AN ANALOG OF NAGATA'S THEOREM FOR MODULAR LGM DOMAINS

RAYMOND A. BEAUREGARD

1. Introduction. The theorem referred to in the title asserts that for an atomic commutative integral domain R, if S is a submonoid of R^{*} (the monoid of nonzero elements of R) generated by primes such that the quotient ring $R S^{-1}$ is a $U F D$ (unique factorization domain) then R is also a $U F D[8]$. Recently several definitions of a noncommutative $U F D$ have been proposed (see the summary in [6]). However the analog of Nagata's theorem does not hold for all of these, the most notable illustration being that of a similarity$U F D$ which was introduced in [5] (but the terminology is that of [6]). In contrast, Nagata's theorem holds for the larger class of projectivity-UFD and this result is included in Section 4 below.

The notion of a projectivity- $U F D$ arose from an attempt to obtain uniqueness of atomic factorizations of an element as in the commutative case, that is, for a right LCM domain (an integral domain in which the intersection of any two principal right ideals is again principal). Unfortunately there are right $L C M$ domains in which not even the number of atomic factors in different factorizations of an element is constant (an example first noticed in [4] occurs below). Uniqueness (in the projectivity- $U F D$ sense) has been established [1] for modular right LCM domains, a class which includes the commutative $L C M$ domains. In addition, many results of noncommutative principal ideal domains can be carried over to modular $L C M$ domains (see [2] and [3]). Our main goal here is to obtain an analog of Nagata's theorem for modular LCM domains thus providing the means for exhibiting additional examples to which these results apply.
2. Preliminaries. All rings considered are not necessarily commutative integral domains with unity. For a ring R, U_{R} denotes the group of units of R and R^{*} is its monoid of nonzero elements. We recall from [1] that if $a b^{\prime}=b a^{\prime}$ in R^{*} and if the least common right multiple $[a, b]_{r}$ of a and b exists then the greatest common right divisor $\left(a^{\prime}, b^{\prime}\right)_{r}$ of a^{\prime} and b^{\prime} exists and satisfies

$$
\begin{equation*}
a b^{\prime}=b a^{\prime}=[a, b]_{r}\left(a^{\prime}, b^{\prime}\right)_{r} \tag{1}
\end{equation*}
$$

in addition, $a R \cap b R=[a, b]_{r} R$ and we also write $R a^{\prime} \vee R b^{\prime}=R\left(a^{\prime}, b^{\prime}\right)_{r}$. Thus for $x \in R^{*}$ in a (two sided) $L C M$ domain R the interval $[x R, R]=$ $\{a R \mid x R \subseteq a R \subseteq R\}$ is a lattice under inclusion. This lattice is modular if and

[^0]only if R satisfies the following condition which is left-right symmetric in an $L C M$ domain:
(M) $[a, b]_{T}=[a, b c]_{r},(a, b)_{l}=(a, b c)_{l} \Rightarrow c \in U_{R}$.

In general, a ring R is said to be (right) modular if it satisfies (M) (whenever those quantities exist).

A 2 -fir (weak Bezout domain) is an example of a modular $L C M$ domain. In addition every commutative ring is modular. This can be shown more generally. Recall that $a \in R^{*}$ is invariant if $a R=R a$; in this case every factor of a is a left factor, for if $a=u y v$ then $a=y v u^{\prime}$ where u^{\prime} is chosen so that $u a=a u^{\prime}$ (similarly every factor of a is a right factor). Thus if a, b, and c are invariant then there is no need for the subscripts in (M) ; if we assume, as we may, that $(a, b)=(a, b c)=1$ and if we choose $b^{\prime} \in R$ such that $a b^{\prime}=b a$ then we have $b a=\left[a, b^{\prime}\right]$ by the left-right analog of (1); multiplying this equation on the left by a and then cancelling a on the right we find $a b=[a, b]$; similarly $a b c=[a, b c]$, and equating these lcm's we have $a b=a b c$ so that $c \in U_{R}$. We summarize in the following.

Proposition 2.1. The modular condition (M) holds for all invariant elements in an integral domain.

By an m-system in R we mean a submonoid S of R^{*}. An element $a \in R^{*} \backslash U_{R}$ is said to be right prime to S if whenever $s \in S$ is a right factor of $a b(b \in R)$ then s is a right factor of b (we shall abbreviate this as $s \in S, s /{ }_{r} a b \Rightarrow s /{ }_{r} b$). The next three propositions make this concept easier in particular cases. Recall that a right Ore system in R is an m-system S for which $a S \cap s R \neq \emptyset$ for each $a \in R, s \in S$; as is well known, the right quotient ring $R S^{-1}$ is then defined.

Proposition 2.2. Let S be a right Ore system in R with $K=R S^{-1}$. Then $a \in R^{*} \backslash U_{R}$ is right prime to S if and only if $a K \cap R=a R$.

We omit the proof since it is straight-forward. A particular type of Ore system is an m-system which is invariant in R, i.e., every element of S is invariant in R. Of course in this case there is no need for the subscripts (indicating right division) in the definition of "right prime to S " which may be phrased "prime to S ".

Proposition 2.3. Let S be an m-system which is invariant in R. Then $a \in R^{*} \backslash U_{R}$ is prime to S if and only if $a R \cap s R=$ asR for each $s \in S$.

Proof. We always have $a s R \subseteq a R \cap s R$; if a is prime to S and if $x \in a R \cap s R$ then $x=a b$ for some $b \in R$ and $s / a b$, hence s / b which shows $x \in a s R$. The converse follows as easily.

An element $p \in R^{*} \backslash U_{R}$ is said to be a right prime if $\left.\left.p\right|_{r} a b \Rightarrow p\right|_{r} a$ or $\left.p\right|_{r} b$. Shortly we shall be interested only in invariant primes (and the subscripts will again be omitted).

Proposition 2.4.
(i) If $a \in R$ is right prime to an m-system S then a has no right factor in $S \backslash U_{R}$.
(ii) The converse of (i) holds if S is generated by right primes.

Proof. (i) If $s \in S$ and $s /_{r} a$ and if a is right prime to S then $s /_{r} 1$ so that $s \in U_{R}$.
(ii) Suppose $a b=r s$ where $s=p_{1} \ldots p_{n}$ and the p_{i} are right primes. If a has no right factor in $S \backslash U_{R}$ then $p_{n} / r_{r} b$, say $b=b_{n} p_{n}$; then $a b_{n}=r p_{1} \ldots p_{n-1}$ and we continue now with p_{n-1}. We eventually wind up with $a b_{1}=r$ and so $b=b_{1} s$, as desired, showing a is right prime to S.

Example. Consider the skew polynomial ring

$$
R=A[x, 2]=\left\{\sum_{i=0}^{i=n} x^{i} a_{i} \mid a_{i} \in A, n \in N\right\}
$$

where A is the commutative polynomial ring $A=Z_{2}[y]$ over the field of integers modulo 2 and where multiplication in R is defined so that $a x=x a^{2}$. Let $S=\left\{x^{n} \mid n \in N\right\}$ be the m-system in R generated by x. Clearly $x y$ has no right factor in S other than 1, but $x y$ is not right prime to S as the equation $y x=(x y) y$ shows. Note that x is a left prime but not a right prime.

Proposition 2.5. Let $a_{1}, a_{2} \in R$ be right prime to an m-system S. Then:
(i) $a_{1} a_{2}$ is right prime to S.
(ii) If $a_{1} s_{1}=a_{2} s_{2}\left(s_{i} \in S\right)$ then $a_{1} R=a_{2} R$.
(iii) If $\left[a_{1}, a_{2}\right]_{r}$ exists then it has no right factor in $S \backslash U_{R}$.

Proof. The proofs of (i) and (ii) are straight-forward. To prove (iii) we write $\left[a_{1}, a_{2}\right]_{r}=a_{1} a_{2}{ }^{\prime}=a_{2} a_{1}{ }^{\prime}$ and suppose $s / r\left[a_{1}, a_{2}\right]_{r}$. Then $s / /_{r} a_{1}{ }^{\prime}$ and $s /_{r} a_{2}{ }^{\prime}$ by definition of right prime to S; but $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right)_{r}=1$ by (1) so that $s \in U_{R}$.
3. Nagata's Theorem for modular LCM domains. Hereafter S will be an invariant m-system in R and $K=R S^{-1}$ will be the corresponding quotient ring of R.

Proposition 3.1. Let $a, a_{1}, a_{2} \in R$ be either units or prime to S such that $a K=a_{1} K \cap a_{2} K$, and let $s, s_{1}, s_{2} \in S$ be such that $s R=s_{1} R \cap s_{2} R$. Then as $R=a_{1} s_{1} R \cap a_{2} s_{2} R$, that is, $\left[a_{1} s_{1}, a_{2} s_{2}\right]_{r}=\left[a_{1}, a_{2}\right]_{r}\left[s_{1}, s_{2}\right]$ in R.

Proof. According to Proposition 2.3, as $R=a R \cap s R$ if $s \in S$ and a is prime to S; this also holds if $a \in U_{R}$, for $a s R=a R s R=s R=a R \cap a R$. In addition, Proposition 2.2 shows that $a R=a_{1} R \cap a_{2} R$. Thus $a s R=a R \cap s R=$ $a_{1} R \cap a_{2} R \cap s_{1} R \cap s_{2} R=a_{1} s_{1} R \cap a_{2} s_{2} R$.

Proposition 3.2. Assume that each $x \in R^{*} \backslash S$ can be written $x=$ as where $s \in S$ and a is prime to S. If K is (right) modular then so is R.

Proof. We remark that S is necessarily saturated, for if $s=a b \in S$ and if $a \notin S$ then $a=a_{1} s_{1}$ where a_{1} is prime to S; the equation $s=a_{1} s_{1} b$ then
implies $s / s_{1} b$ so that $a_{1} \in U_{R}$ contradicting the definition of a_{1}. To establish condition (M) let

$$
\begin{equation*}
\left[x_{1}, x_{2}\right]_{r}=\left[x_{1}, x_{2} x_{3}\right]_{r} \tag{2}
\end{equation*}
$$

and $\left(x_{1}, x_{2}\right)_{l}=\left(x_{1}, x_{2} x_{3}\right)_{l}$ which we may assume is unity. Let $x_{i}=a_{i} s_{i}$ where $s_{i} \in S$ and $a_{i} \in U_{R}$ or is prime to $S(i=1,2,3)$. We first show that $x_{3} \in S$. If this is not so then $s_{2} a_{3}=a_{4} s_{4}$ where $s_{4} \in S$ and a_{4} is prime to S. Then using Proposition 3.2, (2) can be written

$$
\left[a_{1}, a_{2}\right]_{r}\left[s_{1}, s_{2}\right]=\left[a_{1}, a_{2} a_{4}\right]_{r}\left[s_{1}, s_{4} s_{3}\right]
$$

The left factors of the last equation are prime to S in view of Proposition 2.5
(iii) and the hypothesis on R. Thus $\left[a_{1}, a_{2}\right]_{r}=\left[a_{1}, a_{2} a_{4}\right]_{r}$ by Proposition 2.5 (ii), and in particular, $a_{1} K \cap a_{2} K=a_{1} K \cap a_{2} a_{4} K$. Also, $a_{1} K \vee a_{2} K=$ $a_{1} K \vee a_{2} a_{4} K=K$, for if $a_{1} K, a_{2} K \subseteq d K$ where $d \in R$ is a unit or prime to S then $a_{1} R, a_{2} R \subseteq d R$ (Proposition 2.2) which means $d \in U_{R}$ because $\left(a_{1}, a_{2}\right)_{l}=$ 1 in R; similarly $a_{1} K \vee a_{2} s_{4} K=K$. Applying (XI) which holds in K, we conclude that $a_{4} \in U_{K}$ so that $a_{4} \in S$ because S is saturated, and this contradicts the choice of a_{4}. We have shown $x_{3} \in S$, so that with Proposition 3.2, (2) can be written

$$
\left[a_{1}, a_{2}\right]_{r}\left[s_{1}, s_{2}\right]=\left[a_{1}, a_{2}\right]_{r}\left[s_{1}, s_{2} x_{3}\right] .
$$

Thus we have $\left[s_{1}, s_{2}\right]=\left[s_{1}, s_{2} x_{3}\right]$. Clearly $\left(s_{1}, s_{2}\right)=\left(s_{1}, s_{2} x_{3}\right)=1$ because $s_{i} /{ }_{i} x_{i}$. Proposition 2.1 then applies to show $x_{3} \in U_{R}$ and the proof is concluded.

An m-system S of R is said to be lcm-closed if $s_{1}, s_{2} \in S \Rightarrow s R=s_{1} R \cap s_{2} R$ for some $s \in S$. We summarize what has been established as follows (cf. [7, Theorem 3.1] for the commutative case).

Theorem 3.3. Let S be an invariant m-system which is lcm-closed in R. Assume each $x \in R^{*} \backslash S$ can be written $x=$ as where $s \in S$ and a is prime to S. If $R S^{-1}$ is a modular right LCM domain then so is R.

The next result indicates how the hypotheses of Theorem 3.3 can be satisfied in a ring R. Recall that an atom or irreducible is an element of $R^{*} \backslash U_{R}$ that has no proper factors; R is atomic if each member of $R^{*} \backslash U_{R}$ is a product of atoms.

Proposition 3.4. Let S be an m-system containing U_{R} and generated by invariant primes of R. Then
(i) S is lcm-closed.
(ii) If R has the acc for principal right ideals or if R is atomic then each member x of $R^{*} \backslash S$ can be writien $x=$ as where $s \in S$ and a is prime to S.

Proof. We remark again that S is necessarily saturated. To prove (i) let $s, t \in S$ and let p_{1}, \ldots, p_{k} be their common prime factors (not necessarily distinct) ; thus $s=p_{1} \ldots p_{k} s_{1}$ and $t=p_{1} \ldots p_{k} t_{1}$ where $\left(s_{1}, t_{1}\right)=1$. If $t \in U_{R}$
we are finished. Otherwise t_{1} is prime to $\left\{s_{1}{ }^{n} \mid n \in N\right\}$ (cf. Proposition 2.4) so that $t_{1} R \cap s_{1} R=t_{1} s_{1} R$ by Proposition 2.3; this shows $t R \cap s R=t s_{1} R$.

To prove (ii) let us first assume that R has the acc for principal right ideals. If some $x \in R^{*} \backslash S$ cannot be written in the desired form we may choose such an x with respect to which $x R$ is maximal. Thus x cannot be prime to S so that $x=x_{1} s_{1}$ for some $s_{1} \in S \backslash U_{R}$ (Proposition 2.4). Since $x R \subsetneq x_{1} R$ we may write $x_{1}=a s$ where $s \in S$ and a is prime to S; then $x=a\left(s s_{1}\right)$ contradicting the choice of x. Let us now assume that R is atomic; each atom in S is prime while each atom in $R \backslash S$ is prime to S (Proposition 2.4). Thus each $x \in R^{*}$ may be written $x=a_{1} \ldots a_{k} a_{k+1} \ldots a_{n}$ where $a_{i} \in S$ for $i>k$ and $a_{1} \ldots a_{k}$ is prime to S by Proposition 2.5.

Using Proposition 3.4 we may state Theorem 3.3 in the following form.
Theorem 3.5. Let S be an m-system generated by invariant primes in R. Assume that either R has the acc for principal right ideals or that R is atomic. If $R S^{-1}$ is a modular right LCM domain then so is R.

Corollary 3.6. Let A be a commutative UFD. The free associative algebra $R=A[X]$ on a set X is a modular LCM domain.

Proof. (cf. [4, Satz 8]) Using an argument as in the proof of Gauss' lemma it can be shown that the primes in A are primes in R. Thus $S=A^{*}$ is an m-system generated by central primes of R. Also, $R S^{-1} \cong A\left(A^{*}\right)^{-1}[X]$, the free associative algebra over a field which is known to be a 2 -fir [5] and hence a modular LCM domain. Since R is atomic, Theorem 3.5 (and its left-right analog) apply to show that R is a modular $L C M$ domain.

The next application deals with the ring of skew formal power series over a PRI (principal right ideal) domain. First we need the following result for the corresponding ring of formal Laurent series. As usual ord (f) denotes the degree of the first nonzero term of a Laurent series f.

Proposition 3.7. Let A be a PRI domain with automorphism σ and let $K=$ $A \ll x, \sigma \gg=\left\{\sum_{i=n}^{\infty} a_{i} x^{i} \mid a_{i} \in A, n \in Z\right\}$ (where multiplication in K is defined by $\left.x a=\sigma(a) x, x^{-1} a=\sigma^{-1}(a) x^{-1}\right)$. Then K is a PRI domain.

Proof. Let $0 \neq I$ be a right ideal of K and let

$$
J=\{a \in A \mid a+h \in I, \text { ord }(h)>0\} .
$$

Clearly J is a nonzero right ideal of A and so has the form $J=a A$. Let $f=$ $a+h \in I$ so that $f K \subseteq I$. To show the reverse inclusion let $g_{1} \in I$ with first term $b_{n_{1}} x^{n_{1}}$; then $b_{n_{1}} \in J\left(g_{1} x^{-n_{1}} \in I\right)$ so we write $b_{n_{1}}=a r_{1}\left(r_{1} \in A\right)$. If $g_{2}=$ $g_{1}-f r_{1} x^{n_{1}}$, then $g_{2} \in I$ and ord $\left(g_{2}\right)>$ ord $\left(g_{1}\right)$. Proceeding by induction, suppose $g_{i}(i \leqq k)$ have been found in I with increasing order. If g_{k} has first term $b_{n_{k}} x^{n_{k}}$ then $b_{n_{k}} \in J$ so we write $b_{n_{k}}=a r_{k}$ and define $g_{k+1}=g_{k}-f r_{k} x^{n_{k}} \in I$ with ord $\left(g_{k+1}\right)>$ ord $\left(g_{k}\right)$. Then $g_{1}=f \sum_{k=1}^{\infty} r_{k} x^{n_{k}} \in f K$ as desired.

Corollary 3.8. Let A be a PRI domain with automorphism σ. Then $R=$ $A[[x, \sigma]]=\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in A\right\}$ (where multiplication in R is defined by $x a=$ $\sigma(a) x)$ is a modular LCM domain.

Proof. Let S be the saturated m-system generated by the invariant prime x. Each power series in R may be written as $f x^{k}=x^{k} f^{\prime}$ where $k \in N$ and f and f^{\prime} have order zero and so are either units or prime to S (cf. Proposition 2.4). Also, $R S^{-1} \cong A\langle\langle x, \sigma\rangle$, the corresponding ring of formal Laurent series, which is a PRI domain (Proposition 3.7) hence a 2 -fir, hence a modular $L C M$ domain. Theorem 3.3 (and its left-right analog) apply to show that R is a modular $L C M$ domain.

Remark 3.9. If σ is a monomorphism on the PRI domain A but not an automorphism then the power series ring of Corollary 3.8 need not be modular, although it is still a right $L C M$ domain according to [4, Satz 9]. For example, if A is the commutative polynomial ring $Z_{2}[y]$ over the field of integers modulo 2 and $R=A[[x, 2]]$ where multiplication is defined by $x a=a^{2} x$ then the equation $x y=y^{2} x$ shows that R is not modular, i.e., $(x, y)_{l}=\left(x, y^{2}\right)_{l}=1$ and $[x, y]_{r}=\left[x, y^{2}\right]_{r}=x y$ but $y \notin U_{R}$.

Remark 3.10. It follows that the ring of formal power series $F[[x, y]]$ in two commuting indeterminates over a skew field F is a modular LCM domain. However the same is not true of the polynomial ring $F[x, y]$. If $R=Q[x, y]$ where Q is the field of real quaternions then it can be shown that $(1+i x) R \cap$ $(1+j y) R$ is not principal $\left(i^{2}=j^{2}=-1\right)$; note that it contains both $(1+i x)$ $\left(1+y^{2}\right)$ and $(1+j y)\left(1+x^{2}\right)$.

Remark 3.11. The example just given shows that unlike the commutative case, if A is an $L C M$ domain then $A[x]$ need not be an $L C M$ domain (even if A is a $P I D$). In contrast Corollary 3.8 shows that if A is a $P R I$ domain then $A[[x, \sigma]]$ is an $L C M$ domain as in the commutative case. As an example in [9] shows, if A is an $L C M$ domain then $A[[x]]$ need not be an $L C M$ domain (even if A is commutative).
4. Nagata's theorem for projectivity-UFDS. We recall from [1] that two elements a, a^{\prime} in a ring R are said to be transposed and we write a tr a^{\prime} if $[a, b]_{r}=b a^{\prime}$ and $(a, b)_{l}=1$ for some $b \in R$. The relation tr reduces to similarity in a 2 -fir and to that of being associates in a commutative ring. However, tr is not symmetric: referring to the example in Remark 3.9 we have $x \operatorname{tr} y x$ but $y x$. We therefore define a and a^{\prime} to be projective and we write a pr a^{\prime} if there exist $a_{0}=a, a_{1}, \ldots, a_{n}=a^{\prime}$ where either $a_{i-1} \operatorname{tr} a_{i}$ or $a_{i} \operatorname{tr} a_{i-1}$ for each i. It was shown in $[\mathbf{1}]$ that in a modular right $L C M$ domain the atomic factorization of an element is unique up to order of factors and projective factors. Following the terminology of [6] we say that R is a projectivity-UFD if R is an atomic integral domain in which atomic factorizations are unique
in this sense. The corresponding analog of Nagata's theorem depends on two preliminary results.

Proposition 4.1. Let S be an m-system invariant in R and assume that each element $x \in R^{*} \backslash S$ can be written $x=$ as where $s \in S$ and a is prime to S. Let a be prime to S and $s \in S$.
(i) If $s a=a^{\prime} s$ then $a^{\prime} \operatorname{tr} a$.
(ii) If $a s=s a^{\prime}$ then $a \operatorname{tr} a^{\prime}$, and in either case a^{\prime} is prime to S.

Proof. If $s a=a^{\prime} s$ then $R a \cap R s=R s a$ by the left-right analog of Proposition 2.3; thus $\left(s, a^{\prime}\right)_{1}=1$ (the analog of equation (1)). Also, a^{\prime} is prime to S, for we may write $a^{\prime}=a^{\prime \prime} s^{\prime}$ where $s^{\prime} \in S$ and $a^{\prime \prime}$ is prime to S; then $\left[a^{\prime \prime}, s\right]_{r}=$ $a^{\prime \prime} s=s c$ for some $c \in R$ (Proposition 2.3). We then have $s a \in s c R$, say $s a=$ $s c x$ which shows $x /_{r} a$ but the last equation may be written $a^{\prime \prime} s^{\prime} s=a^{\prime \prime} s x$ which shows $x \in S$; the conclusion is that $x \in U_{R}$ and so $s^{\prime} \in U_{R}$, i.e., a^{\prime} is prime to S. This also shows that $\left[a^{\prime}, s\right]_{r}=s a=a^{\prime} s$ so that $a^{\prime} \operatorname{tr} a$.

The proof of (ii) is shorter: if $\left.s^{\prime}\right|_{r} a^{\prime}$ then $\left.s^{\prime}\right|_{r} s$, and so s^{\prime} is a unit because $\left(s, a^{\prime}\right)_{r}=1$ and this because $[a, s]_{r}=a s=s a^{\prime}$, by Proposition 2.3; therefore a^{\prime} is prime to S and $a \operatorname{tr} a^{\prime}$.

The proof of (i) in Proposition 2.4 is quite short if we assume that S is generated by invariant primes in place of the " $x=a s$ " hypothesis. However, the present form yields the following.

Corollary 4.2. Let S be an m-system invariant in R and assume that each element $x \in R^{*} \backslash S$ can be written $x=$ as where $s \in S$ and a is prime to S. Then the primes of S are primes of R.

Proof. If p is a prime of S and $p /\left(a_{1} s_{1}\right)\left(a_{2} s_{2}\right)$ where $s_{i} \in S$ and a_{i} are prime to S then writing $s_{1} a_{2}=a_{2}{ }^{\prime} s_{1}$ we have $a_{2}{ }^{\prime}$ and therefore $a_{1} a_{2}{ }^{\prime}$ prime to S (Proposition 4.1 and Proposition 2.5). Therefore $p / s_{1} s_{2}$ and so p / s_{1} or p / s_{2} as desired.

Proposition 4.3. Let S be an m-system invariant in R and let $K=R S^{-1}$. Assume each element $x \in R^{*} \backslash S$ can be written $x=$ as where $s \in S$ and a is prime to S. If $a, a_{1} \in R$ are prime to S and $a \operatorname{pr}_{K} a_{1}$ then $a \operatorname{pr}_{R} a_{1}$.

Proof. We may assume that $a \operatorname{tr}_{K} a_{1}$; thus $a K \cap b K=b a_{1} K, a K \vee b K=K$ for some $b \in K$. Let $b=b_{1} s_{2} s_{1}^{-1}$ where $s_{i} \in S$ and b_{1} is prime to S; let $a_{1} s_{1}=$ $s_{1} a_{2}, s_{2} a_{2}=a_{3} s_{2}$ where the a_{i} are prime to S and $a_{i} \operatorname{pr}_{R} a_{j}$ by Proposition 4.1. Applying Propositions 2.2 and 2.3 we have $a R \cap b_{1} R=a K \cap b_{1} K \cap R=$ $b a_{1} K \cap R=b_{1} a_{3} K \cap R=b_{1} a_{3} R$, and also $a R \vee b_{1} R=R$ (any common left factor would be a unit in K hence in S). We conclude that a $\operatorname{tr}_{R} a_{3}$ and so a $\operatorname{pr}_{R} a_{1}$.

We can now give the following analog of Nagata's theorem for projectivity$U F D$ s using the proof of a general result of [6].

Theorem 4.4. Let R be an atomic integral domain and let S be an m-system generated by invariant primes of R. If $K=R S^{-1}$ is a projectivity-UFD, then so is R.

Proof. Proposition 3.4 shows that Proposition 4.3 applies. Let $x=a_{1} \ldots a_{n}=$ $b_{1} \ldots b_{m}$ be two atomic factorizations of x. If some a_{i} is an invariant prime then it divides and is therefore associated to some b_{j}; these may be brought to the right (Proposition 4.1) and cancelled and we then apply induction. Thus we may assume that no a_{i} or b_{j} is an invariant prime; then these are all prime to S and consequently atoms in K. Therefore $n=m$ and $a_{i} \operatorname{pr}_{K} b_{\pi(i)}$ for some permutation π of the subscripts, and so $a_{i} \operatorname{pr}_{R} b_{\pi(i)}$ by Proposition 4.3.

For an atomic integral domain R with unique factorization monoid S (i.e., S generated by invariant primes of S) the hypothesis that S be generated by primes of R is equivalent to the hypothesis that each element $x \in R^{*} \backslash S$ can be written $x=a s$ for $s \in S$ and a prime to S in view of Corollary 4.2 and Proposition 3.4.

References

1. R. A. Beauregard, Right LCM domains, Proc. Amer. Math. Soc. 30 (1971), 1-7.
2. __ Right quotient rings of a right LCM domain, Can. J. Math. 24 (1972), 983-988.
3. -_ Right bounded factors in an LCM domain, Trans. Amer. Math. Soc. 200 (1974), 251-266.
4. H. H. Brungs, Ringe mit eindeutiger Factorzerlegung, J. Reine Angew. Math. 236 (1969), 43-66.
5. P. M. Cohn, Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109 (1963), 313-331.
6. -_Unique factorization domains, Amer. Math. Monthly 80 (1973), 1-18.
7. R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
8. M. Nagata, A remark on the unique factorization theorem, J. Math. Soc. Japan 9 (1957), 143-145.
9. P. Samuel, On unique factorization domains, Ill. J. Math. 5 (1961), 1-17.

University of Rhode Island, Kingston, Rhode Island

[^0]: Received February 18, 1976.

