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Abstract

Let α be a totally positive algebraic integer of degree d, with conjugates α1 = α,α2, . . . ,αd . The absolute
Sk-measure of α is defined by sk(α) = d−1∑d

i=1 α
k
i . We compute the lower bounds υk of sk(α) for each

integer in the range 2 ≤ k ≤ 15 and give a conjecture on the results for integers k > 15. Then we derive
the lower bounds of sk(α) for all real numbers k > 2. Our computation is based on an improvement in the
application of the LLL algorithm and analysis of the polynomials in the explicit auxiliary functions.

2020 Mathematics subject classification: primary 11R06; secondary 11C08, 11Y40.

Keywords and phrases: Sk-measure, totally positive algebraic integer, explicit auxiliary function, LLL
algorithm, semi-infinite linear programming.

1. Introduction

Let α be a totally positive algebraic integer of degree d, that is, its conjugates α1 =

α,α2, . . . ,αd are all positive real numbers, while its minimal polynomial is P(x) =
a0xd + a1xd−1 + · · · + ad−1x + ad, where a0 = 1 and ai ∈ Z (1 ≤ i ≤ d). For k > 0, we
define the Sk-measure of α by

Sk(α) = Sk(P) =
d∑

i=1

αk
i ,

and the absolute Sk-measure of α by sk(α) = sk(P) = Sk(α)/d. It follows from the
arithmetic–geometric inequality that sk(α) > 1 unless α = 1. Let Tk be the spectrum
of sk(α), that is,

Tk = {sk(α) | α � 1 is a totally positive algebraic integer}.

1.1. The absolute trace of totally positive algebraic integers. When k = 1,
S1(α) = Tr(α) is the usual trace of α and tr(α) = Tr(α)/d denotes the absolute trace of
α. The Schur–Siegel–Smyth trace problem [3] is to find the smallest limit point of T1.
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That is, given ρ < 2, show that all but finitely many totally positive algebraic integers
α satisfy tr(α) > ρ.

One way of trying to solve this problem is to study the lower bound of tr(α). Schur
[17] solved this for ρ =

√
e with an exceptional polynomial P3 (all the exceptional

polynomials denoted by Pj in this paper can be found in Table 2). Siegel [18] solved
it for ρ = 1.7336 . . . with another exceptional polynomial P7. Smyth [20] solved it
for ρ = 1.7719 . . . with two new exceptional polynomials P9 and P10. The method of
explicit auxiliary functions established by Smyth [20] has been used by many authors
to study this problem, but no more exceptional polynomials have been found. In [22],
the authors solved it for ρ = 1.793145 . . . .

On the other hand, Serre [1] showed that the method of Smyth [20] does not produce
such a value for any ρ larger than 1.8983021 . . . . Applying this result, Smith [19]
recently proved that the smallest limit point of T1 is less than 1.8984, and his ongoing
computational work suggests that it could be decreased to 1.81.

1.2. The lower bounds of sk(α) for integers k ≥ 2. More generally, no exact value
of the smallest limit point of Tk is known for any k > 0. Studying its lower and upper
bounds is closely related to the study of the spectrumMp of the measure defined by

Mp(α) =
(1
d

d∑
i=1

|αi|p
)1/p

for p > 0, where α varies over all totally real algebraic integers (all of whose conjugates
are real numbers) of degree d, because (M2p(α))2 = (sp(α2))1/p for α totally real.
Smyth [21] carried out a detailed analysis ofMp. His results can be used to analyse
the structure of Tk. For instance, it follows from [21] that the set T2 consists of
five isolated points s2(P1), s2(P3), s2(P7), s2(P12), s2(P13) in the interval (1, υ2) (where
υ2 = 5.19610 . . .), is everywhere dense in (6,∞) and is undetermined in (υ2, 6); and the
set T3 consists of four isolated points s3(P1), s3(P3), s3(P7), s3(P12) in (1, υ3) (where
υ3 = 16.26481 . . .), is everywhere dense in (20,∞) and is undetermined in (υ3, 20).
Similar results for Tk for k = 4, 5, 6, 9, 12, 15 can also be deduced from [21]. Moreover,
It follows that the upper bound for the limit point ofTk for each k > 1 is D(k) = d(2k)2k,
where d(p) = limn→∞Mp(2 cos(2π/n)) for p > 2.

In [11], Liang and Wu improved the value of υ2 to 5.31935 . . . , the value of υ3 to
17.56765 . . . , and found a new isolated point s2(P10) in (1, υ2) and three new isolated
points s3(P13), s3(P14), s3(P15) in (1, υ3). In [9], Flammang improved the value of υ2 to
5.32176 . . . . She also showed that the method of auxiliary functions does not give a
value for any υ2 larger than 5.895237 . . . . This result, combined with [19, Corollary
5.5], can be used to show that the smallest limit point of T2 is less than 5.8953. In [8],
Flammang improved the value of υ3 to 17.56827 . . . .

In this work, we compute lower bounds υk for sk(α) for each integer in the range
2 ≤ k ≤ 15, and go further to study the results for integers k > 15. Then we derive
lower bounds for sk(α) for all real numbers k > 2.
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TABLE 1. The values of υk, υ′k and indices of exceptional polynomials in Theorem 1.1.

k υk υ′k Indices of exceptional polynomials

2 5.32716 5.32176 1; 3; 7; 12; 13; 10
3 17.6201 17.5682 1; 3; 7; 12; 13; 14; 15
4 61.0588 55.7906 1; 3; 7; 12; 13; 14; 15
5 218.024 201.516 1; 3; 7; 12; 13; 14; 15; 8; 16
6 794.576 712.650 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4
7 2933.78 − 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4
8 10941.5 − 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4
9 41089.5 32752.3 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17
10 155162 − 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17
11 588582 − 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17
12 2242242 1511035 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18
13 8574378 − 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18
14 32901254 − 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18
15 126620232 84162493 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6

THEOREM 1.1. If α � 1 is a totally positive algebraic integer, then for each integer
in the range 2 ≤ k ≤ 15 we have sk(α) ≥ υk with finitely many exceptions, where
υ2, . . . , υ15 are given in Table 1.

If sk(α) < υk, that is, α is an exception, then sk(α) is an isolated point in Tk. The
exceptional polynomials, whose indices are listed in Table 1, can be read off from
Table 2. In Table 1, the values υ′k denote the previous results [8, 9, 21] for the lower
bounds of sk(α). The exceptional polynomials with underlined indices are found from
previous research. The polynomials marked with asterisks in Table 2 will appear later
in this paper as the predicted exceptional polynomials for k > 15.

We observe the staircase distribution of the exceptional polynomials in Table 1 and
propose the following conjecture.

CONJECTURE 1.2. For an algebraic integer α, if sk(α) is an isolated point in Tk for
k > 2, then sk+1(α) is also an isolated point in Tk+1.

Let ωk = υ
1/k
k . We give a function g(x) to approximate the values of ωk for

2 ≤ k ≤ 15, and to predict the behaviour of υk for integers k > 15:

g(x) = 1 + u0

( log(u1 log(x))
u2 log(x)

)2/x

for x ≥ 2, where the parameters u0 = 2.96, u1 = 4.22 and u2 = 3.51 are optimised
according to the values of υk for integers 2 ≤ k ≤ 15.

PROPOSITION 1.3. If α � 1 is a totally positive algebraic integer, then for each integer
in the range 2 ≤ k ≤ 15, with finitely many exceptions, we have sk(α) ≥ gk(k).
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TABLE 2. The exceptional polynomials Pj.

j d Coefficients j d Coefficients

1 1 −2 1 13 6 1 −21 70 −84 45 −11 1
2 1 −3 1 14 8 1 −36 210 −462 495 −286 91 −15 1
3 2 1 −3 1 15 9 −1 45 −330 924 −1287 1001 −455 120 −17 1
4 2 2 −4 1 16 11 −1 66 −715 3003 −6435 8008 −6188 3060 −969 190
5 2 1 −4 1 ∗ −21 1
6 2 5 −5 1 17 14 1 −105 1820 −12376 43758 −92378 125970 −116280
7 3 −1 6 −5 1 74613 −33649 10626 −2300 325 −27 1
8 3 −1 9 −6 1 18 15 −1 120 −2380 18564 −75582 184756 −293930 319770
9 4 1 −7 13 −7 1 −245157 134596 −53130 14950 −2925 378 −29 1
10 4 1 −8 14 −7 1 19 18 1 −171 4845 −54264 319770 −1144066 2704156
11 4 1 −24 26 −9 1 ∗ −4457400 5311735 −4686825 3108105 −1560780
12 5 −1 15 −35 28 −9 1 593775 −169911 35960 −5456 561 −35 1 ∗

TABLE 3. The values of gk(k) and polynomials with sk(Pj) < gk(k) for 16 ≤ k ≤ 25.

k gk(k) Indices of polynomials

16 489867601 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6
17 1899197603 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6
18 7374496229 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6
19 28673594453 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6
20 111622140680 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6; 19
21 434989673867 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6; 19
22 1696753682790 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6; 19
23 6624116609508 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6; 19;
24 25880365332155 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6; 19; 11
25 101184713328898 1; 3; 7; 12; 13; 14; 15; 8; 16; 2; 4; 17; 18; 6; 19; 11; 5

CONJECTURE 1.4. If α � 1 is a totally positive algebraic integer, then for all integers
k > 15, with finitely many exceptions, we have sk(α) ≥ gk(k).

With Conjecture 1.4, for each integer k > 15, we give an estimate of υk with gk(k)
and some of the exceptions satisfying sk(α) < gk(k). For instance, for 16 ≤ k ≤ 25, we
list in Table 3 the values of gk(k) and indices of the polynomials Pj satisfying sk(Pj) <
gk(k). Note that all these polynomials conform to Conjecture 1.2.

Let d′(k) = D(k)1/k. In Figure 1, the behaviours of ωk, g(k) and d′(k) are represented
graphically. One can prove that g(k) tends to 1 + u0 as k tends to infinity. Although
this bound is not very sharp for k sufficiently large, it gives an explicit approximate
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FIGURE 1. The values of ωk for 2 ≤ k ≤ 15 and the asymptotic behaviour of g(k) and d′(k) for k > 0.

expression of υk for the first time. The values of u0, u1 and u2 in g(x) can be modified
if the results on υk for integers 2 ≤ k ≤ 15 are improved.

1.3. The lower bounds of sk(α) for all real numbers k > 2. As an application of
Theorem 1.1, we give the corresponding results for the lower bounds of sk(α) for all
k > 2, which supersede the results in [21].

COROLLARY 1.5. If α � 1 is a totally positive algebraic integer, then for all real
numbers k > 2 we have sk(α) > υ[k], with finitely many exceptions.

The values of υ[k] (where [k] is the integer part of k) in Corollary 1.5 are read
off from Table 1, and the isolated points of Tk in (1, υ[k]) are found with the aid of
Table 1 (for more details see [21]). For instance, for k = 3.5, there are two elements
s3.5(P1) and s3.5(P3) of T3.5 in (1, 17.6201). The proof of Corollary 1.5 refers to the
proof of [21, Theorem 2].

This paper is organised as follows. In Section 2 we explain how to use the
explicit auxiliary functions to compute the lower bounds of sk(α) for totally positive
algebraic integers, and give the relation between the auxiliary function and integer
transfinite diameter. In Section 3 we show our improvement in finding polynomials
used in the explicit auxiliary functions. In Section 4, we give some numerical
results.

2. The method of auxiliary functions

2.1. The explicit auxiliary function. Auxiliary functions of this type have been
used by many authors for the computation of different measures of totally positive
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algebraic integers. We take

f (x, c) = ψ(x) −
J∑

j=1

cjlog |Qj(x)| for x ∈ I, (2.1)

where c = (c1, c2, . . . , cJ), the cj are positive real numbers, the Qj are nonzero
polynomials in Z[x] and I is a real interval. For instance, if ψ(x) = log(x + 1), the
auxiliary function (2.1) can be applied for the lower bound of the absolute length
R(α) = L(α)1/d, where L(α) =

∑d
i=0 |ai| (for more details, see [5, 6, 14]); and ψ(x) =

log(max{1, x}) for the lower bound of the absolute Mahler measure Ω(α) = M(α)1/d,
where M(α) = |a0|

∏d
i=1 max(1, |αi|) (for more details, see [5, 7, 14]).

To prove Theorem 1, we take ψ(x) = xk and I = (0,+∞) (see [9, 13, 15, 24]) for each
integer in the range 2 ≤ k ≤ 15. That is,

fk(x, c) = xk −
J∑

j=1

cjlog |Qj(x)| for x > 0. (2.2)

Let mk be the minimum of fk(x, c) for x > 0. Then
∑d

i=1 fk(αi, c) ≥ dmk, that is,

Sk(α) ≥ dmk +

J∑
j=1

cjlog |Res(P, Qj)|,

where Res(P, Qj) =
∏d

i=1 Qj(αi) is the resultant of P and Qj. If P does not divide any
Qj, it follows that Res(P, Qj) is a nonzero integer for all 1 ≤ j ≤ J and sk(α) ≥ mk.
Hence we have to solve an optimisation problem to determine

mk(c) = max
c

min
x>0

fk(x, c).

2.2. The relation between the auxiliary function and integer transfinite diameter.
Let K be a compact subset of C. If φ is a positive function defined on K, the
φ-generalised integer transfinite diameter [2] of K is defined by

tZ, φ(K) = lim inf
h≥1

h→∞

inf
H∈Z[x]
deg H=h

sup
x∈K

(|H(x)|1/hφ(x)).

In the auxiliary function (2.1), if we replace the positive real constants cj by rational
numbers for 1 ≤ j ≤ J, we obtain

f (x, c) = ψ(x) − t
h

log |H(x)|,

where the polynomial H ∈ Z[x] is of degree h and t is a positive real number. We want
to determine a function f (x, c) whose minimum m in I is as large as possible. Thus we
need to seek a polynomial H ∈ Z[x] such that

sup
x∈I
|H(x)|t/he−ψ(x) ≤ e−m.
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Now, if we suppose that t is fixed, say t = 1, we need to get an effective upper
bound on the weighted integer transfinite diameter with the weight φ(x) = e−ψ(x) and
the compact set K = I. It is sufficient to find an explicit polynomial H ∈ Z[x] and then
use the sequence of the successive powers of H.

3. Finding polynomials used in auxiliary functions

3.1. An improvement in the application of the LLL algorithm. The main point
is to make a good choice of the polynomials to be used in the explicit auxiliary
functions. In 2003, based on the LLL algorithm (the lattice reduction algorithm)
[10], the third author [23] developed an algorithm to search the polynomials in
(2.1) systematically. Before that, the polynomials were found heuristically. In 2009,
Flammang [4] developed an algorithm called the recursive algorithm on the basis of
the method in [23].

With the third author’s algorithm [23], we consider the auxiliary function (2.1).
We start with the polynomial x, get the best c1 and take t = c1. Supposing that we
have some polynomials Q1, Q2, . . . , QJ , we optimise the numbers c1, c2, . . . , cJ with
the semi-infinite linear programming method that was introduced into number theory
by Smyth [21]. This gives us a new number t and we continue by induction to get J + 1
polynomials. That is, we have

F =
J∏

j=1

Qcj

j

of degree t (for noninteger t, we can multiply it by a large enough integer to make it
integral), and we seek a polynomial Q ∈ Z[x] of degree q such that

sup
x∈I
|F(x)Q(x)|1/(t+q)e−ψ(x) ≤ e−m.

We want the quantity supx∈I |F(x)Q(x)|e−ψ(x)(t+q) as small as possible. We apply the LLL
algorithm to the linear forms

|F(xi)Q(xi)|e−ψ(xi)(t+q).

The xi are control points in the interval I, chosen as the points where the function f has
local minima.

The LLL algorithm tends to give polynomials of small degree with small Euclidean
norm, which are always ‘good’ candidates for the set {Q1, Q2, . . . , QJ}. But sometimes
we need polynomials with larger degree, which is a challenge to the previous method.
Besides, as the absolute value of ψ(x) in I increases, it becomes intractable to search
for Qj with the LLL algorithm. This requires an improvement in the application of the
LLL algorithm.

In the auxiliary function (2.2), we observe that some irreducible polynomials with
small absolute Sk-measure always appear repeatedly as factors of polynomials given
by the LLL algorithm, and tend to have high powers. To make the LLL algorithm
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produce more factors that differ from the existing polynomials Qj, we introduce the
perturbations δ0, δ1, . . . , δJ , where δj ≥ 0 are real numbers. That is, let

F =
J∏

j=1

Qcj+δj

j

be of degree t′. We apply the LLL algorithm to the linear forms

|F (xi)Q(xi)|e−xk
i (t′+q)δ0 (3.1)

in the interval I0 = (0, A), where A is large enough.
For different sets {δ0, δ1, δ2, . . . , δJ}, the LLL algorithm will produce some different

polynomials. The δj ( j = 0, . . . , J) are chosen so that the LLL algorithm gives ‘good’
polynomials. We note that for a fixed k in (3.1), in the set {δ0, δ1, . . . , δJ} that
gives ‘good’ polynomials, there are only a small number of nonzero elements, the
corresponding Qj to which always have small absolute Sk-measure. In fact, for k ≥ 2,
all the perturbations of exceptional polynomials Pj are nonzero.

In the program applying the LLL algorithm, we make some modifications so that
it produces a large number of candidates for Qj in less time. This improvement in the
application of the LLL algorithm helps us improve the lower bounds of sk(α). It can
be used to find polynomials for any explicit auxiliary function with the form (2.1).

3.2. The Kronecker polynomials. Since all the exceptional polynomials should be
used in the auxiliary functions, we analyse the characteristics of the known exceptions.
That may help us find more candidates for the set {Q1, Q2, . . . , QJ}.

It is clear that the absolute Sk-measure of a totally positive algebraic integer is
related to the distribution of its conjugates. An important measure of an algebraic
integer α associated with its conjugates is α = max1≤i≤d |αi|, the house of α. We
observe that all the known exceptions for 2 ≤ k ≤ 15 satisfy α < 4. This is an
extension of the observations of McAuley [12] and Smyth [21]. In fact, for fixed α,
sk(α)1/k is an increasing function of k [21], and sk(α)1/k tends to α as k tends to infinity
[12]. Note that d′(k) tends to 4 as k tends to infinity. This suggests that the minimal
polynomials of totally positive algebraic integers with α < 4 may be useful in the
auxiliary function (2.2).

Kronecker showed that the polynomials whose zeros all lie in [0, 4] are precisely

Km =
∏

(l,m)=1
0≤l≤m/2

(
x −
(
2 + 2 cos

2πl
m

))

(the so-called Kronecker polynomials [16]) for every positive integer m. A cyclotomic
polynomial Φn(z) of degree ϕ(n) (where ϕ(n) is the Euler function) produces a
Kronecker polynomial of degree ϕ(n)/2 by the change of variable x = z + 1/z + 2. This
transformation produces 158 Kronecker polynomials of degree less than or equal to 40.
We test them in the auxiliary function (2.2) for each integer 2 ≤ k ≤ 15, and reserve
the ones with nonzero cj. This idea is very effective, especially for k relatively large.
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TABLE 4. Values of lk, mk, nk and α k for 2 ≤ k ≤ 15.

k lk mk nk α k k lk mk nk α k

2 133 43 14 4.585557 9 117 51 38 4.136069
3 106 34 16 4.380522 10 112 55 44 4.129987
4 127 37 19 4.289224 11 107 56 48 4.129987
5 142 42 25 4.289224 12 106 56 48 4.129987
6 136 43 28 4.191787 13 108 59 51 4.104735
7 122 43 31 4.191787 14 98 57 49 4.104735
8 123 48 37 4.191787 15 97 60 52 4.104735

We give the number of the Kronecker polynomials used in our calculation in Table 4
in the following section.

4. Numerical results and analyses

When k is large enough, the computation of υk becomes intractable, so we stop
at k = 16. Thanks to the improvement in the application of the LLL algorithm, we
find a large number of irreducible polynomials used in the auxiliary function (2.2).
For instance, we find 72 new polynomials for k = 2, 60 new polynomials for k = 3,
and improve the values of υ2 and υ3. Besides, for k relatively large, the Kronecker
polynomials mentioned in Section 3.2 work very well. The number of all the different
irreducible polynomials used in (2.2) is 490 (available from the corresponding author).

In Table 4, for each integer in the range 2 ≤ k ≤ 15, we give the number lk of
irreducible polynomials used for computing υk. Among them are mk monic irreducible
polynomials with all zeros positive (the so-called totally positive polynomials) and
nk Kronecker polynomials. The biggest house of the mk totally positive polynomials
is denoted by α k. With increasing k, the proportion of totally positive polynomials
and that of Kronecker polynomials increase, while the biggest house of the available
totally positive polynomials decreases. It is an interesting question whether all the
available totally positive polynomials used in the auxiliary function (2.2) should be
Kronecker polynomials to compute the lower bounds of sk(α) for k large enough.
It is also interesting to investigate the relation between the house and the absolute
Sk-measure of totally positive algebraic integers.

If k > 0 is a real number, lower bounds υk of sk(α) can also be calculated. For
example, for k = 2.5, using 114 irreducible polynomials found by the improved
algorithm, we improve the previous result υ2.5 = 9.0509 (with isolated points
s2.5(P1), s2.5(P3), s2.5(P7), s2.5(P12) in (1, υ2.5)) [21] to υ2.5 = 9.6101 and find two new
isolated points s2.5(P13) and s2.5(P14). Theoretically, all the results in [21] on the lower
bounds of sk(α) for k > 0 can be improved with our method.

All the computations are done using the Pascal programming language and Pari/GP.
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