√

2(3 − A+)(1 + A+)1/2
(3.27)

is a function for the Atwood number (A+) of the shocked interface. The ZG model has
been verified widely for a single-mode interface (Liu et al. 2018a; Guo et al. 2022), but
it overestimates the nonlinear growth of k1 on SI1, as shown in figure 8(a). This indicates
that in a heavy layer, interface coupling promotes nonlinearity of k1 growth on SI1, which
is consistent with the observation in figure 3 that interface coupling greatly deforms
the morphology of SI1. For k2 on SI2, as shown in figure 8(b), the ZG model slightly
overestimates the nonlinear amplitude growth for cases with K < 1, whereas it generally
predicts the nonlinear amplitude growth for cases with K > 1. These indicate that interface
coupling promotes nonlinearity of k2 growth on SI2 for cases with K < 1, but it has a little
effect on the amplitude growth of k2 on SI2 for cases with K > 1. These conclusions are
also consistent with the observations in figure 3.

The nonlinear model proposed by Sadot et al. (1998) (the SEA model) has been modified
empirically (Dimonte & Ramaprabhu 2010; Mansoor et al. 2020) to predict the nonlinear
growth of RM instability. The SEA model can be expressed as

daSEA
b/s

dt
(t) = dal

dt

1 + k
dal

dt
t

1 + (1 ± A+)k
dal

dt
t + C(1 ± A+)/(1 + A+)

(
k

dal

dt
t
)2 , (3.28)

where C = 1 for |A| → 0, and C = 1.5 for |A| > 0.5. Based on the experimental results,
the SEA model is modified empirically in the current work to predict the amplitude
growths of two interfaces. The expression of the modified SEA model (mSEA model)
can be described as

damSEA
b/s

dt
(t) = dal

dt

1 + (1 ∓ A+)

2
k

dal

dt
t

1 + (1 ± A+)k
dal

dt
t + 5(1 + A+)(1 − A+)

(
k

dal

dt
t
)2 . (3.29)

The predictions of the mSEA model for k1 on SI1 and k2 on SI2 are shown in figure 8. For
k2 on SI2 in cases K < 1, and k1 on SI1, the mSEA model provides reasonable predictions.

3.2.4. Modal evolution
As described earlier, new modes are generated due to interface coupling on the interfaces
except for the initial basic modes, then mode coupling arises. For the evolution of a
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multi-mode interface, a modal model with second-order accuracy was proposed by Haan
(1991) – referred to as the Haan model hereafter – to calculate the amplitude growth of the
coupling modes resulting from the addition or subtraction of the initial basic modes. The
Haan model was then simplified by Remington et al. (1994) with second-order accuracy
to quantify mode coupling in the RT instability (denoted as the REM model) and modified
by Luo et al. (2020) to predict the evolution of the multi-mode RM instability. However,
all the previous models were solved and modified only for a single multi-mode interface
but not for a gas layer. To quantify the mode-coupling effect in a shocked heavy layer, a
new model is established by combining the REM model with (3.11)–(3.12). For the two
different basic modes k1 and k2 on the initial interfaces considered in this work, the REM
model (Remington et al. 1994) can be expressed as

ak1±k2 = ∓1
2
(k1 ± k2)A+(al

k1
al

k2
), (3.30)

where ak1 (ak2) is the amplitude of the perturbation with mode k1 (k2), ak1±k2 is the
amplitude of the perturbation with coupling modes k1 ± k2, and the superscript l denotes
the linear regime. The right-hand side of (3.30) represents the generation of coupling mode
k1 ± k2 from initial modes k1 and k2. Taking the second derivative of (3.30) with time as
in our previous work (Luo et al. 2020), one can obtain

d2ak1±k2

dt2
= ∓1

2
A+(k1 ± k2)

(
d2al

k1

dt2
al

k2
+ d2al

k2

dt2
al

k1
+ 2

dal
k1

dt

dal
k2

dt

)
. (3.31)

For a fluid layer, to quantify the evolution of d2al
k1

/dt2 and d2al
k2

/dt2, (3.11) can be written
as follows: for the first interface,

d2al
1,k1

dt2
= k1

2

[
At,k1(g1al

1,k1
− g2al

2,k1
) + Ac,k1(g1al

1,k1
+ g2al

2,k1
)
]
,

d2al
1,k2

dt2
= k2

2

[
At,k2(g1al

1,k2
− g2al

2,k2
) + Ac,k2(g1al

1,k2
+ g2al

2,k2
)
]
;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.32)

for the second interface,

d2al
2,k1

dt2
= k1

2

[
At,k1(g1al

1,k1
− g2al

2,k1
) − Ac,k1(g1al

1,k1
+ g2al

2,k1
)
]
,

d2al
2,k2

dt2
= k2

2

[
At,k2(g1al

1,k2
− g2al

2,k2
) − Ac,k2(g1al

1,k2
+ g2al

2,k2
)
]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.33)

Substituting (3.32)–(3.33) into (3.31), the following expressions can be obtained: for the
first interface,

d2a1,k1±k2

dt2
= ∓1

2
A+(|k1 ± k2|){
1
2

[
k1At,k1

(
g1al

1,k1
− g2al

2,k1

)
+ k1Ac,k1(g1al

1,k1
+ g2al

2,k1
)
]

al
1,k2

+ 1
2

[
k2At,k2(g1al

1,k2
− g2al

2,k2
) + k2Ac,k2(g1al

1,k2
+ g2al

2,k2
)
]

al
1,k1

+ 2
dal

1,k1

dt

dal
1,k2

dt

}
; (3.34)
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Mode coupling between two different interfaces

for the second interface,

d2a2,k1±k2

dt2
= ∓1

2
A+(|k1 ± k2|){
1
2

[
k1At,k1(g1al

1,k1
− g2al

2,k1
) − k1Ac,k1(g1al

1,k1
+ g2al

2,k1
)
]

al
2,k2

+ 1
2

[
k2At,k2(g1al

1,k2
− g2al

2,k2
) − k2Ac,k2(g1al

1,k2
+ g2al

2,k2
)
]

al
2,k1

+ 2
dal

2,k1

dt

dal
2,k2

dt

}
. (3.35)

Here, a1,k1 (a2,k1), a1,k2 (a2,k2) and a1,k1±k2 (a2,k1±k2) are the amplitudes of modes k1, k2
and k1 ± k2 on SI1 (SI2), respectively; At,k1 (At,k2) and Ac,k1 (Ac,k2) are the two modified
Atwood numbers of perturbation with k1 (k2), which can be expressed by (3.7), and g1
(g2) is the acceleration of the first (second) interface calculated by (3.12). Substituting g1
and g2 into (3.34)–(3.35) and then integrating (3.34)–(3.35), a model that can quantify the
mode-coupling effect in a shocked layer is obtained and expressed as follows: for the first
interface,

da1,k1±k2

dt
= ∓1

2
A+(|k1 ± k2|){
1
2

[
k1At,k1

(
�u1 a+

1,k1
a+

1,k2
+ �uR aR

1,k1
aR

1,k2
− �u2 a0

2,k1
a+

1,k2
−�uC aC

2,k1
aC

1,k2

)

+ k1Ac,k1

(
�u1 a+

1,k1
a+

1,k2
+ �uR aR

1,k1
aR

1,k2
+ �u2 a0

2,k1
a+

1,k2
+ �uC aC

2,k1
aC

1,k2

)]
+ 1

2

[
k2At,k2

(
�u1 a+

1,k2
a+

1,k1
+ �uR aR

1,k2
aR

1,k1
− �u2 a0

2,k2
a+

1,k1
−�uC aC

2,k2
aC

1,k1

)
+ k2Ac,k2

(
�u1 a+

1,k2
a+

1,k1
+ �uR aR

1,k2
aR

1,k1
+ �u2 a0

2,k2
a+

1,k1
+ �uC aC

2,k2
aC

1,k1

)]

+ 2
∫ damSEA

1,k1

dt

dal
1,k2

dt
dt

}
; (3.36)

for the second interface,
da2,k1±k2

dt
= ∓1

2
A+(|k1 ± k2|){
1
2

[
k1At,k1

(
�u1 a+

1,k1
a0

2,k2
+ �uR aR

1,k1
aR

2,k2
− �u2 a0

2,k1
a0

2,k2
− �uC aC

2,k1
aC

2,k2

)

−k1Ac,k1

(
�u1 a+

1,k1
a0

2,k2
+ �uR aR

1,k1
aR

2,k2
+ �u2 a0

2,k1
a0

2,k2
+ �uC aC

2,k1
aC

2,k2

)]
+ 1

2

[
k2At,k2

(
�u1 a+

1,k2
a0

2,k1
+ �uR aR

1,k2
aR

2,k1
− �u2 a0

2,k2
a0

2,k1
− �uC aC

2,k2
aC

2,k1

)
−k2Ac,k2

(
�u1 a+

1,k2
a0

2,k1
+ �uR aR

1,k2
aR

2,k1
+ �u2 a0

2,k2
a0

2,k1
+ �uC aC

2,k2
aC

2,k1

)]

+ 2
∫ dal

2,k1

dt

daZG
2,k2

dt
dt

}
. (3.37)
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Figure 9. Comparison of the developments of a1,k1±k2 between experimental measurements and theoretical
predictions in cases 20-30-IP and 30-20-IP.

Here, a+
1 (aR

1 ) represents the amplitude of the first interface just being impacted by IS
(RW), and a0

2 (aC
2 ) is the average amplitude of the second interface before and after being

impacted by TS1 (CW), as defined before. In this work, a+
1,k2

, a0
2,k1

, aR
2,k1

and aC
2,k1

are all
equal to zero, and other specific amplitudes can be calculated through the linear theory
mentioned in § 3.2.2. In the integral terms on the right-hand sides of (3.34) and (3.35),
dal

1,k2
/dt and dal

2,k1
/dt can be calculated by (3.16) and (3.25), but dal

1,k1
/dt and dal

2,k2
/dt

are substituted respectively with damSEA
1,k1

/dt expressed in (3.29) and daZG
2,k2

/dt expressed in
(3.26), because the growths of a1,k1 and a2,k2 quickly enter the nonlinear stage.

For cases 20-30-IP and 30-20-IP, modes k1 ± k2 and harmonics have no influence on the
growths of a2,k1 and a1,k2 . As a result, the linear models can provide accurate predictions
for these two amplitude developments. From figure 3, a nearly perfect single-mode profile
of SI2 is observed in case 20-30-IP, which means that mode coupling on SI2 is very weak,
i.e. a2,k1±k2 should be very small and the predictions are ignored. Besides, a2,k1±k2 in case
30-20-IP are also very limited. Therefore, only the developments of a1,k1±k2 in these two
cases are predicted by (3.36) and discussed here. As presented in figure 9, the theories
provide good predictions for the amplitude developments of these coupling modes. Note
that the deviation between experiment and theoretical model for the developments of
a1,k1−k2 for the 30-20 case seems significant, which is caused mainly by the relatively
small range of the vertical axis in figure 9. Considering the error bars, the model can
reasonably predict the experimental results for a1,k1−k2 .

For cases 60-20-IP (20-60-IP) and 60-20-AP, the coupling mode k2 − k1 (k1 − k2) can
be described as the second-order harmonic of k1 (k2). For case 40-20-IP (30-60-IP),
k2 = 2k1 (k1 = 2k2). To fully quantify the modal evolutions, the amplitude growths of
the harmonics are also considered after constructing (3.36) and (3.37) for k1 ± k2. Based
on the perturbation expansion method, the ZS model was proposed (Zhang & Sohn 1997)
to calculate the amplitude growth of the harmonics for a single-mode interface. Here, the
ZS model is considered for the amplitude growth of the second-order harmonics: for the
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first interface,

a1,2k1 = 1
2

A+k1
dal

1,k1

dt
t2 − 1

12
k3

1

(
dal

1,k1

dt

)2
⎡
⎣4(A+)3

(
dal

1,k1

dt

)2

t4 + 3A+aR
1,k1

t2

⎤
⎦ ,

a1,2k2 = 1
2

A+k2
dal

1,k2

dt
t2 − 1

12
k3

2

(
dal

1,k2

dt

)2
⎡
⎣4(A+)3

(
dal

1,k2

dt

)2

t4 + 3A+aR
1,k2

t2

⎤
⎦ ;

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.38)

for the second interface,

a2,2k1 = 1
2

A+k1
dal

2,k1

dt
t2 − 1

12
k3

1

(
dal

2,k1

dt

)2
⎡
⎣4(A+)3

(
dal

2,k1

dt

)2

t4 + 3A+aC
2,k1

t2

⎤
⎦ ,

a2,2k2 = 1
2

A+k2
dal

2,k2

dt
t2 − 1

12
k3

2

(
dal

2,k2

dt

)2
⎡
⎣4(A+)3

(
dal

2,k2

dt

)2

t4 + 3A+aC
2,k2

t2

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.39)

For the single-mode RM instability, previous work (Liu et al. 2018a) has shown that
the amplitudes of harmonics higher than third order grow slowly and can be ignored.
Therefore, only the second-order harmonic is considered in this work. The linear and
nonlinear developments of amplitudes of the basic modes (a1,k1 and a2,k2) can be well
predicted through (3.16), (3.25), (3.26) and (3.29). Considering the amplitudes of other
modes, (3.36)–(3.39) are used to provide predictions for modal evolutions.

For cases 20-60-IP, 60-20-IP and 60-20-AP, the linear models can also well predict
the growths of a1,k2 and a2,k1 . The experimental amplitudes of mode k1 + k2 agree with
the predictions by (3.36)–(3.37), as given in figures 10(a,b). However, for predicting the
amplitude of mode |k1 − k2|, the effect of harmonics needs to be considered because |k1 −
k2| = 2k1 or 2k2. Through adding (3.38)–(3.39) to (3.36)–(3.37), the amplitude growths
of |k1 − k2| can be well predicted. For cases 30-60-IP and 40-20-IP, because k1 = 2k2 and
k2 = 2k1, the second-order harmonics and mode-coupling mode (|k1 − k2|) directly affect
the growth of a2,k1 and a1,k2 , therefore the linear models fail to predict the growths of a1,k2

and a2,k1 at late stages. Combining (3.16), (3.25) with (3.36)–(3.39), the predictions for
a1,k2 and a2,k1 in these two cases are provided. In case 40-20-IP, the amplitude growth of
k2 on SI1 even experiences a phase inversion process because the harmonic induced by
k1 develops faster than the linear growth of k2 at late stages. To predict the developments
of a1,k1±k2 and a2,k1±k2 , (3.36)–(3.37) are adopted and dal

1,k2
/dt (dal

2,k1
/dt) is replaced

with da1,k2/dt (da2,k1/dt), which is calculated by combining the linear model with the
mode-coupling model and harmonic model.

In summary, through combining the linear models (3.16) and (3.25), and nonlinear
models (3.26) and (3.29), with modal models (3.36)–(3.39), a complete theory that can
reasonably predict the amplitude growths of the basic modes (a1,k1 and a2,k2), the modes
generated by interface coupling (a2,k1 and a1,k2), and the modes generated by mode
coupling (ak1±k2) is established. By comparing the results in figures 6 and 10, we see
that mode coupling is significant (ignorable) for the growth of a2,k1 and a1,k2 (a1,k1 and
a2,k2).
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Figure 10. Comparisons of the amplitudes of k1 ± k2 measured from experiments with models in (a,b) cases
20-60, 60-20 and 60-20-AP, and (c,d) cases 30-60 and 40-20.

3.2.5. Freeze-out of the second interface growth
In previous work, freeze-out of amplitude growth (i.e. the amplitude growth stagnates)
was realized by compressibility (Mikaelian 1994), the second successive shock impact
(Charakhch’yan 2001) or the weak reflected shock/rarefaction wave impact (Chen et al.
2023a,b). In this work, if the first interface is planar and the second interface is
single-mode, then amplitude freeze-out of the second interface may be realized through
interface coupling according to (3.25). In other words, amplitude freeze-out of a
single-mode heavy–light perturbation could be realized through interface coupling by
adding a planar light–heavy interface in front of the perturbed interface. Evidently, the
condition for the amplitude freeze-out of the second interface is da2/dt = 0, i.e.

0 = 1
2

{
At

(
�uR

1 + Z2 + k2c1ur(tR − t1)
2

(R − 1) − �u2
1 + Z2

2

− �uC

(
Z2 − k2

1 + Z2

2
A+ �u2 (tC − t1)

)
(1 + ZC)/2

)

− Ac

(
�uR

1 + Z2 + k2c1ur(tR − t1)
2

(R − 1) + �u2
1 + Z2

2
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Figure 11. (a) Schlieren images showing the evolution of the SF6–air interface. (b) The temporal variations
of the amplitude of SI2 after the phase inversion is finished at t = t0.

+ �uC

(
Z2 − k2

1 + Z2

2
A+ �u2 (tC − t1)

)
(1 + ZC)/2

)}

− �uC A+
(

Z2 − k2
1 + Z2

2
A+ �u2 (tC − t1)

)
(1 + ZC)/2. (3.40)

Here, all the parameters except k2 are dependent on the shock intensity, gas properties
and L0, but are independent of the initial amplitude. Based on (3.40), when the shock
intensities and gas properties are fixed, k2 and L0 satisfy the specific relationship to
achieve the amplitude freeze-out of the second interface. According to this relationship, an
experiment with k2 = 20 mm, k2a−

2 = 0.083 and L0 = 27 mm is designed and conducted.
The shock intensity and gas properties are the same as the other cases in this work. The
typical schlieren images of the perturbed SF6–air interface are provided in figure 11(a), in
which SI1 is not shown after 453 µs. After CW impacts SI2 (453–969 µs), the amplitude of
SI2 changes very slowly, and amplitude freeze-out is almost achieved. Note that if the first
interface is perturbed and the second interface is planar, then it is impossible to achieve
the amplitude freeze-out of the first interface through changing L0 based on (3.16).

The amplitude development of the second interface after the phase inversion is shown in
figure 11(b), in which t0 is the time when the phase inversion is completed. The amplitude
of SI2 grows linearly and can be well predicted by the MB model before CW arrive. This
also proves that when II1 is planar, interface coupling does not affect the perturbation
evolution on SI2 before CW impact. After CW impact SI2, the amplitude is compressed
first and then rises for a short while because interface coupling needs a start-up process.
When the start-up process is finished, the amplitude almost settles in a steady-state value,
and freeze-out is almost realized (the tiny increase of the amplitude may be attributed
to the negligible error of the theory). As a result, amplitude freeze-out of a single-mode
SF6–air interface is almost realized experimentally through generating a planar air–SF6
interface upstream with a suitable distance.

Through interface coupling between two successive heavy–light interfaces, the
amplitude freeze-out of a heavy–light interface was realized numerically by Liang
& Luo (2023a). However, the initial amplitudes of two successive interfaces need
to satisfy a specific relationship that is difficult to realize in ICF. In the present
work, the first light–heavy interface is planar, and amplitude freeze-out of the second
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perturbed heavy–light interface is achieved just by simply manipulating the distance
of two interfaces. In previous work for the target designs in ICF (Qiao & Lan 2021),
the glow discharge polymer plastic (CH, with density 1.05 g cm−3) was used as the
outermost ablator layer, while the high-density carbon (HDC, with density 3.48 g cm−3)
was kept as the main ablator. Through constructing the outer CH-HDC interface, the
hydrodynamic instabilities on the interface between HDC and the deuterium–tritium ice
(DT ice, with density 0.26 g cm−3) can be reduced significantly. The CH-HDC interface
(light–heavy) and the HDC-DT interface (heavy–light) construct a heavy layer. The
decreasing instabilities on the inner HDC-DT interface coincide with the finding in this
work that the amplitude freeze-out of the second interface can be realized in a shocked
heavy layer. These findings suggest that in ICF, through generating a light–heavy interface
with a suitable distance upstream from the interface separating the ablator material and
DT ice, the RM instability may be effectively suppressed.

4. Conclusions

We performed the shock-tube experiments and theoretical studies to highlight mode
coupling between two single-mode interfaces with different basic modes. Experimentally,
the soap-film technique is used to create planar and single-mode interfaces of the layers.
Experimental results are presented and analysed for an initially undisturbed layer, and the
seven different kinds of disturbed layers. The schlieren images clearly show the interface
morphologies, and the distinct profiles facilitate the modal analysis.

The results indicate that the rarefaction waves (RW) and compression waves (CW)
generated in the layer, respectively, accelerate the first and second interface movements.
Generally, after CW impact, both interfaces move steadily, which means that the effects
of other waves can be ignored. For the perturbed layers, just after CW impact, the
perturbations on two interfaces still present single-mode shapes with the basic modes.
As two interfaces become closer, interface coupling induces a different mode from the
basic mode on each interface. Then mode coupling further generates new modes and
complicates the interface profile. The interface with a smaller initial wavenumber generally
remains a quasi-single-mode profile, and the bubbles (spikes) develop symmetrically. The
multi-mode features become prominent on the interface with a larger initial wavenumber,
and the bubbles (spikes) grow with an inclination and size difference.

In the linear regime, the mode-coupling effect is weak, and the linear growth of the
basic mode is considered separately. The linear model proposed by Jacobs et al. (1995) is
modified by considering the different accelerations of two interfaces and the waves’ effects
in the layer. The modified linear model provides good predictions to the linear growth rates
of the basic modes and the modes generated by interface coupling. In the nonlinear regime,
the amplitude growths of the basic modes can be characterized generally by the existing or
modified nonlinear model. It is found that interface coupling promotes nonlinearity of the
basic mode growth on the first interface, but behaves differently to the nonlinear growth
of the basic mode on the second interface. Moreover, a new modal model is established
based on the model proposed by Remington et al. (1994) to quantify the mode-coupling
effect in a gas layer. Besides, the model proposed by Zhang & Sohn (1997) (the ZS model)
with fourth-order accuracy is used to characterize the growth of second-order harmonics.
Combining the linear model, new modal model with the ZS model, the amplitude growths
of modes generated by both mode coupling and interface coupling are well predicted. The
mode-coupling effect on the amplitude growth is negligible for the basic modes, but is
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significant for the interface-coupling modes when the initial one wavenumber is twice the
other wavenumber.

The present studies show that if a planar light–heavy interface is added in front of the
single-mode heavy–light interface, then amplitude freeze-out of the heavy–light interface
is possible, caused by interface coupling. Theoretically, the conditions for amplitude
freeze-out of the second single-mode interface are independent of initial amplitude but
dependent on initial wavelength and width of the layer. According to the predictions
of initial conditions, the specific experiment is designed and conducted. It is verified
that amplitude freeze-out of the second interface can be realized after CW impact.
These findings suggest that in ICF, through generating a planar light–heavy interface
with a suitable distance upstream from the interface separating the ablator material and
deuterium–tritium ice, the hydrodynamic instabilities may be suppressed effectively.
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