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MAJORIZATION AND RANDOMNESS MEASURES
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Abstract

A series of papers by Hickey (1982, 1983, 1984) presents a stochastic ordering based
on randomness. This paper extends the results by introducing a novel methodology to
derive models that preserve stochastic ordering based on randomness. We achieve this
by presenting a new family of pseudometric spaces based on a majorization property.
This class of pseudometrics provides a new methodology for deriving the randomness
measure of a random variable. Using this, the paper introduces the Gini randomness
measure and states its essential properties. We demonstrate that the proposed measure
has certain advantages over entropy measures. The measure satisfies the value validity
property, provides an adequate extension to continuous random variables, and is often
more appropriate (based on sensitivity) than entropy in various scenarios.
Keywords: Pseudometric; LP-metric; Lorenz curve; entropy; Gini index; evenness
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1. Introduction

Muirhead [27] initiated the work on majorization, and the book by Hardy, Littlewood, and
Pélya [13] provides an excellent foundation for the subject. The application of majorization is
one of the significant research areas. Arnold and co-workers [3], [4], and [26] have provided
a good survey of this area. Hickey’s papers [14—16] show an important application of the
majorization property for randomness ordering of the probability mass functions (PMFs) and
probability density functions (PDFs); see also [17], [18], and [26]. These papers establish the
role of majorization in measuring randomness, but they provide only an ordering and do not
discuss models for measuring uncertainty.

The first notable measure of randomness in classical probability theory is the Shannon
entropy (see [20]), which satisfies majorization criteria (see [14]). Then, many researchers
introduced different entropy measures, including Rényi entropy and Kullback-Leibler diver-
gence (see [22] and [29]). The entropy measures enjoy many properties that are well known
in the literature (see [6], [9], [12]). Entropy measures also possess some limitations. Kvalseth
[24] explains that the entropy measures do not satisfy the value validity property. Entropies
extending to continuous random variables have certain restrictions (see [29, page 5]). Also,
the sensitivity of entropy measures is another property for choosing entropy as a randomness
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2 K. NIDHIN

measure. One example is Shannon entropy, which is sensitive to the ratio of probabilities (see
Section 4 for a detailed discussion).

This paper provides a methodology for deriving randomness measures that preserve
majorization ordering using a pseudometric-based approach. For this, we study a new class
of pseudometric spaces, which characterizes a majorization property. The novel class of pseu-
dometrics established on the space of probability distributions is used in this study to construct
the randomness measure of random variables. Also, we show that the measure developed using
the methodology has overcome the limitations of entropy.

2. A new family of pseudometric spaces

This section explains a class of pseudometrics on R"” which preserves majorization order-
ing. Let X = (x1, x2, . . ., X,) € R"; in particular, X; = (x;1, X2, - - - , Xin), Where i € N, and a* =
(a,a,...,a,a"*=(,0,,0,...,0) for a € R. We start with the concept of majorization in
R" (see [26]).

Definition 2.1. Let X, y € R”; then X is majorized by y (denoted by X < y) if
{Zf-;l <Yk oy forallk=1,2,...,n—1,
Do X = i Vil
where (x[17, x[2], - - - , X[4]) T€presents decreasing rearrangements of (x1, x2, . .., Xp).

The following definition defines a general class of pseudometrics that preserves an essential
property of majorization.

Definition 2.2. A function d : R" x R" — [0, 00) is called an m-pseudometric if it satisfies
the following properties, for any X, X5, X3 € R™:

1. d(X1,X2) >0, X =X=d(X1, X2) =0,
2. d(X1, X2) =d(X2, X1),

3. d(X1, X2) <d(X1, X3) + d(X3, X2),

4

. If X; <X and X, 4 X; (from Definition 2.1, Zj'-’:l xij= Z]r';l x27), which implies that

- - 1
d(X1, x}) < d(X, X ), where xy, = 27:1 Xj-.

Note that from the relation between majorization and the Lorenz curve (see [4]), axiom 4 is
equivalent to:

4 If Xy, Xp € R" with Zj’:l:l xij= Zj’.’:l xj and Lg, (p) > Lg, (p), 0 < p < 1 and for some p,

Lz, (p) > Ly, (p) = d(x1, Xj ) < d(X2, X7 ), where Lg(p) denotes the Lorenz curve of X.

Example 2.1. Let d be the Euclidean metric in R”, that is,

n 172
d(a, v) = [Z (ui — v»z} :

i=1
where @ = (uy, up, ..., uy) and v= (v, va, ..., v,). Then d is an m-pseudometric on R".

Example 2.2. Let d be the L"-metric in R” with 1 < r < 00, that is,
n 1/r
d(@, ¥) = [Z (i — w)’} :
i=1
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Assume 1 < Vand v £ u. Since the function [x — u.|", where r > 1, x e Rand u, = % ]'-’:1 uj, is

a convex function, we have d(u, u*) < d(v, v¥) (see [7, page 184]). So d is an m-pseudometric
on R”.

The following metric property is still valid for an m-pseudometric.
Theorem 2.1. Let d be an m-pseudometric; then d/(1 + d) is an m-pseudometric.

Proof. Since d is an m-pseudometric, the result follows from the elementary result that if

x>0,y>0,and x <y, then
X y

1+x<1+y' U

3. A new family of randomness measures

This section introduces a new methodology to measure the randomness of a discrete random
variable using an m-pseudometric. So this is a metric-based measure of randomness and can
be considered an alternative measure of entropy for measuring randomness.

The following defines a special subset of R":

n
r= !f):(pl,pz,...,pn)eRn|Zp,-=1,pi20,i=1,2,...,n ) (3.1)
i=1
Let X be a random variable with support {xi, x2, ..., x,}. Let p=(p1, p2, ..., pn) be the

probability distribution of X. That is, P(X =x;) = p;, i € {1, 2, ..., n}. Then clearly p e T'.

Definition 3.1. ([14, 15].) Let py, p2 € I be two probability distributions. Then we say that p;
has more randomness than p, if p; < p2 and p2 £ p;.

For any peT, %* < p < 1", That is, a random variable with equally likely probabilities
represents the most randomness, and a random variable degenerate at one point repre-
sents non-randomness, and all other PMFs are between these two extreme cases. Let Y,
for example, follow a uniform distribution with parameter n and let Z be a random vari-
able which degenerates at a point (i.e. P(Z=a)=1, a € R). Then, for any X with support
{x1, x2, ..., x,}, where each x;, i=1,2,...,n,isdistinct, the randomness of Y is greater than
the randomness of X, which is greater than the randomness of Z. If p= (p1, p2, ..., pn) and
q= @), P - --»Pm)) where ((1), (2), ..., (n))is a permutation of (1, 2, ..., n), thenp < q
and q < p, and therefore the randomness of p and q is identical [15].

We call the m-pseudometric defined on I' a random pseudometric. Since, for any p € I', we
have p < 1** and 1** £ p, this implies d(p, %*) <d(1*, %*). So, the random pseudometric is
bounded. The following definition introduces a new class of randomness measures (we call it
the N-randomness measure) of a discrete random variable X having finite support.

Definition 3.2. Let I" be a class of probability distributions defined as
n
P=1p=@1p2 - .p) €R"|Y pi=1,p;=0,i= 12n}
i=1

and let d be a random pseudometric on I'. Let X be a random variable with PMF
P= (1, P2, - .., pn)- Then the N-randomness measure of X is defined as

(X)=1 —knd(f), ! >
n
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where
1 1

Tmad(p, 1)t L)

n

Remark 3.1. A similar form of the above measure is used in biological studies for checking
value validity in evenness indices of species distributions (see [24]). If the measure can be
represented as in the above form, then Kvélseth [24] argues that the measure satisfies the
condition of the value validity property given in Definition 4.3. So, using the L"-metric, only
two known measures (the Bulla measure and the Williams measure for r = 1, 2 respectively)
satisfy this property. But Kvélseth [24] considers only d as a metric, so many widely used
measures do not satisfy this property. Then Chao and Ricotta [8] introduced evenness measures
by replacing the metric with a divergence measure. But in general, these measures do not
satisfy the majorization property (see [8]).

The following properties are essential for randomness measures, location invariance, invari-
ance under injective transformation and symmetry (invariance under permutation). Since ¢
depends only on probabilities, the results follow,

Theorem 3.1. Let X be a random variable with outcomes {x1, X2, . .., X,}. The PMF of X is
definedas P(X =x;))=p;, ie{l,2,...,n}. Then {(X)=¢(X —a), foralla e R.

Theorem 3.2. If g : R — R is an injective function, then {(X) = ¢(g(X)).

Theorem 3.3. Let X and Y be two random variables, with the probability vector of X being a
permutation of the probability vector of Y. Then ¢ (X) = ¢(Y).

The following example illustrates the above theorems in binomial distributions.

Example 3.1. Let X ~ B(3, %) and Y = X 4 2, where B(n,p) represents a binomial distribution
with parameters n and p. Then, from Theorem 3.1, ¢(Y) = ¢(X). Now assume Z = X2. Since
the square function is injective on the positive real line and from Theorem 3.2, ¢(Z) = ¢(X).
Let W be a random variable with PMF

ifw=0, 1,

WO=AT e 0 s,

00| — 00|

Then, from Theorem 3.3, ¢ (W) = ¢ (X).

4. Gini randomness measure for discrete distributions

This section discusses a randomness measure based on a new pseudometric, which we call
the Gini pseudometric.

Definition 4.1. Let I" be the class of discrete probability distributions as defined in (3.1). Then
the Gini pseudometric dy is defined as dg : I' x I' — [0, 0o) such that

n n n n
dg@, V) =Y "> i —wl =D i v, 4.1
i=1 j=1 i=1 j=1
whereu, veT.

The Gini pseudometric is a random pseudometric. The first three axioms in Definition 2.2
are direct. Now dg(@, uw*) =Y "7 27:1 |u; — u;| is a constant multiple of the Gini coefficient
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of @i (see [19]). Hence i1 < V and Vv £ 11 implies d (11, u*) < dgy(V, v¥) (see [2], [26]). That is,
the function d, satisfies axiom 4 of Definition 2.2.

Using the Gini pseudometric, a direct calculation gives dg(1**, %*) =2(n—1). Hence the
following definition introduces a randomness measure which we call the Gini randomness
measure; a similar formula is used for measuring evenness in ecology (see [8], [24]).

Definition 4.2. Let X be a discrete random variable with PMF

A pi ifx=x,ie{l,2,...,n},
X) =
X 0 otherwise.

The Gini randomness measure of X (¢,(X)) is defined as
1

20— 1) Z > lpi—pil.

i=1 j=1

LX) =1~

Different formulas can be used to calculate the Gini randomness measure; see [31] and
[33]. The major advantage of this randomness measure is the powerful theory available for the
Gini coefficient. That can be useful for further study of randomness (see [34]). To illustrate
this point, from [34], there are different ways to represent the Gini coefficient, which again
means that the Gini randomness measure has different representations. The Gini coefficient,
for instance, can be defined using the Lorenz curve (see [11]), and hence the Gini randomness
measure of a random variable X can be defined using the Lorenz curve; see Definition 7.2.

Example 4.1. Let X and Y be two random variabgs, ’S\lfch that X ~ B(4, %) and Y ~ B(4, %).
Then a direct calculation, using (4.1), gives d(Px, Py) =0.0752 (i.e. 7.52% deviation of
the randomness of two distributions). Also, ¢¢(X)=0.5937 and {,(Y) = 0.5185, that is, the
randomness in B(4, §) is 59.37% and in B(4, 1) it is 51.85%.

In addition to Theorems 3.1, 3.2, and 3.3, the Gini randomness measure is continuous with
respect to each pp, pa, ..., py. The entropy measure also satisfies these properties (see [9]).
So, both the Gini randomness measure and the entropy measure satisfy many of the essential
properties of a randomness measure. The following discussion shows the advantages of the
Gini randomness measure over entropy measures in applied situations. Example 4.2 illustrates
a comparative study of the Gini randomness measure and Shannon entropy on sensitivity. The
example shows some situations in which the Gini randomness measure is more sensitive than
the entropy measure.

Example 4.2. (Comparison of Shannon entropy and Gini randomness measure.) Let X ~
B(1, p). The Shannon entropy of X (denoted by H(X)) is

HX)=—(1—-p)log,(1—p)+plog,p), 0<p=<1.
The Gini randomness measure of X is

2p ifo<p=<1,

X:
£(X) {2—2,) ifl<p=<l.

Figure 1 illustrates the difference between the two measures. The blue line represents the
Shannon entropy for p, and the red line represents the Gini random measure for p. Note that
both measures take the maximum when p is % and the minimum when p is 0 and 1.

https://doi.org/10.1017/jpr.2024.82 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2024.82

6 K. NIDHIN

1.00 « "
R
Sy,
N U
0.75 e
o vl
o vl
o v == Gini Randomness
050 * g v
= = Shannon Entropy
S \
o \ L
0.25 : ! \ "
o v\
! \
¥ ".
000 ! 1

FIGURE 1. The figure illustrates the Shannon entropy and Gini randomness measure of a random variable
following B(1,p) distribution.

Also, the sensitivity of the two measures is different. The Gini randomness measure is
more sensitive when more probabilities are scattered, whereas Shannon entropy is sensitive
to the ratio of probabilities (see [2]). To illustrate this point, let X and Y have proba-
bility distributions (p1, p2, ..., py) and (g1, g2, .. ., qn) respectively. The probabilities are
in descending order with py =¢gi for k=1,2,...,i—1,i+1,...,j—1,j+1,...,n and
gi =pi +a, gj=p; — a, where a is a constant. From [2], {¢(X) — ¢(Y) = c1a(j — i), whereas
H(X) — H(Y) = cpalog (pi/p)), where c1 and ¢, are constants. Note that the sensitivity of the
Gini randomness measure depends on the ranks of i and j in 1, 2, ..., n, but the Shannon
entropy depends on the numerical values of p; and p;. So {4(X) — {,(Y) is high when more
probability values lie between p; and p;, and H(X) — H(Y) is high when p; is near to one and
pj is near to zero.

This can be seen in Figure 1, since for each p, the Bernoulli distribution has two probabilities
(P1, p2), and from the previous paragraph, i =2 and j = 1, and the difference in {g(X) — ()
depends only on the transfer probability a whereas H(X) — H(Y) depends on both a and the
values of probabilities p; and p;. So the Gini randomness curve has a constant slope and the
Shannon entropy curve takes a higher slope when p is near zero or one (so p; is near to one
and p» is near to zero).

For example, let p change from 0.52 to 0.51; then the corresponding change in entropy is
0.0009, which is almost zero, and the variation in the Gini randomness measure is 0.02. So, in
Bernoulli distribution, when p changes from 0.52 to 0.51, Gini (0.02) exhibits more change in
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randomness than entropy (0.0009). Now if p changes from 0.02 to 0.01, then the variation in
the Gini randomness measure shows the same value 0.02 (since here both @ and j — i are the
same as in the previous case). However, the corresponding change in entropy is 0.06. So, in
this case, the entropy (0.06) shows more change in randomness than Gini (0.02) since here p
is small. This implies that p; is near to 1 and p; is near to zero. The same thing can be seen
when the number of probabilities in a distribution is more than two. So, to study changes in the
randomness of probability distributions that are more scattered, the Gini randomness measure
provides better results since it captures the changes more effectively than the Shannon entropy.

The following property of the Gini randomness measure is another advantage that popular
entropy measures do not satisfy.

Definition 4.3. (Value validity property [23].) A measure has value validity if all of its potential
values provide numerical representations of the size (extent) of the attribute being measured
that are true or realistic with respect to some acceptable criterion.

To check that the Gini randomness measure satisfies the value validity property, we use
the following procedure from Kvalseth [23, page 4859]. Let U and V be uniform and
degenerate random variables, respectively. Let X be a random variable with PMF (1 — A +
A/n, A/n, ..., L/n), A >0 (denoted by Px). Then a measure y satisfies the value validity
property if

y(U) -y _dU.X)
yW)—y(V) dU,V)

11—, (4.2)

where d denotes the metric, and Kvalseth suggests that the Euclidean distance and the
Minkowski class of distance metrics satisfy (4.2). Since

do(L* Pry=2(n—1)(1 = 2), dg(1", 1) =2 —1) and ¢(X)=1,

the Gini pseudometric satisfies (4.2) and the Gini randomness measure satisfies the value
validity property.

Kvalseth [23, 24] argues that the value validity property is crucial for a realistic represen-
tation of evenness characteristic of a species distribution and in many other applied situations.
The popular entropy measures do not satisfy this property, so in such situations, the Gini ran-
domness measure is more appropriate than the entropy measures. Another crucial advantage of
the Gini randomness measure compared to entropy measures is its nice continuous extension
(see Section 7).

The theory discussed for discrete random variables in the previous sections can be extended
to continuous random variables without losing many of its crucial properties, which are the
topic of the following sections.

5. Random pseudometric on the space of bounded random variables

This section extends the methodology defined on I', a subset of R”, to the space of bounded
random variables (here ‘bounded random variable’ means either bounded discrete random vari-
ables or continuous random variables with bounded interval support). So, the results could be
extended to continuous cases. Let (€2, A, 1) be a measure space where €2 is a non-empty finite
set of real numbers or a bounded interval subset of R, and p is a counting or Lebesgue mea-
sure, respectively. Let A be a class of all bounded non-negative random variables such that its
integral with respect to p is unity. That is, if a random variable X € A, then fooo Xdu=1.
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Proposition 5.1. Let X € A and X be degenerate. Then X = 1/(u(2)).

Proof. Let Q2 be a sample space with finite measure and suppose X = a. Then
/ Xw)yduw)=1
Q

implies
1
a=———-.
Jo dutw) -
Let v denote the degenerate random variable at 1/(u(2)), that is, if €2 is a finite set with n

elements or a bounded interval (a,b), then v is a random variable degenerate at 1 /n or 1/(b — a)
respectively. Let

1 4
Lx(p)=—/ Ox(q)dg, 0=<p<1,
ux Jo

where uy = E(X) and Qy is the quantile function of X (for the Lorenz curve definition using
the quantile function, see [11]). The following class of metrics is a generalization of the random
pseudometrics in the class of random variables A.

Definition 5.1. Let a functiond : A x A — [0, 0o) and, for any X, Y, Z € A,

1. dX,Y)>0,dX, Y)=0 only if X and Y have the same distribution,
2..dX,Y)=d(Y, X),

3. dX,Y)<dX,Z2)+d(Z,7Y),

4. If Lx(p) > Ly(p), 0 < p < 1 and for some p, Lx(p) # Ly(p) implies d(X, v) < d(Y, v).
Then d is a random pseudometric.

Example 5.1. Let X, Y € A and

M) =g~ ( / 8(x) dF(x))
J
be the quasi-arithmetic mean (see [28]), where g is a continuous, strictly increasing, and

concave function, J is the support of X, and px represents E(X). Then the function

My(X)  Mg(Y)
ux Iy

dX,Y)=

is a random pseudometric. The first three axioms in Definition 5.1 are direct, and since

dX,v)=1-— Mg(X),
120'¢

which is the Atkinson index, then axiom 4 follows (see [2], [5]).

6. Randomness measure of general random variable

Let @ be a set of all random variables, either discrete or continuous, with bounded support.
Let fx be the PMF or PDF of X. Let U be a uniform random variable that is either discrete or
continuous.
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For a given X € @, let fy(U) be a random variable created by transforming U using the PMF
or PDF of X; U and X have the same support (a similar transform can be seen in the literature;
see [1], [10], and [30]). If X is a discrete random variable having outcomes {xi, x2, ..., x,}
and the PMF is P(X =x;) =p;, i€ {1, 2, ..., n}, then Ly(r) = Ly (1y)(r), for all r € (0, 1). For
example, if X ~ B(4, %), then to calculate fx(U), consider P(U =i) = %, i=0,1,2,3,4. Then
use the binomial PMF, that is,

L ifx=0,4,
fro =11 ifx=13,
L ifx=2.

This implies that fx(U) is a random variable with PMF

I oifx=4,
fro® =13 ifx=1{,
Loifx= L.
Then its Lorenz curve is
%r if0§r<%,
Ly =Ly (n=13r—3 if3<r<3,
%r—% if%grsl,

where p = (li 4 6 4 1y Also,if p and q correspond to fx(U) and fy(U), then p < q if

and only if Ly v)(r) = Ly uy(r), for all r € [0, 1] (see [26, page 718]). Theorem 6.1 extends
this result to continuous random variables, that is, the relation between fx (the density function
of X) and fx(U) (a random variable created by transforming U using the PDF of X; U and
X have the same support). The theorem establishes that axiom 4 in Definition 5.1 is a valid
extension of axiom 4 in Definition 2.2. To prove Theorem 6.1, the following results (from [16,
page 924] and [26, page 719] respectively) are required.

Lemma 6.1. Let fx and fy be two densities with the same support. Then fx is majorized by fy
(fx <fy) if and only if
o o0
| acs [ gy
—00 —00
for every continuous convex function h.

Lemma 6.2. Suppose that X and Y are two random variables and EX =EY. Then Lx(p) >
Ly(p), for all p € [0, 1], if and only if E[i(X)] < E[A(Y)] for every continuous convex function
h, that is, if and only if X <. Y.

Theorem 6.1. Let fx and fy be two densities with the same support. Then fx < fy if and only if
fo(U)(”) > Lfy(U)(r), forallre (0, 1).

Since fx(U) € A, the following definition generalizes Definition 3.2 to a bounded random
variable.

Definition 6.1. Let X € ® be a random variable. Then the N-randomness measure of X is
defined as

{(X)=1—Kxd(fx(U), fu(V)),
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where d is a random pseudometric, U is a uniform random variable with X and U having the
same support, and

Ky — 1
X Supren AU, fu(U)'

The following example illustrates the possible X which attain the supremum.

Example 6.1. Assume, without loss of generality, that [0,1] is the support of fx(U). Then
consider the sequence of random variables {f7, (U)},>1 with PDF

1
Fraw@==17" 0 <z<1.
Then f7,(U) € A. Also, it is easy to verify that E(fz,(U)) =1/(n+ 1),
Fu@=2"" 0<z<l,
O, =p", 0=p=<1,
L, o) =p"t", 0<p<L

Therefore,

0 if0<p<l,

lim L -
L ol PR

So the random variable X which satisfies supy, (7)o d(fx(U), fu(U)) has the above Lorenz
curve; see Theorem 7.3.

Note that Definitions 3.2 and 6.1 are the same when X is a discrete random variable. Since
¢ depends only on the PDFs, the result follows.

Theorem 6.2. For any X € ®, {(X) =¢(X — a), for all a € N.
The above theorem shows that the location change does not affect the randomness of a
random variable.
7. Gini randomness measure for general distributions

This section introduces the Gini randomness measure of a random variable. The following
definition gives the Gini pseudometric on A.

Definition 7.1. (Gini pseudometric.) Let X, Y € A be two random variables. Then the Gini
pseudometric d is defined asd : A x A — [0, 1] such that

1
d(X, ¥) = /0 \Lx(p) — Ly(p)] dp.

The Gini pseudometric is the usual Lj-metric defined on A, which implies properties 1, 2,
and 3 of Definition 5.1. Since L, (p) = p, 0 <p < 1, and for any random variable X, Lx(p) <p
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forO<p<l,
1
dX,v)= / \Lx(p) — Lv(p)| dp
0

1
=/0 (p — Lx(p)) dp

1 1
:E —/0 Lx(p) dp.

So, d(X, v) is the Gini coefficient (see [4, page 51]), which satisfies the Lorenz ordering
(see [32]), and this implies property 4.

Theorem 7.1. The function d in Definition 7.1 is a random pseudometric.

The following defines the constant Ky:

if X is discrete having support {x1, x2, . .., X5},
KX ={n-
1 if X is continuous with bounded support.

Using Definitions 6.1 and 7.1, the following definition introduces the Gini randomness measure
for a bounded random variable.

Definition 7.2. For any X € ®, the Gini randomness measure of X ({,(X)) is defined as

1
1
2Lf Livy(®) dp — —— if X has support {x1, xa. . . . , %),
n—1 0 : n—1

gg(X) = 1

2 / Ly n(p)dp if X is continuous with bounded support.
0

Note that Definitions 4.2 and 7.2 are the same when X is a discrete random variable. The fol-
lowing theorems show that the Gini randomness measure attains the maximum 1 for a uniform
distribution and the minimum O for a degenerate distribution.

Theorem 7.2. If X € ®, then {o(X) =1 if and only if X follows a uniform distribution.

Theorem 7.3. If X € ®, then ¢;(X) = 0 if and only if X takes probability 1 for one outcome and
0 for the others.

Example 7.1. (Truncated exponential distribution.) Let X be a random variable which follows
a truncated exponential distribution. Then its PDF is

0
fx(x)=1—_eve_0x, O<x<v, v>0, 6>0.
—e

Let U be a uniform random variable in the interval (0, v). Then

0 —-0U
fx(U) = T—° -

v

The PDF of fx(U) is
1 0 0

— if - <x< —v>
fj‘cX(U)(x): Ovx e’V —1 l1—e

0 otherwise,
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and the distribution function of fx(U) is

P () 1l x€? —1) 0 0
x)=—1In , <x< .
KO Ov 0 eV —1 1 —e o
Therefore the quantile function of fy(U) is
Orw)(p) = P, 0<p<l.

e —1

A simple calculation gives E(fx(U)) = 1/v. Using the Lorenz curve equation

1 P
Lx(p)=—/ Ox(@)dg, 0=<p=<1,
Mx Jo

we get
eevp -1
LyoWw = gy— O=p=lI
So, by Definition 7.2, the randomness measure of X is
X)= ! ! (7.1)
LX) = ov eV —1° ’

For a fixed v, £,(X) is a decreasing function of 8, which implies that 6 is an uncertainty param-
eter in the sense of [16]. That is, for a constant v, if Xy denotes X, which follows a truncated
exponential distribution with parameter 6, then Xy, has more randomness than Xp, if 61 < 6.

Example 7.2. In the previous example, if Y = aX with a > 0, then it is easy to verify that ¥ has
the same randomness measure as in (7.1). That is, {,(aX) = £,(X) for every a > 0.
Also, if Y follows

0
— (—6vx)/a
X)=———°¢€ , O<x<a, v>0 60>0, a>0,
Jr() ExpE——
then Y has the same randomness for different values of o and the randomness is independent
of the parameter «.

The following theorem shows that the Gini randomness measure is scale-invariant, an
important property of a randomness measure.

Theorem 7.4. For any X € ® and ¢ # 0, {o(cX) = £,(X).

8. Conclusion and future work

This paper presents a new class of randomness measures (the N-randomness measure) using
a pseudometric approach. A comprehensive discussion is presented on the properties and illus-
trations of the N-randomness measure. The specific case of the N-randomness measure that
we examine is the Gini randomness measure. We provide the crucial properties of the Gini
randomness measure, which are necessary for a randomness measure. By giving the calcula-
tion of the Gini randomness measure of a truncated exponential distribution, we illustrate the
calculation of the Gini randomness measure of distributions. This paper shows the advantages
of the Gini randomness measure over entropy. Unlike entropy measures, the Gini random-
ness measure adheres to the value validity property. The Gini randomness measure has a nice
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continuous extension, and in some situations the Gini randomness measure is more sensitive
than entropy. Additionally, we acknowledge that the definition of an N-randomness measure
for a distribution with infinite support is not straightforward, which poses a limitation on this
methodology.

The future research involves expanding the N-randomness measure to distributions with
infinite support. Also, this paper studies only the Gini randomness measure as a particular
case of the N-randomness measure. Some models in the literature satisfy majorization criteria
and possess a finite range (specifically, certain inequality indexes, as shown in Example 5.1).
The construction of other distinct N-randomness measures is possible using these models,
and examining their properties is an interesting direction for future work. Also, uncovering
additional applications for the Gini randomness measure is another important area of future
work.

Appendix A. Proofs

In this section we provide proofs of different theorems in the above sections.

A.1. Proof of Theorem 6.1
Let the support of X and Y be [a,b]. Then the uniform PDF on this interval is

1

fux)={b—a
0 otherwise.

ifa<x<b,

Since X has the support [a, b], then

b 1 b 1
E(f(U)) = f et du= / Felw) du= ——.
a —da a b —dad

That is, for any X, Y € ® implies E(fx(U)) = E(fy(U)), if U has the same support. Then, by
Lemma 6.2, Lg, (1) (r) = Ly ) (7), for all r € (0, 1), if and only if fx(U) <. fy(U). Now fx(U) <
fr(U) (in the sense of the definition in [26], i.e. X < Y if and only if X <., Y) is equivalent to
fx <fy, since

b 1 b
IE[h(fX(U))]:/ h(fx (u)fu(u) du:m/ h(fx(u)) du.

a

That is, fx < fy if and only if fx(U) <, fy(U). This completes the proof.

A.2. Proof of Theorem 7.2
Let X ~ U(a, b). Then

ifa<x<b,

fx(x) —b—a
0 otherwise.

Then fx(U) = 1/(b — a), that is,

1
Qfx(U)(p)Z m, 0<p< 1
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(quantile function of a random variable degenerate at 1/(b — a)). Then L, (xy(p) =p, 0 <p < 1.
This implies ¢(X) =1, i.e. maximum randomness.
Let X be discrete uniform with n € N outcomes. Then

1
PQﬂM:;):L

Therefore | 1

Then Lg,x)(p) =p, 0 < p < 1. This implies £,(X) = 1, i.e. maximum randomness.
Now, the objective is to prove that only a uniform distribution reaches maximum random-
ness. To reach this maximum, the L, (1) (p) should be p for all 0 < p < 1. Now

1
/0 Or)(9) dg = sy Ly ) (P)

implies

L) (P)
dp

that is, Op(v)(P) = Up(v)» 0 < p < 1, which implies that fx(U) is a constant. If X is a discrete

distribution with finite support having PMF P(X =x;) =p;, i € {1, 2, ..., n}, then {¢(X) can be

written as
1 n n
1— .
2n—1) ZX]: |pi P/|

i=1 j=

Oru)(P) = Ip(v) 0O<p<l,

(see Definition 4.2). Now £g(X) =0 implies Y} ;_; > [pi —pjl =0, ie. pr=p2=---=py,
thus completing the proof.

A.3. Proof of Theorem 7.3

Let X be a discrete distribution with support {x1, x2, ..., x,}, for n > 1, with PMF
1 ifx=ux,
PX=x=1 . !
0 ifxeM={xp, x3,...,x,}.

Now the quantile of fx(U)is

0 if0<g=<1-1,

Qﬂwwﬁ={l if1—1ogz<l,

and prxy = 1/n. Then

0 ifo<p<1-1,
L = - n
AP {np—l—l—n ifl—%<p§1.

This implies {,(X) = 0, i.e. minimum randomness (for n = 1, logically, this means there is no
other choice, so the study of randomness is meaningless). So if Z is a random variable with
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uncountable support and the probability distribution is degenerate at a point, then M contains
an infinite number of outcomes, which implies that

. 0 if0<p<l,
L = lim L =
) (P) = lim Ly w)(p) {1 ifp=1.
Therefore {4(Z) =0, i.e. minimum randomness. The reverse part is direct.

A.4. Proof of Theorem 7.4

Assume ¢ > 0. Let Y = ¢X be a transformation of X where the PDF (or PMF) of Y is fy. If
X is discrete, then Theorem 3.2 implies (cX) = ¢,(X). If X has PDF fx and support on [a,b],
then Y has PDF

1
Fr)= ;fx@), ca<y=ch. A1)

Let Ujq,p) denote a random variable which follows a uniform distribution with support [a,b].
From (A.1), fx(U{4,51) has support [fx(a), fx(b)] and fy(Ulcq,cp)) has support

1 1
[—fx(a), —fx(b)]-
c ¢
Also, if Z ~ Uj¢a,cp) then Z/c ~ Ulq ), and using (A.1) implies that

SrWUica,cp) = —f ( CZ 0] ) —fx(U[a )

Then,
FfY(U[Ca,rb])(u) = ]P(fY(U[Canb]) = I/l) = ]P(fX(U[a,b]) =< CI/L) = fo(U[gyb])(Cu)'

This implies that
QfY(U[ca,cb])(v) = inf{w/FfY(U[ca,cb])(W) > v}
1,
= p inf{ew/Fr vy, ) (cw) > v}
1
= EQfX(U[a,b])(V)'

Then, for p € (0, 1),

LfY(U[ca.(hJ)(p) / QfY(U[m cb])(q) dq

E{fY(U[ca cb] )}

- M/ _QfX(U[a.b])(q) dg
EfxUpas)) d
E{fX(U[a b])}/ Of (U (9) dg

= Ly (Uja,)P)-

Similarly, we can prove it for ¢ < 0.
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