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Abstract

We introduce F -gauges over a prism, construct syntomic cycle classes, and prove the
prismatic Poincaré duality for proper smooth schemes.
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1. Introduction

1.1 Goal
Poincaré duality is one of the most classical theorems in algebraic topology, saying that if X is
a compact oriented manifold of dimension d, then its singular cohomologies with coefficient in a
field k satisfy

Hi(X, k)∨ ∼= Hd−i(X, k),

where −∨ denotes dual k-vector spaces.

Received 10 February 2023, accepted in final form 22 March 2024.
2020 Mathematics Subject Classification 14F20, 14F30, 14F40 (primary).
Keywords: cycle class, Poincaré duality, p-adic Hodge theory.
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Syntomic cycle classes and prismatic Poincaré duality

If X is now a projective complex manifold of dimension d, then the Hodge decomposition
theorem states that

Hi(X, Z) ⊗Z C ∼=
⊕

p+q=i

Hq(X, Ωp
X/C

),

where Ωp
X/C

is the sheaf of holomorphic p-forms on X, and Hq(X,−) means the sheaf cohomology.
From the proof of the above isomorphism, it is straightforward to see that the Poincaré duality
on the left and the Serre duality on the right intertwine. Therefore, in terms of Hodge structures,
one can write the duality as

RΓ(X, Z)∨ ∼= RΓ(X, Z)(d)[2d], (1)

where −∨ denotes the dual functor RHom(−, Z) in the derived category of Hodge structures.
See, for example, [CEGT14, Example 3.1.5, Theorem 3.1.17].

An important consequence of the Poincaré duality is the cycle class, which associates a
cohomology class ClY/X ∈ Hr(X, Z) to a compact oriented submanifold Y of codimension r in a
compact oriented manifold X.

If X is again a projective complex manifold and Y is its closed submanifold of complex
codimension r, then the above cycle class, after tensoring with C, actually lies in the direct
summand Hr(X, Ωr

X/C
) in the Hodge decomposition. See, for example, [CEGT14, Lemma 3.1.27].

In terms of Hodge structures, this amounts to saying that the cycle class defines a map of Hodge
structures

ClY/X : Z → H2r(X, Z)(r). (2)

This paper aims to tell the above story for integral p-adic Hodge theory.

1.2 Results
In their remarkable paper [BS22], Bhatt and Scholze defined the prismatic cohomology for
schemes over a p-adic base, which specializes to various p-adic cohomologies known before, includ-
ing étale, de Rham, and crystalline, also generalizing their previous works [BMS18] and [BMS19]
joint with Morrow.

As its name suggests, prismatic cohomology is based on prisms, which are roughly triples
(A, I, ϕ), where A is a ring, I is an invertible ideal, ϕ : A → A is a Frobenius lift, A is (p, I)-
complete, and finally p ∈ (I, ϕ(I)). See [BS22, Definition 3.2] for a precise definition. Given such
a structure, prismatic cohomology associates to every A/I-scheme X a complex RΓΔ(X/A) ∈
D(A), along with a ϕ-semilinear Frobenius F : RΓΔ(X/A) → RΓΔ(X/A) and a so-called Nygaard
filtration Fil• ϕ∗RΓΔ(X/A), from which one can recover the étale, de Rham, and crystalline
cohomologies of X; see [BS22, Theorems 1.8 and 1.16].

Given the above construction, the reader might have noticed that, in the p-adic setting,
prismatic cohomology should play the role of singular cohomology with a Hodge structure, and
the outputs of prismatic cohomology should play the role of Hodge structures. This is indeed
the case. The structures in these outputs are summarized in § 2 as follows.

Definition 1.1 (Definitions 2.25, 2.30, 2.31, and 2.32; Examples 2.29 and 2.33). An F -gauge
over a prism (A, I) is a triple (M, Fil• ϕ∗M, F ) where Fil• ϕ∗M is a filtration on ϕ∗M and
F : Fil• ϕ∗M → I•M exhibits I•M as a filtered base change of Fil• ϕ∗M along A → A[1/I]. The
category of F -gauges over (A, I) is denoted F -Gauge(A, I).

The outputs of prismatic cohomology are F -gauges, and there are various specialization
functors from F -Gauge(A, I), corresponding to Hodge–Tate, de Rham, and étale specializations
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of prismatic cohomology. In addition, there are Breuil–Kisin twists A{n} of F -gauges for all
n ∈ Z that are analogous to Tate twists Z(n) of complex Hodge structures.

With F -gauges in hand, one can now easily write down the p-adic analog of the isomorphism
(1), the prismatic Poincaré duality.

Theorem 1.2 (Theorem 6.4). For a proper smooth A/I-scheme X of dimension d, there is a
canonical isomorphism of F -gauges

RΓΔ(X/A)∨ ∼= RΓΔ(X/A){d}[2d].

Proving the above theorem is not as easy as stating it. In the case of étale cohomology, with
the help of its 6-functor formalism, one essentially localizes, factorizes, and finally treats A1.
While it might be possible, we choose not to develop a prismatic 6-functor formalism here. In
the case of de Rham cohomology, [Aut, 0FW3] tried hard and managed to construct a trace map
RΓdR(X/k) → k that induces a perfect pairing after the cup product; we are not sure whether
this method will work here either. Instead, we follow and improve the method of the recent
lecture notes [Cla21], which first constructed the de Rham cycle class, then applied it to the
diagonal, obtaining a copairing

k → RΓdR(X/k) ⊗ RΓdR(X/k)[2d],

and finally proved its perfectness by reduction to the Hodge case. Note that the logical order
here is reverse to that in classical algebraic topology, where one constructs the cycle class using
the Poincaré duality.

As suggested by the map (2) in the complex case, the prismatic cycle class should actually
be an F -gauge map

ClΔY/X : A → RΓΔ(X/A){r}[2r],

instead of merely an element of H2r
Δ (X/A). This brings us to consider the following.

Definition 1.3 (Proposition 2.35, cf. [AKN22, § 4]). For an A/I-scheme X, its nth syntomic
cohomology relative to A, denoted by Zp(n)(X/A), is the complex

RHomF -Gauge(A,I)(A, RΓΔ(X/A){n}) ∈ D(Zp).

While the relative syntomic cohomology seems hard to control, its absolute counterpart
has long been considered by K-theorists as the p-adic motivic cohomology, cf. [Niz06], and has
recently been redefined using the absolute prismatic cohomology by [BMS19] and [BL22a]. Since
the absolute syntomic cohomology naturally maps to the relative one, construction of the relative
syntomic cycle class boils down to that of the absolute one, which is another main result of this
paper.

Theorem 1.4 (Definitions 5.26 and 5.32; Remarks 5.28 and 5.29). There is a unique functorial
way to associate a syntomic cohomology class Clsyn

Y/X ∈ H2r
syn(X, Zp(r)) to every regular immersion

Y → X of codimension r, satisfying the following.

Multiplicativity: for regular immersions Y → X and Y ′ → X ′, we have Clsyn
Y/X � Clsyn

Y ′/X′ =
Clsyn

(Y ×Y ′)/(X×X′).

Normalization for divisors: in codimension one, Clsyn
Y/X = c1(O(Y )) is the first Chern class defined

in [BL22a, §§ 7.5, 8.4].
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Moreover, the syntomic cycle class can be upgraded to a syntomic Gysin map

RΓsyn(Y, Zp(n)) → RΓsyn(X, Zp(n + r))[2r]. (3)

We also relate the syntomic Gysin map above to the pushforward map in K-theory via the
motivic filtration. In the following theorem, let K denote the p-completed étale K-theory, which
is motivic filtered by Zp(n) by [BMS19, § 7.4].

Theorem 1.5 (Theorem 5.38). There is a unique way to enhance the pushforward K(Y ) →
K(X) to a motivic filtered map Fil• K(Y ) → Fil•+r K(X) functorially for all regular immersions
Y → X of codimension r of p-formal stacks. Moreover, its associated graded map coincides with
the map (3).

Remark 1.6. The functoriality in the above two theorems is with respect to only pullbacks of
regular immersions rather than compositions of them. We are not going to pursue the latter
functoriality in this work, but we hope to address it in a future project, where a more general
Gysin map construction based on the P1-motivic homotopy theory developed in [AHI24] will be
given.

1.3 Conventions
Fix a prime p throughout. By ‘rings’ we mean commutative rings. Everything is animated or
derived unless otherwise stated, that is:

– by ‘categories’ we mean ∞-categories, unless we say “1-categories”;
– by ‘modules’ we mean complexes, unless we say “classical modules”;
– by ‘rings’ we mean animated rings, unless we say “classical rings”;
– . . .

However, by ‘sets’ we still mean 0-groupoids, because we have ‘animas’ for ∞-groupoids.

2. F -gauges over a prism

We start by defining the notions of gauges and F -gauges over a prism, which are meant to
capture the bunch of structures in the relative prismatic cohomology. Thus, in this section we
fix an animated prism (A, I) as defined in [BL22b, Definition 2.4], and everything we are going
to talk about will be (p, I)-complete whenever it is over A, unless otherwise stated. For example,
D(A) will denote the (p, I)-complete derived category of A. Readers not familiar with animated
prisms can assume that (A, I) is a bounded classical prism. Let Ā = A/I.

2.1 Reminders on filtered objects
In this subsection we recall the definition of filtered objects and some basic constructions on
them, roughly following [Lur17, § 1.2.2] and [Rak20, § 3.1, § 3.2]. Let C be a stable ∞-category.

Definition 2.1 (Filtered objects). A filtered object Fil• M of C is a functor Zop → C, where
Z = (Z,≤) is the poset viewed as a category. We denote its value on n ∈ Z by Filn M . The nth
graded piece of Fil• M is defined as Filn M/ Filn+1 M and is denoted grn M . If Fil• M has all
its graded pieces vanishing, namely it takes all arrows in Zop to isomorphisms, then we call it a
constant filtered object.

The category of filtered objects of C is defined as the functor category Fun(Zop, C) and
is denoted Fil(C). All the graded pieces assemble to a functor gr : Fil(C) → CZ, called taking
associated graded objects. Taking constant objects is also a functor const : C → Fil(C).
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Remark 2.2 (Increasing filtrations). What Definition 2.1 defines are the so-called decreasing
filtrations, in that if we do the same construction for an abelian category and require all the tran-
sition maps to be injective, then Filn M gets smaller when n gets larger. One can similarly define
increasing filtrations as functors Z → C, where the same theory applies with indices reversed.
We will sometimes use increasing filtrations below, and these will be denoted by Fil• M .

Definition 2.3 (Underlying objects). Suppose C admits countable colimits. Then
const : C → Fil(C) has an obvious left adjoint, given by

Fil• M �→ colim
n→−∞ Filn M.

We call it the underlying object of Fil• M and denote it by M .

Definition 2.4 (Day convolution). Suppose C admits countable colimits, and let ⊗ be a sym-
metric monoidal structure on it compatible with countable colimits. Then there is a natural
symmetric monoidal structure on Fil(C) called Day convolution, defined as

Filr(M ⊗ N) = colim
m+n≥r

(Film M ⊗ Filn N),

where the colimit is taken over the full subcategory of Zop × Zop spanned by
{(m, n) | m + n ≥ r}. For a rigorous ∞-categorical definition, see [Lur17, § 2.2.6].

By our compatibility assumption, it is easy to see that taking underlying objects is symmetric
monoidal, so our notation above is compatible. It is also worth noting that taking associated
graded objects is symmetric monoidal with respect to the tensor product

(X ⊗ Y )r =
⊕

m+n=r

Xm ⊗ Yn

for graded objects.

Definition 2.5 (Completion). Suppose C admits countable limits. We say that a filtered object
Fil• M of C is complete if

lim
n→+∞ Filn M = 0.

We denote the full subcategory of complete filtered objects of C by F̂il(C), and write D̂F(−) for
F̂il(D(−)) as above. The inclusion functor F̂il(C) → Fil(C) has an obvious left adjoint, given by

Fil• M �→ Fil• M

limn→+∞ Filn M
,

called completion. Note that a filtered object is constant if and only if its completion is zero, and
the completion functor is a localization with kernel the constant objects.

Remark 2.6 (Monoidality of completion). Suppose (C,⊗) satisfies the assumptions of both
Definitions 2.4 and 2.5. Obviously, constant objects form a tensor ideal under Day convolu-
tion; therefore, by [Lur17, Proposition 2.2.1.9] there is a natural symmetric monoidal structure
on F̂il(C), where the completion functor is symmetric monoidal, and the inclusion functor is lax
symmetric monoidal.

Definition 2.7 (Trivial filtration). For M ∈ C, we call the filtered object

Filn M =

{
M, m ≤ 0;
0, m > 0;
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M with trivial filtration, and by abuse of notation we often denote it by M . This is natural in M ,
giving rise to a functor triv : C → Fil(C), which is easily seen to be the left adjoint of taking Fil0.
When C satisfies the assumption of Definition 2.4, it is also easy to see that triv is symmetric
monoidal.

Definition 2.8 (Translation). For a filtered object Fil• M , its translation by n is defined as
Fil•+n M . Sometimes we also denote this translation functor by −(n).

Definition 2.9 (Filtered E∞-algebras). Suppose (C,⊗) satisfies the assumption of
Definition 2.4. Then a filtered E∞-algebra in C is defined as an E∞-algebra in Fil(C) with respect
to Day convolution. By the above, one can take underlying E∞-algebras, associated graded
E∞-algebras, and completions of filtered E∞-algebras, and make trivially filtered E∞-algebras
starting with E∞-algebras in C.

For a filtered E∞-algebra R, we often call its modules in Fil(C) filtered R-modules, and denote
the category of them by DF(R). This is compatible with the notation in [BMS19, § 5.1], as when
R is an E∞-algebra in C that is trivially filtered, DF(R) is just Fil(D(R)), where D(R) denotes
the category of R-modules in C.

Definition 2.10 (Filtered rings). Using [Rak20, Definition 4.2.22, Construction 4.3.4], we define
the category of derived filtered rings to be DAlg(DF(Z)), and that of animated filtered rings to be
the full subcategory spanned by those derived filtered rings R with Filn R connective for all n.
By [Rak20, Remark 4.2.24], one can alternatively define the category of animated filtered rings to
be the animation, namely PΣ, of the 1-category of classical filtered rings of the form LSym(M),
where M runs through finite direct sums of translations of the trivially filtered Z. Passing through
the Rees algebra construction, one can also view an animated filtered ring as an animated graded
algebra over Z[t] (cf. Definition 5.11 below).

Remark 2.11. By our convention, ‘filtered rings’ will mean animated filtered rings. However, this
filtered animation is never really used in this section and only rarely used in § 5. Readers can
safely replace filtered rings with filtered E∞-rings in this section if they are willing to.

2.2 Generalities on filtered modules
In this subsection we discuss general properties of filtered A-modules that do not depend on the
δ-ring structure on A.

We view both A and A[1/I] as filtered rings with the I-adic filtrations, i.e.

Film A =

{
Im, m ≥ 0;
A, m < 0;

Film A[1/I] = Im.

Accordingly, DF(A) and DF(A[1/I]) refer to the filtered derived categories with respect to the
I-adic filtrations. Note that we are not breaking our convention that everything is (p, I)-complete;
A[1/I] is just a filtered (p, I)-complete A-algebra with underlying object 0. We view Ā as with
the trivial filtration, i.e.

Film Ā =

{
Ā, m ≤ 0;
0, m > 0;

then the reduction map A → Ā is naturally a filtered map.

Proposition 2.12. Taking Fil0 gives an equivalence DF(A[1/I]) ∼= D(A), whose inverse is
M �→ I•M .
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Proof. Obviously M �→ I•M is right inverse to Fil0(−). Conversely, for Fil• N ∈ DF(A[1/I]),
from the filtered multiplication map I• ⊗ Fil• N → Fil• N one gets maps
Im ⊗ Filn N → Film+n N for all m, n ∈ Z. By their compatibility one can easily see that they
are all isomorphisms, so Fil• N = I• Fil0 N . �

Now we introduce two specializations of filtered A-modules, both of which take values in
filtered Ā-modules.

Definition 2.13 (Hodge–Tate specialization). For Fil• N ∈ DF(A), the associated graded
object gr• N is a graded module over gr• A =

⊕
m∈N Im/Im+1. Twist the mth grade by

(I/I2)⊗(−m); the module gr• N{−•} we get is a graded module over gr• A{−•} = Ā[u] where
u is in the 1st grade. Note that such a graded module corresponds to an increasingly filtered
Ā-module, since multiplying by u gives us the maps. This increasingly filtered Ā-module is called
the Hodge–Tate specialization of N , denoted by Fil• NHT ∈ DF(Ā).

Definition 2.14 (de Rham specialization). The de Rham specialization of Fil• N ∈ DF(A) is
its base change along the filtered map A → Ā, denoted by Fil• N̄ ∈ DF(Ā).

Remark 2.15. Since taking associated graded objects commutes with filtered base change, and
the associated graded of the map A → Ā is the map

⊕
m∈N Im/Im+1 → Ā that kills all the m > 0

summands, we can naturally identify the graded pieces of the Hodge–Tate specialization with
those of the de Rham specialization up to twists by I/I2. More specifically, for N ∈ DF(A), we
have

gr• NHT{•} ∼= gr• N̄ .

In Example 2.33 below, this corresponds to the fact that the Hodge–Tate filtration on ΔR/A has

graded pieces Ω•
R/Ā

{−•} while the de Rham filtration on Δ(1)
R/A has graded pieces Ω•

R/Ā
.

Remark 2.16 (The underlying object of the Hodge–Tate specialization). If we view a graded
Ā[u]-module X• as an increasing filtration, then by definition its underlying object is the colimit
of Xn along multiplying u, which is the same as the 0th grade of X•[u−1]. Accordingly, the
underlying object NHT of Fil• NHT is the same as the 0th grade of the base change of gr• N
from gr• A =

⊕
m∈N Im/Im+1 to gr• A[1/I] =

⊕
m∈Z Im/Im+1, which means that

NHT = gr0(N [1/I]) = Fil0(N [1/I]) ⊗A Ā,

where Fil• N [1/I] denotes the filtered base change of Fil• N from A to A[1/I], and the last
equality comes from Proposition 2.12.

Finally we give some dualizability criteria.

Proposition 2.17. Let C be a presentably symmetric monoidal category. Then:

– if 1C is compact, then dualizable objects in C are compact;
– if C is compactly generated by its dualizable objects, then compact objects in C are dualizable.

Proof. If 1 is compact and X ∈ C is dualizable with dual X∨, then since

Hom(X,−) = Hom(1, Hom(X,−)) = Hom(1, X∨ ⊗−)

commutes with filtered colimits, X is compact.
If C is stable, then finite colimits of dualizable objects are dualizable: for finite direct sums

it is obvious, and for cofibers one easily verify that cofib(X → Y )∨ = fib(Y ∨ → X∨). In general,
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retracts of dualizable objects are dualizable. Thus, if C is compactly generated by its dualizable
objects, then compact objects, as retracts of finite colimits of generators, are dualizable. �
Corollary 2.18. Let R be a filtered ring. Then in DF(R), dualizable objects coincide with
compact objects. If, moreover, the filtration of R is trivial, then they are exactly the complete
filtered objects with only finitely many nonzero graded pieces that are all dualizable in D(R).

Proof. Note that:

– 1DF(R) = R and Hom(R,−) = Fil0(−) commutes with colimits, so 1DF(R) is compact;
– the translations R(n) are all dualizable with R(n)∨ = R(−n), and form a family of com-

pact generators of DF(R), since the functor DF(R) → SpZ, Fil• N �→ (Filn N)n∈Z is clearly
conservative.

If the filtration of R is trivial, then it is in particular complete, so every R(n) is complete,
with only one nonzero graded piece gr−n R(n) = R. Therefore, the compact objects in DF(R), as
retracts of finite colimits of objects of the form R(n)[d], are also complete, with only finitely many
nonzero graded pieces that are all compact in D(R). Conversely, let Fil• M ∈ DF(R) be complete
with only finitely many nonzero graded pieces that are all compact in D(R). Then for m 
 0
we have Film M = 0 and Fil−m M = M . In addition, the terms Film M are all compact in D(R),
being a finite extension of compact objects. Now it is easy to write Fil• M as a finite extension
of compact objects in D(R) with trivial filtration, which are clearly compact in DF(R). �
Lemma 2.19. Let C and D be presentably symmetric monoidal categories and F : C → D be a
conservative symmetric monoidal functor that preserves internal Homs. Then c ∈ C is dualizable
if and only if Fc ∈ D is dualizable.

Proof. If c ∈ C is dualizable, clearly so is Fc ∈ D since F is symmetric monoidal. Conversely if
Fc ∈ D is dualizable, let c∨ = HomC(c, 1C), then since F is symmetric monoidal and preserves
internal Homs, F (c∨) = (Fc)∨. To prove that c ∈ C is dualizable, it suffices to show that the
natural transformation c∨ ⊗C − → HomC(c,−) is an isomorphism. This can be checked after
applying F by conservativity, whence it becomes obvious. �
Remark 2.20. Lemma 2.19 applies when A ∈ CAlg(C) is dualizable in C, D = ModC(A) is the
module category and the base change functor F = −⊗C A is conservative, since

HomD(X ⊗C A, Y ⊗C A) = HomC(X, Y ⊗C A) = HomC(X, Y ) ⊗C A

by dualizability.

Corollary 2.21. An object in DF(Ā) is dualizable if and only if it is complete and has only
finitely many nonzero graded pieces that are all dualizable in D(Ā).

Proof. By Lemma 2.19, M ∈ DF(Ā) is dualizable if and only if M/p ∈ DF(Ā/p) is. Now the
corollary follows from Corollary 2.18. �
Proposition 2.22. The functor N �→ (Fil• NHT, Fil• N̄) from DF(A) to DF(Ā) × DF(Ā) is
conservative.

Proof. Assume Fil• NHT = Fil• N̄ = 0; we want to prove that N = 0. This is easy: Fil• NHT = 0
just means gr• N = 0 by definition, so the filtration is constant; then Fil• N̄ is also constant, and
that it is zero implies that N is zero by I-completeness. �
Remark 2.23. The conservativity above has a geometric interpretation: view filtered A-modules
as graded modules over the Rees algebra R =

⊕
m∈Z Imt−m where t is in the (−1)st grade.
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For simplicity assume I = (d) is principal, so R = A[t, u]/(tu − d). Then the two specializations
correspond to taking quotients by t and u, so they are jointly conservative since tu = d and
everything is d-complete.

Proposition 2.24. An object N ∈ DF(A) is dualizable if and only if its two specializations
Fil• NHT and Fil• N̄ are both dualizable in DF(Ā), equivalently they are both complete and has
only finitely many nonzero graded pieces that are all dualizable in D(Ā).

Proof. It suffices to prove that the functor N �→ (Fil• NHT, Fil• N̄) satisfies the assumptions
of Lemma 2.19. Note that the algebras Ā and gr• A in DF(A) are both dualizable, being
cofibers of maps I → A and A(1) → A. Hence, the proposition follows from Remark 2.20 and
Proposition 2.22. �

2.3 F -gauges over a prism
Definition 2.25 (Gauges and F -gauges). A gauge over (A, I) is a pair (M, Fil• M (1)) where
M ∈ D(A) and Fil• M (1) ∈ DF(A) with underlying object M (1) = ϕ∗

AM . An F -gauge over (A, I)
is a triple (M, Fil• M (1), F ) where (M, Fil• M (1)) is a gauge over (A, I) and F : Fil• M (1)[1/I] →
I•M is an isomorphism in DF(A[1/I]). As above, −[1/I] denotes the base change functor from
DF(A) to DF(A[1/I]) and I•M denotes the obvious filtered module of A[1/I] with underlying
object M [1/I].

Denote the categories of gauges and F -gauges over (A, I) by Gauge(A, I) and F -Gauge(A, I),
respectively. They are both presentably symmetric monoidal stable ∞-categories, since they
are finite limits of such categories by definition. Clearly, the forgetful functor F -Gauge(A, I) →
Gauge(A, I) is symmetric monoidal and preserves all colimits.

Remark 2.26. We often view F as a morphism F : Fil• M (1) → I•M in DF(A) that exhibits
I•M ∈ DF(A[1/I]) as the base change of Fil• M (1) ∈ DF(A) to A[1/I]. Thus, Fil• M (1) and F
actually determine M , as the Fil0 of this base change.

Remark 2.27 (Changing prisms). Let (A, I) → (B, J) be a morphism of prisms. Then
(M, Fil• M (1)) �→ (M ⊗A B, (Fil• M (1)) ⊗A(1) B(1)) gives base change functors Gauge(A, I) →
Gauge(B, J) and F -Gauge(A, I) → F -Gauge(B, J). We denote them by −⊗A B and call their
right adjoints forgetful functors. Note that these forgetful functors commute with the forgetful
functor D(B) → D(A) in the first component but not in the second, since for N ∈ D(B), ϕ∗

BN
and ϕ∗

AN are in general different.

Remark 2.28 (Descent). Since each datum of a gauge or an F -gauge satisfies (p, I)-completely
flat descent, so do gauges and F -gauges. In other words, Gauge and F -Gauge are sheaves of
∞-categories on the absolute prismatic site.

Example 2.29 (Breuil–Kisin twists). For n ∈ Z, consider the Breuil–Kisin twist A{n} defined in
[BL22a, Definition 2.5.2, Notation 2.5.4]. It is an invertible A-module with canonical isomorphism
A{n}(1) ∼= I−nA{n}. We view it as an F -gauge over (A, I) by defining

Film A{n}(1) =

{
Im+nA{n}(1), m ≥ −n;
A{n}(1), m < −n;

and taking F to be the canonical isomorphism. Note that Film A{n}(1) is chosen to correspond
to ImA{n} under the canonical isomorphism for m ≥ −n.

Obviously, A = A{0} is the tensor unit of F -Gauge(A, I), and A{n} ⊗ A{n′} = A{n + n′}
for all n, n′ ∈ Z. By [BL22a, Remark 2.5.5], the Breuil–Kisin twists commute with base changes,
i.e. A{n} ⊗A B = B{n} for every prism (B, J) over (A, I).
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For a gauge or an F -gauge M , let M{n} denote the tensor product M ⊗ A{n} in the
respective category. Then it is easy to see that

Film(M{n}(1)) = (Film+n M (1)){n},
where the {n} outside the brackets means the Breuil–Kisin twist relative to the animated prism
(A(1), IA(1)).

We discuss several specializations of F -gauges.

Definition 2.30 (Hodge–Tate specialization). For M ∈ Gauge(A, I), its Hodge–Tate special-
ization is defined as the Hodge–Tate specialization of M (1) ∈ DF(A) as in Definition 2.13.
For M ∈ F -Gauge(A, I), by Proposition 2.12 and Remark 2.16, the underlying object of its
Hodge–Tate specialization is M̄ = M ⊗A Ā, so in this case we denote it by Fil• M̄ .

Definition 2.31 (De Rham specialization). For M ∈ Gauge(A, I), its de Rham specialization is
defined as the base change of Fil• M (1) ∈ DF(A) to Ā, denoted by Fil• M (1). It is also a functor
Gauge(A, I) → DF(Ā).

Definition 2.32 (Étale specialization). Here we suspend the convention that everything
is (p, I)-complete. Suppose the prism (A, I) is perfect with R = A/p, so A = W (R) and
A[1/I]∧p = W (R[1/I]). For M ∈ F -Gauge(A, I), since M (1) is just M with the A-module
structure twisted by Frobenius, we can view the isomorphism F : M (1)[1/I]∧p → M [1/I]∧p
as a Frobenius-semilinear automorphism of M [1/I]∧p . Now view M [1/I]∧p as a sheaf on
Spa(R[1/I], R)proét

∼= Spd(Ā[1/p], Ā)proét, and form the equalizer of id and F . This defines a func-
tor M �→ (M [1/I]∧p )F=1 : F -Gauge(A, I) → Dproét(Spd(Ā[1/p], Ā), Zp), which we call the étale
specialization.

Example 2.33 (Prismatic cohomology). Let X be a smooth formal scheme over Spf(Ā). Then
[BS22, Theorems 1.8, 1.16] gives the prismatic cohomology RΓΔ(X/A) an F -gauge structure,
whose Hodge–Tate specialization is the conjugate-filtered Hodge–Tate cohomology, whose de
Rham specialization is the Hodge-filtered de Rham cohomology, and when (A, I) is perfect
whose étale specialization is the étale pushforward of Zp along the diamond generic fiber
of X → Spf(Ā). This can be generalized to general stacks over Spf(Ā) using [BL22a, §§ 5.1
and 5.2].

Remark 2.34 (Relative gauges and F -gauges). It is possible to define for every formal scheme
X over Spf(Ā) the categories Gauge(X/A) and F -Gauge(X/A) that serve as coefficients for
the prismatic cohomology of X over (A, I): first for X = Spf(R) with R a large quasisyntomic
Ā-algebra as in [BS22, Definition 15.1], define

Gauge(X/A) = {(M, Fil• M (1)) | M ∈ D(ΔR/A), Fil• M (1) ∈ DF(Fil• Δ(1)
R/A)},

F -Gauge(X/A) =
{

(M, Fil• M (1), F ) | (M, Fil• M (1)) ∈ Gauge(X/A),

F : Fil• M (1) ⊗Δ(1)
R/A,ϕ

ΔR/A[1/I] ∼= M [1/I]
}

;

next for smooth affine X use quasisyntomic descent from the large algebras; then for general
affine X use left Kan extension from the smooth ones; finally, for general X use descent again.

The category F -Gauge(X/A) should have specialization to relative prismatic crystals (i.e.
quasicoherent OΔ-modules on the site (X/A)Δ), Hodge–Tate specialization to Higgs modules,
de Rham specialization to D-modules, and when (A, I) is perfect, étale specialization to étale
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sheaves on the generic fiber. In addition, the Poincaré duality should hold for proper smooth X
with dualizable coefficients in these categories. However, we will not explore these in this paper.

The following proposition computes global sections of gauges and F -gauges, with
which we can reinterpret the relative syntomic cohomology Zp(n)(X/A) in [AKN22] as
HomF -Gauge(A,I)(A, RΓΔ(X/A){n}), cf. Examples 2.29 and 2.33.

Proposition 2.35. If M is a gauge, then

HomGauge(A,I)(A, M) = M ×M(1) Fil0 M (1),

where the map M → M (1) = M ⊗A,ϕ A is m �→ m ⊗ 1. If M is an F -gauge, then

HomF -Gauge(A,I)(A, M) = eq(Fil0 M (1) ⇒ M (1)),

where the two maps are the natural map and the composition

Fil0 M (1) → Fil0(M (1)[1/I]) = M → M (1).

Proof. The first sentence is clear from the definition of Gauge(A, I), and the second sentence is
clear from Remark 2.26. �

We finally offer a dualizability criterion using Proposition 2.24.

Proposition 2.36 (Dualizability of gauges). Let M be a gauge or an F -gauge. Then M is
dualizable if and only if it satisfies the following conditions:

(i) M is dualizable in D(A);
(ii) the Hodge–Tate specialization of M is dualizable, i.e. is complete with only finitely many

graded pieces that are perfect complexes;
(iii) the de Rham specialization of M is dualizable, i.e. is complete with only finitely many

graded pieces that are perfect complexes.

The perfectnesses of the graded pieces in conditions (ii) and (iii) are equivalent, and in the
F -gauge case, condition (ii) implies condition (i).

Proof. Recall that the symmetric monoidal category of gauges is defined as the pullback

where the right vertical arrow is taking underlying objects and the lower horizontal arrow
is base change along ϕ. Therefore, M ∈ Gauge(A, I) is dualizable if and only if its two
images in Fil• M (1) ∈ DF(A) and M ∈ D(A) are dualizable. Now the proposition follows from
Proposition 2.24. The two perfectnesses are equivalent because of Remark 2.15.

Recall that by Proposition 2.12, the symmetric monoidal category of F -gauges is defined as
the equalizer

F -Gauge(A, I) → Gauge(A, I) ⇒ D(A)

where the two arrows send a gauge (M, Fil• M (1)) ∈ Gauge(A, I) to M ∈ D(A) and
Fil• M (1)[1/I] ∈ DF(A[1/I]) ∼= D(A), respectively. Therefore, an F -gauge M is dualizable if and
only if it is dualizable as a gauge. Since M̄ ∈ D(Ā) is the underlying object of the Hodge–Tate
specialization, the dualizability of the Hodge–Tate specialization implies that of M̄ , which, in
turn, implies that of M by Lemma 2.19. �
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Corollary 2.37. Let X be a proper smooth formal algebraic space over Spf(Ā). Then
RΓΔ(X/A) ∈ F -Gauge(A, I) is dualizable.

Proof. By Proposition 2.36 we only need to show that the Hodge–Tate specialization and the de
Rham specialization of RΓΔ(X/A) are both dualizable. This is clear: both are complete with the
graded pieces zero outside [0, dim(X)]; the nonzero graded pieces are RΓ(X, Ω�

X/Ā
[−�]), which

is dualizable by [Aut, 0A1P]. �

3. Weighted homotopy invariance of cohomologies

One remarkable property that the �-adic étale cohomology enjoys is the A1-invariance, namely
RΓét(A1

X , Z�) = RΓét(X, Z�) for � invertible on X. Not only does this fact help us compute
the étale cohomology for many schemes, it has also been a crucial input to the norm residue
isomorphism theorem of Suslin and Voevodsky; see, for example, [SV00].

However, various cohomologies studied in p-adic Hodge theory, including Hodge, de Rham,
prismatic, and syntomic, usually do not satisfy the A1-invariance. Fortunately, as [Cla21]
suggests, they actually enjoy a weaker property, the weighted A1-invariance, namely F(X ×
A1/Gm) = F(X × BGm) for F being some of the above cohomologies. In this section, we will
formulate this invariance property in general, and prove it for some cohomologies, in order for
later sections to exploit.

3.1 Big étale sheaves
We first study the notion of big étale sheaves.

Definition 3.1 (Big étale sheaves). Let C be a presentable ∞-category. A big étale sheaf with
values in C is an accessible functor F : Ring → C that satisfies étale descent, i.e. a C-object of the
big étale topos. A stack in this paper is a big étale sheaf of animas. For a stack S, a big étale
sheaf over S with values in C is an accessible functor F : Ring/S → C that satisfies étale descent,
i.e. a C-object of the slice topos over S. A big étale sheaf of animas over S is the same as a stack
with a map to S, and thus is called a stack over S.

Remark 3.2 (Small étale sheaves). Let A be a ring and let X be a sheaf of animas on the small
étale site Aét, i.e. the étale site of étale A-algebras. Then one can view it as a stack over A by
pulling back along the topos map (Ring/A)ét → Aét. Such a stack is called an étale stack over A.
We call a map of stacks étale if it is étale after every pullback to a representable.

Example 3.3. All geometric objects that appear in this paper are stacks, including the following.

– Rings, i.e. affine schemes. For a ring A, the functor R �→ Hom(A, R) is a stack, denoted
Spec(A). We often identify A and Spec(A).

– Deligne–Mumford stacks. They are just stacks that are affine schemes étale locally. Namely,
a Deligne–Mumford stack is a stack X that is covered by a family of étale maps from affine
schemes, cf. [Lur18, § 1.6.4].

– Algebraic spaces. They are just those Deligne–Mumford stacks that take classical rings to sets,
cf. [Lur18, Definition 1.6.8.1].

– Affine formal schemes. For a ring A and a finitely generated ideal I ⊆ π0A, the functor

R �→ {f ∈ Hom(A, R) | π0(f)(I) is nilpotent}
is a stack, denoted Spf(A, I), or Spf(A) if not confusing. We often identify A and Spf(A)
whenever A is complete, so D(A) will mean the category of derived I-complete complexes,
and in particular this applies to D(Zp).
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– Formal Deligne–Mumford stacks. They are just stacks that are affine formal schemes étale
locally, in the same way as above.

– Formal algebraic spaces. They are just formal Deligne–Mumford stacks that take classical
rings to sets.

– Quotient stacks. Let X be a stack and G be a group scheme smooth over Z acting on X. Then

X/G = (R �→ {(E, f) | E → Spec(R) is a G-torsor, f : E → X is G-equivariant})

is a stack that receives an effective epimorphism from X, since smooth maps have sections
étale locally. Alternatively, X/G = colimn∈Δop(X × Gn), where the simplicial object is defined
by the group action.

Remark 3.4 (Taking values in stacks). Let C be a presentable category and let S be a stack. Let
F be a big étale sheaf over S and let X be a stack over S. Viewing X as a big étale sheaf over
S with values in Ani, since C is naturally powered over Ani, the anima HomS(X,F) is naturally
enhanced to an object F(X) ∈ C, which we call the value of F on X. Equivalently,

F(X) = lim
Spec(R)→X

F(R).

Note that F(X) takes colimits in X to limits, since it is Hom out of it.

The following notion is central in this section.

Definition 3.5 (Weighted homotopy invariance). We say that a big étale sheaf F over a stack
S satisfies strong weighted homotopy invariance if, for every N-graded ring R =

⊕
n∈N Rn over

S, viewed as acted by Gm naturally by grading,

F(Spec(R)/Gm) = F(Spec(R0)/Gm).

In this case, we have, in particular, F(V/Gm) = F(X/Gm) for any stack X and vector bundle
V over it, where Gm acts on X trivially and acts on V by scaling. This follows from take
the limit of the definition over all Spec(R0) → X. Therefore, we say that F satisfies smooth
weighted homotopy invariance if, for every vector bundle V → X with X smooth over S, we
have F(V/Gm) = F(X/Gm).

Remark 3.6 (Quasicoherent sheaves on stacks). Let PrLst denote the category of presentable stable
categories with morphisms the left adjoints. Then R �→ D(R) satisfies étale descent, and is nearly
a big étale sheaf except that PrLst is itself not presentable. Yet PrLst admits arbitrary small limits,
so Remark 3.4 gives rise to a presentable stable category D(X) for any stack X, called the derived
category of X, and its object is called a quasicoherent sheaf on X. By construction, for a stack
map f : X → S, we have the adjoint pair (f∗, f∗) : D(S) � D(X). We sometimes write RΓX/S

instead of f∗.

Remark 3.7 (Small étale Zp-sheaves on stacks). Similarly, R �→ Dét(Spec(R), Zp) satisfies étale
descent, so Remark 3.4 gives rise to a presentable stable category Dét(X, Zp) for any stack
X, whose object is called an étale Zp-sheaf on X. Here we also have an adjoint pair
(f∗, f∗) : Dét(S, Zp) � Dét(X, Zp) for every stack map X → S. Alternatively, Dét(−, Zp) is the
big étale sheafification of the constant functor Ring → PrLst with value D(Zp).

Example 3.8 (Étale cohomology). Let S be a stack and let F be an étale Zp-sheaf on S. Then
the étale cohomology X �→ RΓét(X, f∗F) is a big étale sheaf over S with values in D(Zp), where
f : X → S is the structure map. By abuse of notation, we denote this big étale sheaf still by F .
Some important special cases of this construction are:
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(i) S = Spec(Z[1/p]) and F = Zp(n) is the Tate twist, where n ∈ Z;
(ii) S = Spec(Z) and F = j!Zp(n) where j : Spec(Z[1/p]) → Spec(Z).

Example 3.9 (Étale cohomology of the adic generic fiber). Let S be a stack over Spec(Z[t])
and let F be an étale Zp-sheaf on S. Then the étale cohomology of the adic generic fiber R �→
RΓét(R̂t[1/t], f∗F) is a big étale sheaf over S with values in D(Zp), where R̂t is the t-completion
of R and f : Spec(R̂t[1/t]) → S is the obvious map. In fact, by [BM21, Corollary 6.17], it is even
an arct sheaf. The most important special case is S = Spec(Z) with structure map t �→ p.

Example 3.10 (Hodge cohomology). Let S be a stack. The Hodge cohomology X �→
RΓX/S(LΩ�

X/S)[−�] is a big étale sheaf over S with values in Gr(S). We denote it by LΩ�
−/S [−�].

When S = Spec(Z) we often omit the ‘/S’.

Example 3.11 (De Rham cohomology). Let S be a stack. The de Rham cohomology X �→
Fil• dRX/S is a big étale sheaf over S with values in DF(S). Note that its associated graded
object is the Hodge cohomology.

Example 3.12 (Relative prismatic cohomology). Let (A, I) be a prism and let Ā = A/I. The
relative prismatic cohomology R �→ ΔR/A is a big étale sheaf over Ā with values in F -Gauge(A, I).
Its Hodge–Tate specialization Fil• Δ−/A (Definition 2.30) is called the relative Hodge–Tate coho-
mology, and its de Rham specialization (Definition 2.31) is the de Rham cohomology over
Spf(Ā).

Example 3.13 (Absolute prismatic cohomology). Let WCart and WCartHT be the Cartier–Witt
stack and its Hodge–Tate divisor, as in [BL22a, §§ 3.3 and 3.4]. The prismatic cohomology
sheaf HΔ defined in [BL22a, Construction 4.4.1] is a big étale sheaf with values in D(WCart),
and the (twisted and Nygaard filtered) absolute prismatic cohomology is the sheaf Δ−{n} =
RΓ(WCart,HΔ{n}) ∈ DF(Zp) defined in [BL22a, Construction 4.4.10] with the Nygaard filtra-
tion Fil• Δ−{n} as in [BL22a, Construction 5.5.3], for n ∈ Z. The (conjugate filtered) Hodge–Tate
cohomology sheaf Fil•HΔ defined in [BL22a, Construction 4.5.1] is a big étale sheaf with
values in DF(WCartHT), and similarly the (twisted and conjugate filtered) absolute Hodge–Tate
cohomology is the sheaf Fil• Δ−{n} = RΓ(WCartHT, Fil•HΔ{n}) ∈ DF(Zp), for n ∈ Z.

Example 3.14 (Diffracted Hodge cohomology). The diffracted Hodge cohomology Fil• Ω�D
− , defined

in [BL22a, § 4.9], is a big étale sheaf with values in DF(BG
�
m). Rationally, it is the Hodge cohomol-

ogy with the filtration näıvely defined by the grading, under the identifications G
�
m,Q = Gm,Q and

D(BGm,Q) = Gr(Q), while after p-completion it is the Hodge–Tate cohomology sheaf, under the
identification BG

�
m,Zp

= WCartHT (see [BL22a, Theorem 3.4.13]). Its associated graded object

is the Hodge cohomology, where the G
�
m-action on the nth grade comes from the Gm-action of

weight −n.

Example 3.15 (Syntomic cohomology). The syntomic cohomology Zp(�), defined in [BL22a, § 8.4],
is a big étale sheaf with values in Gr(Zp). By [BL22a, Construction 7.4.1], for n ∈ Z and X over
Spf(Zp), Zp(n)(X) is the equalizer of the maps ϕ{n} and ι from Filn ΔX{n} to ΔX{n}, while by
[BL22a, Remark 8.4.4], for a stack X with p-completion X̂, there is a fiber sequence

j!Zp(n)(X) → Zp(n)(X) → Zp(n)(X̂),

where the first term is as in Example 3.8.
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Remark 3.16. As [BL22a] has constructed, all the examples above except Example 3.8(ii) have
symmetric algebra structures in their respective categories, i.e. they actually have values in
CAlg(Zp), CAlgDF(Zp), and so on. We have omitted this clumsy ‘CAlg’ notation in above.

Remark 3.17. Almost every cohomology theory that we encounter is left Kan extended from
its restriction to smooth Z-algebras, at least when formulated properly. See [BL22a,
Propositions 4.5.8, 4.5.10, 4.9.6, and 8.4.10 and Remark 5.5.10]. Therefore, our generality of
allowing arbitrary animated rings to be ‘test objects’ of stacks may be redundant; in most cases
smooth Z-algebras suffice. However, in order not to introduce more complication, we refrain from
restricting test objects.

3.2 Comparing cohomology
This subsection aims to abstract the arguments of [BL22a, Proposition 9.2.9] and [BL22a, § 9.4].
We first generalize the notion of quasisyntomic rings in [BMS19, § 4.2] to animated rings. Before
that let us recall the notion of Tor amplitude. Note that unlike [BMS19, § 4.1], we use the
homological indexing here.

Definition 3.18 (Tor amplitude). Let A be a ring and let M ∈ D(A). For a, b ∈ Z, we say
that the (p-complete) Tor amplitude of M is in [a, b] if, for every classical A-module N (with
pN = 0), M ⊗A N has nonzero homotopy groups only in degree [a, b]. Similarly we have the
notion of (p-complete) Tor amplitude in ≥ a or ≤ b. If an A-module M has (p-complete) Tor
amplitude concentrated at 0, we say that it is (p-completely) flat.

Obviously, (p-complete) Tor amplitude is preserved by arbitrary base change.

Proposition 3.19. Let n ∈ N and let A be a ring whose homotopy groups of degrees > n are
zero. Let a, b ∈ Z and let M ∈ D(A) have Tor amplitude in [a, b] (respectively, ≥ a, ≤ b). Then
M has nonzero homotopy groups only in degree [a, b + n] (respectively, ≥ a, ≤ b + n).

Proof. This is simply because A itself is an iterated extension of (πiA)[i] for i = 0, 1, . . . , n, and
each πiA is a classical A-module. �

The following lemmas discuss commutation of cosimplicial totalizations and filtered colimits,
under some coconnectivity conditions. Let I be a filtered index category and Δ be the opposite
category of ordered nonempty finite sets, which is also called the category of standard simplices.

Lemma 3.20. Let M be a diagram of spectra indexed by Δ × I. Suppose τ>0M is ind-zero as
a diagram I → Fun(Δ, Sp), i.e. for every i ∈ I, there is a map i → j in I such that the map
τ>0Mi → τ>0Mj is zero in Fun(Δ, Sp). Then

colim
I

lim
Δ

M = lim
Δ

colim
I

M

and is coconnective.

Proof. There is an obvious map from the left-hand side to the right-hand side. The fiber sequence
τ>0M → M → τ≤0M of diagrams induces fiber sequences for both sides. The assumption implies
that

colim
I

lim
Δ

τ>0M = lim
Δ

colim
I

τ>0M = 0.

Therefore, one can assume that M = τ≤0M is coconnective. For n ∈ N, let M≤n be the restriction
of M to Δ≤n × I, where Δ≤n is the full subcategory of Δ generated by the simplices of dimension
≤ n. Then for every n ∈ N, we have the following.
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– For every i ∈ I we have

fib
(

lim
Δ

Mi → lim
Δ≤n

M≤n,i

)
∈ Sp≤−n;

since filtered colimits respect coconnectivity, we can take colimI and get

fib
(

colim
I

lim
Δ

M → colim
I

lim
Δ≤n

M≤n

)
∈ Sp<−n.

– In addition, by the fact that filtered colimits respect coconnectivity,

fib
(

lim
Δ

colim
I

M → lim
Δ≤n

colim
I

M≤n

)
∈ Sp<−n.

– Since Δ≤n is finite and in a stable ∞-category finite limits are just shifts of finite colimits,

colim
I

lim
Δ≤n

M≤n = lim
Δ≤n

colim
I

M≤n.

Combining, we get

fib
(

colim
I

lim
Δ

M → lim
Δ

colim
I

M
)
∈ Sp≤−n,

but the fiber is independent of n, so it is zero, and the lemma follows. �

Lemma 3.21. Let A be a homotopically bounded ring, i.e. πnA = 0 for n 
 0. Let M be a
diagram of objects in D(A) with Tor amplitude ≤ 0, indexed by Δ × I. Then

colim
I

lim
Δ

M = lim
Δ

colim
I

M.

Proof. Combine Proposition 3.19 and (some shift of) Lemma 3.20. �

The terms below are taken from [HRW22, § 4.1]. Their apparent incompatibility originates
from [BMS19, Definition 4.10].

Definition 3.22. Let A → R be a ring map. We say that it is ( p-)quasi-lci if LR/A ∈ D(R)
has (p-complete) Tor amplitude ≤ 1. If it is moreover (p-completely) flat, we say that it is
( p-)quasisyntomic. A ( p-)quasisyntomic ring means a ring that is (p-)quasi-lci over Z.

If A → R is a (p-)quasi-lci ring map, since LR/A is connective, LR/A actually has (p-complete)
Tor amplitude in [0, 1]. Therefore, its wedge product LΩn

R/A has (p-complete) Tor amplitude in
[0, n], for all n ∈ N.

Now we begin to compare the cohomology of different stacks. In what follows, let (Xi)i∈I be
a finite diagram of stacks, and let X be a stack receiving compatible maps from them. Rigorously
speaking, the data should be a diagram (Xi)i∈I�Δ0 , where X = XΔ0 . Then for any big étale sheaf
F with values in any presentable category C, we have a natural map

F(X) → lim
i∈I

F(Xi). (4)

The following lemmas discuss conditions under which the map is an isomorphism.

Lemma 3.23. If the map (4) is an isomorphism for F = LΩ�, then so is it for F(R) =
RΓsyn(Spf(R̂), Zp(�)). If it is moreover an isomorphism either for F = j!Zp(�) or for F being
both R �→ RΓét(R[1/p], Zp(�)) and R �→ RΓét(R̂[1/p], Zp(�)), then it is also an isomorphism for
F = Zp(�).

Proof. We prove the lemma in steps.
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• For F = Fil• Ω�D
− , (4) is an isomorphism. This is because Fil<0 Ω�D

− = 0 and grn Ω�D
− = LΩn−[−n],

by [BL22a, Remark 4.9.3].
• For F = gr• Δ−{�}, (4) is an isomorphism. This is due to the fiber sequence

grm ΔR{n} → Film Ω̂�D
R → Film−1 Ω̂�D

R

in [BL22a, Remark 5.5.8]. Here the hat denotes p-completion.
• For F = Fil• Δ̂−{�}, where the hat denotes Nygaard completion, (4) is an isomorphism. This

follows from forming finite extensions of gr• Δ−{�} and then taking limits.
• Finally, the lemma follows from [BL22a, Constructions 7.4.1 and 8.4.1, Proposition 7.4.6,

Remark 8.4.4]. �
Lemma 3.24. Assume each of the Xi and X is a simplicial colimit of the form

with the face maps all (p-completely) flat and the Rm all (p-)quasisyntomic and (p-completely)
homotopically bounded. Then if the map (4) is an isomorphism for F = LΩ�, so is it for F being

(the p-completions of) Ω�D
− , HΔ, and Fil• Δ−{�}.

Proof. We first show that, for any stack X = colimm∈Δop Spec(Rm) as assumed, we have Ω �D
X =

colimn Filn Ω�D
X (p-completely). For this, take N ∈ N such that π>NR0 = 0 (p-completely). Then

by flatness, π>NRn = 0 (p-completely) for every n ∈ N. By Proposition 3.19 one can see that
LΩn

Rm
[−n] ∈ Sp≤N (p-completely), and thus so is Filn Ω�D

Rm
. Now by Remark 3.4 and Lemma 3.20,

we have (p-completely)

Ω�D
X = lim

m∈Δ
Ω�D

Rm
= lim

m∈Δ
colim

n
Filn Ω�D

Rm

= colim
n

lim
m∈Δ

Filn Ω�D
Rm

= colim
n

Filn Ω�D
X .

With this in hand, we now prove the lemma.

Ω�D
− This follows from the previous paragraph and the proof of Lemma 3.23.

HΔ This is because HΔ is the p-completion of Ω�D
− (cf. Example 3.14), and WCart is complete

along WCartHT.
Fil• Δ−{�} For Δ−{�} this follows by twisting HΔ by OWCart{�} and taking global sections.

For gr• Δ−{�} this follows from the proof of Lemma 3.23. Combine them and get what we
want. �

Remark 3.25. The proof of Lemma 3.24 shows that, for X = colimm∈Δop Spec(Rm) as assumed
and N ∈ N with π>NR0 = 0 (p-completely), the spectra Ω �D

X , HΔ(X), Fili ΔX{n}, and
RΓsyn(X, Zp(n)) are in Sp≤N (p-completely) for all i, n ∈ Z, since the étale cohomology is always
coconnective.

Remark 3.26. The proof of Lemma 3.24 also shows that (the p-completions of) Ω�D
− , HΔ, and

Fil• Δ−{�} satisfy descent along a (p-completely) quasisyntomic map between (p-)quasisyntomic
and (p-completely) homotopically bounded rings.

3.3 Cohomologies of graded rings
In this subsection, we finally establish the strong weighted homotopy invariance of the syntomic
cohomology.
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First we discuss the Hodge cohomology. The first part of the following definition is taken
from [Cla21, Lecture 13]; beware that it is expected to be somewhat reasonable only when Z is
an Artin stack.

Definition 3.27 (Cotangent complex). For a stack Z over a ring A, let

LZ/A = lim
g : Spec(R)→Z

g∗LR/A ∈ D(Z),

where g∗ denotes the quasicoherent pushforward as in Remark 3.6. We often write LZ for LZ/Z.
For a map of stacks X → Y , let

LX/Y = lim
f : Spec(R)→Y

(fX)∗L(X×Y Spec(R))/R ∈ D(X),

where fX is the base change of f along X → Y .

Remark 3.28. Note that the assignment R �→ (D(R), LR/A) is a big étale sheaf over A of pointed
categories, and the above definition for LZ/A is just Remark 3.4 expanded, so L−/A takes colimits
to limits of pushforwards, and so do L−/Y and LX×Y −/−. In particular, to compute LZ/A, one
can write Z as a colimit of affines and take the limit just along these affines, rather than take
the whole limit as in the definition. Similarly, one can replace the limit in the definition of LX/Y

by a smaller one, as long as the colimit of the affines is Y .

Let A be a ring and R =
⊕

n∈Z Rn be a graded A-algebra, considered as acted by Gm

naturally by the grading. In the following proposition, we view quasicoherent sheaves over
Spec(R)/Gm as graded modules of R, for example by [Mou21, Theorem 4.1] and [Lur18,
Proposition 2.5.1.2].

Proposition 3.29. Let Y = Spec(R)/Gm and (Yn), gn : Yn → Y be the Čech nerve of the cover
Spec(R) → Spec(R)/Gm. Then the simplicial object (gn)∗LYn/A has its partial totalization tower
(limΔ≤n

(gn)∗LYn/A)n∈N pro-constant.

Proof. View stacks affine over Y as graded R-algebras. Then Yn corresponds to S(n) =
R[x±1

0 , . . . , x±1
n ] with deg(xi) = 1, while absolutely Yn is the spectrum of its 0th grade part

S
(n)
0 . Since S(n) = S

(n)
0 [x±1

0 ], it is easy to see that for an S
(n)
0 -module M , the pushforward along

gn of M is the graded module M [x±1
0 ]. Hence, there is a fiber sequence of graded modules

(gn)∗LYn/A = L
S

(n)
0 /A

⊗
S

(n)
0

S(n) → LS(n)/A → L
S(n)/S

(n)
0

= S(n).

Now consider both (LS(n)/A) and (S(n)) as cosimplicial objects; then they are functorially made
from the Čech nerve of R → S(0) = R[x±1

0 ]; but this has a left inverse as a map of ungraded
rings, so both (LS(n)/A) and S(n) split as cosimplicial ungraded modules, and in particular their
pro-objects of partial totalizations are pro-constant ungradedly; now this forces them to also
be pro-constant gradedly, and hence so is the pro-object of partial totalizations of the fiber
((gn)∗LYn/A). �

Proposition 3.30. Consider the natural graded map LR/A → R defined as the left Kan
extension of the map ΩR/A → R, dr �→ deg(r)r. Then there is a natural isomorphism

L(Spec(R)/Gm)/A
∼= fib(LR/A → R)

of graded R-modules.
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Proof. Descend the fiber sequence in the proof of Proposition 3.29 and we have

L(Spec(R)/Gm)/A = fib(LR/A → LR/(Spec(R)/Gm))

as graded R-modules. Now view stacks affine over Spec(R)/Gm as graded rings over R. Then by
definition, the stack Spec(R) over Spec(R)/Gm corresponds to the ring R[t±1] with deg(t) = 1.
Note that here R = RΓ(Spec(R),OSpec(R)) is identified with the 0th grade part of R[t±1],
which is

⊕
n∈Z Rntn, while on the other hand LR/(Spec(R)/Gm) = RΓ(Spec(R), LR/(Spec(R)/Gm))

is identified with that of LR[t±1]/R = R[t±1] dt, which is
⊕

n∈Z Rntn−1 dt. Therefore, the map
LR/A → LR/(Spec(R)/Gm) sends r ∈ Rn to d(rtn) = nrtn−1 dt, which gives the identification of
L(Spec(R)/Gm)/A in the proposition. �

The following corollary is [BL22a, Proposition B.9], which was left as an exercise by the
authors there.

Corollary 3.31. If R is N-graded, then L(Spec(R)/Gm)/A is also N-graded, with 0th grade part
R0[−1] ⊕ LR0/A, which is the same as L(Spec(R0)/Gm)/A. Therefore, for every integer n, the natural
map

RΓ(Spec(R0)/Gm, LΩn
(Spec(R0)/Gm)/A) → RΓ(Spec(R)/Gm, LΩn

(Spec(R)/Gm)/A)

is an isomorphism. Namely, the Hodge cohomology satisfies strong weighted homotopy invariance.

Proof. Clearly, if R is N-graded, then so is LR/A, with 0th graded part LR0/A, and thus so is
L(Spec(R)/Gm)/A = fib(LR/A → R), with 0th graded part fib(0: LR0/A → R0) = R0[−1] ⊕ LR0/A.
Note that this only depends on R0, so if we replace R by another N-graded A-algebra with the
same R0, the cotangent complex will be the same. This applies, in particular, to R0, as a graded
ring purely in the 0th grade. Now by Proposition 3.29, one can commute the wedge power with
the Čech descent and conclude that

LΩn
(Spec(R)/Gm)/A = LΛnL(Spec(R)/Gm)/A,

where the wedge power is over Spec(R)/Gm. Thus, the desired isomorphism follows from the
fact that the wedge power of an N-graded R-module M is still N-graded, whose 0th graded part
is just the wedge power of the R0-module M0. �

Example 3.32. Take A = R = Z. We get

LBGm/Z = fib(0 → Z) = Z[−1].

Example 3.33. Take A = Z and R = Z[t] with deg(t) = 1. We get

L(A1/Gm)/Z = fib(Z[t] dt → Z[t]) = Z[−1]

as a graded Z[t]-module purely in 0th grade, since the map here is dt �→ t.

Next we discuss the étale cohomology.

Lemma 3.34. Let S be a Z[1/p]-scheme, π : L → S be a line bundle, and i0 : S → L be the zero
section. Let M ∈ Dét(S, Zp). Then π or, equivalently, i0 induces an isomorphism

RΓét(S,M) ∼= RΓét(L, π∗M).

Proof. Let P = P(L ⊕OS) be the compactification of L and πP : P → S be the projection. Let
j∞ : L → P and i∞ : S → P be the inclusions of L and ∞, respectively. Then there is a natural
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fiber sequence

i∞!i
!
∞π∗

PM → π∗
PM → j∞∗π

∗M.

By the étale Poincaré duality, π∗
PM = π!

PM(−1)[−2], so i!∞π∗
PM = M(−1)[−2]. Now take

RΓét(P,−) of the above sequence, and the lemma follows from the classical computation of
the étale cohomology of the projective line. �

Let R =
⊕

i∈N Ri be a graded Z[1/p]-algebra, considered as acted by Gm naturally by the
grading. Let π : Spec(R) → Spec(R0) and i : Spec(R0) → Spec(R) denote the obvious maps.

Proposition 3.35. Let M ∈ Dét(Spec(R0), Zp). Then π or, equivalently, i induces an
isomorphism

RΓét(Spec(R0),M) ∼= RΓét(Spec(R), π∗M).

Proof. Since the étale cohomology is insensitive to thickenings, without loss of generality we
can assume that R is classical. Let U = Spec(R) \ Spec(R0) and let πU : U → Spec(R0) and
jU : U → Spec(R) denote the obvious maps. By the exact triangle

jU !π
∗
UM → π∗M → i∗M,

it suffices to prove RΓét(Spec(R), jU !π
∗
UM) = 0. Let X be the blowup of Spec(R0) in Spec(R),

and let D denote the exceptional divisor. Then U is also X \ D, and it suffices to prove
RΓét(X, jU !π

∗
UM) = 0, where jU now denotes the open immersion U → X. Let O(−1) denote

the invertible sheaf on Proj(R) as usual. Then by the construction of blowup, X is the total
space of O(−1) and D is Proj(R) itself, so the proposition follows from Lemma 3.34. �
Corollary 3.36. For every n ∈ Z,

RΓét(Spec(R0)/Gm, Zp(n)) ∼= RΓét(Spec(R)/Gm, Zp(n)).

Namely, the étale cohomology satisfies strong weighted homotopy invariance.

Proof. This follows immediately from Proposition 3.35 by descent. �
Finally, we discuss the étale cohomology of the adic generic fiber, generalizing [KP21, Remark

5.3.7]. Therefore, let F(R) = RΓét(Spec(R̂[1/p]), Zp(n)) as in Example 3.9, where n ∈ Z is fixed.
Recall from [BS22, § 9] that, for R over a perfectoid,

RΓét(Spec(R̂[1/p]), Zp) = (ΔR[1/I]∧p )ϕ=1 = (ΔR,perf [1/I]∧p )ϕ=1. (5)

In what follows, we will use this to control F . Before this, let us extend the functor Δ−,perf to
arbitrary rings.

Definition 3.37 (Perfect prismatic cohomology). Recall from [BS22, Lemma 8.8] that perfec-
toid rings form a basis of the topology arcp on Ring. For m ∈ Z, let Δ[m]

−,perf denote the arcp

sheaves on Ring whose values on a perfectoid ring R is ImΔR. Obviously, they are always
coconnective and depend on the π0 of a ring. By [BS22, Proposition 8.10, Corollary 8.11],
Δ−,perf = Δ[0]

−,perf is well-defined and coincides with the notion there on rings over perfectoids.

Let Δ−,perf [1/I] = colimm Δ[m]
−,perf as a functor. By Lemma 3.20, it is automatically an arcp sheaf,

and we also have

RΓét(Spec(R̂[1/p]), Zp) = (ΔR,perf [1/I]∧p )ϕ=1

for any ring R.

Now let R =
⊕

i∈N Ri be a graded ring, considered as acted by Gm naturally by the grading.

2341

https://doi.org/10.1112/S0010437X24007334 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007334


L. Tang

Proposition 3.38. The perfect prismatic cohomology satisfies strong weighted homotopy
invariance. Namely,

ΔSpec(R)/Gm,perf = ΔSpec(R0)/Gm,perf .

Proof. Since Spec(R)/Gm and Spec(R0)/Gm are stacks over R0, both sides are arcp sheaves with
respect to R0, so we can assume that R0 is perfectoid. Consider the Čech nerves of Spec(R) →
Spec(R)/Gm and Spec(R0) → Spec(R0)/Gm, from which we know that ΔSpec(R)/Gm,perf =
limi∈Δ ΔSpec(R)×Gi

m,perf and similarly for ΔSpec(R0)/Gm,perf . Therefore, the following hold.

– We can assume that R is classical.
– By Lemma 3.20, we can pass to limit and assume that R is finitely presented over R0. Say R =

π0(R0[x1, . . . , xa]/(f1, . . . , fb)), where x1, . . . , xa and f1, . . . , fb are homogeneous in positive
grade.

– We can replace R by the non-classical R0[x1, . . . , xa]/(f1, . . . , fb).

Now we are in the case that R0 and R are homotopically bounded p-quasisyntomic rings: R0

is perfectoid and, hence, p-quasisyntomic, and R is a derived complete intersection over R0.
Therefore, by Lemma 3.24, we have ΔSpec(R)/Gm

= ΔSpec(R0)/Gm
. Reducing modulo p, since the

Frobenius is functorially nullhomotopic in positive homotopical degrees (see the proof of [BS22,
Lemma 8.4], or use [BS17, Remark 11.8], since Δ− actually has derived rings as values), by
Lemma 3.20 we have ΔSpec(R)/Gm,perf/p = ΔSpec(R0)/Gm,perf/p. Finally, by p-completeness of both
sides we get the desired equality. �
Remark 3.39. By similar limiting and replacement argument, then using Remark 3.25 to descend
from something over a perfectoid, one can prove in steps that:

– the functors Δ−,perf commutes with filtered colimits of rings;
– for any ring S we have ΔS,perf = colimϕ ΔS , where the colimit is taken in the category of

ΔS-modules that are complete along ΔS → ΔS/p;
– equation (5) holds for rings not necessarily over a perfectoid.

Corollary 3.40. The étale cohomology of the adic generic fiber satisfies strong weighted
homotopy invariance. Namely,

F(Spec(R)/Gm) = F(Spec(R0)/Gm).

Proof. By [BM21, Corollary 6.17], both sides are arcp sheaves with respect to R0. Therefore, we
can assume that R0 is over Z

cyc
p . Since Zp(n) ∼= Zp on Spec(Qcyc

p ), we can assume n = 0. Again
use Čech nerves to compute both sides. Since RΓét(Spec(Ŝ[1/p]), Zp) = (ΔS,perf [1/I]∧p )ϕ=1 and
ΔS,perf is coconnective for any ring S, the desired equality follows from Proposition 3.38 and
Lemma 3.20. �
Theorem 3.41. The syntomic cohomology satisfies strong weighted homotopy invariance.
Namely, for all n ∈ Z,

RΓsyn(Spec(R)/Gm, Zp(n)) = RΓsyn(Spec(R0)/Gm, Zp(n)).

Proof. Combine Lemma 3.23 and Corollaries 3.31, 3.36, and 3.40. �
Remark 3.42. The failure of strong weighted homotopy invariance of the absolute prismatic
cohomology Δ− results from the failure of Lemma 3.24 for general stacks. Probably, this is
because we are using the wrong category of values, and may be remedied by viewing Δ− as
taking values in the category of ‘absolute F -gauges’, along with a careful study of the strong
weighted homotopy invariance of the (non-Hodge-completed) derived de Rham cohomology.

2342

https://doi.org/10.1112/S0010437X24007334 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007334


Syntomic cycle classes and prismatic Poincaré duality

4. Thom classes

We now produce the theory of Thom classes for cohomologies that satisfy a coconnectivity
condition. In this and the next sections we will often encounter relative cohomology, so for a big
étale sheaf F with values in a pointed category C:

– for stacks X and Y with a map Y → X understood, we let F(X, Y ) denote fib(F(X) → F(Y ));
– for a pointed stack ∗ → X, we let F̃(X) denote F(X, ∗).

Throughout this section we are in the following situation.

Situation 4.1. Let F =
⊕

n∈Z Fn be a big étale sheaf with values in GrCAlg(Sp). Fix a point
c1 ∈ Ω∞F1(BGm), call it the first Chern class, and suppose that:

(i) F satisfies the projective bundle formula; more precisely, for any r ∈ N and any rank r
vector bundle V → X, (c1(O(1))i)r−1

i=0 induces an isomorphism
r−1⊕
i=0

F�−i(X) ∼= F�(P(V ));

(ii) F satisfies the strong weighted homotopy invariance of Definition 3.5;
(iii) F≤0(Spec(Z)) is coconnective.

Note that with the projective bundle formula and the strong weighted homotopy invariance
in hand, the proof of [BL22a, Theorem 9.3.1] actually shows that:

– F has Chern classes, i.e. for r ∈ N and a stack X with F≤0(X) coconnective,

π∗F(X × BGLr) = (π∗F(X))[c1, . . . , cr]

as doubly graded rings, where ci ∈ π0F i(BGLr); these Chern classes are additive, i.e. for
r, s ∈ N, the direct sum map BGLr × BGLs → BGLr+s induces the map ci �→

∑i
j=0 c′jc

′′
i−j on

homotopy groups.

The prototypical examples are Fn(R) being LΩn
R[n], RΓét(R[1/p], Zp(n))[2n], and

RΓsyn(R, Zp(n))[2n], by results of [BL22a, § 9.1] and the previous section. The main result of
this section can be summarized as follows.

Theorem 4.2. To every stack X and every rank r vector bundle V → X, one can assign the
Thom class

ThF
V ∈ Ω∞Fr(V, V \ 0),

where 0 denotes the zero section of V . The assignment is uniquely determined (up to contractible
ambiguity) by the following requirements.

Functoriality. For f : Y → X a morphism of stacks, we have ThF
f∗V = f∗ThF

V . Rigorously
speaking, let VBr denote the category

{V → X | X is a stack, V is a rank r vector bundle over X}
with morphisms the pullback squares. Then ThF is a natural transformation ∗ → Ω∞Fr(V, V \ 0)
in the functor category Fun(VBop

r , Ani).

Normalization. After restricting along the zero section 0: X → V and taking π0, ThF
V becomes

the Chern class cr(V ).

Moreover, the Thom classes are natural in F and have the following properties.
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Thom isomorphism. Promote V to the vector bundle V/Gm → X/Gm = X × BGm by scalar
multiplication. Then ThF

V/Gm
induces an isomorphism

F�(X × BGm) ∼= F�+r(V/Gm, P(V )).

Additivity. If V = V ′ ⊕ V ′′, then ThF
V = ThF

V ′ � ThF
V ′′ , i.e. the product of the pullback of ThV ′

in Ω∞Fr′(V, V \ V ′′) and the pullback of ThV ′′ in Ω∞Fr′′(V, V \ V ′), where r′ = rk(V ′), r′′ =
rk(V ′′).

Note that the category VBr has a final object, i.e. the universal rank r vector bundle which
we denote by Er → BGLr. Thus, by the Yoneda lemma, in order to prove Theorem 4.2, we
only need to treat the universal case, i.e. X = BGLr and V = Er. Therefore, let us study the
cohomology of Er and Er \ 0. Recall that, by definition, Er = Gr

a/GLr, where GLr acts on Gr
a

tautologically.

Proposition 4.3. As stacks over BGLr we have Er \ 0 ∼= BAffr−1 where

Affr−1 = Gr−1
a � GLr−1 =

[
1 Gr−1

a

0 GLr−1

]
⊆ GLr.

Proof. This is simply because Er \ 0 = (Gr
a \ 0)/GLr, while GLr acts transitively on Gr

a \ 0 with
point stabilizer Affr−1. �
Proposition 4.4. Let X be a stack and G ⊆ GLr,X be a subgroup smooth over X that con-
tains the central Gm,X → GLr,X . Then the projection Gr

a,X/G → BG induces an isomorphism
F(BG) ∼= F(Gr

a,X/G). In particular, taking G = GLr,X we have that the projection X × Er →
X × BGLr induces an isomorphism F(X × BGLr) ∼= F(X × Er).

Proof. The proposition basically follows from the proof of [BL22a, Corollary 9.2.10], but the
statement there does not contain the case here, so we redo the proof.

Let everything be over X. Let H = G/Gm. Then H is also smooth, and

is a fiber square. View BG as over BH. If we can prove that for every stack Y over X and
every X-map Y → BH, the base change of Gr

a/G → ∗/G to Y induces an isomorphism after
taking F , then the proposition will follow by descent. Now the base change is nothing but
Gr

a,Y /Gm,Y → Y/Gm,Y , where Gm,Y acts on Gr
a,Y by scalar multiplication, so we are done by

weighted homotopy invariance. �
Proposition 4.5. For any stack X, the natural map GLr−1 → Affr−1 induces an isomorphism

F(X × BAffr−1) ∼= F(X × BGLr−1).

Proof. Let everything be over X to simplify notation. By Affr−1 = Gr−1
a � GLr−1 we have

BAffr−1 = BGr−1
a /GLr−1, where GLr−1 tautologically acts on Gr−1

a . Under this identification,
BGLr−1 → BAffr−1 corresponds to the map ∗/GLr−1 → BGr−1

a /GLr−1 defined as the canonical
covering ∗ → BGr−1

a quotient by GLr−1. By descent, we only need to prove that the Čech nerves
of ∗/GLr−1 → BGr−1

a /GLr−1 and ∗/GLr−1 → ∗/GLr−1 have the same cohomology on each term,
i.e. for each k ∈ N the map (Gr−1

a )k/GLr−1 → ∗/GLr−1 induces an isomorphism after applying
F , but this follows immediately from Proposition 4.4. �
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Proposition 4.6. For any stack X with F≤0(X) coconnective, the natural restriction map
π∗F(X × Er) → π∗F(X × (Er \ 0)) is the map

(π∗F(X))[c1, . . . , cr] → (π∗F(X))[c1, . . . , cr−1]

that leaves c1, . . . , cr−1 unchanged and maps cr to 0. In particular, it is surjective and, thus,

π∗F(X × Er, X × (Er \ 0)) = ker(π∗F(X × Er) → π∗F(X × (Er \ 0)))

= cr(π∗F(X)[c1, . . . , cr]).

Proof. By Propositions 4.3, 4.4, and 4.5, the map X × (Er \ 0) → X × Er is cohomologically the
same as the map X × BGLr−1 → X × BGLr induced by adding a trivial line bundle. Thus, the
proposition follows from the additivity formula of Chern classes. �
Proof of Theorem 4.2. By Proposition 4.6,

π∗F(Er, Er \ 0) = cr(π∗F(Spec(Z))[c1, . . . , cr]).

Since ci ∈ π0F i, among the right-hand side only π∗F≤0(Spec(Z)) may contribute to
π∗Fr(Er, Er \ 0). By assumption (iii) of Situation 4.1, this implies that Fr(Er, Er \ 0) is cocon-
nective, so Ω∞Fr(Er, Er \ 0) is a 0-truncated anima, in which cr is naturally a point. Therefore,
by normalization, the Thom class of the universal bundle Er → BGLr can be and must be defined
as cr ∈ Ω∞Fr(Er, Er \ 0), which is unique up to contractible choice. Now the Thom class of a
general rank r vector bundle is uniquely determined by the universal case.

To prove the additivity, one reduces to the universal case, where it follows from the additivity
of the Chern class. To prove the Thom isomorphism, note by weighted homotopy invariance
that V/Gm → BGm × X induces an isomorphism F(BGm × X) ∼= F(V/Gm), while (V/Gm) \
(0/Gm) = P(V ) is the projective bundle. Now by additivity and the projective bundle formula,
the Thom isomorphism reduces to the case r = 1, where it follows immediately by the projective
bundle formula. �
Remark 4.7. It seems magical that, starting with Chern classes in the homotopy groups, we
are able to get the desired Thom class up to contractible ambiguity. This is, in fact, because
the assumption (iii) of Situation 4.1 essentially guarantees that the ‘candidate space’ Ω∞Fr(Er,
Er \ 0) of the Thom class is discrete, so once we have specified the connected component that
the class lives in, we have specified the class up to contractible ambiguity.

Remark 4.8. Alternatively, one can impose the normalization only for line bundles but add the
additivity of Thom classes to get the uniqueness statement, because by additivity of Chern
classes, the natural map

π∗F(Er, Er \ 0) → π∗F(Er
1, Er

1 \ 0)

is injective, sending cr to the box product of the r different c1’s on the right.

Remark 4.9 (Naturality). By uniqueness, the Thom class ThF is natural in F , with respect to
maps that preserve c1. In particular, it is natural along the map

Zp(n) → Filn Δ−{n} → Filn d̂R− → L̂Ωn−[−n]

from the syntomic cohomology to the p-completed Hodge cohomology, by [BL22a,
Theorem 7.6.2].

Remark 4.10 (Identifying cHod
1 and ThHod

1 ). Take Fn(R) = LΩn
R[n]. By Example 3.32,

F1(BGm) = Z, in which 1 corresponds to the Hodge first Chern class originally defined by
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the map dlog : Gm → LΩ1, thanks to the proof of Proposition 3.30. Therefore, the Thom class
is also 1 ∈ Z, under the identification of Example 3.33.

Remark 4.11. Our way of stating Situation 4.1 and Theorem 4.2 is convenient for later uses in
the paper, but far from optimal.

– We can use general base stacks in place of Spec(Z).
– Formulated properly, the values of F need not be graded. See [AI23, § 3].
– We only need the smooth weighted homotopy invariance rather than the strong one, except

for the Thom isomorphism.
– With P1-homotopy techniques as in [AI23], one should be able to get rid of all the coconnec-

tivity assumptions in this section. This can be applied, for example, to the Hodge cohomology
over an animated ring.

5. Cycle classes

In this section we construct cycle classes, by reducing to Thom classes with deformation to
the normal cone, following [Cla21, Lecture 15]. In § 5.1, we define the weighted deformation
to the normal cone for a general closed immersion, and prove that for any regular immersion,
the cohomology of this deformation space coincides with that of its special fiber, for several
cohomology theories. These results are then used in § 5.2 to generate cycle classes from Thom
classes.

5.1 Deformation to the normal cone
Classically, deformation to the normal cone is a construction that deforms a regular immersion
into the zero section of its normal cone. Here, with derived algebraic geometry in hand, we are
able to perform this construction for all closed immersions of derived stacks, and it will behave
well especially for derived regular immersions.

Before going into the construction, we first study closed immersions of derived stacks in
general.

Definition 5.1 (Animated pairs). A pair is a map A → B of animated rings with π0A → π0B
surjective. Let Pair denote the category of pairs, i.e. the full category of Fun(Δ1, Ring) spanned
by the pairs. We say that a pair A → B is classical if both A and B are classical. This coincides
with the classical notion of a pair: a ring A with an ideal I = ker(A → B) of it.

Remark 5.2 (Colimits in Pair). Let (Ai → Bi)i∈I be a diagram in Pair. Then its colimit in
Fun(Δ1, Ring) is colim Ai → colim Bi. Since π0 : Ring → Ring♥ preserves colimits and colimits
in Ring♥ preserve surjections, we see that (colim Ai → colim Bi) ∈ Pair, so it is also the colimit
of (Ai → Bi)i∈I in Pair.

Alternatively, one can take the colimit of (Ai → Bi)i∈I in two steps: first take A = colim Ai

and take base changes B′
i = Bi ⊗Ai A, then take B = colim B′

i in the category of A-algebras, and
the resulting A → B will be the desired colimit.

Remark 5.3 (Projective generators of Pair). Consider two objects Z[x] → Z and Z[y] → Z[y] in
Pair, where the maps are x �→ 0 and id, respectively. It is easy to see that Z[x] → Z corepresents
the functor (A → B) �→ fib(A → B), while Z[y] → Z[y] corepresents the functor (A → B) �→ A.
Since both functors commute with sifted colimits, both objects are projective, and hence so
are their finite products Z[x1, . . . , xr, y1, . . . , ys] → Z[y1, . . . , ys] for all r, s ∈ N. In addition,
since the functor Pair → Ani × Ani, (A → B) �→ (A, fib(A → B)) is conservative, the two objects
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generate Pair. Let

Pairc = {Z[x1, . . . , xr, y1, . . . , ys] → Z[y1, . . . , ys] | r, s ∈ N}
be the full subcategory of Pair spanned by these finite products. Then by [Lur09,
Proposition 5.5.8.22], Pair = PΣ(Pairc), namely the animation of Pairc.

Remark 5.4 (n-truncated objects in Pair). By Remark 5.3 and [Lur09, Remark 5.5.8.26], for
n ∈ N, an object (A → B) ∈ Pair is n-truncated if and only if both A and fib(A → B) are
n-truncated as animas. Therefore, a 0-truncated object in Pair is not always classical. See
also [Mao21, Remark 3.9].

Definition 5.5 (Closed immersions). Let Y → X be a map of stacks. We say that it is a closed
immersion if it is corepresentable by pairs or, in other words, for any ring A and any map
Spec(A) → X, the pullback Y ×X Spec(A) is some Spec(B) with π0A � π0B. In this case we
also say that Y is a closed substack of X.

Definition 5.6 (Regular immersions). We say that a pair A → B is regular of codimension r
if Zariski locally it is a base change of the pair Z[x1, . . . , xr] → Z, x1, . . . , xr �→ 0. We say that a
closed immersion Y → X of stacks is a regular immersion of codimension r if it is corepresentable
by regular pairs of codimension r; we say that it is a regular immersion if it is a disjoint union
of regular immersions of codimension r for different r ∈ N.

Definition 5.7 (The classifying stack of pairs). Consider the functor Pair → Ring, (A → B) �→
A. It is a cocartesian fibration with small fibers, whose cocartesian edges are

{(A → B) → (A′ → B′) | B′ = B ⊗A A′}.
Therefore, by the Grothendieck construction in [Lur09, § 3.2], it corresponds to a functor Ring →
Cat, taking A to the category of all pairs A → B.

Let Pair : Ring → Ani be the functor taking A to the anima of pairs A → B, corresponding
under the Grothendieck construction to the subcategory of Pair that contains only the cocartesian
edges. Then it is obviously a stack, which we call the classifying stack of pairs or the classifying
stack of closed immersions. Denote the universal closed immersion by Closed → Pair. Then, by
definition,

Closed(A) = {a pair A → B along with a section B → A},
i.e. a closed immersion Spec(B) → Spec(A) with a point of Spec(B). Denote the universal open
complement by Open → Pair. Then similarly

Open(A) = {a pair A → B along with a section Spec(A) → Spec(A) \ Spec(B)},
which implies that Open = ∗, since the section forces B = 0.

For r ∈ N, we can also define the classifying stacks of regular immersions of codimension r
in exactly the same way, which we denote by Pairr, and similarly Closedr and Openr for the
universal closed and open substacks. By definition, Pairr is the image of the étale sheaf map
Ar → Pair classifying the standard immersion ∗ → Ar. Note that Openr is always ∗, except for
r = 0 where it is empty.

The tensor product of A-algebras gives Pair(A) an E∞-monoid structure, making Pair an
E∞-monoid stack. Note that the point ∗ = Open → Pair is a zero element of this monoid; in
other words, Pair is an E∞-monoid in the category of pointed stacks, with respect to the smash
product.
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Remark 5.8. By base change of the cotangent complex, for Y → X a regular immersion
(of codimension r), it is easy to see that LY/X [−1] is locally free (of rank r) on Y.

Now we construct the derived Rees algebra. The following proposition is [CS22, Proposition
13.3].

Proposition 5.9 (Cf. [Mao21, Corollary 3.54]). Let (A → B) ∈ Pair. Consider the initial ani-
mated filtered A-algebra I• equipped with a map of animated A-algebras B → I0/I1. Then we
have In = A for n ≤ 0, and I0/I1 = B; in particular, I = I1 is the fiber of A → B. Moreover,
we have I/I2 = LB/A[−1] and In/In+1 = LSymn

B(I/I2) for n ≥ 0. The formation of I• preserves
all colimits as a functor Pair → FilRing, commutes with base change in A, and if A → B is clas-
sical and is a local complete intersection, then I• is classical and agrees with the usual filtered
A-algebra of powers of I.

Remark 5.10. Proposition 5.9 can be generalized to general morphisms in Ring, not neces-
sarily surjective on π0, but one needs to use derived rings as in [Rak20, Example 4.3.1,
Construction 4.3.4], in place of animated rings. It is similar to but different from [Rak20,
§ 5.3].

In the following definitions, the notation In is as in Proposition 5.9.

Definition 5.11 (Rees algebra and deformation to the normal cone). For a pair A → B, its
Rees algebra is the graded A[t]-algebra

RB/A =
⊕
n∈Z

I−ntn,

where t is called the Rees parameter. There is an obvious graded map RB/A → B[t],
which we denote by R(A → B) ∈ Pair. By Proposition 5.9, R commutes with all colim-
its, when viewed as a functor from pairs to graded pairs over the graded ring Z[t]. The
(weighted) deformation to the normal cone of A → B is the closed immersion of Artin
stacks obtained by quotienting R(A → B) by the Gm-action defined by the grading, i.e. the
map

Spec(B) × A1/Gm = Spec(B[t])/Gm → Spec(RB/A)/Gm,

viewed as a map of stacks over A1/Gm. Its open fiber (the fiber over Gm/Gm → A1/Gm) is
Spec(B) → Spec(A), while its closed fiber (the fiber over 0/Gm → A1/Gm) is Spec(B)/Gm →
Spec(LSym�

B(I/I2))/Gm, which is the quotient by the Gm-multiplication on the normal cone of
Spec(B) → Spec(A).

This construction clearly satisfies étale descent and commutes with base change of A and,
hence, can be globalized and classified. More precisely, (A → B) �→ Spec(RB/A)/Gm defines a
stack over Pair × A1/Gm, denoted by DNC, whose fiber over Closed × A1/Gm is Closed × A1/Gm

itself. Its restriction to Pair × Gm/Gm is idPair, while its restriction to Pair × 0/Gm is the
quotient by Gm of the normal cone Spec

Pair
(LSym�(IClosed/I2

Closed)) of Closed → Pair. For a
closed immersion Y → X of stacks, its deformation to the normal cone can be constructed as
the base change of Closed × A1/Gm → DNC along the classifying map X → Pair.

Definition 5.12 (Animated blowup). The blowup of a pair A → B is the A-scheme BlB(A) =
Proj

( ⊕
n∈N In

)
. The natural ‘inclusion’ map

⊕
n∈N In+1 → ⊕

n∈N In defines a section of the line
bundle O(−1), whose zero locus is, by definition, Proj

(⊕
n∈N In/In+1

)
, which we call the excep-

tional divisor. Note that it is the projectivized normal cone Proj(LSym�
B(I/I2)) of Spec(B) in
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Spec(A). Similarly, this construction can also be globalized and classified. For a closed immersion
Y → X of stacks, we denote its blowup by BlY (X).

Remark 5.13. The two concepts are closely related. Namely, one can check that:

– BlB(A) = (Spec(RB/A) \ (Spec(B[t]) ∪ Spec(A)))/Gm;
– Spec(RB/A) = BlB(A[t]) \ BlB(A), where the map A[t] → A sends t to 0.

Next we study the cohomology of the deformation to the normal cone. Fix an r ∈ N, let
Y → X be a regular immersion of stacks of codimension r, and let Y → X be its deformation to
the normal cone, with closed fiber Y0 → X0.

We begin with the Hodge cohomology. Recall that stacks affine over BGm correspond to
graded rings, whose quasicoherent sheaves correspond to graded modules, and taking global
section corresponds to taking the 0th grade.

Proposition 5.14. Let A → B be a regular pair of codimension r. For any n ∈ Z, the local
cohomology RΓSpec(B[t])(LΩn

RB/A/Z[t]) and RΓSpec(B)(LΩn
LSym�

B(I/I2)/Z
) are both nonnegatively

graded, and the base change map along A[t] → A, t �→ 0 identifies the 0th grade parts of them.

Proof. Localizing, we can assume that A → B is a base change of Z[x1, . . . , xr] → Z. Consider
the direct sums ⊕

n∈Z

RΓSpec(B[t])(LΩn
RB/A/Z[t][−n]) ∈ D(Z[t])

and ⊕
n∈Z

RΓSpec(B)(LΩn
LSym�

B(I/I2)/Z[−n]) ∈ D(Z)

instead of individual complexes. Then they commute with sifted colimits in A as Z[x1, . . . , xr]-
algebras, and take coproducts of pairs to tensor products, so one reduces to the case r is either 1
or 0 and A → B is either Z[x] → Z or Z[y] → Z[y], respectively. Now LΩn is nonzero only when
n = 0 or n = 1.

In the Z[x] → Z case, RB/A = Z[xt−1, t] with the surjection to B[t] = Z[t] killing xt−1, so
one computes

RΓSpec(B[t])(RB/A) = RΓxt−1(Z[xt−1, t]) =
∞⊕

k=1

Z[t]tkx−k[−1],

RΓSpec(B)(LSym�
B(I/I2)) = RΓxt−1(Z[xt−1]) =

∞⊕
k=1

Ztkx−k[−1],

RΓSpec(B[t])(LRB/A/Z[t]) = RΓxt−1(Z[xt−1, t] d(xt−1)) =
∞⊕

k=1

Z[t]tkx−k d(xt−1)[−1],

RΓSpec(B)(LLSym�
B(I/I2)/Z) = RΓxt−1(Z[xt−1] d(xt−1)) =

∞⊕
k=1

Ztkx−k d(xt−1)[−1].
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In the Z[y] → Z[y] case, A = B, I = 0 and RB/A = B[t] = Z[y, t], so the local cohomology does
nothing, and one computes

RΓSpec(B[t])(RB/A) = Z[y, t],

RΓSpec(B)(LSym�
B(I/I2)) = Z[y],

RΓSpec(B[t])(LRB/A/Z[t]) = Z[y, t] dy,

RΓSpec(B)(LLSym�
B(I/I2)/Z) = Z[y] dy.

In all these cases one easily verifies the proposition. �
Corollary 5.15. For every n ∈ N, the inclusion X0 → X induces an isomorphism

RΓY(X, LΩn
X) ∼= RΓY0(X0, LΩn

X0
).

Proof. Both sides are sheaves with respect to X, so one can assume that X = Spec(A) is affine
and, hence, so is Y = Spec(B). Let f : X → A1/Gm and f0 : X0 → BGm be the structure maps.
Then we have the fiber sequences

f∗LA1/Gm
→ LX → LX/(A1/Gm)

and

f∗
0 LBGm → LX0 → LX0/BGm

,

which imply that LΩn
X is filtered by LΩi

X/(A1/Gm) ⊗ f∗LΩj
A1/Gm

with i + j = n, and similarly for

X0. Now by Example 3.33, RΓY(LΩi
X/(A1/Gm) ⊗ f∗LΩj

A1/Gm
) is computed by taking the 0th grade

part of

RΓSpec(B[t])

(
LΩn

RB/A/Z[t]

) ⊗Z[t] LΛj
Z[t](Z[−1]),

while by Example 3.32, RΓY0(LΩi
X0/BGm

⊗ f∗
0 LΩj

BGm
) is computed by taking the 0th grade

part of
RΓSpec(B)

(
LΩn

LSym�
B(I/I2)

) ⊗Z LΛj
Z(Z[−1]),

and by Proposition 5.14 it is not hard to see that the two are isomorphic via the natural map. �
We then study the étale cohomology.

Proposition 5.16. Suppose X and Y are over Z[1/p]. Let Ỹ → X̃ be the deformation to the
normal cone without quotient by Gm, and Ỹ0 → X̃0 be the fiber over 0 → A1. Then for every
étale Zp-sheaf M on X, the inclusion X̃0 → X̃ induces an isomorphism on local cohomology

RΓét,Ỹ(X̃, f̃∗M) ∼= RΓét,Ỹ0
(X̃0, f̃

∗
0M).

Here f̃ : X̃ → X and f̃0 : X̃0 → X̃ → X are the natural maps.

Proof. The proposition is clearly étale local on X, so we can assume that X = Spec(A)
is affine and, hence, so is Y = Spec(B). Then X̃ = Spec(RB/A), Ỹ = Spec(B[t]), X̃0 =
Spec(LSym�

B(I/I2)), Ỹ0 = Spec(B), as in Definition 5.11. By excision, we can assume that the
pair A → B is Henselian, i.e. the classical pair π0A → π0B is Henselian.

Now by Remark 5.13 and excision, the left-hand side is

RΓét(BlY (A1
X), BlY (A1

X) \ Spec(A1
Y ), g∗M),

where g : BlY (A1
X) → X is the projection. To compute it, we consider the compactification

j : BlY (A1
X) → BlY (P1

X), which also compactifies A1
Y to P1

Y . Let π denote the projections
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BlY (P1
X) → X, and i denote the complement of j. Since the inclusion Y → A1

X has image in
0 → A1

X , the blowup changes nothing near ∞ → P1
X . Therefore by the étale Poincaré duality

and by excision again, we have i!π∗M = M(−1)[−2]. Hence,

RΓét(BlY (A1
X), g∗M) = RΓét(BlY (P1

X), j∗g∗M)

= RΓét(BlY (P1
X), cofib(i!i!π∗M → π∗M))

= cofib(RΓét(X,M(−1)[−2]) → RΓét(BlY (P1
X), π∗M)).

Note that BlY (P1
X) is proper over X, whose fiber over Y is P1

Y �Y P(NY/X ⊕OY ). Here NY/X

denotes the normal bundle and P means projectivization. Therefore, by Gabber’s affine proper
base change [Aut, 09ZI],

RΓét(BlY (P1
X), π∗M) = RΓét(P1

Y �Y P(NY/X ⊕OY ), π̄∗M),

where π̄ denotes the corresponding projection. Take the pushout out of RΓét, and note that
RΓét(X,M(−1)[−2]) = RΓét(Y,M(−1)[−2]|Y ) cancels the P1

Y �Y − again by the affine proper
base change, we conclude that

RΓét(BlY (A1
X), g∗M) = RΓét(P(NY/X ⊕OY ), π∗

0M),

where π0 denotes the projection P(NY/X ⊕OY ) → X. On the other hand, note that BlY (A1
X) \

Spec(A1
Y ) is the total space of O(−1) on BlY (X), so by Lemma 3.34 and the affine proper base

change,

RΓét(BlY (A1
X) \ Spec(A1

Y ), π∗M) = RΓét(BlY (X), β∗M) = RΓét(P(NY/X), β∗
0M),

where β : BlY (X) → X and β0 : P(NY/X) → X are the projections. Recall that the total space
of O(−1) on P(NY/X) is P(NY/X ⊕OY ) \ 0, so we finally have

RΓét(BlY (A1
X), BlY (A1

X) \ Spec(A1
Y ), g∗M)

= fib(RΓét(P(NY/X ⊕OY ), π∗
0M) → RΓét(P(NY/X), β∗

0M))

= RΓét(P(NY/X ⊕OY ), P(NY/X ⊕OY ) \ 0, π∗
0M),

but this is exactly the right-hand side

RΓét(X̃0, X̃0 \ Ỹ0, f̃
∗
0M) = RΓét(NY/X ,NY/X \ 0, f̃∗

0M),

by excision. �

Corollary 5.17. For every n ∈ Z, the inclusion X0 → X induces an isomorphism

RΓét,Y(X, Zp(n)) ∼= RΓét,Y0(X0, Zp(n)).

Proof. This follows immediately from Proposition 5.16 by descent. �

We finally study the étale cohomology of the generic fiber. As before, we use the étale
comparison of the prismatic cohomology to control it.

Proposition 5.18. The inclusion X0 → X induces an isomorphism

ΔX,X\Y,perf
∼= ΔX0,X0\Y0,perf .

Proof. The proof is similar to that of Proposition 3.38. Both sides are arcp sheaves over X, so
we can assume that X = Spec(R) is the spectrum of a perfectoid ring, and then Y = Spec(S) is
the spectrum of an R-algebra. Now S = R/(x1, . . . , xr) is a derived complete intersection in R.
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Then S is homotopically bounded and quasi-lci over R, so by Lemma 3.24 and Corollary 5.15,
we have ΔX,X\Y = ΔX0,X0\Y0

. Finally Lemma 3.20 gives us the desired equality. �

Corollary 5.19. Let F be the big étale sheaf R �→ RΓét(Spec(R̂[1/p]), Zp(n)), where n ∈ Z is
fixed. Then the inclusion X0 → X induces an isomorphism

F(X, X \ Y) ∼= F(X0, X0 \ Y0).

Proof. The proof is similar to that of Corollary 3.40. Both sides are arcp sheaves over X, so we
can assume that X = Spec(R) for a Z

cyc
p -algebra R. Since Zp(n) ∼= Zp on Spec(Qcyc

p ), we can
assume n = 0. In addition, both are quotients of qcqs schemes by Gm, so we can use Čech nerves
to compute them. Since F(U) = (ΔU,perf [1/I]∧p )ϕ=1 for any qcqs scheme U (which follows from
the affine case by taking a finite limit), the desired equality follows from Proposition 3.38 and
Lemma 3.20. �

Finally, we can prove our theorem on the syntomic cohomology of the deformation to the
normal cone.

Theorem 5.20. For every integer n, the inclusion X0 → X induces an isomorphism

RΓsyn(X, X \ Y, Zp(n)) ∼= RΓsyn(X0, X0 \ Y0, Zp(n)).

Proof. Combine Lemma 3.23 and Corollaries 5.15, 5.17, and 5.19. �

Remark 5.21. We wonder whether the same holds for general closed immersions, not necessarily
regular. For the étale cohomology the same proof seems to show the general statement, while for
the Hodge cohomology and the étale cohomology of the generic fiber we have no idea.

5.2 Constructing cycle classes
We now use what we have computed in the previous subsection to construct cycle classes from
Thom classes.

Theorem 5.22 (Characteristic classes of regular pairs). Let C be a pointed presentable category
and let F be a big étale sheaf with values in C. Fix r ∈ N. Let Er denotes the universal rank
r vector bundle over BGLr and 0r denotes the zero section. Then since 0r → Er is a regular
immersion of codimension r, it corresponds to a map βr : Er → Pairr with β−1

r (Closedr) = 0r.
Assume that for any regular immersion Y → X of stacks of codimension r, we have

F(X, X \ Y) = F(X0, X0 \ Y0),

where Y → X is the deformation to the normal cone of Y → X and Y0 → X0 is its closed fiber.
Then βr induces an isomorphism

β∗
r : F(Pairr, Openr) ∼= F(Er, Er \ 0r).

In other words, all the F-characteristic classes of pairs that vanish on the open loci come from
those of zero sections in rank r vector bundles.

Proof. Let DNCr → Pairr × A1/Gm denote the deformation to the normal cone of Pairr, and
OpenDNCr

denote the complement of Closedr × A1/Gm in DNCr. Let DNCr,0 and OpenDNCr,0

denote the fiber of DNCr and OpenDNCr
, respectively. By construction, DNCr,0 is the

weighted normal bundle of Closedr → Pairr, so there is a natural classifying map DNCr,0 → Er.
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Consider the diagram

where the lower left map is the natural open immersion identifying Pairr with the fiber over
Gm/Gm of DNCr. Then it exhibits Pairr as a retract of DNCr. Now take F relative to the open
parts. Since the central vertical map becomes an isomorphism after this operation, the diagram
exhibits F(Pairr, Openr) as a retract of F(Er, Er \ 0r), i.e. β∗

r has a left inverse.
Note that the above diagram gives an endomorphism of F(Er, Er \ 0r) by splicing βr : Er →

Pairr to its lower left corner. We will finish the proof by showing that it is the identity, since
then the left inverse of β∗

r will also be the right inverse. To this end, we can base change the
above diagram from Pairr to Er and get the diagram

where the upper right map is not the projection but the classifying map of the weighted normal
bundle. Now by Lemma 5.23 below, there is a map indicated by the dashed arrow that makes
the diagram commutes and exhibits Er as a retract of DNCr ×Pairr Er, therefore completing the
proof. �

Lemma 5.23. The deformation to the normal cone of the zero section of a vector bundle V on
a stack X is the zero section of the vector bundle V (−1) on X × A1/Gm, where (−1) denotes
the twist by the inverse of the universal bundle on BGm. Therefore, it restricts to V itself on the
open fiber, and restricts to the weighted normal bundle on the closed fiber.

Proof. Recall that the deformation to the normal cone of Z[x] → Z is Z[xt−1, t] → Z[t]. By its
compatibility of base change and products, we know that the deformation to the normal cone of
B[x1, . . . , xr] → B is B[x1t

−1, . . . , xrt
−1, t] → B[t], which is the zero section of the (−1)-twisted

trivial bundle on Spec(B) × A1/Gm as described. Note that this identification is compatible with
change of coordinates, so we can globalize it and conclude. �

Remark 5.24. The proof of Theorem 5.22 actually proves a stronger statement: let F be a big
étale sheaf over Pairr that satisfies the same assumption with points taken over Pairr. Then βr

induces an isomorphism

β∗
r : F(Pairr, Openr) ∼= F(Er, Er \ 0r),

still with points taken over Pairr.

Remark 5.25. Let F be as in Theorem 5.22, and Y → X be a map of stacks. Then G(−) =
F(X ×−, Y ×−) also satisfies the same assumption as F does, since deformation to the normal
cone commutes with X ×− and Y ×−. Therefore,

F((X, Y ) × (Pairr, Openr)) ∼= F((X, Y ) × (Er, Er \ 0)),

where the product is understood as

(X0, Y0) × (X1, Y1) = (X0 × X1, (Y0 × X1) �Y0×Y1 (X0 × Y1)).
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In the rest of this subsection, let F be as in Situation 4.1 and suppose F satisfies the
assumption of Theorem 5.22 for all r ∈ N. By the previous subsection, this holds for Fn(R)
being LΩn

R[n], RΓét(R[1/p], Zp(n))[2n], and RΓsyn(R, Zp(n))[2n].

Definition 5.26 (Cycle classes). For r ∈ N, let ClFr ∈ Ω∞Fr(Pairr, Openr) be the image of the
universal Thom class ThF

r ∈ Ω∞Fr(Er, Er \ 0r) under the isomorphism in Theorem 5.22, called
the universal cycle class of codimension r. For a regular immersion Y → X of codimension r, let
ClFY/X ∈ Ω∞Fr(X, X \ Y ) be the pullback of ClFr along the classifying map X → Pairr, called
the cycle class of Y in X. By abuse of notation, we also use ClFY/X to denote its image in
Ω∞Fr(X).

Remark 5.27 (Relation with blowup). Suppose the blowup formula holds, i.e.

is a pullback square for every regular immersion Y → X of codimension r with blowup X̃ and
exceptional divisor D (by [BL22a, Theorem 9.4.1] this is the case for syntomic cohomology).
Suppose further that we have a decomposition

F�(X̃) = F�(X) ⊕
r−1⊕
i=1

F�−i(Y )

functorial on Y → X, extending the projective bundle formula of D = P(NY/X). Denoting U =
X \ Y = X̃ \ D, one gets from above a similar decomposition

F�(X̃, U) = F�(X, U) ⊕
r−1⊕
i=1

F�−i(Y ).

In this case, ClFY/X can also be defined as the image of −c1(−D)r ∈ Ω∞Fr(X̃, U) under the
projection to Ω∞Fr(X, U) (cf. [Fuj02, Definition 1.1.2]). In fact, by functoriality and
Theorem 5.22, it suffices to check the case 0r → Er, which can be easily done by hand.

Remark 5.28 (Uniqueness). By construction, it is easy to see that the cycle class is uniquely
determined by the following requirements.

Functoriality: for f : X ′ → X a morphism of stacks with Y ′ = Y ×X X ′, we have ClFY ′/X′ =
f∗ClFY/X .

Normalization: for the zero section of a vector bundle, it is the Thom class in Theorem 4.2.

Therefore, the cycle class is natural in F with respect to maps that preserve c1, cf. Remark 4.9.

Remark 5.29 (Multiplicativity). By Theorem 5.22 and the additivity of Thom classes, one easily
deduces that ClFr′ � ClFr′′ = m∗ClFr , where r = r′ + r′′ and m : Pairr′ × Pairr′′ → Pairr represents
the intersection. By Remark 4.8 and Theorem 5.22, the cycle classes are uniquely determined by
multiplicativity and the normalization in codimension 1, which states that ClD/X = c1(O(D))
for a Cartier divisor D → X.

The multiplicativity in the above remark has no homotopy coherence a priori, but the
coconnectivity condition on F actually forces the coherence. This will not be used in the following.
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Lemma 5.30. Let C⊗ be a symmetric monoidal category and let A, B ∈ CAlg(C). Suppose for
every n ∈ N that HomC(A⊗n, B) is 0-truncated. Then

HomCAlg(C)(A, B) = HomCAlg(hC)(A, B)

and is 0-truncated, where hC means the homotopy 1-category of C.

Proof. Recall from [Lur17, Definition 2.1.3.1] that CAlg(C) = FunFin∗(Fin∗, C⊗), and A, B ∈
CAlg(C) are actually functors A⊗, B⊗ : Fin∗ → C⊗ that takes 〈1〉 to A, B ∈ C. As Hom in the
functor category, HomCAlg(C)(A, B) is built up as a limit of Homf

C⊗(A⊗
〈n〉, B

⊗
〈m〉) for n, m ∈ N and

f : 〈n〉 → 〈m〉 in Fin∗. Since, by definition, C⊗ → Fin∗ is a cocartesian fibration, we have

Homf
C⊗

(
A⊗

〈n〉, B
⊗
〈m〉

)
= HomC⊗

〈m〉

( ⊗f

(
A⊗

〈n〉
)
, B⊗

〈m〉
)

in the notation of [Lur17, Remark 2.1.2.16]; then by [Lur17, Remark 2.1.2.19] one easily computes
that

HomC⊗
〈m〉

( ⊗f

(
A⊗

〈n〉
)
, B⊗

〈m〉
)

=
m∏

i=1

HomC(A⊗f−1(i), B),

which is 0-truncated by assumption. Therefore, as a limit of 0-truncated animas,
HomCAlg(C)(A, B) is also 0-truncated. Finally, we conclude by noting that HomCAlg(hC)(A, B)
is computed by exactly the same limit. �

Let Pairreg ⊆ Pair denote the stack of regular pairs without a fixed dimension; then it inher-
its the E∞-monoid structure of Pair with respect to the smash product, as described at the
end of Definition 5.7. Let Σ∞ denote the left adjoint of the functor Ω∞ from the category of
Sp-valued big étale sheaves to the category of pointed stacks, by abuse of notation. Then
since Pairreg = (Pair0)+ ∨ ∨

r∈Z+
Pairr is graded, Σ∞Pairreg is naturally a graded E∞-ring.

Proposition 5.31. The multiplicativity in Remark 5.29 uniquely determines a map
Σ∞Pairreg → F of big étale sheaves with values graded E∞-rings.

Proof. By Lemma 5.30, it suffices to check for every n ∈ N that

HomFun(Ring,GrSp)((Σ
∞Pairreg)⊗n,F) ∈ Ani≤0.

Passing to each grade and using the fact that Σ∞ takes the smash product to the tensor product,
we need to check that for r1, . . . , rn ∈ Z+ and r =

∑n
i=1 ri,

F̃r

( n∧
i=1

Pairri

)
∈ Sp≤0.

Now by Remark 5.25,

F̃
( n∧

i=1

Pairri

)
= F

( n∏
i=1

(Eri , Eri \ 0)
)

,

so the desired coconnectivity follows by applying Proposition 4.6 n times. �

Cycle classes can be upgraded to Gysin maps as follows.

Definition 5.32 (Gysin maps). Fix r ∈ N. Let Y → X be a regular immersion of codimension
r, Y → X be its deformation to the normal cone and Y0 → X0 be the closed fiber. Then the
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Gysin map of Y → X is constructed as the composition

F�(Y ) → F�(Y0) → F�+r(X0, X0 \ Y0) = F�+r(X, X \ Y) → F�+r(X, X \ Y ),

where the first arrow comes from the projection Y0 = Y × 0/Gm → Y , the second arrow is the
Thom map, and the final arrow is restriction to the open fiber. By Theorem 5.22, ClFY/X is the
image of 1 ∈ Ω∞F0(Y ) under the Gysin map. By the definition of the Thom map, after composing
with the restriction F(X, X \ Y ) → F(Y ), the Gysin map becomes multiplying cr(NY/X).

We now identify the Gysin map for the Hodge cohomology. For a regular pair R → S, the
functor i∗ : D(S) → D(R) commutes with colimits, preserves compact objects, and hence has a
right adjoint i! : D(R) → D(S) that preserves colimits.

Lemma 5.33. The functor i! : D(R) → D(S) satisfies the projection formula i!− = i!R ⊗S i∗−,
and is compatible with base change of pairs.

Proof. For M ∈ D(R), the natural map

M = HomR(R, M) → HomR(i∗i!R, M) = i∗ HomS(i!R, i!M)

gives by adjunction the desired map

i!R ⊗S i∗M → i!M.

Now it is an isomorphism when M = R, and both sides commute with colimits in M , so it is
an isomorphism for all M ∈ D(R). For the compatibility with base change, one can check after
i∗, which follows from the fact that i∗i!− = HomR(S,−) = S∨ ⊗R −, since by assumption S is
dualizable in D(R). �

Now consider a regular immersion i : Y → X of stacks of codimension r. Recall by Remark 3.6
that we still have the functor i∗ : D(Y ) → D(X). Since colimits of quasicoherent sheaves can be
computed locally, i∗ still commutes with colimits, is compatible with base change, and thus has
a right adjoint i! that also has these properties and satisfies the projection formula.

Lemma 5.34. There is a natural identification of i!OX = det(NY/X)[−r] compatible with base
change and product of pairs, where NY/X denotes the normal bundle.

Proof. Computing locally, we see that i!OX is an invertible object in D(Y ). To identify it, we
first consider the case where π : X → Y is a rank r vector bundle and i : Y → X is the immersion
of the zero section. Let O = OY , N = NY/X , and A = LSym�

O(N∨) = π∗OX . Now the Koszul
sequence

0 → A⊗ ΛrN∨ → · · · → A⊗N∨ → A → O → 0

gives a natural identification HomA(O,A) = det(N )[−r] as an A-module, so

i!OX = π∗i∗i!OX = π∗ HomA(O,A) = det(N )[−r]
as an O-module.

For a general i : Y → X, we consider its deformation to the normal cone i : Y → X, whose
closed fiber i0 : Y0 → X0 is naturally the vector bundle NY/X/Gm on Y0 = Y × BGm. Therefore,
by the previous paragraph, i!OX is an invertible object in D(Y), whose restriction on Y0 =
Y × BGm is det(NY/X)[−r] with Gm acting by weight r. However, Y = Y × A1/Gm, so D(Y)
can be viewed as the category of graded quasicoherent OY [t]-modules. Now i!OX is an invertible
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graded OY [t]-modules which gives det(NY/X)[−r] on degree r after quotient by t. Hence,

i!OX =
∞⊕

n=r

det(NY/X)tn[−r],

and obviously its restriction to the open part Y → Y is det(NY/X).
The compatibility with base change and product follows from the compatibility of both the

deformation to the normal cone and the Koszul sequence. �
Construction 5.35. Recall from the shifted fiber sequence of cotangent complexes

LY/X [−1] → i∗LX → LY

that the normal bundle NY/X can be identified as LY/X [−1]∨. Since LY/X [−1] is locally free of
rank r, the above sequence gives a natural map

Λr(LY/X [−1]) ⊗ LΩn
Y → i∗LΩn+r

X ;

since Λr(LY/X [−1]) = (i!OX [r])∨ by Lemma 5.34, we can take it to the right-hand side, use the
projection formula, and obtain a Gysin map

LΩn
Y → i!OX ⊗ LΩn+r

X [r] = i!LΩn+r
X [r].

Proposition 5.36. The Gysin map for the Hodge cohomology is the global section of the
adjunction i∗LΩn

Y → LΩn+r
X [r] of the above map. Since i∗LΩn

Y restricts to 0 on X \ Y , it actually
maps to the relative Hodge cohomology of (X, X \ Y ).

Proof. Consider the deformation to the normal cone Y → X and its closed fiber Y0 → X0. Since
the immersion of the open part exhibits the pair Y → X as a retract of Y → X, it suffices to prove
the proposition for Y → X. Now by Corollary 5.15 the relative Hodge cohomology of (X, X \ Y)
coincides with that of (X0, X0 \ Y0), so it suffices to prove the same for Y0 → X0.

Therefore, we can assume that π : X → Y is a rank r vector bundle and i : Y → X is the
immersion of the zero section, and try to prove that the map described above is the Thom map.
In this case, the Hodge cohomology of X is naturally a module of the Hodge cohomology of
Y by π∗, and the map described is a module map, so it suffices to prove that the image of
1 is ThX/Y . By Remark 4.8, this reduces to checking the functoriality, the additivity, and the
normalization for line bundles for this image. Now both the functoriality and the additivity follow
from Lemma 5.34. For the normalization for line bundles, we work in the universal case BGm →
A1/Gm by identifying quasicoherent sheaves on A1/Gm as graded Z[t]-modules, where it is
routine to check that the map i∗OBGm → LA1/Gm

[1] is 1 under the identification of Example 3.33,
which coincides with ThHod

1 by Remark 4.10. �
Similar method can be used to enhance the Gysin map of the p-completed topological cyclic

homology to a motivic filtered map. First we recall the filtration.

Proposition 5.37. There is a natural exhaustive filtration Fil• TC(R)∧p on the p-completed
TC, functorial in R ∈ Ring, such that:

(i) gri TC(R)∧p = Zp(i)(R̂)[2i]; in particular, Fil0 TC(R)∧p = TC(R)∧p ;
(ii) the functor Fil• TC∧

p : Ring → Fil(Sp∧p ) commutes with sifted colimits, and hence is left Kan
extended from polynomial rings of finite type over Z;

(iii) Fil• TC∧
p is a big étale sheaf, and is even a p-quasisyntomic sheaf when restricted to classical

p-bounded p-quasisyntomic rings.
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Proof. Note that TC(R)∧p only depends on R̂, since THH(R)∧p is so. In addition, by [CMM21,
Corollary 2.15], the functor TC∧

p : Ring → Sp∧p commutes with sifted colimits, so we can construct
the filtration by left Kan extension from classical p-bounded p-quasisyntomic rings, where it
follows from [BMS19, § 7.4], which automatically implies part (iii). Now parts (i) and (ii) follow
from [BL22a, Proposition 7.4.8]. �

Recall that TC(R) is actually an invariant of the category D(R)ω of perfect R-complexes,
since THH is so, cf. [BGT13, § 10.1]. Hence, if R → S is a regular pair, then there is a wrong-
way map D(S)ω → D(R)ω, since perfect S-complexes are perfect R-complexes. This induces a
pushforward map TC(S) → TC(R), which can be globalized to a pushforward map TC(Y ) →
TC(X) associated to every regular immersion Y → X of stacks. Here the meaning of TC(X) is as
in Remark 3.4. Since the composition D(S)ω → D(R)ω → D(Spec(R) \ Spec(S))ω is functorially
zero, the map TC(Y ) → TC(X) factors through TC(X, X \ Y ).

Theorem 5.38 (The Gysin map for Fil• TC∧
p ). Fix r ∈ N. There is a unique way (up to con-

tractible choice) to enhance the map TC(Y )∧p → TC(X, X \ Y )∧p to a filtered map Fil• TC(Y )∧p →
Fil•+r TC(X, X \ Y )∧p functorially for all regular immersions Y → X of codimension r. Moreover,
its associated graded is the Gysin map for the syntomic cohomology of p-formal schemes as in
Definition 5.32.

Proof. For notational simplicity, we omit all the −∧
p , and use Zp(i) to denote the functor R �→

Zp(i)(R̂). It suffices to prove that for integers n ≥ n′, the map

Filn TC(Y ) → TC(Y ) → TC(X, X \ Y ) → TC(X, X \ Y )/ Filn
′+r TC(X, X \ Y ) (6)

has a unique functorial nullhomotopy. As before, let Y → X denote the deformation to the
normal cone of Y → X, and let Y0 → X0 denote its closed fiber. Note that the above map can be
written as

Filn TC(Y ) → Filn TC(Y0) → TC(X0, X0 \ Y0)/ Filn
′+r TC(X0, X0 \ Y0)

∼= TC(X, X \ Y)/ Filn
′+r TC(X, X \ Y) → TC(X, X \ Y )/ Filn

′+r TC(X, X \ Y ),

where the first arrow comes from the projection Y0 → Y , the second arrow is the map (6) for
Y0 → X0, the isomorphism is due to Theorem 5.20 since TC/ Filn

′+r TC is finitely filtered by
Zp(i)[2i], and the final arrow is restriction to the open fiber. Recall that X0 = NY/X/Gm is the
weighted normal bundle over Y0 = Y × BGm. Therefore, the theorem is reduced to the following
statement: the map

Filn TC(Y ) → TC(V/Gm, (V \ 0)/Gm)/ Filn
′+r TC(V/Gm, (V \ 0)/Gm)

has a unique nullhomotopy that is functorial in the rank r vector bundle V → Y . Now the
right-hand side is finitely filtered by

Zp(i + r)(V/Gm, (V \ 0)/Gm)[2(i + r)] = Zp(i)(Y × BGm)[2i]

for i < n′ by the Thom isomorphism, so it suffices to show that for i < n′, any map

Filn TC(Y ) → Zp(i)(Y × BGm)[2i]

that is functorial in Y is uniquely nullhomotopic. By étale descent we can assume that Y =
Spec(R) is affine. Then by descent along the Čech nerve of Y → Y × BGm, we reduce to show
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that, for i < n′ and any ring A smooth over Z, any map

Filn TC(R) → Zp(i)(R ⊗ A)[2i]

that is functorial in R is uniquely nullhomotopic. Since both sides commute with sifted colimits
in R, we can assume that R is also smooth over Z. Now both sides satisfy quasisyntomic descent,
and the theorem follows from the fact that quasisyntomic locally, Filn TC is 2n-connective, but
Zp(i)[2i] lies in homotopical degree 2i < 2n′ ≤ 2n, cf. [BMS19, § 7.4] and [BS22, Theorem 14.1].

To see that the associated graded gives the Gysin map, by the same deformation to the
normal cone argument, we only need to show that for a rank r vector bundle V → Y , it gives
the syntomic Thom map

Zp(�)(Y )[2�] → Zp(� + r)(V, V \ 0)[2(� + r)]

when applied to the zero section 0 → V . This is a map of Zp(�)(Y )[2�]-modules, so it suffices to
show that the image of 1 ∈ Zp(0)(Y ) is Thsyn

V ∈ Zp(r)(V, V \ 0)[2r]. By Remark 4.8, this reduces
to the functoriality, the additivity, and the normalization for line bundles for this image, which
we now check.

Functoriality. This is clear by the functoriality of the Gysin map.

Additivity. By [CMM21, Theorem 1.7], the p-completed TC is the étale sheafification of the p-
completed connective K-theory. Now 1 ∈ K(Y ) is just [OY ], and the product is just the tensor
product, so the additivity follows from the fact that if V = V ′ ⊕ V ′′ is a direct sum, then O0 =
OV ′ ⊗OV

OV ′′ , where we view V ′ and V ′′ as closed substacks of V .

Normalization for line bundles. As above, viewing TC as the étale K-theory, it suffices to
show that for a Cartier divisor D → X, the associated graded class of [OD] ∈ Fil1 TC(X)
is c1(O(D)) ∈ Ω∞−2Zp(1)(X). By étale descent, we can assume that X = Spec(R) is affine.
Then by [BL22a, Proposition 7.4.8], we can assume that R is smooth over Z. Now by
p-quasisyntomic descent, we can assume that R is over Z

cyc
p and is quasiregular semiperfec-

toid, where it follows from [ALB20, Theorem 6.7] and [BL22a, Corollary 2.6.11, Proposition
7.5.2]. �
Remark 5.39. The p-completion KSel(R)∧p of the Selmer K-theory introduced in [Cla17, § 2] is an
enhancement of TC(R)∧p that contains information about R[1/p], cf. [CM21, § 6], and it should
be motivic filtered by the non-p-formal syntomic cohomology sheaf Zp(i)(R)[2i]. We expect an
analog of Theorem 5.38 in this setting.

6. Poincaré duality

We finally prove the prismatic Poincaré duality in this section. First we recall its Hodge version
in [Cla21, Lecture 16]. Let S be a stack and X be a stack over S. Suppose the structure map
f : X → S is representable by algebraic spaces, and is proper smooth of dimension d ∈ N. Then
the relative diagonal Δ: X → X ×S X is a regular immersion of codimension d. Note by [Aut,
0A1P] that the relative Hodge cohomology f∗(LΩ�

X/S)[−�] is dualizable in D(S).

Theorem 6.1 (Poincaré duality for Hodge cohomology). The image of the absolute Hodge cycle
class ClHod

Δ ∈ Ω∞−dRΓ(X ×S X, LΩd
X×SX) along

RΓ(X ×S X, LΩ�
X×SX) → RΓ(X ×S X, LΩ�

(X×SX)/S)

= RΓ(S, (f ×S f)∗(LΩ�
(X×SX)/S)) = RΓ(S, f∗(LΩ�

X/S) ⊗ f∗(LΩ�
X/S))
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gives rise to a graded map

OS → f∗(LΩ�
X/S) ⊗ f∗(LΩ�

X/S)(d)[d],

where (d) and [d] denote the shift on the grade and the homological degree, respectively. This
map is a perfect copairing, i.e. the dual map

p∗(LΩ�
X/S)∨ → f∗(LΩ�

X/S)(d)[d]

is an isomorphism.

Proof. The proof is the same as in [Cla21, Lecture 16], with our Proposition 5.36 in place of its
Lemma 2. For convenience and completeness, we reproduce it here.

Since the cycle class is the image of 1 under the Gysin map, using Proposition 5.36 with
n = 0 we see that the copairing map in the theorem, in individual grades, can be described as
follows: take dth wedge power of the canonical map from the conormal to the cotangent

LΩd
X/S = Λd(LX/(X×SX)[−1]) → Δ∗LΩd

(X×SX)/S ;

note that Δ!OX×SX = (LΩd
X/S)−1[−d]; tensor this with both sides to get

OX [−d] → Δ∗LΩd
X×SX ⊗ Δ!OX×SX = Δ!LΩd

X×SX ;

then move the Δ! to the left, apply (f ×S f)∗, and finally compose with the canonical map
OS → f∗OX and the projection to one direct summand in Künneth to get

OS [−d] → f∗OX [−d] → (f ×S f)∗LΩd
X×SX → f∗LΩi

X/S ⊗ f∗LΩj
X/S ,

where i and j are fixed with i + j = d. To see that this is perfect, we apply Lemma 6.2 to reduce
to perfectness of

LΩd
X/S → Δ∗LΩd

X×SX = LΛd(LX/S ⊕ LX/S) → LΩi
X/S ⊗ LΩj

X/S ,

where the final map is the projection to one direct summand; now this is a claim on quasicoherent
sheaves over X, so it can be verified étale locally, where it follows by a straightforward calculation
with local coordinates. �

Lemma 6.2 (Cf. [Cla21, Lemma 16.3]). Suppose M and N are perfect complexes over X that
are in duality via a perfect copairing

LΩd
X/S [d] = f !OS → M ⊗ N = Δ∗(M �S N).

Then f∗M and f∗N are in duality via the copairing

OS → f∗M ⊗ f∗N

given as follows: first tensor both sides by Δ!OX×SX = (f !OS)−1 to get

OX → Δ∗(M �S N) ⊗ Δ!OX×SX = Δ!(M �S N);

then move the Δ! to the left, apply (f ×S f)∗, and finally compose with the canonical map
OS → f∗OX to get

OS → f∗OX → (f ×S f)∗(M �S N) = f∗M ⊗ f∗N.
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Proof. Take a pairing N ⊗ M → f !OS that forms a duality datum with the copairing. Move f !

to the left and use the lax monoidal structure of f∗ to get

f∗N ⊗ f∗M → f∗(N ⊗ M) → OS .

It suffices to show that this pairing forms a duality datum with the copairing given above. To this
end, we consider the composition

f !OS ⊗ M → (M ⊗ N) ⊗ M = M ⊗ (N ⊗ M) → M ⊗ f !OS .

Tensoring Δ!OX×SX = (f !OS)−1, we get

M → Δ!(M �S (N ⊗ M)) → Δ!(M �S f !OS) = M.

Moving Δ! to the left and applying (f ×S f)∗, we get

f∗M → f∗M ⊗ f∗(N ⊗ M) → f∗M ⊗ f∗f !OS → f∗M,

where the last map is the counit. Now since we start with a duality datum, the first composition
is the map commuting M and f !OS , so the second and the third compositions are identity maps.
Therefore, it suffices to see that the first map above is given by the composition

f∗M → (f∗M ⊗ f∗N) ⊗ f∗M = f∗M ⊗ (f∗N ⊗ f∗M) → f∗M ⊗ f∗(N ⊗ M),

where the first map is induced by the copairing we constructed. Since we are working with
quasicoherent sheaves on S, it suffices to show the statement after restricted along every mor-
phism U → S and composed with every map ϕ : OU [n] → f∗M |U for every n ∈ Z. Restriction
commutes with everything here, so we can assume U = S. Then the statement follows from
the functorialities of all the above constructions applied to the map N [n] → N ⊗ M induced
by ϕ. �

Now let (A, I) be a prism and take S = Spf(Ā). To prove the Poincaré duality, we need to
produce a copairing map using the syntomic cycle class.

Remark 6.3. Let R be a ring over Ā. Note that the comparison map Fil• ΔR{d} → (Fil• Δ(1)
R/A){d}

in [BL22a, Construction 5.6.1] is compatible with Frobenius, i.e. the following diagram commutes.

By Proposition 2.35, this gives rise to a comparison map

Zp(d)(R) → HomF -Gauge(A,I)(A,ΔR/A{d}).

In addition, it is not hard to see from [BL22a, Remark 5.5.8] that the following diagram
commutes.
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Therefore, for a regular immersion Z → Y of stacks over Spf(Ā) of codimension d, the cycle class
Clsyn

Y/X ∈ Ω∞−2dZp(d)(X) gives rise to a map A → RΓΔ(X/A){d}[2d] that sends 1 to the Hodge
cycle class after Hodge specialization.

Recall that X is a stack over S = Spf(Ā), and the map X → S is representable by algebraic
spaces proper smooth of dimension d. Recall by Corollary 2.37 that RΓΔ(X/A) is dualizable in
F -Gauge(A, I).

Theorem 6.4 (Prismatic Poincaré duality). By Remark 6.3, the syntomic cycle class Clsyn
Δ of

the relative diagonal Δ: X → X ×Spf(Ā) X induces a map of F -gauges

A → RΓΔ((X ×Spf(Ā) X)/A){d}[2d] = RΓΔ(X/A) ⊗A RΓΔ(X/A){d}[2d].

This map is a perfect copairing, i.e. the dual map

RΓΔ(X/A)∨ → RΓΔ(X/A){d}[2d]

is an isomorphism.

Proof. By Proposition 2.22, it suffices to prove that both the Hodge–Tate and the de Rham
specializations of the above map are isomorphisms. By Proposition 2.36, both specializations are
complete with only finitely many nonzero graded pieces, so we can pass to the graded pieces,
which are the Hodge cohomologies, and the theorem follows from Theorem 6.1 and Remark 6.3.

�
Remark 6.5 (Trace maps). Theorem 6.4 gives a trace map RΓΔ(X/A){d}[2d] → A as the dual of
the structure map A → RΓΔ(X/A), which reduces to the Hodge trace map after specialization.
Now if there were a suitably defined dualizable coefficient system E on X, then the pairing
E ⊗ E∨ → O along with the trace map gives a canonical pairing

RΓΔ(X/A, E) ⊗ RΓΔ(X/A, E∨){d}[2d] → RΓΔ(X/A){d}[2d] → A.

If one worked out the theory of relative F -gauges as sketched in Remark 2.34, then it would be not
hard to prove that the pairing is perfect by Hodge specialization; alternatively, one could also see
that it is already perfect for E being a dualizable prismatic crystal by Hodge–Tate specialization,
via a careful study of the cohomology along WCartHT

X/A → X, cf. [BL22b, Proposition 5.12,
Corollary 6.6].

Remark 6.6 (Comparisons). The comparisons of Theorem 6.4 with the duality maps of several
other cohomology theories should follow from the uniqueness of cycle classes in Remark 5.28 and
Remark 5.29. More specifically, we have the following.

– By the proof of Theorem 6.4, it is already clear that the prismatic duality map specializes to the
Hodge duality map given by the coherent duality and the de Rham duality map constructed
in [Cla21, Lecture 16].

– For I = pA, Theorem 6.4 recovers the crystalline Poincaré duality in [Ber74, Theorem
VII.2.1.3] via [BS22, Theorem 5.2]. Indeed, under the Künneth formula, Berthelot’s pairing
map is the composition of the diagonal pullback with the trace map, so by [Ber74, Corollary
VII.2.3.2] its dual copairing is the cycle class of the diagonal, which is exactly the copairing
here.

– If one started with a perfect prism (A, I) and a smooth and proper algebraic space over
Spec(Ā), rather than such a formal algebraic space over Spf(Ā), then the syntomic cycle class
would specialize to the étale one after inverting p, so the prismatic duality map would also
specialize to the étale one after inverting p. We are not going into details here, since in future
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projects, we plan to compare the prismatic Poincaré duality with that of diamonds in [Man22,
Theorem 3.10.20].

Remark 6.7. In future projects, we hope to explore generalizations of Theorem 6.4 in the following
directions:

– to general coefficients for the prismatic cohomology as in Remark 6.5;
– to the absolute prismatic cohomology, or more generally to the coherent duality along the

map XΔ′′ → SΔ′′
of prismatizations as in [Dri24];

– to non-proper maps, i.e. to a 6-functor formalism with a condensed lower shriek as in [CS19];
– to non-p-formal schemes, i.e. gluing with similar structure in the étale cohomology, as in

[BL22a, § 8.4].

Acknowledgements

First, I heartily thank my advisor Bhargav Bhatt for encouraging me to work on prismatic
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Zürich, 2006), 459–472; MR 2275605.

Rak20 A. Raksit, Hochschild homology and the derived de Rham complex revisited, Preprint (2020),
arXiv:2007.02576.

2364

https://doi.org/10.1112/S0010437X24007334 Published online by Cambridge University Press

https://arxiv.org/abs/2201.06120
https://arxiv.org/abs/2201.06124
https://mathscinet.ams.org/mathscinet-getitem?mr=3905467
https://mathscinet.ams.org/mathscinet-getitem?mr=3949030
https://mathscinet.ams.org/mathscinet-getitem?mr=3674218
https://mathscinet.ams.org/mathscinet-getitem?mr=3288678
https://arxiv.org/abs/1703.07842
https://sites.google.com/view/algebraicderham/home
https://sites.google.com/view/algebraicderham/home
https://mathscinet.ams.org/mathscinet-getitem?mr=4296353
https://mathscinet.ams.org/mathscinet-getitem?mr=4280864
https://people.mpim-bonn.mpg.de/scholze/Condensed.pdf
https://people.mpim-bonn.mpg.de/scholze/Complex.pdf
https://arxiv.org/abs/2005.04746
https://mathscinet.ams.org/mathscinet-getitem?mr=1971516
https://arxiv.org/abs/2206.11208
https://arxiv.org/abs/2105.05319
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://arxiv.org/abs/2206.02022
https://arxiv.org/abs/2107.02921
https://mathscinet.ams.org/mathscinet-getitem?mr=2275605
https://arxiv.org/abs/2007.02576
https://doi.org/10.1112/S0010437X24007334


Syntomic cycle classes and prismatic Poincaré duality
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