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Abstract
We report a solution to an open problem regarding the axiomatization of the convex hull
of a type of nonclassical evaluations. We then investigate the meaning of this result for the
larger context of the relation between rational credence functions and nonclassical prob-
ability. We claim that the notions of bets and Dutch Books typically employed in formal
epistemology are of doubtful use outside the realm of classical logic, eventually proposing
two novel ways of understanding Dutch Books in nonclassical settings.

1. Introduction

We would like to believe true propositions and avoid believing false ones. In formal
epistemology it is typical to represent an agent’s belief state by means of a credence
function which assigns real numbers – usually taken from the [0, 1] real segment –
to propositions. Ideally, then, we would want our credences in true propositions to
equal 1, and our credences in false propositions to equal 0. However, due to our cog-
nitive and evidential limitations, leading to the typical human condition of imperfect
information, we have to settle for something else. It is one of the basic tenets of formal
epistemology that credences of a rational agent are weighted means of classical truth
evaluations; this is the same as saying that they belong to the “convex hull” of classical
evaluations, and, seen from yet another angle, it means that these credences satisfy the
classical Kolmogorov probability axioms.

All this assumes, usually implicitly, that the underlying logic is classical. How does
the situation change if this assumption is removed? At first glance, it might be intuitive
to hold e.g. that if an agent knows, say, that some proposition A has the truth value ½,
their credence in A should be ½. And more generally, just as classical probabilities are
weighted means of classical evaluations, the term “nonclassical probability” can be
taken to refer, to a first approximation, to a weighted mean of nonclassical ones.1
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1This is the intended meaning of the term employed in a portion of the literature to which this paper
aims to contribute, e.g. in Williams (2016) and Bradley (2017). Williams (2012a) uses the term “generalized
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Paris (2005) initiated the project of axiomatizing nonclassical probabilities, tying it also
to the issue of Dutch-bookability: for a variety of nonclassical settings, credences satisfy
Paris’ axioms if and only if they are not Dutch-bookable (and thus avoid at least one
source of irrationality).

However, as already mentioned, the above is only a first approximation of the issues
to be discussed. This is because a proposition’s truth value may by itself not be enough
to fix the degree of belief an omniscient agent should invest in it. For example, various
three-valued logics, employing the truth values of T, F and, say, O, may come with dif-
ferent interpretations of the “Other” value O. For some logics, if a proposition has the
truth value O, then an omniscient, or even just a rational agent should better not have a
credence in that proposition at all, and so their credence function should be appropri-
ately gappy. According to other logics the credence should be defined in such a case, but
should be set to 0; that is, for an omniscient agent a proposition with truth value O is as
good as a false one. According to still other logics, in such cases the agent’s credence
should be 1; for still others, 0.5 (specific examples will be given later). These “credences
an omniscient agent should invest in a proposition given its truth value” are called cog-
nitive loads; it is typically assumed that each truth value has “its” cognitive load,2 and so
each valuation, considered as a vector of truth values, generates a vector of cognitive
loads. With this notion in hand, given a nonclassical (propositional) logic, instead of
axiomatizing the convex hull of the valuations permitted by that logic, we can turn
to axiomatizing the convex hulls of the corresponding vectors of cognitive loads
(which we will call “cognitive evaluations” later on3). Members of that set are, after
all, weighted means of credences of omniscient agents. It is in that vein that Paris’
project has been continued by J.R.G. Williams and S. Bradley.

The paper is structured as follows. In the next section we recall the basic results in
this field which will come of use later. In section 3 we report a solution to the problem
(posed in Williams 2016) of axiomatizing the convex hull of the set of cognitive evalua-
tions of an intuitive 3-valued calculus called Symmetric Logic. We then turn to the issue
of why one should be interested in such nonclassically probabilistic credences at all. As
already mentioned, it is typical to use some sort of Dutch-book-related considerations
to claim that such credences avoid at least one source of irrationality. In section 4 we
argue that, if such arguments are to be fruitful, they need to use different notions
than the ones employed heretofore. We suggest two proposals going in that direction.
Both of them call for modifying the formal details of what is to be called a Dutch Book:
in the first case (labelled “real Dutch-bookability”) this results from employing a differ-
ent notion of credence, and in the second (“truth-value Dutch-bookability”, subsection
4.1.1) from using a different notion of bet altogether.

Shortly speaking, it is important to distinguish between the logical goal of axioma-
tizing certain convex hulls and the epistemological goal of arguing that satisfying those
axioms is a matter of rationality. Section 3 reports on the former; section 4 on the latter.

probabilities”. In the paper which serves as a foundation for this research, Paris (2005) writes about “prob-
abilities” and “analogs of probability functions for non-standard propositional logics”; Williams (2016) uses
the term “nonclassical probabilities” to refer to such functions; earlier suggesting in (Williams 2012b) that
they are functions which are “nonclassically coherent”. The project of axiomatizing nonclassical probabil-
ities thusly conceived should not be confused with those aiming to give some alternative formalization of
the probability calculus, via Popper functions, Rényi axioms, etc.

2That is: gappy frameworks have, it seems, not been investigated yet in the literature on cognitive loads.
3The term has been introduced in Bradley (2017), and we intend to keep the intuitions behind the

concept.
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2. Convex hulls of evaluations and nonclassical probability

The project of axiomatizing convex hulls of nonclassical evaluations has its ultimate
goal in describing credence functions which would be rational in nonclassical settings.
Let us postpone the discussions of rationality to section 4 and focus now on the afore-
mentioned convex hulls.

We shall begin by stating Paris’ initial result in the framework introduced in the
recent handbook article by Williams (2016). It requires a finite propositional language
L with the set of sentences SentL built using a set of connectives which includes ∨ and
^ (but possibly also other ones, including modalities). V is a certain subset of the set of
all functions from SentL into a finite nonempty set of truth values TV. Williams intro-
duces the term “cognitive load”:4 a cognitive load of a truth value is the supposed “ideal
cognitive state” associated with it; in other words, it is the degree of belief an omniscient
agent should invest in a proposition having that truth value. In the classical case, cog-
nitive loads directly correspond to truth values 1 (true) and 0 (false), while in the gen-
eral case the cognitive load function c is an arbitrary function from TV into [0, 1]. For
any valuation V we can speak of “its” cognitive evaluation cV : SentL � [0, 1] defined
as, for any w [ SentL, cV(w) = c(V(w)). Williams’s idea is, in the context of some
logic, to inquire about the convex combinations of something else than valuations.
The reason for this is that two different logics, defined on the same language and having
the same set TV of truth values, may give rise to exactly the same set of valuations. And
yet, for example due to how the consequence relation differs between the two logics, the
epistemic status of these valuations might be different.

Let us note that according to both Williams and Bradley the logics themselves are
“cognitively loaded”, in that each truth value has “its” cognitive load (Williams 2016:
255).5 For the purposes of stating the formal results we can therefore treat the cognitive
load function to be a definitional element of the given logic. The logics are also “seman-
tically driven”; we have our doubts as to what exactly this means,6 but at the very least it
seems to entail:

• first, that a logic expressed in a language carries with itself the information about
what the possible valuations of the sentences of that language are (i.e. if a logic is
semantically driven, it’s not something for which we could find different seman-
tics: if you change the semantics, you change the logic);

• second, that truth values are categorical properties of sentences (as opposed to, say,
uninterpreted formal devices used in achieving a different goal; see Field 2009);

• third, that the logic involves a consequence relation defined so that whether a sen-
tence entails another depends only on facts regarding valuations (and not, for
example, on any syntactic considerations).

4Let us note here that Williams (2012b) uses a slightly different language to refer to essentially the same
notions. We will not introduce that language in the current paper.

5One might be tempted by the examples in section 3 in Williams (2016) (which are the three logics dis-
cussed below) to think that the given logic’s cognitive load function is somehow “generated” by its conse-
quence relation. That, however, does not seem to be the intended interpretation; also, the function [[.]],
which in Williams (2012b) plays the role of the cognitive load function, is defined for numerous logics
and seems to have no straightforward connection to their consequence relations.

6For example: Bradley writes (2017: 88) “it is facts about ways the truth statuses could be distributed that
determine the logic”. This seems a radically strong thesis, since on a reading which seems the most natural
to us it equates all logics which share truth tables; for example, the three logics KL, LP and SL discussed
below. (We of course do not wish to claim that Bradley had this in mind.)
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Before we state the starting result, let us note that we have made a conscious decision to
depart from Paris’ original assumptions, to the effect that all languages under consid-
eration here will include only truthfunctional operators. This is just for reasons of pres-
entation. The main system under discussion, the Symmetric Logic, only includes
operators of this kind anyway. But nonetheless, doing so allows us to simplify some
statements of theorems based on Paris’ results. The languages in question have finitely
many propositional variables and operators and the logics admit only finitely many
possible valuations. Thanks to this we can speak of the function “B”7 as opposed to
“every finite restriction of B” being a convex combination of some vectors. More com-
plicated variants of the relevant results, taking into account also non-truthfunctional
operators, can be provided after the inspection of Paris (2005).

Without further ado, here’s the generalized version of Paris’ theorem.

2.1. THEOREM (PARIS (2005), THEOREM 5 GENERALIZED)8. Fix a sentential language L
consisting of a finite set of propositional variables P and a finite set of logical connec-
tives which includes ∨ and ^. Take SentL to be the set of all sentences of L. Let a logic
be given by L = (V, o, c), where valuations V∈V are functions from SentL into a finite
nonempty set of truth values TV, o is a consequence relation, and the cognitive load
function c is an arbitrary function from TV to [0, 1]. The logic’s “cognitive evaluations”
are all functions cV : SentL � [0, 1] defined as, for any w [ SentL, cV(w) = c(V(w)).

Let B be a function from SentL to [0, 1]. Then, if:

(∗) the image of c is {0, 1};
(∗∗) ∨ and ^ operate classically with respect to the cognitive loads; that is, for any

cognitive evaluation cV,

cV (w _ c) = 0 iff cV (w) = cV (c) = 0

and

cV (w ^ c) = 1 iff cV (w) = cV (c) = 1;

(∗∗∗) the consequence operation satisfies the ‘no drop’ condition on the cognitive
evaluations, that is,

woc iff for any valuation V , cV (w) ≤ cV (c);

then the following are equivalent.

(A) B is a convex combination of the cognitive evaluations from {cV |V [ V};
(B) B satisfies the axioms below.

(L1) If ow then B(w) = 1, and if wo then B(w) = 0,
(L2) If woc then B(w)≤ B(ψ),
(L3) B(w _ c)+ B(w ^ c) = B(w)+ B(c). B

7To be interpreted as a function specifying degrees of belief.
8The crucial insight about the ‘no drop’ consequence is due to Williams (2012b).
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Already in three-valued cases the situation becomes non-trivial. If the set of truth values
is, say, {T, O, F} (for “true”, “other”, and “false”), the ideal cognitive state associated
with O can be one of a number of things. If, for example, the logic dictates that O
be read as “half-true”, then the cognitive load of O can be naturally taken to be ½.
(This will be the main case under discussion in the current paper.) For other logics,
as we will see below, the ideal degree of belief invested in a proposition which has
the truth value O might be 0 (if believing such a proposition should, according to
the logic, be avoided), or 1 (if it is as belief-worthy as a true proposition). And, corres-
pondingly, what rational credences are should depend on which logic governs the pos-
sible worlds: even if the set of valuations may be exactly the same.9

If we use the term “L-probabilities” for the elements of the convex hull of L’s cog-
nitive evaluations, Theorem 2.1 says in effect that if L satisfies (∗)-(∗∗∗), then
L-probabilities are axiomatized by (L1)–(L3). The general problem is to give axioma-
tizations of M-probabilities for logics M which do not satisfy at least one of the con-
ditions (∗)–(∗∗∗), and we will consider here a particular case in which it is just the
condition (∗) that is violated: that is, the logic in question admits more than two cog-
nitive loads.

A straightforward application of (a version of) Theorem 2.1 is noted by Williams in
the context of the well-known three-valued logics KL (Kleene’s “strong logic of indeter-
minacy”) and LP (Priest’s “logic of paradox”). In fact, the Strong Kleene truth-tables
used by them serve as the basis of probably the least complicated examples of the
issue under discussion.10 The three-valued logics KL and LP along with the Kleene
truth tables are introduced and discussed in detail in section 7.3 of Priest (2001).

Consider, then, a sentential language L consisting of a non-empty finite set P of
propositional variables and the three connectives ^, ∨ and ¬. A valuation V assigns
to each propositional variable one of the three possible truth values: T, O, and F. It
is then extended to a mapping V : SentL � {T , O, F} by the rules given by the
Kleene truth tables as follows:

9A sidenote on generalization: Theorem 2.1 does not carry over to infinite sets P of propositional vari-
ables, not even in the classical propositional logic case. For if P is infinite, then the Lindenbaum–Tarski
algebra of the classical propositional logic L is the countably generated free Boolean algebra B. Each evalu-
ation V∈V corresponds to an ultrafilter of B. It is enough to show that there exists a (probability) function
B: B � [0, 1] that satisfies the axioms L1− L3, but still B is not a convex combination of the cognitive
evaluations. To this effect, take a countable partition {wi: i∈ℕ} of B and let B be an arbitrary probability
function such that B(wi) > 0 for each i∈ℕ. By way of contradiction assume that

B = r1cV1 + · · · + rncVn

for cognitive evaluations cVkand convex coefficients rk. As each cVk (wi) is either 1 or 0, by the homomorph-
ism property of the Vk’s and that the wi’s form a partition, there must exist some i such that cVk (wi) = 0 for
every k. But then

0 = B(wi) = r1cV1 (wi)+ · · · + rncVn (wi) = 0

is a contradiction.
10These examples appeared already in Williams (2016), but we include them here for the paper’s com-

pleteness and because we will eventually voice some doubts about Williams’ interpretation of them.
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^ T O F
T T O F
O O O F
F F F F

_ T O F
T T T T
O T O O
F T O F

¬ T O F
F O T

The logics KL, LP and the “Symmetric Logic” SL use these truth tables; however, they
differ in how their consequence relation o is defined:

KL: woKL c iff for every evaluation V we have

if V(w) = T , then V(c) = T. (1)
LP: wo LP c iff for every evaluation V we have

if V(w) = T or O, then V(c) = T or O. (2)
SL: wo SL c iff for every evaluation V we have

if V(w) = T , then V(c) = T ; and (3)

if V(w) = O, then V(c) = T or O. (4)
That is, oSL is oKL and oLP “taken together”: wo SL c iff (woKL c and wo LP c). KL has
no tautologies, a fortiori the principle of excluded middle w∨¬w also fails to be one. LP
is a paraconsistent logic, where w ^ ¬w is not explosive, i.e., it does not entail every-
thing. SL allows us to enjoy both of these features.

In the 2016 handbook article Williams claims that the following are the cognitive
loads of the three logics:

Truth value: T O F

The KL cognitive load function cKL: 1 0 0

The LP cognitive load function cLP: 1 1 0

The SL cognitive load function cSL: 1 1/2 0

Note that, indeed, if we grant this assumption, then the logics KL and LP satisfy the
conditions (∗)–(∗∗∗) and thus Theorem 2.1 can be applied to them directly.11 Williams
notes further that “it is a matter of hard graft to see whether similar completeness
results can be derived for settings that fail the Parisian conditions (one representative
of which is our Symmetric logic)”. As already mentioned, Paris himself extends the

11We are not convinced that merely the fact that the intended interpretation of “has the truth value O” is
“is both true and false” shows that cLP(O) should be set to 1. However, we plan to revisit this point in a
future study, using the complex notion of credence introduced here in section 4.3.

Note also the standard fact that there will be many logics under the KL name due to the various pos-
sibilities in which the set of variables might be chosen, which determines the set of valuations. That is, for
two different sets of valuations V1 and V2 satisfying the Kleene truth tables, (V1, oKL, cKL) and
(V2, oKL, cKL) will be different Kleene Logics, to both of which Theorem 2.1 directly applies. (All this
applies to LP and SL too, of course.)
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result so that it applies to finitely-valued Łukasiewicz logics, while Mundici (2006)
achieves a similar goal for the infinitely-valued version.12 Bradley (2017) continues
the “hard graft”, covering some examples involving languages with non-truthfunctional
operators.13 Our main goal here is to investigate how such nonclassical axioms can be
argued to be requirements of rationality using Dutch Book considerations, an idea fre-
quently mentioned, but one that has not, it seems, been so far put under sufficient scru-
tiny. Our point of departure will be the relatively uncomplicated example of Symmetric
Logic, to which we now turn.

3. Axiomatizing convex hulls of Symmetric Logic

We have recently put forward the following solution of the problem of axiomatizing
SL-probabilities in Gil Sanchez et al. (2022):

3.1. THEOREM (GIL SANCHEZ ET AL. 2022). Let a sentential language L consist of a non-
empty finite set P of propositional variables and the three connectives ^, ∨ and ¬. Take
SentL to be the set of all sentences of L. Let the logic SL be given as (V, oSL, cSL), where
valuations V∈V are given by the Kleene truth tables. Let B be a function from SentL to
[0, 1]. The following are equivalent.

(A) B is a convex combination of the cognitive evaluations cSLV for V∈V.
(B) B satisfies the axioms below.

(SL1) If woc then B(w)≤ B(ψ),
(SL2) B(¬w) = 1− B(w),
(SL3) B(w _ c) = B(w)+ B(c)− B(w ^ c),
(SL4) B(w) = B(c ^ w)+ B(¬c ^ w)− B(w ^ ¬w ^ c ^ ¬c). B

In other words, SL-probabilities are axiomatized by the conditions (SL1)–(SL4).14

12The reader might be interested in why this shouldn’t be straightforward, at least in the three-valued
version of the Łukasiewicz logic, since it shares the truth tables for ^, ∨ and ¬ with the three logics
under discussion here. Note, however, that its language contains also → as a non-derived connective.

13See, however, footnote 16 below: we think that the lattice-theoretic approach leads Bradley to some
unfortunately phrased conclusions already in the truthfunctional cases.

14For those yearning to nibble at a morsel of additional formalism: the new axiom (SL4) is related to the
presence in the Lindenbaum–Tarski algebra for SL logics of join-irreducible elements, which appear already
once two propositional variables are admitted in the language. If we consider the Lindenbaum–Tarski alge-
bra for the Symmetric Logic with two propositional variables x and y, then this will be the principal ideal
generated by x ^ ¬y:
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For an extended proof of this Theorem, see Gil Sanchez et al. (2022). One aspect of
SL we’ve made use of is that, of the three logics KL, LP and SL, it is only the Symmetric
Logic that is algebraizable: that is, only in that case the relation of mutual entailment is a
congruence, and so the logic has its Lindenbaum–Tarski algebra.15 (Also, for similar
reasons as in the classical propositional logic case above, the condition that P is finite
cannot be dropped without significant modifications. The papers by Paris (2005) and
Williams (2012b) contain an exhaustive list of similar results for other logics and the
issue of compositionality is also discussed therein.)

Notice that if the language has just a single propositional variable, all credences sat-
isfying (SL1)–(SL4) are convex combinations of the three valuations displayed in
Figure 1; that is, they are credences of this form:

Figure 1. The leftmost picture displays the Lindenbaum–Tarski algebra of the single-variable version of SL. The
others display the three valuations possible in this context.

As we can see, (the equivalence class of) x ^ ¬y cannot be arrived at as a join of two different elements.
Therefore, even if the value of a credence function were fixed on all the atoms (literally: on all the elements
of all the atoms) of the Lindenbaum–Tarski algebra, it wouldn’t be possible to use the additivity axiom
(SL3) to calculate its value for x ^ ¬y. It is in such cases in which (SL4) is employed. For the gruesome
details of this please refer to the technical paper (Gil Sanchez et al. 2022).

15If a logic is given semantically, with the entailment relation o, then its Lindenbaum–Tarski algebra is a
partition of the set of its sentences into equivalence classes (inside each of which, for every w and ψ, woc
and cow) on which the operators of the logic’s language behave “nicely”. Take [w] to be the equivalence
class of w and assume the language has (only) the operators ^, ∨ and ¬. In the Lindenbaum–Tarski algebra
we require that, if α∈ [w] and β∈ [ψ]:

• ¬α∈ [¬w];
• a ^ b [ [w ^ c]; and
• α ∨ β∈ [w ∨ ψ].

Take, however, the two formulas q1 = p ^ ¬p ^ q and q2 = p ^ ¬p ^ ¬q. They entail each other accord-
ing to both oKL and oLP (so q1 [ [q2] in both cases), but there are valuations in which their truth values
differ (which can be used to show that, again in both cases,¬q1 � [¬q2]. Therefore no Lindenbaum–
Tarski algebras for KL or LP exist. Their existence in the case of SL is exactly what allows us to draw
the diagrams in this paper!
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The following is an example of such a credence:

It is important to distinguish two goals: the logical one of axiomatizing certain con-
vex hulls, and the epistemological one of arguing that credences satisfying those axioms,
or, equivalently, belonging to those convex hulls, are in some sense rational. With
regard to the cognitive evaluations of Symmetric Logic, we’ve just described the achieve-
ment of the first of those two goals. We now turn to the second one.16

4. Convex hulls, Dutch Books and rationality

It is one thing to axiomatize the notion of a convex hull of cognitive loads in the context
of some logic. It is another one to argue that these axioms should be satisfied by rational
credence functions; in fact, it is achieving this goal that for epistemologists is probably
the main allure of these considerations. Let us now turn to this task.

The chief reason stated in Paris (2005) for investigating axiomatizations of convex
hulls of sets of valuations was that it is exactly the elements of such convex hulls that
are not Dutch-bookable with respect to those valuations.17 One assumption was that

16This footnote is aimed at those readers who are familiar with Bradley (2017). The just-provided simple
examples of elements of the convex hull of cognitive evaluations of SL directly relate to one of the points
made in that paper.

Bradley aims to apply the Krein–Milman theorem, which says – under some assumptions about com-
pactness and closedness – that the convex hull of the extremal elements of some convex set is that same
convex set. His goal is to extend a theorem by Choquet which describes the extremal elements of the set
of monotonic functions on a distributive lattice which satisfy the additivity axiom (SL3). The result he
gives as his Theorem 3 is that, if we restrict our attention to functions which assign 1 to the top and 0
to the bottom element of the lattice, those extremal elements are indicator functions of ultrafilters.

Bradley states that in “nonclassical case[s] there can obviously be evaluations that aren’t indicator func-
tions of ultrafilters … But … those evaluations will be non-extremal elements: they will be in the convex
hull of the indicator functions of ultrafilters. So, as long as the indicator functions of ultrafilters are among
the admissible evaluations, the convex hull of the evaluations will be equal to the convex hull of the indi-
cator functions of ultrafilters” (2017: 95). We believe it is important to note that this can be false e.g. if
functions which assign something else than 0 to the bottom element of the lattice are considered. Take
the single-variable version of SL: the three extremal elements of the set of evaluations are displayed in
Figure 1. And while, indeed, the indicator functions of the two ultrafilters are there, the convex hull of
the evaluations is decidedly not equal to the convex hull of the indicator functions of ultrafilters: for
example, the “give-everything-1/2” evaluation displayed in the middle of Figure 1 cannot be obtained as
a weighted mean of the two indicator functions of ultrafilters; one reason is that it has something else
than 0 as the value of the bottom element. Therefore, despite the air of generality conveyed by Bradley’s
ultimate conclusion that “as far as non-classical probability goes, it is only the lattice structure (encoded
in the ultrafilters) that matters to what counts as probabilistically coherent”, we should take note that
the claim has to be taken as holding only in the specific conditions in which the assumptions of
Bradley’s Theorem 3 are satisfied.

17For introduction to Dutch Book arguments, see Vineberg (2016) and Pettigrew (2020).
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the valuations are {1, 0}-valued; however, Paris himself noted that this restriction could
“clearly be relaxed”. Section 3 of Williams (2012a) contains a somewhat informal proof
of a generalization of Paris’ result to finite “non-classical truth value distributions of
truth values”.18 Once cognitive loads are introduced, matters become a little bit more
subtle. Assume possible worlds are governed by a logic with three truth values: True,
Other, and False. Suppose a bet is bought for a proposition A with the stake S; and
that it turns out that the truth value of A is Other. What portion of S should be paid
out – what Williams (2016) calls the “pragmatic load” of the Other value – depends
on how Other is to be interpreted; it can be argued, e.g., that if the logic is KL, then
the buyer should get nothing, if it is the LP, (s)he should receive the full S, and if it
is the SL, then (s)he should end up with one half of S. In section 5 of the 2016
paper Williams points out that the demands belong to the convex hull of cognitive eva-
luations and don’t be Dutch-bookable might be inconsistent if cognitive loads differ
from the pragmatic ones. To discuss the Paris-motivated connection between Dutch
Books and convex hulls we thus assume that these two types of loads coincide.

Some comment regarding cognitive and pragmatic loads is in order. Williams (2016)
takes them, in the context of some logic, to be properties of truth values.19 This allows a
hypothetical situation in which two different truth values share their cognitive load
(say, 1) but differ in their pragmatic load (say, 1 vs. ½). In such a case, even though
there is no difference in the credence an omniscient agent should invest in a proposition
depending on which of the two truth values it has, one of them is “worth more” in a bet-
ting situation. Similarly, truth values with differing cognitive loads might share their prag-
matic load. One could certainly contemplate a different approach, in which one of the two
types of loads was fundamental to the other; for example, pragmatic loads could be taken
to “generate” cognitive loads, on the assumption that what omniscient agents care about
can be reduced to betting profits. Since our project is to begin investigating how Dutch
Books could be made to actually work in nonclassical settings, we shall put these issues
aside here; matters will already be nontrivial if we stick to the identification of cognitive
loads and pragmatic loads for the time being. And so, even if we will eventually argue that
in nonclassical contexts the notion of Dutch Book needs to be modified, we shall now
state the following generalization of Paris’ result using just the cognitive loads.

Assume, again, that we are given a propositional language L with finitely many
propositional variables and finitely many operators which include ∨ and ^.

4.1 DEFINITION (DUTCH BOOK). In the context of a logic with the set of valuations V, and
the set of cognitive evaluations {cV|V∈V}, a function B: SentL � [0, 1] permits a
Dutch Book iff there are q1, . . . , qn [ SentL and s1, …, sn∈ℝ such that for all ele-
ments of {cV|V∈V} we have

∑n
i=1

si(cV (qi)− B(qi)) , 0. (5)

18The result is not formally stated anywhere in Williams (2012a).
19That is: truth values as the term is used in the current paper. Williams (2016) writes about “truth sta-

tuses” here, explicitly using the term “truth value” so that its reference varies; see e.g. Williams (2016: 262):
“the ‘truth value’ of a sentence refers to the pragmatic loading of the relevant truth status, whereas in the
previous results it referred to the cognitive loading of the truth statuses”. This leeway allows Williams to
speak of “convex combinations of truth values”, even when what he calls “truth statuses” are not numerical
in nature.
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4.2 THEOREM (VARIANT OF THEOREM 2 OF PARIS (2005)). In the context of a logic with the
set of valuations V, and the set of cognitive evaluations {cV|V∈V}, B does not permit a
Dutch Book if and only if B is a convex combinations of the elements of {cV|V∈V}. ▪

The shape of Formula (5) should be familiar to any reader of formal epistemology.
The usual interpretation of the terms involved is as follows (assume, for brevity, that
you can read “B” as “an agent with the credence function B” whenever you feel it
would be natural):

• si – the prize (stake) associated with the bet for qi;
• si · B(qi) – the cost of that bet;20

• si · cV (qi) – the payout if qi has the truth value V(qi);
21

and, crucially, it is understood that according to B, si · B(qi) is the fair price for a bet
with such a payout.22 A Dutch Book against B, then, is a collection of bets all of
which B considers to be fairly priced but which taken together inevitably lead to loss.

Dutch Books are to be a sign of irrationality. Assume, then, that possible worlds are
governed by the Symmetric Logic; for simplicity, suppose the language only has two
variables, x and y. What’s wrong with not satisfying the (SL1)–(SL4) axioms? Since
the first three conditions have been widely discussed in the literature,23 let us consider
a B which violates (SL4) and construct a Dutch Book against it.

For convenience, let us label the sentence x ^ ¬x ^ y ^ ¬y – whose cell of the
Lindenbaum–Tarski algebra for our logic is its bottom element – as ⊥. Consider a B
such that B(x) = 1/3, B(y ^ x) = B(¬y ^ x) = 1/4 and B(⊥) = 1/12. Note that it does
not follow from this assignment that any of the first three SL axioms be violated; how-
ever, (SL4) fails, since

1/3 = B(x) , B(y ^ x)+ B(¬y ^ x)− B(⊥) = 5/12.

To create a Dutch Book against this B we set the values for use in Formula (5) as per
Table 1. Those values, according to the interpretation given above, mean that B consid-
ers it fair to:

• sell the bet for x for 4;
• sell the bet for ⊥ for 1;
• buy the bet for y ^ x for 3;
• buy the bet for ¬y ^ x for 3.

Should all these bets go through, B would suffer a prior loss: −1. The payouts from the
bets in various worlds are given in Table 2. As we can see, the whole situation is a Dutch
Book against B: no matter what happens, B ends up losing 1.

20For a positive si, “how much B would pay for the bet had (s)he wanted to buy it”; for a negative si, “how
much B would receive for the bet had (s)he wanted to sell it”.

21For a positive si, “how much B receives if she bought the bet and qi has the truth value V(qi)”; for a
negative si, “how much B has to pay if she sold the bet and qi has the truth value V(qi)”. Remember also
that we identify the pragmatic loads with the cognitive ones.

22Why it should – or should not – be called so will be discussed below.
23Although actual Dutch Books illustrating the violations of them are typically presented under classical

assumptions.
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However, we find it highly doubtful that the existence of this Dutch Book is a sign of
B’s irrationality. Bluntly put, why should B even care about this particular sets of bets?
Why should we stipulate that the values from Table 1 encode numbers which B would
take to be fair prices for the corresponding bets? For example, B(x) = 1/3. Why would B
consider it to be fair to sell the bet for x – which pays 12 if the cognitive load of x is 1,
pays 6 if it is 1/2, and pays 0 otherwise – at the price of 4, that is, at one-third of the
highest possible prize?

This assumption, which lies at the foundation of applying the Dutch Book idea in
nonclassical settings, seems not to have received sufficient scrutiny in the relevant lit-
erature. Williams (2012a: 817) writes “[a]s is standard in Dutch Book arguments, we
assume that the fair price for an individual bet with unit prize for an individual with
belief state b is specified by the degree of belief that b assigns to the proposition bet
upon”. He continues that he’s “not interested in whether the argument works”, and
would rather investigate the “geometric structure of the argument”. However, from
an epistemological point of view, in order to transform the formal insights into some
conclusions regarding norms of rationality, we should definitely be interested whether
the argument works. And on the most prevalent, indeed canonical, way of cashing out
the notion of “fair price”, it just does not work.

The most common way of thinking about “fair price” in Dutch Book contexts,
recall,24 is to use the notion of expected value, and to think of bets which are fair
according to B as those which B expects to favour neither buyer nor seller; that is,

Table 1. The values for use in Formula (5), to create a Dutch Book against the B defined in the text.

i qi si B(qi)

1 x −12 1/3

2 y ^ x 12 1/4

3 ¬y ^ x 12 1/4

4 ⊥ −12 1/12

Table 2. The payout table for the bets against a B violating the axiom (SL4) as discussed in the text.

k cVk (x) cVk (y) cVk (y ^ x) cVk (¬y ^ x) cVk (⊥)
Profit

from bets
Total
profit

1 1 1 1 0 0 0 −1

2 1 1/2 1/2 1/2 0 0 −1

3 1 0 0 1 0 0 −1

4 0 1 0 0 0 0 −1

5 0 1/2 0 0 0 0 −1

6 0 0 0 0 0 0 −1

7 1/2 1 1/2 0 0 0 −1

8 1/2 1/2 1/2 1/2 1/2 0 −1

9 1/2 0 0 1/2 0 0 −1

24Consult Vineberg (2016) as a departure point.
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those which according to B have the expected value 0. Classically, to calculate the
expected value of a bet for A from the perspective of B, we use the credence in that
A is true, that is, B(A), and the credence in that A is false, which we equate with
B(¬A).25 Since these alternatives exhaust the available options, we can calculate B’s
expected profit from the given bet, assuming the price and the prize are provided.
However, it should be clear that already in a three-valued setting this approach will
not work. If the payout – whether ‘cognitive loads’ are considered or not – depends
on the truth value of A, then we are lacking the required information about the credence
in that A obtains the ‘third’ truth value. The values of B for A and ¬A, even assuming
that the latter denotes the degree of belief in that A is false, are simply not enough to
calculate B’s expected profit from the bet.

We will now propose a fix thanks to which we can, in nonclassical settings, consider
Dutch Book arguments that indeed work.26 It involves a modification of the usual
notion of credence. On our proposal it will assign to propositions not single numbers,
but rather vectors of numbers: as many as there are truth values according to the logic
which governs the space of possible worlds. The approach will be similar to the one
used in Janda (2016) in the context of accuracy measures. It will turn out that some
results obtained using the usual notion of credence – for example, the axiomatization
of the convex hulls of evaluations of SL – can be transformed so that their variants
hold also when the new notion is used.

4.1 Credences as Complex Attitudes

The idea is to treat credence in a proposition as a complex attitude, with as many
dimensions as there are truth values. If, say, propositions can be True, False, or
Half-True, one’s credence in A is a triple of numbers: degrees of belief in that A is
True, in that A is False, and in that A is Half-True.

More generally, assume a logic L is given in a language L with valuations assigning
to sentences elements from a finite set of truth values TV.27 In such a context, credences
are functions B: TV × SentL � [0, 1]. We will use the expression B∗(A) to denote
B(∗, A); it is to be read as “credence in that A has the truth value ∗”. If there are n
truth values, we could equivalently be talking either about B or about n functions
from SentL to [0, 1]; for example, in the case where TV has three elements – whatever
they are – it might be convenient to speak about a credence function by referring to the
indexed set of functions {B1(⋅), B1/2(⋅), B0(⋅)}.28

While the ideas here are meant to be general, so that a variety of nonclassical logics
and corresponding notions of credence can be considered, all examples illustrating our

25This is problematic on its own; see Hedden (2013), Wroński and Godziszewski (2017), and
Pettigrew (2021). (For starters, when arguing for probabilism it is a mistake to assume that B(¬A) = 1−
B(A); this should be a conclusion, not an assumption.)

26At least, that works as well as can be expected from a Dutch Book argument.
27We would like to reiterate that in general we place no restrictions on what truth values are.
28Note, again, that this way of writing is not meant to imply that the three truth values are 1, 1/2, and 0.

Below this notation is used so that B1(A) is to be understood as “credence in that A has the truth value
associated with the pragmatic load 1”, since it is the pragmatic loads – which, recall, determine the payout
from a bet for a proposition enjoying a truth value with that pragmatic load – that are crucial for Dutch
Book considerations. However, the convenient context of the Symmetric Logic allows us to equate truth
values, cognitive loads, and pragmatic loads, which simplifies presentation. This will all be explained
shortly.
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points will be given using the Symmetric Logic. As the Reader is well aware, it has three
truth values, and three cognitive loads; while we noted that, under the assumptions that
pragmatic loads are identical to cognitive loads, it is the cognitive loads which deter-
mine payouts from bets, in this particular case we can assume without loss of generality
that it is the truth values that are doing the job. We will thus dispense with the notion of
cognitive loads for the time being (we will come back to it in the general Definition 4.5).
Let us also think of valuations as possible worlds, not because we wish to put any deep
philosophy behind this choice, but so that we can conveniently speak of propositions
having a certain truth value “at” a valuation V, and of agents “having profits” or “sus-
taining losses” at various V’s.

For convenience we assume that for any proposition all credences in that proposition
having one of the various truth values sum up to 1; nothing formally important hangs
on that, but without this assumption some formulas below would have to be more com-
plicated. The idea is that there’s some quantity of credence that’s distributed among the
possible options (the proposition in question having the various truth values); the con-
venient assumption amounts to a normalization of that quantity. We will write it out
explicitly, since it does give us a philosophical bonus at one point, which some
might find to be debatable:

Convenient Assumption (CA). For any A [ SentL,
∑

∗[TV B∗(A) = 1.

Let us see how we can connect our modified concept of credence with the notion of
bet assumed in Definition 4.1 and Theorem 4.2 to obtain examples of Dutch Book argu-
ments in non-classical settings which actually work.

Following, for now, the lead of Williams (2012a), let us generalize the idea that a bet
for A with the prize S pays out S if A is true and nothing if A is false. In other words, a
bet for A pays out the portion of S given by the truth value of A.29 That is, for a valu-
ation V, a bet for Awith the prize S pays out V(A) ⋅ S at V. For an agent who buys such a
bet at cost C, then, the profit in V is w(A) ⋅ S− C. We’re after capturing the essence of
Dutch-bookability, that is exploitability via fair bets: a Dutch Book against an agent
(a credence function) is a collection of fair bets (that is, bets which are fair according
to the agent’s credence function) which ultimately lead to inevitable loss on part of
any agent which would partake in all of them.

Which bets does a credence function consider fair? Given a proposition and a prize,
a fair bet is that which has a fair price. We have already mentioned that, especially non
nonclassical contexts, the formal epistemology literature has largely avoided extensive
commentary on this issue. Typically, a price is considered to be fair according to B if
under that price B expects the bet to favour neither buyer nor seller: according to B,
the bet has the expected value 0.30

29Recall: for purposes of presentation only, since our primary topic until Definition 4.5 is the Symmetric
Logic, we are identifying cognitive loads with truth values until we start discussing that definition. And in
general, in this paper, we identify pragmatic loads with cognitive ones. So, to sum up: what actually deter-
mines the payout from a bet for A, given its prize S, is the pragmatic load of A’s truth value (which, in
general, might be any object whatsoever). This load we assume in the current article to be identical to
the value’s cognitive load. And in the particular case of SL there is no harm in identifying it also with
the truth value itself.

30Cf. Howson and Urbach (2006: 54, our emphasis): “The condition of equal (and hence zero) risk is, of
course, equal to that of equal (and hence zero) expected gain … thus fair odds are those also that confer
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Let us try to formulate a definition of a Dutch Book, suitable for nonclassical con-
texts, based on this notion of a fair price. How to cash it out formally? In our opinion
the following idea is natural: given a prize S and proposition A, the expected value of a
bet for A which costs C according to the credence function B = {B∗}∗[TV is

∑
∗[TV

B∗(A)(∗·S− C).

We’re not the first to use the word ‘expected’ in this way: what we’re doing here is essen-
tially the same thing as e.g. what is proposed in section 2 of Leitgeb and Pettigrew
(2010), where the authors define ‘expected inaccuracy’, with the expectation calculated
from the perspective of functions which are not assumed to be probabilities.31 (Our
B∗(A)’s sum up to 1 for each A, so the formula looks like the classical expected
value, but this is just because of our Convenient Assumption, made only for the pur-
pose of simplifying the formulas involved.)

As alreadymentioned, wewill be using SL to illustrate the proposed ideas. Assume, then,
that the set of truth values is TV = {1, 1/2, 0}, and that a bet for Awith prize S pays out ∗ ⋅ S
where∗ isA’s truth value. It is then immediate tonote that ifB(⋅) = {B1(⋅),B1/2(⋅),B0(⋅)}, then
B’s fair price for a bet forAwith prize S is (B1(A) + 0.5 ⋅ B1/2(A)) ⋅ S.32We can thus now put
forward the following definition of what it means for a credence to be Dutch-bookable,
assuming it is the Symmetric Logic that governs the possible worlds.

4.3 DEFINITION (SL-REALLY-DUTCH-BOOKABLE). B = {B1(⋅), B1/2(⋅), B0(⋅)} is SL-really-
Dutch-bookable if there are q1, . . . , qn [ SentL and s1, …, sn∈ℝ such that for all
v∈V we have

∑n
i=1

si(V(qi)− (B1(qi)+ 0.5 · B1/2(qi))) , 0. (6)

That is, assuming that SL governs the possible worlds, B is really-Dutch-bookable if
there is a series of bets B considers to be fair which inevitably lead to B’s loss: and
thus the main intuition behind the notion of a Dutch Book is indeed captured.

It turns out we can use the result reported earlier, the axiomatization of convex hulls
of evaluations of SL logic, to precisely specify which credences are not SL-really-
Dutch-bookable:

4.4 FACT. {B1(⋅), B1/2(⋅), B0(⋅)} is not SL-really-Dutch-bookable iff
B1(·)+ 0.5 · B1/2(·): SentL � [0, 1] satisfies (SL1)–(SL4).

Proof. Define an ‘old-style’ credence function b: SentL � [0, 1] as follows: b(w): =
B1(w) + 0.5 ⋅ B1/2(w). Then proceed through the following equivalences: B1(⋅) + 0.5 ⋅
B1/2(⋅) satisfies (SL1)–(SL4) iff b satisfies (SL1)–(SL4) iff b is not Dutch-bookable

equal, meaning zero, advantage on each side of the bet”. At a fair price “you are indifferent between buying
and selling the bet, and thus you see no advantage to either side” (Hájek 2008: 795).

31Cf. Leitgeb and Pettigrew (2010: 214): “while probability theory is the usual context in which expecta-
tions are defined, there is no objection in principle to extending the definition to cover the case of belief
functions that may not be probability measures”.

32Without (CA), this formula would have to involve a fraction: ((B1(A) + 0.5⋅B1/2(A))⋅S)/(B1(A) + B1/2(A) +
B0(A)). The situation is similar whenever fair prices are encountered below.
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(in the sense of Definition 4.1, due to Theorem 4.2) iff there are no q1, . . . , qn [ SentL
and s1, …, sn∈ℝ such that for all V∈V (5) is satisfied (with b in place of B) iff there
are no q1, . . . , qn [ SentL and s1, …, sn∈ℝ such that for all V∈V (6) is satisfied iff
{B1(⋅), B1/2(⋅), B0(⋅)} is not SL-really-Dutch-bookable. ▪

We thus have an example of a nonclassical setting and a Dutch Book argument that
actually works in it: a function B = {B1(⋅), B1/2(⋅), B0(⋅)} is not susceptible to an
SL-real-Dutch Book only if B1(⋅) + 0.5⋅B1/2(⋅) satisfies (SL1)–(SL4); otherwise there is
a set of bets B considers to be fair which inevitably leads to B’s loss.

By way of illustration, let us see an example of a real Dutch Book in the SL setting.
We will recreate the previous example in the new, ‘complex’ setting. Consider a credence
{B1, B1/2, B0} with the values as given in Table 3. It is routine to check that (CA) is sat-
isfied and that

1/3 = B1(x)+ 0.5 · B1/2(x) , B1(y ^ x)+ 0.5 · B1/2(y ^ x)+ B1(¬y ^ x)+
+0.5 · B1/2(¬y ^ x)− B1(⊥)− 0.5 · B1/2(⊥) = 5/12,

that is, B1 + 0.5⋅B1/2 does not satisfy (SL4). The Dutch Book presented before shows that
{B1, B1/2, B0} is really-Dutch-bookable; in Table 1 it suffices to substitute
B1(qi)+ 0.5 · B1/2(qi) for B(qi).

Having illustrated the idea behind real Dutch-bookability in the case of SL, let us
give the general definition, involving cognitive loads (but sticking with the assumption
that they are to be identified with pragmatic loads and continuing to assume (CA)).
Suppose, then, that a logic L is given in a language L as (V, o, c) with the valuations
obtaining values in a finite set TV. Suppose that for each ∗∈ TV, c(∗)∈ [0, 1]. If L is
to be considered as governing the possible worlds, then credence functions B should
be considered as being of the form B = {B∗(·)}∗[TV . Then B’s expected profit from a
bet for A which costs C and pays off c(V(A))⋅S at world V is

∑
∗[TV

B∗(A)(c(∗) · S− C). (7)

The fair price of such a bet from the perspective of such a B is the unique C which
makes the expression (7) equal 0, that is, C = ∑

∗[TV B∗(A) · c(∗) · S. (Note that this
does indeed give back the classical “the fair price is the proportion of the prize
which corresponds to the degree of belief” idea once enough assumptions are in place.)

With this in hand we can formulate the following general definition.

4.5 DEFINITION (L-REALLY-DUTCH-BOOKABLE). Suppose a logic L is given in a language L as
(V, o, c) with the valuations obtaining values in a finite set TV. Suppose that for each
∗∈ TV, c(∗)∈ [0, 1], and that credence functions B are of the form B = {B∗(·)}∗[TV .

Table 3. A ‘complex’ credence function such that B1(⋅) + 0.5⋅B1/2(⋅) gives the values of the credence
function defined in Table 1, against which a Dutch Book exists as evidenced by Table 2.

function

proposition x y ^ x ¬y ^ x ⊥

B1(⋅) 9/36 6/36 6/36 2/36

B1/2(⋅) 6/36 6/36 6/36 2/36

B0(⋅) 21/36 24/36 24/36 32/36
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B is L-really-Dutch-bookable if there are q1, . . . , qn [ SentL and s1, …, sn∈ℝ
such that for all v∈V we have

∑n
i=1

si
(
c(V(qi))−

∑
∗[TV

B∗(qi) · c(∗)
)
, 0.

Note that if L is the classical logic, with TV = {True, False} and c(True) = 1, c(False)
= 0, then the above gives us the ‘typical’ notion of a Dutch Book. For a credence func-
tion B = {B1(⋅), B0(⋅)}, the expected value of a bet for A which costs C and whose prize is
S is equal to B1(A)⋅(S− C)− B0(A)⋅C (so, just like it should be, credence in ¬A is not
involved) and a variant of the norm of Probabilism can be recovered.

We hope L-real-Dutch-bookability will be studied for various logics L and that it will
be possible to establish more connections between this notion and axiomatizations of
sets of the given logic’s cognitive evaluations – an example of which is our Fact 4.4.

In the future itmight also be fruitful to consider ‘complex’ cognitive loads.We’ve already
mentioned our uneasiness withWilliams’ proposal that in the case of LP the cognitive load
of the truth valueOther should be set to 1 just because its intended interpretation is “is both
true and false”. Perhaps a more natural reading would be to say that, assuming LP, the cre-
dence an omniscient agent should assign to a proposition A with the truth value Other is
{B1(A) = 1, B1/2(A) = 0, B0(A) = 1}. We leave this topic for future research.

In most discussions of credential norms we find in formal epistemology, we can
point to three aspects which are in a sense ‘classical’: the credence functions (considered
as assigning single numbers to propositions), the (sometimes implicitly) classically con-
ceived semantics, and the notion of a bet which is usually used in the literature. This
paper contributes to the discussion in which the starting assumption is that the second
element should be varied: the semantics under consideration may be nonclassical. In
this section we have so far been discussing varying the first element, so that we end
up using some nonclassical version of the credence notion. However, one might not
be happy with us keeping the notion of a bet as employed by Williams. For example,
if more than two cognitive loads are involved, a bet will have more than two possible
payouts; some may find it unfortunate that it is no longer apparent what counts as win-
ning or losing such a bet.33 And one might have the intuition that a bet for A should be
understood as a bet for that A is true, which should have two outcomes: it should be
won if A is true and lost otherwise. We will now propose a formal generalization of
this intuition, even though we believe that the presented notion of L-real-Dutch-
bookability may be fruitfully used to deliver valid arguments for norms of rationality
in various nonclassical settings. We will illustrate the idea using the classical and
Symmetric logics, where cognitive loads (which we assume to be identical to pragmatic
loads) directly correspond to truth values; in the following subsection we thus forego
any mention of cognitive and pragmatic loads, assuming that is the truth values
which straightforwardly determine the payouts.

4.1.1. Truth-value bets
Traditionally, then, we seem to assume that a bet for A is a bet for that A is true. Let us
once again tear off the classical shackles and stipulate that for a “truth-value bet” four
things are needed: a proposition A, a truth value ∗, a prize S, and a cost C. We can then

33We’d be happy with saying that “losing” and “winning” refer to the special case when a bet has only
two possible payouts. Alternatively, “losing” may refer to receiving nothing and “winning”, which may then
be a matter of degree, to any other outcome.

514 Michał Gil Sanchez et al.

https://doi.org/10.1017/epi.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/epi.2022.13


speak of a truth-value bet for that A has the truth value ∗. Note that no matter how many
truth values there are, uncovering A’s truth value leads to one of just two possible out-
comes: either the bettor was right, or (s)he was wrong. It is thus natural to assume that
such a bet, which costs C, pays out S if A has the truth value ∗, and pays out 0 otherwise.
Where TV is a nonempty and finite set of truth values, the expected value of a truth-
value bet for that A has the truth value ∗ according to the credence B = {B∗(·)}∗[TV is

B∗(A)(S− C)+
∑

#[TV ,#=∗
B#(A)(−C). (8)

Sticking with the idea that the fair price of a truth-value bet is the cost C for which the
above expression equals 0, we note that regardless of what TV consists of, a fair price
for the truth-value bet for that A has the truth value ∗ is B∗(A). A truth-value Dutch
Book against a credence B is then a set of truth-value bets which are fair from the per-
spective of B, but which lead to B’s inevitable loss.34

4.6 DEFINITION (L-TRUTH-VALUE-DUTCH-BOOKABLE). Suppose a logic L is given in a lan-
guage L with the valuations obtaining values in a finite set TV ⊊ [0, 1]. Assume cre-
dence functions B are of the form B = {B∗(·)}∗[TV .

B is L-truth-value-Dutch-bookable if there are q1, . . . , qn [ SentL, ∗1, . . . , ∗n [ TV ,
and s1, …, sn∈ℝ such that for all V∈V we have

∑
i:V(qi)=∗i

si(1− B∗(qi))+
∑

i:V(qi)=∗i
si(−B∗(qi)), 0. (9)

The left sum in (9) refers to the profit from those bets belonging to the Dutch Book which
are won at V, and the right one to the profit from those which are lost.

We will now consider two examples. For brevity, when we speak of ( just) “a bet for
A”, we mean the bet as considered before the current subsection; when we speak of “a
bet for that A has truth-value ∗”, or “a bet for that A is True” (which is shorthand for “a
bet for that A has the truth-value 1”), etc., we obviously mean a truth-value bet.

Let us first consider classical logicCLwith TV = {1, 0}. Then a bet for that A is Falsewith
prize S and cost C is equivalent to the bet for that A is True with prize −S and cost C.
Therefore CL-truth-value-Dutch-bookability is reducible to “CL-truth-value-Dutch-book-
ability exclusively via bets on that propositions are True”. This, in turn, is equivalent to
Dutch-bookability (in the typical sense) of B1 as a classically conceived credence. So: B =
{B1, B0} is not CL-truth-value-Dutch-bookable iff B1 is a classical probability function.

Consider, now, the case of Symmetric Logic SL. Assume thus that TV = {1, 1/2, 0}. A bet
for A with the fair price (B1(A) + 0.5⋅B1/2(A))⋅S has the same payout table as the following
pair of bets taken together:

• a bet for that A is true with prize S and cost B1(A)⋅S; and
• a bet for that A has truth value 1/2 with prize 0.5⋅S and cost 0.5⋅B1/2(A)⋅S,

both of which are truth-value bets which are fair according to {B1, B1/2, B0}.

34Recall that for ease of presentation the assumption of this subsection is that pragmatic loads coincide
with truth values, and so if you’d like to use the concept of betting proposed here in the context of e.g. KL
and LP, the definition would need to be suitably modified. Recall also that we continue assuming (CA).
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Using this insight we can represent the previous Dutch Book as a truth-value Dutch
Book. Consider the credence function displayed in Table 3.

In Table 4, the column labelled ‘∗i’ contains truth values. Each row i of that table
defines a truth-value bet for that qi has the truth value ∗i with the prize si, the fair
price of which is B∗(qi) · si. It is routine to check that participating in all of these
bets yields the loss of 1. It is also routine to check that, again, Table 2 shows that
this loss persists no matter what happens: therefore the whole situation is a truth-value
Dutch Book against the credence defined in Table 3.

A straightforward generalization of this insight leads to the conclusion that if a cre-
dence function is SL-really-Dutch-bookable, it is SL-truth-value-Dutch-bookable.

However, the converse is not true. Assume the language has a single propositional
variable x and consider the following credence B (which satisfies (CA)):

x ¬x x∨¬x ⊥

B1(⋅) 3/4 0 1/2 1/4

B1/2(⋅) 0 1/2 1/2 0

B0(⋅) 1/4 1/2 0 3/4

That this function is SL-truth-value-Dutch-bookable can be easily seen just from
inspection of the top row of that table. Assume unitary prizes. From the perspective
of the displayed credence the fair price for the bet for that x is true is 3/4, and the
fair price for bet for that x∨¬x is true is 1/2. Buying the first and selling the second
bet establishes prior loss of −1/4. In each of the three possible worlds B ends up
with a loss:

• if V(x) = 1, then both bets are won, and so the ultimate loss is the same as the prior
loss;

• if V(x) = 1/2, then both bets are lost, and so the ultimate loss is the same as the
prior loss;

• if V(x) = 0, then V(x∨¬x) = 1, and so the ultimate loss is −5/4.

Table 4. A set of bets showing that the credence from Table 3 is SL-truth-value-Dutch-bookable.

i qi ∗i si B∗(qi)

1 x 1 −12 9/36

2 x 1/2 −6 6/36

3 y ^ x 1 12 6/36

4 y ^ x 1/2 6 6/36

5 ¬y ^ x 1 12 6/36

6 ¬y ^ x 1/2 6 6/36

7 ⊥ 1 −12 2/36

8 ⊥ 1/2 −6 2/36
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Therefore B is SL-truth-value-Dutch-bookable. However, notice that B1 + 0.5⋅B1/2 is
the following credence:

which we have already seen in Section 3 as a convex combination of two possible worlds
(with weights 0.5). By the result of the current paper, we know that B1 + 0.5⋅B1/2 satisfies
(SL1)-(SL4), and so is not SL-really-Dutch-Bookable.

We can therefore state the following Fact:

4.7 FACT. SL-real-Dutch-bookability implies SL-truth-value-Dutch-bookability; how-
ever, the converse does not hold in general.

In the context of truth-value bets we have discussed the classical and Symmetric logics.
This is because in these contexts it is easy to think that truth values directly determine bet
payouts.GeneralizingDefinition 4.6 so that it involved cognitive loads poses no formal pro-
blems. However, it’s not evident for us what kind of betting we would then be modelling:
while we find betting for that a proposition has a certain truth value to be somewhat intui-
tive, wewould have to start thinking about betting that a certain proposition has this or that
cognitive load, which we are reluctant to do without giving the matter more thought. We
leave, then, investigating truth-value-Dutch-bookability in general for future research.

5. Conclusions

Continuing the “hard graft” proposed byWilliams, we have reported a result concerning a
logic which does not satisfy Paris’ conditions: the axiomatization of the convex hull of cog-
nitive evaluations of Symmetric Logic (SL).We have then argued that it would be amistake
to claim that it is exactly the credences satisfying those axioms that are rational if SL gov-
erns the possible worlds, on the basis that the aforementioned convex hull coincides with
the set of un-Dutch-bookable credences. That is, we have pointed out that the usual notion
of aDutch Book does not transfer immediately to nonclassical settings. To enable rigorous
Dutch-Book-based arguments in such contexts, we have offered the notion of
L-real-Dutch-bookability: what it means for a credence to be really Dutch-bookable on
the assumption that the possible worlds are governed by a logic L. We have pointed out
that in the case of Symmetric Logic the axiomatization of the convex hulls of the set of
evaluation can in fact inform us about real-Dutch-bookability, too (Fact 4.4). Our hope
is that L-real-Dutch-bookability can be fruitfully studied for various logics L.

Lastly, we have offered a modified – but also, we hope, intuitive – notion of bet,
“truth-value bet”, which leads to another concept of Dutch Book. We have shown
that in the case of SL this concept is weaker than the previous one. Its behaviour
with regard to different logics is an open matter.35

35This research was supported by the grant 2019/34/E/HS1/00044, ‘Epistemic inaccuracy and founda-
tional issues in formal epistemology’, of the National Science Centre (Poland) (recipient: Leszek
Wroński). We would like to thank Zoe Cocchiaro, Pavel Janda, Joanna Luc and Tomasz Placek for their
insightful comments on earlier versions of the paper. We would also like to express our gratitude towards
the anonymous reviewer for the offered suggestions, which have clearly improved the paper.
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