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Abstract. If E is an dliptic curve over QQ, then let E(D) denote the D—quadratic twist of E. It
is conjectured that there are infinitely many primes p for which E(p) has rank 0, and that there are
infinitely many primes ¢ for which E(¢) has positive rank. For some specia curves E we show that
thereisaset S of primesp with density % forwhichif D = Ilp; isasquarefreeinteger wherep; € S,
then E(D) hasrank 0. In particular E(p) hasrank O for every p € S. Asan example let E; denote
the curve

Er o = 2% + 44a® — 19360z + 1682384

Then its associated set of primes Sy consists of the prime 11 and the primes p for which the order of
the reduction of Xo(11) modulo p isodd. To obtain the general result we show for primesp € S that
therational factor of L(E(p), 1) isnonzero which impliesthat E(p) hasrank 0. These specia values
are related to surjective Z /27 Galois representations that are attached to modular forms. Another
example of thisresult isgiven, and we conclude with some remarks regarding the existence of positive
rank prime twists via polynomial identities.
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1. Introduction
Let £ be an dlliptic curve over Q with the given Welerstrass equation

E: y* =23+ az® + b + ¢, D
wherea, b and c areintegers. In this paper all curvesand their points are assumed to
be Q—rational. If D isasquarefreeinteger, then let E(D) denotethe D—quadratic
twist of E that is given by

E(D): y? = 2 + aDz? + bD?%z + ¢D>. 2

Recently there have been anumber of investigationsregarding the distribution of
ranks of elliptic curvesin variousfamilies. For instance one may consult the works
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of Brumer—-McGuiness, Goldfeld, Gouvéa—Mazur, Lieman, Mestre, Mai—-Murty,
Ono, and Stewart—Top [2, 3, 8, 9, 14, 15, 16, 17, 19, 25].

In this paper we examine the following conjecture that was brought to the
author’s attention by J. Silverman.

CONJECTURE 1. If E isan dlliptic curve, then there are infinitely many primes p
for which E(p) hasrank 0, and there are infinitely many primes ¢ for which E(¥)
has positive rank.

In this direction there are a number of results deduced from an analysis of
2-descents (see [22]) that confirm part of this conjecture for the congruent number
curve

E': y2:x3—x.

For instanceit is known that if p = 3 (mod 8) is prime, then E’(p) has rank 0.
Asanother exampleif p =5 (mod 8) is prime, then E’(2p) hasrank 0.

2. New examples

Using a completely different method we prove part of this conjecture for certain
special elliptic curves. For these curves we show that there are infinitely many
primes p for which E(p) hasrank 0, and we also obtain a surprising multiplicative
property. We show the existence of a set S of primes p with density % with the
special property that if D = I1;p; isasquarefreeinteger wherep; € S, then E(D)
has rank 0.

In the case of the congruent number curve E', there are similar results for
integers with few prime factors. For instance, again using a careful analysis of

2-descents[22], itisknownthat £}, hasrank Oif p, ¢, and r are primes satisfying

p=1 (mod8), g =3(mod8), r=3(mod8), and

0)--0)

We recall some essential facts. Throughout this note we let ¢ denote the uni-
formizing variable ¢ := €?™* where Im(z) > 0, and all integer weight newforms
will be normalized eigenformsof all the Hecke operators. For every integer weight
newform f(z) = X°2 1a(n)q" € Sk(N, x) with rational integer coefficients, there
exists a Galois representation p s (see[6,7])

ps: Gal(Q/Q) — Gla(z/22)
with the property that if p t 2V is prime, then

tr(ps(Frob,)) = a(p) (mod 2).
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We shall make use of such representations.

We also make use of Shimura’s theory of half-integral weight modular forms,
atheory that we now briefly describe (see[23]). Let N be apositive integer that is
divisible by 4 and define () and ¢4 by

_ (ﬁ) if ¢,d<0
<ﬁ> otherwise.

_J1 d=1mod4
‘4= )i d=3moda.

Also let (cz + d)Y/? be the principal square root of (cz + d) (i.e. with positive
imaginary part). Let x be a Dirichlet character modulo N. Then a meromorphic
function g(z) on $ = {Im(z) > 0} is called a half integer weight modular form
with Nebentypus x and weight X + 3 if

az+b e\t
g (cz+d> _ X(d) <E> 6dl 2/\(Cz+d)/\+(1/2)g(z)’
for all

(Z Z) € To(N).

The set of all such forms that are holomorphic on $ as well as at the cusps is
denoted by M) (1/2)(V, x) and forms a finite dimensional C—vector space. The
subspace of those g(z) in M (1/2) (N, x) that also vanish at the cusps, the cusp
forms, is denoted by S (1/2)(IV, X)-

Asin the case of integer weight forms, there are Hecke operators that preserve
MH% (N, x) and SH% (N, x). However for these forms the Hecke operators act
on Fourier expansions in square towers; specifically if p t N is a prime, then the
Hecke operator T2 actson g(z) = X752 1b(n)q" € MH%(N, x) by

g(Z) | sz

00 _1)
= > (b(p*n) + x(p) (7( ;) ) P (n) + x(?)p® tb(n/p?))q"
n=0

Asintheinteger weight case, aform ¢(z) is called an eigenformiif for every prime
p there exists a complex number A, such that

9(2) | T = Apg(2)-
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The connection between half integer weight forms and the integer weight mod-
ular forms are the Shimura lifts, a family of maps which takes the L-function of a
half integer weight cusp form and returns the L-function of an integer weight mod-
ular form. More precisely let g(z) = X721b6(n)q" € Sxi(1/2) (N, x) where A > 1.
Let ¢ be a positive square-free integer and define the Dirichlet character ¢, by
P(n) = X(n)(ﬂ)(%). Now define A;(n) by the formal product of L-functions

n

o~ Aun) o~ b(tn?)
nz::l " ._L(s—A—l—l,z/)t);::l —

Then Shimuraproved that the Mellin transform of this product, which we denote
by SH:(g(z)) = X%, Ay(n)q"™ is aweight 2\ modular form in Mz, (N/2, x?).
Furthermoreif A > 2, then SH,(g(z)) happensto be a cusp form.

Now we define the notation that is used in Theorem 1. Let £ be a modular
éliptic curve with conductor N whose Hasse-Weil L-function is given by

L(E,s) = ZM.

s
n=1 n

In particular thisimplies that there isaweight 2 newform F'(z) = X2, A(n)q" €
S2(N, x1) where x1 isthetrivial Dirichlet character modulo V.

Now suppose that for some positive integer M there exists acusp form g(z) =
Yo21b(n)q"™ € Sz/2(M, (4)) that is an eigenform of the Hecke operators T, for
which theimage of g(z) under the Shimuraliftis #'(z). Now let S denote the set of
primesp for which b(p) is odd. With this notation we prove the following theorem.

THEOREM 1. Using the notation above, suppose there exists an integer weight
newform f(z) = X5 1a(n)q"™ with rational integer coefficients whose residual
Z/27-Galoisrepresentation p is surjective and whose Fourier expansion satisfies

f(z) =g(z) (mod 2).
Furthermore suppose that for every squarefree integer n, for which b(n;) is odd

there exists a squarefreeinteger n1, where (n1/nz) € Q;Z for every primep | M,
with the property that

L(E(—dnj),1) - b(n1) # 0.
If D = Il;p; is a squarefree integer with p; € S, then E(—dD) has rank 0.
Moreover S has density 3.

Proof. From the works of Bump-Friedberg—Hoffstein, Coates-Wiles, Kolyva-
gin, and Murty—Murty, Waldspurger’stheorem [26] implies the following theorem.
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THEOREM. Let E’' be a modular eliptic curve over Q with L(E',s) =
500 A(n)/n®. Let g(z) = 3521b(n)q" € S3/»(M, (%)) be an eigenform of the
HeckeoperatorsT,. suchthat SHy(g(z)) = F(z) = 2521 A(n)q". NowletLetng
bea positivesquarefreeinteger suchthat b(n1) # Oandsuchthat L(E’ ;, , 1) # 0.
Suppose that n; is a positive squarefree integer such that 71 /ny € Q;Z for every
primep | M. If b(nz) # 0O, then the rank of E’_dn2 is unconditionally O.

With thistheorem, if p € S, thensinceb(p) = a(p) (mod 2) isodd (henceis
nonzero), it follows that £(—dp) has rank 0. Moreover by multiplicativity of the
Fourier coefficients of newforms, it follows that

a(m)a(n) = a(mn)

if gcd(m,n) = 1. Thereforewefindthat if D = I1;p; isasquarefreeinteger where
pi € S;thena(D) =b(D) =1 (mod 2) and hence E(—dD) hasrank 0.

To complete the proof we need to establish that S has density 1. Sincea(n) =
b(n) (mod 2) for all n, we simply need to examine the coefficients a(p) when p
isprime. The Galois representation p

pr 1 Ga(Q/Q) — GL2(z/2z)
has the property that
tr(ps(Frob,)) = a(p) (mod 2)

for al but finitely many primes. However GL(Z/27) = PGL2(Z/2%) isisomor-
phicto S3, and since p is surjective, we find by Chebotarev’s density theorem that
the set of primes p for which tr(p;(Frob,)) = 1 (mod 2), those primes where
the image has order 3, has density 1. O

Before we give some immediate corollaries, we should mention that it is not
apparent how often the above theorem applies. Although it is true that this theorem
is easy to apply in practice, it is not clear how often the hypotheses of the theorem
aresatisfied. Theauthor isinclined to believethat this phenomenon isvery common,
but he does not see how to quantify this assertion.

Before we mention corollaries, we define some relevant partition functions that
are similar to those that have occurred in other settings[1]. Let e1(n) (resp. e2(n))
denote the number of two colored partitions of n into an even number of parts
wherethe parts of thefirst color are distinct even integers (resp. multiples of 6) and
the parts of the second color are distinct multiples of 22 (resp. 18). Similarly let
o1(n) (resp. oz(n)) denote the number of two colored partitions of » into an odd
number of parts where the parts of the first color are distinct even integers (resp.
multiples of 6) and the parts of the second color are distinct multiples of 22 (resp.
18). Define the two partition functions a1(n) and az(n) by

ai(n) :=e1(n — 1) —o1(n — 1),
az(n) :=ez(n —1) —oz(n — 1).
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The generating functionsfor a1(n) are az(n) are

> ai(n)g" —qH 1—¢?)(1—¢*)
n=1
(©)
> az(n)q" —qH 1—¢%)(1— ).
n=1

Recalling that Dedekind's eta function 7(z) is a weight % cusp form given by
the infinite product

n(z) = ¢ ﬁ (1-q")

n=1

we find that

o0

0(22)7(222) = Y _ as(n)q"

n=1

o0

n(18z) Z

COROLLARY 1. Let E1 denotethe eliptic curve given by
Eq: y? = 2% 4 4422 — 19360z + 168234,
If D is a squarefree integer for which a1(D) is odd, then El(D) has rank O.
Moreover the set .S; of primesp for which a1(p) isodd has density 3
Proof. Itturnsoutthat themodularform f(z) = 1(2z)n(22z) € Sl( ,(=11/4))

is a newform. Therefore it follows from the theory of Hecke operators that if m
and n, are relatively prime positive integers, then

ai1(m)ai(n) = a1(mn). 4

By Euler’s Pentagonal number theorem we find that

1(22)1(222) = as(n)g"
—q (Z(_l)kq3k2+k) . (Z(_l)jq33j2+1lj) _

JEZ
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Asaconsequencewefind that a1(n) = 0if n =2,6,7,8,10 (mod 11). There-
fore the Galois representation p attached to n(22)n(22z) satisfies

tr(ps(Frob,)) = a1(p) =0 (mod 2).

for at least half the primes. Therefore since the image of p isasubgroup of S3, by
the Chebotarev density theorem the representation p is surjective if there existsa
single odd prime p # 11 for which a1(p) isodd. Since a1(5) isodd, it follows that
p2 is surjective and the set of primes p for which a1 (p) is odd has density %

Now define the weight % cusp form g(z) by

g9(z) ==Y bi(n)g" = f(2)O(z)
n=1

= (i al(n)q”> . (1+2q+2q4+2q9+---) .

n=1

By (5) wefindthat ai(n) = bi(n) (mod 2) for al n. Moreover g(z) isan eigen-
form of the Hecke operators 7),» and itsimage of under the Shimuracorrespondence
iSF(2) = £2,A(n)¢" = n?(2)n?(11z) whichis anewformin S5(11, x1) where
x1 isthetrivial character. Thereforeit follows that the Hasse-Weil L—function of
Xo(11) isgiven by

L(Xo(11),s) = 3 A

n=1

ns

One can easily verify that E; is the —11-quadratic twist of the elliptic curve
Xo(11) given by

y? +y = 2> — 2% — 10z — 20.
By the multiplicativity of aq(n), it follows that if m and n are relatively prime
positive integers for which b1(m) and b1(n) are odd, then b1(mn) is also odd.
Therefore with alittle computation this completes the proof of the corollary. O
COROLLARY 2. Let E, denotethe elliptic curve given by

Byt y? = 1% — 432,
If D > 1is a squarefree integer for which ax(D) is odd, then E»(D) has no

nontrivial rational points. Moreover the set S» of primes p for which a»(p) is odd
has density 3.
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Proof. This proof issimilar to the proof of Corollary 1. It turnsout that f(z) =
n(62)n(18z) = X2 ja2(n)q" € S1(108, (—3/-)) isanewform. Therepresentation
py isalso surjective following asimilar argument to the one givenin Corollary 1.

The weight % cusp form g(z) € S3/2(108, (3/-) defined by

g(z) =Y ba(n)q" = n(62)n(182)0(z)
n=1

= (i az(n)qn> . (1 + 2q + 2q4 +.. )

n=1

isalmost an eigenform of the Hecke operators. If go(z) = g(2) |T25 = 6¢°+6¢° —
64° — ..., then G(2) := g(z) — 3go(2) isan eigenform of all the Hecke operators
and its image under the Shimura lift is 7?(32)1?(9z), a weight 2 newform in
S2(27, x1). Fortunately it turns out that go(z) =0 (mod 6), and so G(z) = g(z)
(mod 2). Asin the proof of Corollary 1, wefind that az(n) = b2(n) (mod 2) for
al n. However if n?(32)n?(92) = >.°° ; A(n)q", then

L(E,s) =Y
n=1

where E can be taken to be the CM elliptic curve with conductor 27 given by

(n)

ns ’

E: y? =4%+16.

Itiseasy to verify that E, isthe —3-quadratic twist of E. Asin Corollary 1, onemay
check that the hypothesesin Theorem 1 are satisfied; thereforeif D isasguarefree
integer for which ay(D) isodd, then by(D) isodd and E(—3D) = E»(D) hasrank
0. Since it is well known that for al such D > 1, the torsion group is trivial, the
result now follows. |

We now mention the following interesting corollary that gives an elliptic curve
description of the sets S7 and S». If E isan dliptic curve and p isaprime, then let
|E(Z /pZ)| denote the number of rational points of the reduction of £ modulo p.

COROLLARY 3. The setsof primes S; and S> satisfy
S1 = {11} U {primes p where | Xo(11)(Z /pZ)| is odd}
Sy = {primesp where |E(Z/pZ)| is odd}

where E is the elliptic curve given by

E: y*=2z>+16.
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Proof. By thefact that (1 — X")? = (1 - X?*) (mod 2), we find that

o0

n(22)n(222) = Y a1(n)g" = n(2)n?*(11z) (mod 2),
n=1

n(6z)n(18z) = Z a2(n)q" = n?(32)n%(9z) (mod 2).
n=1

Recall from the proofs of Corollaries 1 and 2 that 1?(z)7?(11z) and 7,?(3z)7?(92)
arethe Mellin transforms of L(Xo(11), s) and L(E, s) respectively.
If pisaprimefor which Xo(11) has good reduction, then

ai(p) =p+1—-1|Xo(11)(z/pz)| (mod 2).

Henceif p isaprimefor which X (11) hasgood reduction, thenp € Sy, if and only
if | Xo(11)(Z/pZ)|isodd. Since Xo(11) only has bad reduction at p = 11, abrief
computation showsthat 11isalsoin .S;. Exactly the same argument holdsfor S». O

Remark 1. By the theory of lacunary modular forms, it follows that the set of
positive integers for which a;(n) = 0 has arithmetic density 1.

Remark 2. If D = X;p; is asquare-free integer where p; € S;, then assuming
the conjecture of Birch and Swinnerton Dyer it can be shown that the order of
the Tate—Shafarevich group of E;(D) is, up to small scalar factors, (coming from
the local Tamagawa numbers) b?(D). Since the b;(D) are themselves values of
specia partition functions, is there a combinatorial realization of elements of the
Tate-Shafarevich groups of these twists analogousto the combinatorial realizations
of certainideal class groupsin [20]?

Remark 3. The methods used here aso will give nonvanishing quadratic twists
of more generic modular L—functions at the central critical value.

3. Further remarks
In this section we make some remarks concerning prime twists of elliptic curves.
First we recall the following conjecture of Bouniakowsky [21].

CONJECTURE [Bouniakowsky's] Let F'(z) be an irreducible polynomial over Q
with integer coefficients for which the only positive integer n dividing all (k) for
every integer k isn = 1. Then there exist infinitely many positive integers m for
which F'(m) isprime.

As a consequence of this conjecture we obtain:
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THEOREM 2. Let E be an €lliptic curve given by the Weierstrass equation
E:y? =23+ az® + bz +c,
wherea, b, and c areintegers that do not satisfy both
a+b=1 (mod2),
a=c=0 (mod3) and b=2 (mod 3).

Assuming Bouniakowsky’s conjecture, if E is an elliptic curve with no rational
points of order 2, then there exists infinitely many primes p for which E(p) has
positive rank.

Proof. If we define polynomials X (u), Y (u), and D(u) by

X (u) = u*— 2bu? — 8cu + (b — 4ac),

Y(u) := u®+ 2au® 4 5bu? + 20cu® — 5(b° — dac)u?
+(8a%c — 2ab? — 4bc)u — (b3 — dabe + 8¢?),

D(u) = 4(u®+ au?®+ bu + c),

then we find that
Y2(u) = X3(u) + aD(u)X? + bD?(u) X + c¢D3(u).

This identity is a special case of Legendre's identity that is the topic in [10].
Therefore for every integer u the point (X (u),Y (u)) lieson E(D(u)). By Bou-
niakowsky’s conjecture there exists infinitely many positive integers « for which
D(u)/4isprime. Since E(D(u)) isisomorphic to E(D(u)/4) over Q, it suffices
to show that for all but finitely many integers « that the point (X (u),Y (u)) has
infinite order. However by Mazur’s theorem, if (X (u), Y (u)) hasfinite order, then
itsorder must be 2, 3,4, ...,9,10 or 12. However by the doubling formulasiif this
point has finite order, then the polynomials X (u) and Y (u) must satisfy a finite
number of polynomial equations. Thereforethere are at most finitely many integers
u for which (X (u), Y (u)) hasfinite order. O

Assuming areformulation of Bouniakowsky’sconjecture, onecan deducethat there
are infinitely many primes p for which E(p) has positive rank. However since his
conjecture seemswell beyond current techniquesit does not seem reasonableto do
S0.

It isinteresting to note that the strongest resultsin the direction of Bouniakow-
shy’sconjectureimply the existence of infinitely many positive rank cubic twists of
certain elliptic curveswhere the twisting factor is at most a product of two primes.
Assuming the conjectures of Birch and Swinnerton Dyer, it isknown that there are
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infinitely many primes p for which p—cubic twists of certain elliptic curves have
positive rank. If ¢ is a nonzero integer, then let E!. denote the elliptic curve with
complex multiplication by Q(v/—3) defined by

E: =1 +c (5)
If D isacube freeinteger, then the cubic twist of E is £, andis given by
y? = > + cD?

THEOREM 3. If ¢ isan odd integer that is not a perfect square, then there exist
infinitely many integers D that are at most the product of two primes for which
E! 1, has positive rank.

Proof. If D(u) := u? — ¢, then it turns out that the point (D(u),uD(u)) isa
point on the elliptic curve E(’;Dz(u) , the D(u)-cubic twist of the elliptic curve E..

By Iwaniec’s theorem [11] since D(u) is irreducible over Q and ¢ is odd,
there are infinitely many integers « for which D(u) is at most the product of two
primes. By the same argument that appeared in the proof of Theorem 2, there are at
most finitely many integers« for which thepoint (D (u), wD(u)) hasfiniteorder. O
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