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Abstract We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based
on ideas of Kislyakov and the Kahane–Salem–Zygmund inequality. As a by-product, we show various
multiplier theorems for spaces of trigonometric polynomials on the n-dimensional torus Tn or Boolean
cubes {−1,1}N . Our more abstract approach based on local Banach space theory has the advantage that
it allows to consider more general compact abelian groups instead of only the multidimensional torus.
As an application, we show that various recent �1-multiplier theorems for trigonometric polynomials
in several variables or ordinary Dirichlet series may be proved without the Kahane–Salem–Zygmund
inequality.
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1. Introduction

Let T be the torus in the complex plane, that is, the compact abelian group of all z ∈ C

with |z|= 1, which carries the normalised Lebesgue measure ν on T as its Haar measure.
By T

∞, we denote the countable product of T, which, again, forms a compact abelian

group (the Haar measure is the countable product of ν), and identify its dual group with

Z
(N), all finite multi indices α ∈ Z

n, n ∈ N. We write N
(N)
0 for all α ∈ Z

(N) with entries in
N0 := N∪{0}.
As usual, H∞(T∞) stands for the Banach space of all functions f ∈L∞(T∞), such that

f̂(α) = 0 for all α= (αi) ∈ Z
(N) with αj < 0 for some j. We call H∞(T∞) Hardy space on
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the infinite dimensional torus and denote its closed subspace of all continuous functions
by CA(T∞).

A sequence ξ = (ξα)α∈N
(N)
0

of scalars is a bounded �1(N
(N)
0 )-multiplier of CA(T∞),

whenever the mapping Mξ : C
A(T∞)→ �1(N

(N)
0 ) given by:

Mξ(f) :=
(
f̂(α)ξα

)
α∈N

(N)
0
, f ∈ CA(T∞)

is bounded. The following necessary condition for such multipliers is due to Kislyakov

[15, Theorem 6], and it, in fact, is the main motivation of this paper.

Theorem 1.1. Let ξ = (ξα)α∈N
(N)
0

be a bounded �1(N
(N)
0 )-multiplier of CA(T∞). Then:

sup
n,d∈N

1√
n log(1+dn)

( ∑
α∈Nn

0 : max{α1,...,αn}≤d

|ξα|2
)1/2

<∞. (1.1)

Inspired by this result, in particular, the techniques from local Banach space theory
which Kislyakov uses to prove it, we study the following more general (but also more

vague) question:

Let G be a compact abelian group with Haar measure ν and Γ a subset of characters in

the dual group Ĝ. Moreover, let X(Γ) be a Banach sequence space over the set Γ. A (real
or complex) sequence ξ = (ξγ)γ∈Γ is an X(Γ)-multiplier of a closed subspace V ⊂ Lp(G)

whenever:

(f̂(γ)ξγ)γ∈Γ ∈X(Γ), f ∈ V.

The problem then is to find necessary and sufficient conditions for such X(Γ)-multipliers
of V. Our applications mainly focus on multiplier theorems for the n-dimensional torus

T
n, its Boolean counterpart, the n-dimensional Boolean cube {−1,1}n, as well as their

countable counterparts T∞ := T
N and {−1,1}∞ := {−1,1}N.

Observe that by a simple closed graph argument, the study of X(Γ)-multipliers for

V ⊂ L∞(G) means to study concrete inequalities: ξ is an X(Γ)-multiplier for V ⊂ L∞(G)

if and only if there is a constant C = C(ξ) > 0, such that:∑
γ∈Γ

|f̂(γ)ξγ | ≤ C‖f‖∞, f ∈ V.

We note that, only in very few cases, a full description of the set of all X -multipliers ξ of
V ⊂ L∞(G) is possible. In most of our applications, we are able to give necessary and/or

sufficient conditions in terms of the asymptotic decay of ξ.

In the first section, we show that Theorem 1.1 is in fact a consequence of the Kahane–
Salem–Zygmund inequality, and in Theorem 3.2 and Corollary 3.3, we extend Kislyakov’s

multiplier theorem to certain analytic subspaces of L∞(T∞) instead of CA(T∞). It should

be mentioned here that Kislyakov’s approach to Theorem 1.1 is different, and in the second
and third sections, we analyse his cycle of ideas from local Banach space theory — the

main advantage is that they apply to more general compact abelian groups than only

multidimensional tori.

https://doi.org/10.1017/S1474748022000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000391


Variants of a multiplier theorem of Kislyakov 349

The crucial link, which makes this possible, comes from Lemma 4.1 showing that, given
a compact abelian group G, a finite subset Γ in Ĝ and a Banach space F := (CΓ,‖ ·‖), for
every finite sequence ξ = (ξγ)γ∈Γ, one has:

π2(Mξ : PΓ → F ) = sup
‖μ‖�2(Γ)≤1

‖(μγξγ)γ∈Γ‖F ,

where PΓ stands for the Banach space of all finite polynomials
∑

γ∈Γ ξγγ endowed with
the sup norm, Mξ for the multiplier, which assigns to every finite polynomial

∑
γ∈Γμγγ,

the finite sequence (μγξγ)γ∈Γ ∈ F and π2(Mξ) for the 2-summing norm of this operator.

In the Theorems 4.4, 5.2 and 5.5, fundamental knowledge on 2-summing operators leads
to improvements of Theorem 1.1.

In the last section, we apply our results to study multiplier theorems for spaces of

functions on multidimensional tori and Boolean cubes. We focus on topics like Sidon

constants, Bohr radii, monomial convergence, as well as Dirichlet series.
Using Kislyakov’s ideas, we prove new results, but we also reprove recent known results,

which were originally proved through the use of the Kahane–Salem–Zygmund inequality.

At first glance, this might look surprising, but on the other hand, we already remarked
that our starting point, Theorem 1.1, is a consequence of the Kahane–Salem–Zygmund

inequality, and, conversely, we show in the recent paper [10] that Kislyakov’s ideas are of

great relevance within a further study of the Kahane–Salem–Zygmund inequality.

2. Preliminaries

Banach spaces. Let X, Y be Banach spaces. We denote by BX the closed unit ball of

X and by X∗ its dual Banach space. If we write X ↪→ Y , then we assume that X ⊂ Y
and the inclusion map id: X → Y is bounded. If X = Y with equality of norms, then we

write X ∼= Y . As usual, C(K) denotes the Banach space of all continuous functions on a

compact Hausdorff space K, with the sup norm ‖ · ‖∞.
We denote by L(X,Y ) the space of all bounded linear operators T : X → Y with the

usual operator norm. An operator T ∈ L(X,Y ) is said to be an isomorphic embedding of

X into Y whenever there exists C > 0, such that ‖Tx‖Y ≥C‖x‖X for every x ∈X. Thus,
T−1 is an isomorphism from (TX,‖ ·‖Y ) onto X. Given a real number 1≤ λ <∞, we say

that Xλ-embeds into Y whenever there exists an isomorphic embedding T of X into Y,

such that ‖T‖‖T−1‖ ≤ λ. In this case, we call T a λ-embedding of X into Y.

Let Γ be a nonempty set. We denote by �∞(Γ) the space of all bounded functions on
Γ, endowed with the sup norm. For any ξ,η ∈ �∞(Γ), we denote by ξ · η their pointwise

product. Let E and F be linear subspaces of KΓ, where K = R or K = C. Any ξ ∈ K
Γ,

such that ξη := ξ · η ∈ F for all η ∈ E, defines a diagonal operator Dξ : E → F given by
Dξ(η) := ξη for all η ∈E. We write D(E,F ) for the vector space of all such maps. If E and

F are Banach spaces, such that the inclusion maps from E and F into K
Γ are continuous,

then D(E,F ) equipped with the norm:

‖Dξ‖D(E,F ) := sup
‖(ηγ)‖E≤1

‖(ξγηγ)‖F

is a Banach space.
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We apply standard methods from local Banach space theory. Recall that a Banach
space X has cotype 2 whenever there is a constant C, such that for each choice of finitely

many x1, . . . ,xn ∈X: ( n∑
k=1

‖xk‖2
) 1

2 ≤ C
(∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥2

dt
) 1

2

,

where rk denotes the kth Rademacher function. The least possible value of this constant
is denoted C2(X).

An operator T : X → Y between Banach spaces is said to be absolutely p-summing

(p-summing for short) with 1 ≤ p <∞ if there is a constant C > 0, such that, for each
n ∈ N and for all sequences (xk)

n
k=1 in X, we have:( n∑

k=1

‖Txk‖pY
)1/p

≤ C sup
x∗∈BX∗

( n∑
k=1

|x∗(xk)|p
) 1

p

.

The least such constant C is denoted by πp(T : X → Y ) (πp(T ) for short) and is called
the absolutely p-summing norm of T. We refer to the theory of p-summing operators to

[13] and [19].

We recall that if K is a compact Hausdorff space, X a closed subspace of C(K) and Y
a Banach space, then the so-called Pietsch domination theorem states that T : X → Y is

p-summing if and only if there is a constant C and a probability Borel measure μ on K,

such that:

‖Tf‖Y ≤ C
(∫

K

|f |p dμ
) 1

p

, f ∈X.

In that case, πp(T ) coincides with the smallest constant C satisfying the previous

inequality.

Compact abelian groups. In the following, we fix some compact abelian group G :=

(G,·). A linear subspace X of KG is said to be translation invariant whenever for every
f ∈X and every h ∈G, the translation fh ∈X, where fh(g) := f(g ·h) for every g ∈G.

As usual, we write Ĝ for the dual group of G (i.e. the set of all continuous characters

on G), and we denote by ν the (normalised) Haar measure on G, a unique translation
invariant regular Borel probability measure. Recall that the translation invariance of ν is

equivalent to the formula:∫
G

f(g)dν(g) =

∫
G

fh(g)dν(g), f ∈ L1(G,ν), h ∈G.

The following well-known result from [18] is central for our purposes; for the sake of

completeness, we include a simple proof.

Lemma 2.1. Let G be a compact abelian group with normalised Haar measure ν, let X be

a closed translation invariant subspace of C(G) and let Y be an arbitrary Banach space.

Suppose that T : X → Y is a p-summing operator which satisfies that ‖Tfh‖Y = ‖Tf‖Y
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for all f ∈X, h ∈G. Then:

‖Tf‖Y ≤ πp(T )
(∫

G

|f(g)|p dν(g)
)1/p

, f ∈X.

Proof. Pietsch’s domination theorem combined with Fubini’s theorem show that there

is a probability Borel measure μ on G, such that for all f ∈X:

‖Tf‖pY =

∫
G

‖Tfh‖pY dν(h)≤ πp(T )
p

∫
G

(∫
G

|fh(g)|p dμ(g)
)
dν(h)

= πp(T )
p

∫
G

(∫
G

|fh(g)|p dν(h)
)
dμ(g).

Since the Haar measure ν is translation invariant, it follows that:

‖Tf‖pY = πp(T )
p

∫
G

(∫
G

|fg(h)|p dν(h)
)
dμ(g)

= πp(T )
p

∫
G

(∫
G

|f(h)|p dν(h)
)
dμ(g) = πp(T )

p

∫
G

|f(h)|p dν(h).

As usual, the Fourier transform of f ∈ L1(G,ν) is defined by:

f̂(γ) :=

∫
G

f(g)γ(g)dν, γ ∈ Ĝ.

Let X be any subspace of L1(G,ν) and Γ⊂ Ĝ a nonempty subset. Then:

XΓ := {f ∈X : f̂(γ) = 0 for all γ /∈ Γ}.

Clearly, XΓ is a translation invariant subspace of X. Note that for X = C(G) or X =
Lp(G,ν) with 1≤ p <∞, every translation invariant subspace of X has the form XΓ for

some Γ⊂ Ĝ.

In what follows, for simplicity of notation, we write CΓ instead of C(G)Γ. By ĈΓ ⊂K
Γ,

we denote the linear space of all (f̂(γ))γ∈Γ, f ∈ CΓ, which equipped with the norm:

‖(f̂(γ))γ∈Γ‖̂CΓ
:= ‖f‖C(G), f ∈ CΓ

forms a Banach space. Throughout the paper, if ξ ∈ K
Γ and F = (KΓ,‖ · ‖) are Banach

spaces, then the mapping Mξ : CΓ → F (which we call multiplier) is given by:

Mξf := (ξγ f̂(γ))γ∈Γ, f ∈ CΓ.

The space of all such multipliers is denoted by M(CΓ,F ), and it obviously identifies with

the space D(ĈΓ,F ) of all diagonal operators from ĈΓ into F.
A subset Γ of Ĝ is called a p-Sidon set (1 ≤ p < ∞) if there is a constant C, such

that: (∑
γ∈Γ

|f̂(γ)|p
) 1

p ≤ C‖f‖∞, f ∈ CΓ.

The least possible value of this constant is denoted Sp(Γ) and called the p-Sidon constant

of G.
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Let {−1,1} be the compact discrete group with the Haar measure σ1({−1}) = σ1({1}) =
1/2, and let T be a unit circle equipped with normalised Lebesgue measure. We will

primarily be interested in the case when G = T
n, G = {−1,1}N , G = {−1,1}∞ or

G= T
∞.

The countable product {−1,1}∞ is a compact abelian group with the pointwise product

and the product topology. The Haar measure on {−1,1}∞ is then just the countable
product of the measure σ1. Clearly, the dual group of {−1,1}N is the set {χS : S ∈
Pfin(N)}, where S ∈Pfin(N) means that |S| := card(S)<∞ and χS : {−1,1}∞ →{−1,1}
is defined by χS(x) =

∏
n∈S xn for all x= (xn)n∈N in {−1,1}∞.

The compact abelian group T
∞ carries the pointwise product, the product topology

and the product of the normalised Lebesgue measure on T
∞ as its Haar measure. Denote

by Z
(N) the set of all sequences α = (α1, . . . ,αn, . . .) of integers which vanish for n large

enough. Then we have T̂∞ = Z
(N), where each α ∈ Z

(N) is identified with the character

γ(z) = zα :=
∏∞

j=1 z
αj , z ∈ T

∞.

The subset of all sequences α ∈ Z
(N), for which all entries are either 0 or natural, is

denoted by N
(N)
0 . We write Λ≤(m,n)⊂N

(N)
0 for the subset of all α’s of length n and with

order |α|=
∑n

j=1αj ≤m, whereas Λ=(m,n) consists of all α’s of length n but with order

|α|=m.

Trigonometric polynomials. Given n ∈ N and m ∈ N0, we denote T (m,n) the set

of all multi indices {α ∈ Z
n : |α| ≤ m} and T≤m(Tn) the space of all trigonometric

polynomials:

P (z) =
∑

α∈T (m,n)

cαz
α, z ∈ T

n

on the n-dimensional torus Tn which have degree deg(P ) =max{|α|; cα �=0}≤m. Clearly,

T≤m(Tn) together with the sup norm ‖ · ‖Tn (also denoted by ‖ · ‖∞) form a Banach
space.

By P≤m(Tn), we denote the closed subspace of T≤m(Tn) of all trigonometric analytic

polynomials P (z) =
∑

α∈Λ≤(m,n) cαz
α for all z ∈ T

n. The space P=m(Tn) is defined
to be the closed subspace of all m-homogeneous polynomials P given by P (z) =∑

α∈Λ=(m,n) cαz
α.

Moreover, we are going to make use of the so-called ‘hypercontractive’ Bohnenblust–
Hille inequality: There is some universal constant C > 0, such that, for each m,n and

P ∈ P≤m(Tn): ( ∑
α∈Λ≤(m,n)

|P̂ (α)| 2m
m+1

)m+1
2m ≤ C

√
m logm‖P‖∞ ; (2.1)

we refer to [5] (original form), [8] (hypercontractive form), [2] (subexponential form)

and within the context of Dirichlet series and holomorphic functions in infinitely many
variables to the monograph [9].

A well-known consequence of Bernstein’s inequality (see, e.g. [20, Corollary 5.2.3])

is that, for all positive integers n,m, there is a subset F ⊂ T
n of cardinality card
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F ≤ (1+20m)n, such that, for every P ∈ T≤m(Tn), we have:

sup
z∈Tn

|P (z)| ≤ 2 sup
z∈F

|P (z)|.

In other terms, for N = (1+20m)n, the linear mapping:

I : T≤m(Tn)→ �N∞, I(P ) := (P (z))z∈F (2.2)

is a 2-embedding of T≤m(Tn) into �N∞.

3. A probabilistic proof

We use the famous Kahane–Salem–Zygmund inequality (the KSZ-inequality, see, e.g. [9,
10], [14] or [20]) to improve Theorem 1.1. Our argument is different from the original

proof of Theorem 1.1, which we are going to analyse in the next section.

Theorem 3.1. Let (Ω,A,P) be a probability measure space. Then there is a positive
constant C, such that, for each m,n ∈ N and for every trigonometric random polynomial

P (ω,z) =
∑

α∈T (m,n) εα(ω)cαz
α, (ω,z) ∈ Ω×T

n, one has:∫
Ω

‖P (ω,·)‖T≤m(Tn) dP(ω)≤ C
√
n log(1+m)‖(cα)‖�2(T (m,n)),

where (εα)α∈T (m,n) is a sequence of Bernoulli variables on (Ω,A,P).

As we will see in Theorem 3.3, the following consequence of the KSZ-inequality gives

Kislyakov’s multiplier Theorem 1.1 as a particular case.

Theorem 3.2. There is a positive constant C, such that for all n,m ∈ N, all Banach

spaces F = (CT (m,n),‖ · ‖) and for all sequences ξ = (ξα)α∈T (m,n):

sup
‖μ‖�2(T (m,n))≤1

‖(μαξα)α∈T (m,n)‖F ≤ C
√

n log(1+m)
∥∥Mξ : T≤m(Tn)→ F

∥∥.
Proof. Let (εα)α∈T (m,n) be a sequence of Bernoulli variables on some probability space

(Ω,A,P), and consider the following three operators:

Rξ : �2(T (m,n))→ F, (cα) �→ (cαξα),

φKSZ : �2(T (m,n))→ L1(P,T≤m(Tn)), (cα) �→
∑

α∈T (m,n)

εα(·)cαzα,

Lξ : L1(P,T≤m(Tn))→ F,
∑

α∈T (m,n)

εα(·)cαzα �→ (cαξα).

Clearly, Rξ = Lξ ◦φKSZ and:

‖Rξ‖= sup
‖μ‖�2(T (m,n))≤1

‖(μαξα)α∈T (m,n)‖F .

Moreover, by the KSZ-inequality from Theorem 3.1, we get:

‖φKSZ‖ ≤ C
√
n log(1+m).
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We claim that:

‖Lξ‖ ≤
∥∥Mξ : T≤m(Tn)→ F

∥∥.
Indeed, given a random polynomial P ∈ L1(P,T≤m(Tn)) given by:

P (ω,z) =
∑

α∈T (m,n)

εα(ω)cαz
α, (ω,z) ∈ Ω×T

n.

Then, for every ω ∈ Ω, we have:

‖(cαξα)‖F ≤
∥∥Dξ : T≤m(Tn)→ F

∥∥∥∥P (ω,·)
∥∥
T≤m(Tn)

.

Now integrating proves the claim. All together yields:

sup
‖μ‖�2(T (m,n))≤1

‖(μαξα)α∈T (m,n)‖F

≤ ‖Lξ‖‖φKSZ‖ ≤ C
√
n log(1+m)

∥∥Mξ : T≤m(Tn)→ F
∥∥,

and so this completes the proof.

Now by Theorem 3.2, we deduce that Kislyakov’s original Theorem 1.1 is a special case

of the following more general result.

Corollary 3.3. Let V be a closed subspace of L∞(T∞). Then for every �1(Z
(N))-multiplier

ξ = (ξα)α∈Z(N) of V, one has:

sup
n,m∈N

1√
n log(1+m)

( ∑
α∈Γ∩T (m,n)

|ξα|2
)1/2

<∞,

where:

Γ =
⋃
f∈V

supp f̂ ⊂ Z
(N).

In particular, every �1(N
(N)
0 )-multiplier of H∞(T∞) satisfies the preceding estimate

whenever we replace Γ∩T (m,n) by Λ≤(m,n) and every �1(N
(N)
0 )-multiplier of CA(T∞)

satisfies the estimate from (1.1).

Proof. Let us prove the first statement. For a fixed ξ = (ξα)α∈Z(N) , we can define a new

sequence ξ′ = (ξ′α)α∈Z(N) with ξ′α = ξα if α ∈ Γ and ξ′α = 0 otherwise. It is clear that ξ

is a �1(Z
(N))-multiplier if and only if so does ξ′. Thus, applying Theorem 3.2 to ξ′, we

immediately conclude the result. For the second statement, note that:( ∑
α∈Nn

0 : max{α1,...,αn}≤m

|ξα|2
) 1

2 ≤
( ∑

|α|≤mn

|ξα|2
) 1

2

≤ C
√

n log(1+mn)
∥∥Mξ : P≤mn(T

n)→ �1(Λ
≤(mn,n))

∥∥
≤ C

√
n log(1+mn)

∥∥Mξ : C
A(Tn)→ �1(N

n
0 )

∥∥,
which completes the argument.
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Note that Corollary 4.5 below recovers the preceding result — using a different
technique of proof with the advantage of slightly more explicit constants.

4. Variants for compact abelian groups

Based on local Banach space theory and inspired by ideas from [15], we improve Theorem

3.2 and its Corollary 3.3. Our more abstract approach has the advantage that it allows

to consider more general compact abelian groups instead of only the multidimensional

torus. The main result here is Theorem 4.4 below.
We start with the following basic lemma which is a simple consequence of Lemma 2.1

and crucial for our purpose.

Lemma 4.1. Let G be a compact abelian group, Γ a finite subset in Ĝ and F := (CΓ,‖·‖)
a Banach space. Then for every ξ = (ξγ)γ∈Γ:

π2(Mξ : CΓ → F ) = ‖Dξ : �2(Γ)→ F‖= sup
‖μ‖�2(Γ)≤1

‖(μγξγ)γ∈Γ‖F .

Proof. The second equality is obvious, and from Lemma 2.1 and the orthogonality of

the characters in L2(ν) (where ν denotes the normalised Haar measure on G), we easily
deduce that:

sup
‖μ‖�2(Γ)≤1

‖(μγξγ)γ∈Γ‖F ≤ π2(Mξ : CΓ → F ).

To see the reverse estimate, note that for every f ∈ CΓ, one has:

‖Mξf‖F = ‖(ξγ f̂(γ))‖F ≤ ‖Dξ : �2(Γ)→ F‖‖(f̂(γ))‖�2(Γ)

= ‖Dξ : �2(Γ)→ F‖
(∫

G

|f(x)|2dν(x)
) 1

2

,

where we have used the Plancherel theorem for groups. Then, Pietsch domination theorem

yields that:

π2(Mξ : CΓ → F )≤ ‖Dξ : �2(Γ)→ F )‖.

As a very first application of the preceding lemma, we obtain an interesting reformula-

tion of Theorem 3.2.

Corollary 4.2. There is C > 0, such that for all n,m ∈ N, all Banach spaces F =

(CT (m,n),‖ · ‖) and all ξ = (ξα)α∈T (m,n):

π2

(
Mξ : T≤m(Tn)→ F

)
≤ C

√
n log(1+m)

∥∥Mξ : T≤m(Tn)→ F
∥∥.

In view of Bernstein’s theorem from (2.2), the next result is a strong extension despite
the cotype assumption. It will allow us to get the Kislyakov type multiplier theorems (in

particular, Theorem 4.4) for compact abelian groups different from the multidimensional

torus.
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Proposition 4.3. Let I : X ↪→ �N∞ be a λ-embedding and F a Banach space. Then for

every operator T : X → F :

π2(T )≤ e2λC2(F )
√
1+ lnN ‖T‖.

Proof. Define for each N ∈N the N -th harmonic number hN :=
∑N

j=1
1
j and the discrete

measure μN on the power set of {1, . . . ,N} given by μN ({j}) := 1
j . for each j ∈ {1, . . . ,N}.

In what follows, we need the elementary observations that logN < hN ≤ 1+ logN and

for every ξ = (ξi)
N
i=1 ∈ C

N :

‖ξ‖�N∞ ≤ e‖ξ‖LhN
(μN ).

Indeed, if ‖ξ‖�N∞ = |ξk| for some k ∈ {1, . . . ,N}, then:

( N∑
j=1

1

j
|ξj |hN

) 1
hN ≥ 1

k1/hN
|ξk|= e

− logk
hN |ξk| ≥ e−

logk
logN |ξk| ≥ e−1 |ξk|.

It is well known that, for every operator S : E→F between Banach spaces and 2≤ p<∞,

one has:

π2(S)≤KpC2(F )πp(S),

where Kp ≤ √
p is the best constant from the right-hand side of Khinchine’s inequality

for Rademacher p-averages (see [19, Theorem 5.15]).
Consider the following obvious factorisation of an operator T : X → F :

T : X
I−→ I(X)

I−1

−→X
T−→ F.

Thus, the above facts combined with the ideal properties of p-summing operators yield:

π2(T )≤ ‖I‖π2(T ◦ I−1)≤ ‖I‖
√

hN C2(F )πhN
(T ◦ I−1)

≤ ‖I‖‖I−1‖‖T‖
√

hN C2(F )πhN
(idI(X))

≤ ‖T‖C2(F )
√
hN λπhN

(id�N∞).

Since ‖id : LhN
(μN )→ �N∞‖ ≤ e, it follows that:

πhN
(id�N∞)≤ eπhN

(id : �N∞ → LhN
(μN )) = eh

1
hN

N ≤ e2.

The following theorem is the main result of this section, and we want to mention once

again that its proof is very much inspired by [15, Theorem 6].

Theorem 4.4. Let G be a compact abelian group and Γ a finite subset in Ĝ. Assume
that I : CΓ → �N∞ is a λ-embedding and F := (CΓ,‖ · ‖) a Banach space. Then, for every

ξ = (ξγ)γ∈Γ ∈ C
Γ, one has:

sup
‖μ‖�2(Γ)≤1

‖(μγξγ)‖F ≤ e2λC2(F )
√

1+ logN
∥∥Mξ : CΓ → F

∥∥.
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Comparing with Theorem 3.2, we see that the price we pay for the fact that the theorem
applies to more general groups than the multidimensional tori is that the estimate involves

the cotype constant of F.

Proof. By Lemma 4.3 and Bernstein’s embedding from (2.2), we get:

π2(Mξ : CΓ → F )≤ e2λC2(F )
√
1+ logN ‖Mξ : CΓ → F‖.

Thus, it follows from Lemma 2.1 that for all f ∈ CΓ:

‖(f̂(γ)ξγ)‖F ≤ e2λC2(F )
√
1+ logN ‖Mξ : CΓ → F‖

(∫
G

|f(g)|2 dν
) 1

2

= e2λC2(F )
√
1+ logN ‖Mξ : CΓ → F‖

(∑
γ∈Γ

|f̂(γ)|2
) 1

2

.

Then the conclusion follows by duality.

We finish with the following improvement of Corollary 3.3; its proof is an immediate

consequence of Theorem 4.4, Bernstein’s embedding from (2.2), the fact that C2(�p(Z
n))≤√

2 for 1≤ p≤ 2 and, that by Hölder’s inequality, we have:(∑
γ∈Γ

|ξγ |r
)1/r

= sup
‖μ‖�2(Γ)≤1

‖(μγξγ)‖�p(Γ), (ξγ) ∈ �r(Γ)

for all 1≤ p≤ 2 with 1
r = 1

p −
1
2 .

Corollary 4.5. Let 1 ≤ p ≤ 2 and 1
r = 1

p −
1
2 . Then, for each n,m ∈ N, and for every

ξ = (ξα)α∈Zn,|α|≤m, the following estimate holds:( ∑
α∈Zn,|α|≤m

|ξα|r
)1/r

≤ 2
√
2e2

√
n log(1+20m)

∥∥Mξ : T≤m(Tn)→ �p
(
{α ∈ Z

n : |α| ≤m}
)∥∥.

The following remarks suggest that this corollary leaves some space for improvements.

Given 1≤ p <∞, consider again the multiplication operator:

Mξ : P≤m(Tn)→ �p(Λ
≤(m,n)), f �→

(
f̂(α)ξα

)
α∈Λ≤(m,n)

.

If 2≤ p <∞, then:

sup
α∈Λ≤(m,n)

|ξα|= ‖Mξ‖,

whereas for 2m
m+1 ≤ p≤ 2 by the hypercontractive BH-inequality (2.1):

sup
α∈Λ≤(m,n)

|ξα| ≤ ‖Mξ‖ ≤ Cm sup
α∈Λ≤(m,n)

|ξα|.

Hence, in view of Corollary 4.5, the complex interpolation between the extreme cases

�1(Γ) and � 2m
m+1

(Γ) suggests the following conjecture.
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Conjecture 4.6. Let 1≤ p≤ 2m
m+1 and 1

s =
m

m−1

(
1
p −

m+1
2m

)
. Then, there exists a universal

constant C > 0, such that for each n,m ∈ N, and for every ξ = (ξα)α∈Λ≤(m,n),( ∑
α∈Λ≤(m,n)

|ξα|s
)1/s

≤ C
m
s (n log(1+20m))

1
s ‖Mξ : P≤m(Tn)→ �p(Λ

≤(m,n))‖.

5. Variants by interpolation

The purpose of this section is to prove two variants of Kislyakov’s Theorem 3.3, both
based on Theorem 4.4 and interpolation methods. We at first recall some notation from

interpolation theory (see, e.g. [3]). The pair �X = (X0,X1) of Banach spaces is called a

Banach couple if there exists a Hausdorff topological vector space X , such that Xj ↪→X ,

j = 0,1. A mapping F , acting on the class of all Banach couples, is called an interpolation
functor if for every couple �X = (X0,X1), F( �X) is a Banach space which is intermediate

with respect to �X (i.e. X0∩X1 ⊂F( �X)⊂X0+X1) and T : F( �X)→F(�Y ) is bounded for

every operator T : �X → �Y (meaning T : X0+X1 → Y0+Y1 is linear and its restrictions
T : Xj → Yj , j = 0,1 are defined and bounded). If, additionally, there is a constant C > 0,

such that for each T : �X → �Y :

‖T : F( �X)→F(�Y )‖ ≤ C ‖T : �X → �Y ‖,

where ‖T : �X → �Y ‖ := max{‖T : X0 → Y0‖, ‖T : X1 → Y1‖}, then F is called bounded.

Clearly, C ≥ 1, and if C = 1, then F is called exact.

For an exact interpolation functor F , we define the fundamental function ψF of
F by:

ψF (s,t) = sup‖T : F( �X)→F(�Y )‖, s,t > 0,

where the supremum is taken over all Banach couples �X, �Y and all operators T : �X → �Y ,

such that ‖T : X0 → Y0‖ ≤ s and ‖T : X1 → Y1‖ ≤ t.

Theorem 5.1. Let G be a compact abelian group and Γ a finite subset in Ĝ. Suppose

that F is an exact interpolation functor with the fundamental function ψF . Given two

norms ‖ · ‖1 and ‖ · ‖2 on C
Γ define:

F := F
(
(CΓ,‖ · ‖1),(CΓ,‖ · ‖2)

)
.

Then, for every (ξγ)γ∈Γ ∈ C
Γ, one has:

sup
‖μ‖�2(Γ)≤1

‖(μγξγ)γ∈Γ‖F

≤ ψF (1,1)ψF
(
π2(Mξ : CΓ → (CΓ,‖ · ‖1)), π2(Mξ : CΓ → (CΓ,‖ · ‖2))

)
.

Note that Lemma 4.1 shows:

π2(Mξ : CΓ → (CΓ,‖ · ‖i)) = ‖Dξ : �2(Γ)→ (CΓ,‖ · ‖i)‖, i= 1,2.

Hence, the proof of Theorem 5.1 is straightforward: It follows from the definition of the

function ψF that, for any operator T : �X → �Y between the Banach couples �X = (X0,X1)
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and �Y = (Y0,Y1), we have:∥∥T : F( �X)→F(�Y )
∥∥ ≤ ψF

(
‖T : X0 → Y0‖, ‖T : X1 → Y1‖

)
.

In particular, this implies that, for any Banach space Y,

‖id : Y →F(Y ,Y )‖ ≤ ψF (1,1).

5.1. Variant I

Theorem 5.2. Let G be a compact abelian group, Γ a finite subset in Ĝ and I : CΓ → �N∞
a λ-embedding. Suppose that F is an exact interpolation functor with the fundamental

function ψF , and let:

X = F(�1(Γ),�2(Γ)).

Then, for every ξ = (ξγ)γ∈Γ, one has:

sup
‖μ‖�2(Γ)≤1

‖(ξγμγ)γ∈Γ‖X ≤K ψF
(
‖Mξ : CΓ → �1(Γ)‖, ‖ξ‖�∞(Γ)

)
ψF

(√
1+ logN,1

)
,

where K = e2λ
√
2 ψF (1,1).

Proof. Fix ξ = (ξγ) ∈ C
Γ. Since �1(Γ) has cotype 2 with C2(�1(Γ) ≤

√
2, it follows from

Proposition 4.3 that:

π2(Mξ : CΓ → �1(Γ))≤ e2
√
2λ

√
1+ lnN ‖Mξ : CΓ → �1(Γ)‖.

Now observe that for any finite sequence (fi)
N
i=1 in CΓ, we have (where for a given g ∈G,

the Dirac functional δg ∈BC(G)∗ is given by δg(f) := f(g) for all f ∈ C(G)):

N∑
i=1

‖Mξfi‖2�2(Γ) ≤ ‖ξ‖∞
∫
G

N∑
i=1

|fi(g)|2 dν

≤ ‖ξ‖∞ sup
g∈G

N∑
i=1

|δg(fi)|2 ≤ ‖ξ‖∞ sup
‖x∗‖C(G)∗≤1

N∑
i=1

|x∗(fi)|2.

This shows that π2(Mξ : CΓ → �2(Γ)) ≤ ‖ξ‖∞. Since ‖ξ‖∞ = ‖Mξ : CΓ → �2(Γ)‖ ≤
π2(Mξ : CΓ → �2(Γ)), we get:

π2(Mξ : CΓ → �2(Γ)) = ‖ξ‖∞. (5.1)

Applying Proposition 5.1, we conclude (by submultiplicativity of ψF ) that:

π2(Mξ : CΓ →X)≤ ψF (1,1) ψF
(
π2(Mξ : CΓ → �1(Γ)),π2(Mξ : CΓ → �2(Γ)

)
≤KψF

(√
1+ logN,1

)
ψF

(
‖Mξ : CΓ → �1(Γ)‖,‖ξ‖∞

)
.

This estimate combined with Lemma 2.1 yield the required statement.

In order to see a first consequence, we apply the preceding theorem to G = T
n and

CΓ = P≤m(Tn) with Γ := Λ≤(m,n). For simplicity of notation, we for 1 ≤ p ≤ ∞ write

below �p instead of �p(Λ
≤(m,n)).
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Corollary 5.3. Let 1
pθ

= (1− θ)+ θ
2 for θ ∈ (0,1). Then for every ξ = (ξγ) ∈ C

Λ≤(m,n),

one has:

sup
‖(μγ)‖�2

≤1

∥∥(μγξγ)
∥∥
�pθ

≤ 2e2
√
2
(√

n log(1+20m)‖Mξ : P≤m(Tn)→ �1‖
)1−θ‖ξ‖θ∞.

In particular, one has:

sup
‖(μγ)‖�2

≤1

∥∥(μγξγ)
∥∥
� 2m
m+1

≤ 2e2
√
2
(√

n(log(1+20m)‖Mξ : P≤m(Tn)→ �1‖
) 1

m (‖ξ‖∞)1−
1
m .

Proof. It is well known that the complex method Fθ := [ · ]θ of interpolation has

the fundamental function ψF (s,t) = s1−θtθ for all s,t > 0. Applying the well-known
interpolation formula for couples of �p-spaces, we get:[

�1,�2
]
θ
∼= �pθ

.

Since by Bernstein’s result from (2.2) there exists a 2-embedding of P≤m(Tn) into �N∞
with N = (1+20m)n, Theorem 5.2 gives the first conclusion. To get the second assertion,

we take θ = 1− 1
m .

For another seemingly interesting consequence, we recall the definition of the abstract

Lorentz space Λϕ( �X).

For a given function ϕ∈Q and Banach couple �X = (X0,X1), the abstract Lorentz space

Λϕ( �X) is defined to be the space of all x ∈X0+X1, such that:

x=
∑
n∈Z

xn, (convergence in X0+X1),

where xn ∈X0 ∩X1 and
∑

n∈Z
ϕ(‖xn‖X0

,‖xn‖X1
) <∞. The norm on Λϕ( �X) is defined

by:

‖x‖Λϕ( 	X) = inf
∑
n∈Z

ϕ(‖xn‖X0
,‖xn‖X1

),

where the infimum is taken over all series described above. It is easily verified that Λϕ

defines an exact interpolation functor.

Corollary 5.4. Under the notation and assumption of Theorem 5.2, we get for ϕ := ψF :∥∥id : Λϕ(M(CΓ,�1(Γ)),�∞(Γ))→D(�2(Γ),F(�1(Γ),�2(Γ))
∥∥ ≤Kϕ

(√
1+ logN,1

)
.

Proof. From Theorem 5.2, for any ξ = (ξγ) ∈ C
Γ, we get that:

‖Dξ : �2(Γ)→F(�1(Γ),�2(Γ))‖
≤K ϕ

(√
1+ logN,1

)
ϕ(‖ξ‖M(CΓ,�1(Γ)),‖ξ‖�∞(Γ)).

By the construction of the abstract Lorentz space Λϕ, this completes the proof.
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5.2. Variant II

Theorem 5.5. Let F be an exact interpolation functor with a fundamental function ψF
and for m,n ∈ N:

X = F
(
�1(Λ

≤(m,n)),� 2m
m+1

(Λ≤(m,n))
)
.

Then for every ξ = (ξα)α∈Λ(m,n), one has:

sup
‖μ‖

�2(Λ≤(m,n))
≤1

‖(ξαμα)α∈Λ≤(m,n)‖X ≤ C(m)
√
n‖Mξ : P≤m(Tn)→ �1(Λ

≤(m,n))‖,

where C(m) = e22
√
2 ψF (1,1) ψF

(√
log(1+20m),1

)
.

In order to prove this result (see the end of this subsection), we apply Theorem 5.1 in

combination with Proposition 4.3 and the following lemma.

Lemma 5.6. For each m,n ∈ N and for every ξ ∈ C
Λ≤(m,n),

π2

(
Mξ : P≤m(Tn)→ � 2m

m+1
(Λ≤(m,n)

)
≤ |Λ≤(m,n)| 1

2m ‖ξ‖∞.

In particular, if ξ = 1,√
1+

n−1

m
≤ π2

(
Mξ : P≤m(Tn)→ � 2m

m+1
(Λ≤(m,n)

)
= |Λ≤(m,n)| 1

2m ≤ 2
√
2e

√
1+

n−1

m
.

Proof. We apply Lemma 4.1 in the case G = T
n with Γ = Λ≤(m,n) ⊂ Ĝ = Z

n and

F = � 2m
m+1

(Λ≤(m,n)). Clearly, for each m,n ∈ N, we have:∥∥id : �2(Λ≤(m,n))→ � 2m
m+1

(Λ≤(m,n))
∥∥

= |Λ≤(m,n)| 1
2m =

( m∑
k=0

(
k+n−1

k

)) 1
2m

≤ (m+1)
1

2m

(
m+n−1

m

) 1
2m

.

Applying the well-known quantitative version of Stirling’s formula yields:(
m+n−1

m

)
≤ 2em

(
1+

n−1

m

)m

.

Now observe that, for any x≥ y > z > 0, x−z
y−z ≥ x

y and whence:(
N

k

)
=

N

k

N −1

k−1
· · ·N −k+1

1
≥

(N

k

)k

, 1≤ k ≤N.

In consequence, we deduce that:√
1+

n−1

m
≤ |Λ≤(m,n)| 1

2m ≤ 2
√
2e

√
1+

n−1

m
,

and this gives the required estimates.

Finally, we are prepared to give the proof of Theorem 5.5.
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Proof. (of Theorem 5.5). Note that:

‖ξ‖∞ ≤ β := ‖Mξ : P≤m(Tn → �1(Λ
≤(m,n))‖.

Since �1(Λ
≤(m,n) has cotype 2 with C2(�1(Λ

≤(m,n)) ≤
√
2, it follows from Proposition

4.3 and the embedding from (2.2) that:

π2(Mξ : P≤m(Tn)→ �1(Λ
≤(m,n)))≤ e22

√
2β

√
n log(1+20m).

From Lemma 5.6 we know that:

π2(Mξ : P≤m(Tn)→ � 2m
m+1

(Λ≤(m,n))≤ 2
√
2e
√
nβ.

Applying Theorem 5.1, we conclude (by submulitiplicativity of ψF ) that with C =

ψF (1,1), it holds that:

sup
‖μ‖

�2(Λ≤(m,n))
≤1

‖(μγξγ)γ∈Γ‖F

≤ CψF
(
π2(Mξ : P≤m(Tn)→ �1(Λ

≤(m,n))),π2(Mξ : P≤m(Tn)→ �2(Λ
≤(m,n))

)
≤ CψF

(
e22

√
2
√
n log(1+20m)β,2

√
2e
√
nβ

)
≤ Ce22

√
2β

√
nψF

(√
log(1+20m),1

)
.

The following corollary ‘interpolates’ the estimates from Corollary 3.2 (p = 1) and
Lemma 5.6 (p= 2m/(m+1)).

Corollary 5.7. For m ∈ N, let 1 ≤ p ≤ 2m
m+1 . Then, for each n ∈ N and every ξ =

(ξα)α∈Λ≤(m,n),( ∑
α∈Λ≤(m,n)

|ξα|r
)1/r

≤ 2
√
2e2

√
n
√

log(1+20m)
βm ‖Mξ : P≤m(Tn)→ �p(Λ

≤(m,n))‖,

where 1
r = 1

p −
1
2 and βm = 1− 1−1/p

1−m+1
2m

.

Proof. Define θm ∈ (0,1) by 1
p = 1−θm

1 + θm
2m

m+1

. Then 1−θm = βm. Hence, by Theorem 5.5

and as in the proof of Corollary 5.3, it follows that for every ξ = (ξα)α∈Λ≤(m,n), we get:( ∑
α∈Λ≤(m,n)

|ξα|r
)1/r

≤ C(m)
√
n‖Mξ : P≤m(Tn)→ �1(Λ

≤(m,n))‖,

where C(m) = 2
√
2e2 (log(1+20m))βm .

6. Applications

6.1. Multipliers of analytic trigonometric polynonials

Recall from (2) the definition of P≤m(Tn), all trigonometric analytic polynomials of degree

≤ m on the n-dimensional torus T
n and its subspace P=m(Tn) of all m-homogeneous

polynomials.
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We also recall a definition, which we already touched on in the introduction, the Hardy
space:

H∞(T∞) :=
{
f ∈ L∞(T∞) : f̂(α) = 0, ∀α ∈ Z

(N) \N(N)
0

}
and its m-homogeneous part:

Hm
∞(T∞) :=

{
f ∈H∞(T∞) : f̂(α) �= 0 ⇒ |α|=m

}
.

6.1.1. Sidon constants I. Let 1 ≤ p <∞. By χp

(
P≤m(Tn)

)
, we denote the p-Sidon

constant of P≤m(Tn), that is, the best constant c > 0, such that, for all polynomials

f(z) =
∑

α∈Λ≤(m,n) f̂(α)z
α, we have:( ∑

α∈Λ≤(m,n)

|f̂(α)|p
) 1

p ≤ c‖f‖∞.

Similarly, we define χp

(
P=m(Tn)

)
, but in this case, we only consider m-homogeneous

trigonometric polynomials instead of all trigonometric polynomials of degree less than or

equal to m. Since for every f ∈ P≤m(Tn):( ∑
|α|≤m

|f̂(α)|2
) 1

2

=
(∫

Tn

|f(z)|2 dz
) 1

2 ≤ ‖f‖∞,

it follows that, for each m,n ∈ N,

χp

(
P=m(Tn)

)
= χp

(
P≤m(Tn)

)
= 1, 2≤ p≤∞.

Observe also that the Bohnenblust–Hille inequality (2.1) combined with Hölder’s
inequality imply that there exists a constant C > 0, such that, for each m,n ∈ N, we

have:

1≤ χp

(
P=m(Tn)

)
≤ χp

(
P≤m(Tn)

)
≤ Cm,

2m

m+1
≤ p < 2. (6.1)

Theorem 6.1. Let 1 ≤ p ≤ 2m
m+1 and 1

r = 1
p − 1

2 . Then there is a universal positive
constant γ, such that, for each m,n ∈ N:

1

γm

( n

m

)m
r − 1

2 ≤ χp

(
P=m(Tn)

)
≤ χp

(
P≤m(Tn)

)
≤ γm

( n

m

)m
r − 1

2

.

Note that m
r − 1

2 ≥ 0 whenever 1≤ p≤ 2m
m+1 and 1

r = 1
p −

1
2 . Moreover, as it should be,

we have that m
r − 1

2 = m−1
2 for p= 1 and m

r − 1
2 = 0 for p= 2m

m+1 .
For the homogeneous case and p = 1, this result is proved in [8] (see also [9, Theorem

9.10]) — the upper estimate is based on the hypercontractivity of the Bohnenblust–Hille

inequality and the lower estimate on the Kahane–Salem–Zygmund inequality. Here, we
deduce the upper inequality from the case p = 1 by applying the complex interpolation

method and the lower estimate by the following independently interesting lemma based

on Corollary 4.5.
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Lemma 6.2. Let 1≤ p≤ 2m
m+1 and z ∈C

n, and denote by z∗ the decreasing rearrangement

of z. Then, for each m ∈ N, one has:

(z∗n)
m ≤ 2

√
2e2

r
√
m!

√
log(1+20m)

1

n
m
r − 1

2

∥∥Mz : P=m(Tn)→ �p(Λ
=(m,n))

∥∥,
where 1

r = 1
p −

1
2 and:

Mz : P=m(Tn)→ �p(Λ
=(m,n)), f →

(
f̂(α)(z∗)α

)
.

Proof. From Corollary 4.5, we deduce that:

(z∗n)
rm

∑
|α|=m

1 =
∑

|α|=m

(
(z∗n)

α1 · · ·(z∗n))αn
)r

≤
∑

|α|=m

(z∗)rα ≤ (2
√
2e2)r (n log(1+20m))

r
2 ‖Mz‖r.

Since dimPm(Tn) =
(
n+m−1

m

)
, we get:

(z∗n)
rmnm

m!
≤ (z∗n)

rm

(
n+m−1

m

)
≤ (2

√
2e2)r (n log(1+20m))

r
2 ‖Mz‖r,

and the desired result follows by taking roots.

We are ready to give the proof of the theorem.

Proof. (of Theorem 6.1). Lower bound: If 111 = (1, . . . ,1) ∈ C
Λ=(m,n), then by the

definition we obtain:

‖M111 : P=m(Tn)→ �p(Λ
=(m,n))‖= χp

(
P=m(Tn)

)
.

Then, by Lemma 6.2:

1≤ 2
√
2e2

r
√
m!

√
log(1+20m)χp

(
P=m(Tn)

) 1

n
m
r − 1

2

,

and so:

1

γm

( n

m

)m
r − 1

2 ≤ 1

2
√
2e2m

1
2 (1+ logm)

1
2

( n

m

)m
r − 1

2

≤ m
m
r − 1

2

2
√
2e2(m!)

1
r (1+ logm)

1
2

( n

m

)m
r − 1

2 ≤ χp

(
P=m(Tn)

)
.

Upper bound: Define 0≤ θ ≤ 1 by:

1

p
=

θ

1
+

1−θ
2m
m+1

,

then:

m−1

2
θ =

m

r
− 1

2
.
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We know that:

‖M111 : P≤m(Tn)→ �1(Λ
≤(m,n))‖ ≤ Cm

1

( n

m

)m−1
2

,

and by (6.1):

‖M111 : P≤m(Tn)→ � 2m
m+1

(Λ≤(m,n))‖ ≤ Cm
2 .

Applying the complex interpolation method, we get:

‖M111 : P≤m(Tn)→ �p(Λ
≤(m,n))‖ ≤

(
Cm

1

( n

m

)m−1
2

)θ(
Cm

2

)1−θ

≤ γm
( n

m

)m
r − 1

2

,

and so the conclusion follows.

Why would a positive answer to Conjecture 4.6 not lead to a better lower bound? In

this case, we, for 1
s = m

m−1

(
1
p −

m+1
2m

)
, would get that:

1

γm

( n

m

)m
s − 1

s ≤ χp

(
P=m(Tn)

)
.

But m
s − 1

s = m
r − 1

2 , where, again, 1
r = 1

p − 1
2 , and so we would not arrive at a

contradiction.

6.1.2. Bohr radii. Denote by Kn the nth Bohr radius, that is the best 0< r≤ 1, such

that, for every f ∈H∞(T∞), we have:∑
α∈N

(N)
0

|f̂(α)|r|α| ≤ ‖f‖∞.

It is known that:

lim
n→∞

Kn√
logn
n

= 1; (6.2)

this was established in [2], extending an earlier result of [8], which basically proved that

the limit is between 1 and
√
2. For a detailed account on all this, see the monograph [9].

The original proof of the lower estimate in (6.2) is based on the Kahane–Salem–
Zygmund inequality (see, e.g. [9, Theorem 7.1]). Let us indicate an alternative argument

based on Theorem 4.4. We have that for each m ∈ N:

Kn ≤Km
n ,

where Km
n is defined like Kn, only taking into account functions from Hm(T∞) instead

of all functions from Hm(T∞). Then a simple reformulation shows that:

Kn ≤Km
n =

1
m
√

χ(m,n)

(see [9, (9.15)]). Using the lower estimate from Theorem 6.1 (which was proved with

Kislyakov’s ideas), and following the proof given in [9, Theorem 8.22], we obtain an
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alternative approach to the upper bound in (6.2) without using the Kahane–Salem–

Zygmund inequality.

6.1.3. Monomial convergence I. Let V be a subset of H∞(T∞), then:

monV :=

{
z ∈ C

N :
∑

α∈N
(N)
0

|f̂(α)zα|<∞ for all f ∈ V

}

is called the set of monomial convergence of V. If V is a closed subspace of H∞(Tn), then

a simple closed graph argument shows that z ∈monV if and only if there is C =C(z)> 0,

such that, for every f ∈ V , ∑
α∈N

(N)
0

|f̂(α)zα| ≤ C‖f‖∞.

A sequence ξ = (ξα)α∈N
(N)
0

is said to be multiplicative whenever for all α,β ∈N
(N)
0 , we have

ξα+β = ξαξβ . Equivalently, ξ is multiplicative if and only if there is z ∈C
N, such that, for

all α ∈ N
(N)
0 , we have ξα = zα, for all α ∈ N

(N)
0 (if ξ is multiplicative, then define zk = ξek

for each k ∈ N).

Remark 6.3. Let V ⊂H∞(T∞) be a closed subspace. Then monV equals the set of all

multiplicative �1(Γ)-multipliers ξ = (ξα)α∈N
(N)
0

for V, where:

Γ :=
⋃
f∈V

supp f̂ ⊂ Z
(N).

We refer to the monograph [9] for a detailed exposition on the sets of monomial

convergence of H∞(T∞) and its closed subspace Hm
∞(T∞) (together with all its

consequences for spaces of holomorphic functions in infinitely many variables and ordinary
Dirichlet series). In particular, the following results from [1] (see also [9, Theorems 10.1

and -10.15]) give two (almost) complete description of both sets.

Theorem 6.4.

(i) monHm
∞(T∞) = � 2m

m−1 ,∞ for each m ∈ N;

(ii) For every z ∈ C
N, the following two statements hold:

(a) If limsup
n→∞

1

logn

n∑
j=1

z∗2j < 1, then z ∈monH∞(T∞).

(b) If z ∈monH∞(T∞), then limsup
n→∞

1

logn

n∑
j=1

z∗2j ≤ 1. Moreover, here, the converse

implication is false.

In fact, the ‘lower inclusions’ for monH∞(T∞) and monHm
∞(T∞) follow from the

Kahane–Salem–Zygmund theorem. Alternatively, the following two proofs show that these

lower inclusions also may be deduced from Theorem 4.4.
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Proof. (alternative proof of � 2m
m−1

⊂ monHm
∞(T∞) in Theorem 6.4). Fix z ∈

monH∞(T∞), and recall that then the decreasing rearrangement z∗ ∈monH∞(T∞) (see

[9, Remark 10.4]). Then:

Mz∗ : H∞(T∞)→ �1(N
(N)
0 ), f →

(
f̂(α)(z∗)α

)
is bounded. Consequently, by Lemma 6.2, there is some universal constant γ > 0, such

that, for each m ∈ N,

(z∗n)
m ≤ γ

√
m! logm

1

n
m−1

2

‖Mz∗‖.

Taking the mth-rot, we conclude that:

z∗n ≤ γ
1
m

√
m!

1
m (logm)

1
m ‖Mz∗‖ 1

m
1

n
m−1
2m

�m
1

n
m−1
2m

,

and this completes the proof.

Proof. (alternative proof of (2b) in Theorem 6.4). With the closed graph argument

from the preceding proof and Theorem 3.2, we see that for some constant γ > 0 and each
m,n ∈ N, we have: ( ∑

α∈N
n
0

|α|=m

|(z∗)α|2
) 1

2 ≤ γ
√

n logm.

Then the proof finishes exactly as in [9, Section 10.5.1].

6.1.4. Bohr–Bohnenblust–Hille theorem. Referring to a couple of results, which

were worked out in the recent monograph [9], we intend to show that our alternative
approach to Theorem 6.4.(ii.b) leads to an alternative solution of Bohr’s famous absolute

convergence problem on ordinary Dirichlet series.

This problem asked for the largest possible width S of the strip in the complex plane on
which an ordinary Dirichlet series D =

∑
ann

−s converges uniformly but not absolutely

(see [9, Section 1]).

Bohr, himself, established the upper estimate S ≤ 1/2 (see [9, Proposition 1.10]), but
he was not able to decide whether this upper bound is optimal. A nontrivial reformulation

(still due to Bohr, see [9, Proposition 1.24]) shows that:

S = sup
D∈H∞

σa(D), (6.3)

where H∞ denotes the Banach space of all Dirichlet series D, which on the positive half

plane converge pointwise to a bounded (and then necessarily holomorphic) function and

σa(D) ∈ R defines the abscissa of absolute convergence of D.
On the other hand,

H∞ =H∞(T∞),
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that is, there is an isometric linear bijection between both Banach spaces preserving
Dirichlet and Fourier coefficients. More precisely, if this bijection identifies f ∈H∞(T∞)

and D =
∑

ann
−s ∈ H∞, then an = f̂(α), whenever n = pα (here, p = (pn) stands for

the sequence of primes (see [9, Corollary 5.3]). Then this fact combined with (6.3) show
that:

S = inf
{
σ > 0:

1

pσ
∈monH∞(T∞)

}
(see [9, (10.5)]). As a consequence, we see that Theorem 6.4.(iib), for which we gave an

alternative proof using Kislyakov’s ideas condensed in Theorem 4.4, immediately proves

that S ≥ 1/2.

So, all in all, we arrive at a new proof of the so-called Bohr–Bohnenblust–Hille theorem:
S = 1

2 , which, in fact, is in the very centre of the discussion in the monograph [9] (for the

highly nontrivial original proof due to Bohnenblust and Hille from 1931, see [9, Section

2]). We finally remark that this monograph also contains a couple of other proofs — none
of them being trivial.

6.2. Multipliers of functions on Boolean cubes

For N ∈ N, let BN be the set of all functions f : {−1,1}N → R. Recall for f ∈ BN , the

expectation is given by:

E
[
f
]
:=

1

2N

∑
x∈{−1,1}N

f(x).

The dual group of {−1,1}N actually consists of the set of all Walsh functions χS for

S ⊂ [N ], which allows to associate to each such f ∈ BN its Fourier-Walsh expansion:

f(x) =
∑

S⊂[N ]

f̂(S)xS , x ∈ {−1,1}N, (6.4)

where xS := χS(x) :=
∏

n∈S xn are the Walsh functions and the coefficients are given by

f̂(S) =E[fχS ]. Thereby, a nonzero function f of degree d satisfies that f̂(S) = 0 provided
|S|> d. We say that f is m-homogeneous whenever f̂(S) = 0 provided |S| �=m.

Given m,d ∈ N with m,d ≤ N , we write B=m
N for all m-homogeneous functions in BN

and B≤d
N for all functions of degree ≤ d. Moreover, we define:

B :=
⋃
N

BN, B=m :=
⋃
N

B=m
N and B≤d :=

⋃
N

B≤d
N .

Similar to (2.1), we have the following ‘hypercontractive’ Bohnenblust–Hille inequality

for functions on the Boolean cube from [12]: There is a universal constant C > 1, such
that, for each d,N ∈ N and for every f ∈ B≤d

N , we have:( ∑
S⊂[N ] : |S|≤d

|f̂(S)| 2m
m+1

)m+1
2m ≤ C

√
m logm‖f‖∞. (6.5)
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6.2.1. Multipliers. We start with variants of Theorem 4.4 and Corollary 3.2 for
functions on the Boolean cubes.

Theorem 6.5. Assume that 1 ≤ p ≤ 2 and d,N ∈ N with d ≤ N . Define 1 ≤ r < ∞ by
1
r = 1

p −
1
2 . Then,

(i) for every ξ = (ξS)S⊂[N ],

1√
1+N log2

( ∑
S⊂[N ]

|ξS |r
) 1

r ≤ 2
√
2e2

∥∥Mξ : BN → �p({S : S ⊂ [N ]})
∥∥.

(ii) for every ξ = (ξS)S⊂[N ],|S|≤d,

1√
1+N log(1+20d)

( ∑
S⊂[N],|S|≤d

|ξS |r
) 1

r

≤ 2
√
2e2(1+

√
2)d

∥∥Mξ : B≤d
N → �p({S : |S| ≤ d})

∥∥.
Moreover, in the homogeneous case ξ= (ξS)S⊂[N ],|S|=d, we may replace the constant

on the right side by 2
√
2e22d−1.

Proof. For the proof of both statements, we use the fact that C2(�p(Γ))≤
√
2 for 1≤ p≤ 2.

Consider then for the proof of (i) the canonical isometric embedding:

BN � f �→ (f(x))x∈{−1,1}N ∈ �2
N

∞ .

Then the conclusion is immediate from Theorem 4.4. The proof of (ii) is slightly

more involved: Denote by P≤d([−1,1]N ) the space of all real polynomials f(x) =∑
α∈Nn

0 :|α|≤d cαx
α, x ∈R

N , and endow it with the supremum norm on the N -dimensional

cube [0,1]N . Since every f ∈ BN can be viewed as a tetrahedral polynomial in
P≤d([−1,1]N ) with equal norm, the canonical embedding:

B≤d −→P≤d([−1,1]N )

is isometric. Next we look at the canonical embedding:

P≤d([−1,1]N )−→P≤d(T
N ),

which by a result of Klimek [16] is an (1+
√
2)d-embedding, and, finally, we recall that

by (2.2), there is a 2-embedding:

I : P≤d(T
N )→ �M∞,

where M = (1+20m)N . Then the conclusion again follows from Theorem 4.4. In the d -

homogeneous case, we replace Klimek’s with a result of Visser [21], which states that the
canonical map from P=d([−1,1]N ) into P=d(T

N ) is a 2d−1- embedding. This completes

the proof.

6.2.2. Sidon constants II. The preceding theorem is used to obtain the following

analog of Theorem 6.1.
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Theorem 6.6. Let 1 ≤ p ≤ 2m
m+1 and r > 0 with 1

r = 1
p −

1
2 . Then, there is a universal

constant γ ≥ 1, such that, for each positive integer m≤N :

1

γm

(N

m

)m
r − 1

2 ≤ χp

(
B=m
N

)
≤ χp

(
B≤m
N

)
≤ γm

(N

m

)m
r − 1

2

.

Note that in a similar fashion as in Section 6.1.1, for each m≤N , one has:

χp

(
B=m
N

)
= χp

(
B≤m
N

)
= 1, p ∈ [2,∞],

and, combining the Bohnenblust–Hille inequality for functions on the Boolen cube from

(6.5) with Hölder’s inequality, there exists a constant γ ≥ 1, such that:

χp

(
B=m
N

)
≤ χp

(
B≤m
N

)
≤ γm, m≤N,

2m

m+1
≤ p < 2.

We prepare the proof of the preceding theorem with a lemma similar to Lemma 6.2.

Lemma 6.7. Let 1≤ p≤ 2m
m+1 and z ∈C

N , and denote by z∗ the decreasing rearrangement

of z. Then, for each m≤N , the following estimate holds:

(z∗N )m ≤ 4
√
2e22m−1 r

√
m!

√
log(1+20m)

1

N
m
r − 1

2

‖Mz‖,

where 1
r = 1

p −
1
2 and Mz : B=m

N → �p({S : |S|=m}) is given by:

Mzf =
(
f̂(S)(z∗)S

)
|S|=m

, f ∈ B=m
N .

Proof. From Theorem 6.5, we get:

(z∗N )rm
∑

S⊂[N ],|S|=m

1 =
∑

S⊂[N ],|S|=m

(
(z∗N ). . . (z∗N )

)r
≤

∑
S⊂[N ],|S|=m

(
(z∗)S

)r ≤ (4e22m−1)r
(
1+N log(1+20m)

) r
2 ‖Mz‖r.

This yields:

(z∗N )rm
Nm

m!
≤ (z∗N )rm

(
N

m

)
≤ (4

√
2e22m−1)r

(
N log(1+20m)

) r
2 ‖Mz‖r,

as required.

Proof. (of Theorem 6.6). Lower bound: For 111 = (1, . . . ,1) ∈ C
|{S : |S|=m}|, we by

definition have:

‖M111 : B=m
N → �p({S; |S|=m})‖= χp

(
B=m
N

)
.

Then the conclusion follows if we, exactly as in Lemma 6.2, apply Lemma 6.7 to z = 111.

Upper bound: Take f ∈ B≤m
N , and interpret it as a polynomial F ∈ P≤m(TN ). Then we
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know from Theorem 6.1 that:∑
|S|≤m

|f̂(S)| ≤ γm
(N

m

)m
r − 1

2 ‖F‖P≤m(TN ) ≤ γm(1+
√
2)m

(N

m

)m
r − 1

2 ‖f‖B≤m
N

,

where the very last estimate, again, follows from a result of Klimek in [16].

6.2.3. Monomial convergence II. Given V ⊂ B, we define the set of monomial

convergence of V by:

mon(V ) :=
{
x ∈ R

N : ∃C > 0 ∀f ∈ V :
∑

S⊂[N ]

|f̂(S)xS | ≤ C ‖f‖∞
}
,

where recall that xS :=
∏

n∈S xn for each S ⊂ [N ] and for all x ∈ R
N. Let us denote by

S ⊂fin N the fact that S is a finite subset of N. We say that a real sequence (ξS)S⊂finN

is multiplicative if:

ξR ξS = ξR∪S for all pairwise disjoint subsets R,S ⊂fin N.

Note that (ξS)S⊂finN
is multiplicative if and only if there exists x ∈ R

N, such that for

all S ⊂fin N, we have xS = ξS . Hence, mon(V ) consists exactly of all multiplicative
�1({S : S ⊂fin N})-multipliers of V.

Here are some basic properties of mon(B).

Proposition 6.8. Let x ∈ mon(B) and y ∈ R
N. Then, each of the following conditions

yields that y ∈mon(B):

(i) y differs from x in a finite number of entries;

(ii) y is a permutation of x;

(iii) |yn| ≤ |xn| for each n ∈ N.

Proof. To prove the sufficiency of (i), it is enough to assume that y differs from x in
one entry, xn = yn for each n �= n0 ∈N. Using that g(x) = xn0

f(x) also belongs to B with

ĝ(S \{n0}) = f̂(S) if n0 ∈ S ⊂fin N, we get:∑
S

|f̂(S)yS |=
∑
n0 /∈S

|f̂(S)xS |+ |yn0
|

∑
n0∈S

|f̂(S)xS\{n0}|<∞.

It is a simple observation that for every f ∈ B and for each permutation σ of the natural

numbers, the function fσ defined by:

fσ((xn)n∈N) = f((xσ(n))n∈N)

also belongs to B, which proves that condition (ii) is sufficient. Finally, if (iii) is satisfied,

then: ∑
S

|f̂(S)yS | ≤
∑
S

|f̂(S)xS |<∞.
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Our aim is to find nice descriptions of mon(V ) for V = B, V = B=m and V = B≤d. It is
clear that:

mon(B)⊂mon(B≤d)⊂mon(B=m).

Using the Bohnenblust–Hille inequality from (6.5) (together with Hölder’s inequality and

the multimonomial theorem) give that, for each m ∈ N, we have:

� 2m
m−1

⊂mon(B≤m)⊂mon(B=m).

Similar to Theorem 6.4.(i), we even have the following full description.

Theorem 6.9. For each positive integer m, one has:

mon(B=m) = mon(B≤m) = � 2m
m−1 ,∞.

Proof. We first prove that mon(B=m) = � 2m
m−1 ,∞. Given an m-homogeneous function

f : {−1,1}N → R, we can find F ∈ Hm
∞(T∞) with F̂ (α) = f̂(α) for all α ∈ {0,1}(N) and

F̂ (α) = 0, otherwise, and, such that:

‖F‖H∞(T∞) ≤ 2m−1 ‖f‖B=m,

where for this estimate, we use a result from [21] (see also the end of the proof of Theorem

6.5). This implies that monHm
∞(T∞) ⊂ mon(B=m), which by Theorem 6.4.(i) gives the

lower inclusion:

� 2m
m−1 ,∞ ⊂mon(B=m).

Conversely, if x ∈mon(B=m), then by Proposition 6.8, also its decreasing rearrangement
r = (x∗

n) ∈mon(B=m). Thus, there is a constant C > 0, such that, for each f ∈ B=m, we

get: ∑
|S|=m

|f̂(S)| |rS | ≤ C ‖f‖∞.

We give a probabilistic argument and a Kislyakov type argument. The probabilistic
argument: Let A = {S ⊂ [N ],|S| = m}. By the Kahane–Salem–Zygmund theorem (see

(6.8) below), there is a choice of signs (ξS)S∈A, such that:

∑
S∈A

|ξS |rS ≤ C
∥∥∥ ∑
S∈A

ξSx
S
∥∥∥
∞

�
√
N

√(
N

m

)
.

Since (rn)n∈N is decreasing, we get:(
N

m

)
rmN �

√
N

√(
N

m

)
,

and so for some constant Km independent of N, we have:

rmN ≤ C
√
N

(
N

m

)− 1
2

�m

√
N

Nm/2
.
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The Kislyakov argument: Consider the canonical embeddings:

B=m −→Pm([−1,1])N )−→Pm(TN )−→ �(1+20m)N

∞ ,

where the first two embeddings are the canonical ones and the last comes from (2.2). The
first one is isometric, the second one 2m−1-isomorphic and the third 2-isomorphic. Then,

we deduce from Theorem 3.2 that:

r2mN

(
N

m

)
≤

∑
S∈A

|rS |2 �m N.

Since
(

N
m

)m

≤
(
N
m

)
, the argument completes. Finally, we prove that for each d ∈ N, we

have mon(B≤d) = � 2d
d−1

. Using the fact that, for every f ∈ B≤d
N , we get by [16],

‖f‖∞ ≤ (1+
√
2)m‖fm‖∞,

where fm =
∑

|S|=m f̂(S)χS denotes the m-homogeneous part of f, it easily follows that:

� 2d
d−1 ,∞

⊂
d⋂

m=1

mon(B=m)⊂mon(B≤d)⊂mon(B=d)⊂ � 2d
d−1 ,∞

.

Let us turn to the description of mon(B). We easily obtain:

�2 ⊂mon(B), (6.6)

using the Cauchy–Schwarz inequality:∑
S

|f̂(S)xS | ≤
(∑

S

|f̂(S)|2
) 1

2
(∑

S

|xS |2
) 1

2 ≤ ‖f‖∞
( ∞∏

n=1

(1+ |xn|2)
) 1

2

.

Regarding the estimations from above, using the results for them-homogeneous functions,
we have:

mon(B)⊂
⋂
m∈N

� 2m
m−1 ,∞. (6.7)

This result can be improved.

Proposition 6.10. For every x ∈mon(B), one has:

sup
N∈N

1√
N

N∑
n=1

|xn|<+∞

and, in particular:

mon(B)⊂ �2,∞.

Proof. Using the majority function MajN (x) (in fact, only its 1-homogeneous part), we

know from [17] that for all S with |S|= 1:

M̂ajN (S) =

√
2

π

1√
N

.
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Hence, for all x ∈mon(B) and every N ∈ N, we have:

N∑
n=1

√
2

π

1√
N

|xn|=
∑
|S|=1

|M̂ajN (S)| |xS | ≤
∑

S⊂[N ]

|M̂ajN (S)| |xS | ≤ Cx,

the first estimate. Since the decreasing rearrangement x∗ by Proposition 6.8 also belongs

to mon(B), the ‘in particular’ follows.

On the other hand, the use of the Kahane–Salem–Zygmund inequality (for Boolean

functions, see, e.g. [11, Lemma 3.1]) does not improve the condition from Proposition

6.10. Indeed, this inequality yields that for every N ∈N and every family (cS)S⊂[N ] in R,

there is a choice of signs (ξS)S⊂[N ], such that:∑
S⊂[N ]

|cS ||xS | ≤ Cx

∥∥∥ ∑
S⊂[N ]

ξScSx
S
∥∥∥
∞

≤ Cx 6
√

log2
√
N

( ∑
S⊂[N ]

|cS |2
)1/2

. (6.8)

Taking the supremum over all (cS)S⊂[N ] with �2-norm equal to one, we deduce that:

N∏
n=1

(1+x2
n) =

( ∑
S⊂[N ]

|xS |2
)1/2

≤ Cx 6
√

log2
√
N. (6.9)

Since (xn)n∈N converges to zero, we can find a positive constant α > 0, such that

exp(α|xn|2)≤ 1+ |xn|2 for every n ∈ N, so that:

exp(α

N∑
n=1

|xn|2)≤
N∏

n=1

(1+x2
n)≤ Cx 6

√
log2

√
N.

It follows that:

sup
N∈N

1

logN

N∑
n=1

|xn|2 <+∞. (6.10)

But this condition is weaker than what we got in Proposition 6.10, since:

1

logN

N∑
n=1

|xn|2 ≤
1

logN

N∑
n=1

|x∗
n|2 ≤

‖x‖2�2,∞
logN

N∑
n=1

1

n
≤ ‖x‖2�2,∞ .

Finally, we establish the following analog of statement (2) from Theorem 6.4.

Proposition 6.11. For each x ∈mon(B), one has:

limsup
N→∞

1

logN

N∑
n=1

(x∗
n)

2 ≤ 1.

Proof. We write r = (rn)n∈N for the decreasing rearrangement of (|xn|)n∈N. Then:

sup
N

∥∥Mr : BN → �1({S : S ⊂ [N ]})
∥∥ <∞,
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and, hence, by Theorem 6.5.(i), we have that there is a constant C = C(r), such that for

all N : ∑
S⊂[N ]

r2S ≤ CN ;

again, there is an alternative proof using the Kahane–Salem–Zygmund inequality (in the

form of (6.8) and (6.9)). We claim that:

(r2m+. . .+ r2N )m

m!
≤

∑
|S|=m

r2S .

We postpone the proof of the claim to end. The claim yields by Stirling’s inequality that

there is a positive constant C ′ depending just on r, such that:

r2m+. . .+ r2N
m

≤ (C ′)
1
mm

1
2m

N
1
m

e
.

Putting m= logN , we arrive to the inequality:

limsup
N

r2logN +. . .+ r2N
logN

≤ 1.

Since r2n converges to zero, we immediately conclude that:

limsup
N

r21 +. . .+ r2N
logN

≤ 1.

To prove the claim, note that every S ⊂N with |S|=m is determined by the subset S1 of
elements n with n <m and the subset S2 of those with n≥m. Then, we can find unique

finite sequences m≤ i1,i2, . . . ,ik ≤N and m1,m2, . . . ,mk in N with m1+. . .+mk =m and,

such that:

Sc∩{n : n <m}= {m1,m1+m2, . . . ,m1+. . .+mk−1}
S∩{n : n≥m}= {i1 < i2 < .. . < ik}.

We can then rewrite rS as:

rS = r1 ·. . . · rm1−1 · ri1 · rm1+1 ·. . . · rm1+m2−1 · ri2 · rm1+m2+1 ·. . . ,

and using that (rn)n∈N is nonincreasing, we deduce that:

rS ≥ rm1
i1

· rm2
i2

·. . . · rmk
ik

.

Therefore:

m!
∑

|S|=m

r2S ≥
∑

(αm,...,αN )∈N
N−m+1
0 |α|=m

(
m

α

)
rαm
m · rαm+1

m+1 ·. . . · rαN

N

= (rm+. . .+ rN )m,

and the proof completes.
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