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ON EQUIVALENCE RELATIONS INDUCED BY LOCALLY COMPACT
ABELIAN POLISH GROUPS

LONGYUN DING AND YANG ZHENG

Abstract. Given a Polish group G, let E(G) be the right coset equivalence relation G�/c(G), where
c(G) is the group of all convergent sequences in G. The connected component of the identity of a Polish
group G is denoted by G0.

Let G,H be locally compact abelian Polish groups. If E(G) ≤B E(H ), then there is a continuous
homomorphism S : G0 → H0 such that ker(S) is non-archimedean. The converse is also true when G is
connected and compact.

For n ∈ N
+, the partially ordered set P(�)/Fin can be embedded into Borel equivalence relations

between E(Rn) and E(Tn).

§1. Introduction. A topological space is Polish if it is separable and completely
metrizable. For more details in descriptive set theory, we refer to [13]. It is an
important application of descriptive set theory to study equivalence relations by
using Borel reducibility. Given two Borel equivalence relations E and F on Polish
spaces X and Y, respectively, recall that E is Borel reducible to F, denoted E ≤B F ,
if there exists a Borel map � : X → Y such that for all x, y ∈ X ,

xEy ⇐⇒ �(x)F�(y).

We denote E ∼B F if both E ≤B F and F ≤B E, and denote E <B F if E ≤B F
and F �B E. We refer to [7] for background on Borel reducibility.

Polish groups are important tools in the research on Borel reducibility. A
topological group is Polish if its topology is Polish. For a Polish group G, the
authors [5] defined an equivalence relation E(G) on G� by

xE(G)y ⇐⇒ lim
n
x(n)y(n)–1 converges in G

for x, y ∈ G� . We say that E(G) is the equivalence relation induced by G. Indeed,
E(G) is the right coset equivalence relation G�/c(G), where c(G) is the group of
all convergent sequences in G.

In this article, we focus on equivalence relations induced by locally compact
abelian Polish groups. Some interesting results have been found in some special
cases. For instance, for c0, e0, c1, e1 ∈ N, E(Rc0 × Te0) ≤B E(Rc1 × Te1) iff e0 ≤ e1
and c0 + e0 ≤ c1 + e1 (cf. [5, Theorem 6.19]).
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2 LONGYUN DING AND YANG ZHENG

Given a group G, the identity element of G is denoted by 1G . If G is a topological
group, the connected component of 1G in G is denoted by G0. Recall that a Polish
group G is non-archimedean if it has a neighborhood base of 1G consisting of open
subgroups.

Theorem 1.1. Let G and H be two locally compact abelian Polish groups. If
E(G) ≤B E(H ), then there is a continuous homomorphism S : G0 → H0 such that
ker(S) is non-archimedean.

By restricting attention to compact connected abelian Polish groups, we prove the
following theorem.

Theorem 1.2 (Rigid Theorem). Let G be a compact connected abelian Polish
group and let H be a locally compact abelian Polish group. Then E(G) ≤B E(H ) iff
there is a continuous homomorphismS : G → H such that ker(S) is non-archimedean.

For every normal space X, denoted by dim(X ) the covering dimension of X,
where dim(X ) is an integer ≥– 1 or the “infinite number ∞.” Let G be an abelian
topological group. The topological group Hom(G,T) is called the dual group of
G, denoted by Ĝ (see Section 4). For any finite dimensional compact abelian
Polish group G, dim(G) = rank(Ĝ), the torsion-free rank of Ĝ (cf. Lemma 8.13
and Corollary 8.26 of [11]). We say G is n-dimensional if dim(G) = n for some
integer n, or infinite dimensional if dim(G) is infinite.

Recall that T is the multiplicative group of all complex numbers with modulus 1.
For finite dimensional compact abelian Polish groups, we obtain the following
results.

Theorem 1.3. Let G,H be locally compact abelian Polish groups.
(1) If G is non-archimedean, then E(G) ≤B E�0 .
(2) If G is not non-archimedean, then E(R) ≤B E(G).
(3) If G is not non-archimedean and G0 is open, then E(G) ∼B E(G0).
(4) If n is a positive integer, then E(Tn) ≤B E(G) iff Tn embeds in G.
(5) If n is a positive integer and G is compact, then G is n-dimensional iffE(Rn) <B
E(G) ≤B E(Tn).

Let P denote the set of all primes. For P,Q ∈ P� , Q 
 P means that there is a
co-finite subset A of � and an injection f : A→ � such that Q(n) = P(f(n)) for
each n ∈ A.

For P ∈ P� , we consider the closed subgroup of T� , named P-adic solenoid,
ΣP = {g ∈ T� : ∀l (g(l) = g(l + 1)P(l))} (cf. [8]).

Theorem 1.4. Let P and Q be in P� . Then E(ΣP) ≤B E(ΣQ) iff Q 
 P.

The partially ordered set P(�)/Fin is so complicated that every Boolean algebra
of size ≤ �1 embeds into it (see [2]). We usually express that some classes of Borel
equivalence relations are extremely complicated under the order of Borel reducibility
by showing that P(�)/Fin embeds into them. For instance, Louveau–Velickovic
[14] and Yin [18] showed that P(�)/Fin embeds into both LV-equalities and Borel
equivalence relations between �p and �q , respectively. As an application, we prove
that, the partially ordered set P(�)/Fin embeds into the partially ordered set of all
E(G)’s under the ordering of Borel reducibility.
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ON EQUIVALENCE RELATIONS INDUCED BY LCA POLISH GROUPS 3

Theorem 1.5. Let n ∈ N+. Then for A ⊆ �, there is an n-dimensional compact
connected abelian Polish group GA such that E(Rn) <B E(GA) <B E(Tn) and for
A,B ⊆ �, we have

A ⊆∗ B ⇐⇒ E(GA) ≤B E(GB).

We also get a sufficient and necessary condition concerning dual groups.

Theorem 1.6 (Dual Rigid Theorem). Let G be a compact connected abelian Polish
group and let H be a locally compact abelian Polish group. Then E(G) ≤B E(H ) iff
there is a continuous homomorphism S∗ : Ĥ → Ĝ such that Ĝ/im(S∗) is a torsion
group.

Notation convention. In this article, the addition operation of any subgroup of Rn

is denoted by + and its identity element is denoted by 0. Unless otherwise specified,
for abstract abelian topological groups G, we still use multiplicative notation to
express the group operation, and use 1G to express the identity element of G, since
we often consider subgroups of T� .

This article is organized as follows: In Section 2, we prove Theorems 1.1–1.3. In
Section 3, we consider P-adic solenoids and prove Theorems 1.4 and 1.5. Finally, In
Section 4, we consider dual groups and prove Theorem 1.6.

§2. Locally compact abelian Polish groups.

Definition 2.1 [5, Definition 6.1]. Let G be a Polish group. We define equivalence
relation E∗(G) on G� as, for x, y ∈ G� ,

xE∗(G)y ⇐⇒ lim
n
x(0)x(1) ... x(n)y(n)–1 ... y(1)–1y(0)–1 converges.

The following is an easy but important observation.

Proposition 2.2. Let G be a Polish group. Then E(G) ∼B E∗(G).

Proof. To see that E(G) ≤B E∗(G), for x ∈ G� , we define �(x) ∈ G� as

�(x)(n) =
{
x(0), n = 0,
x(n – 1)–1x(n), n > 0.

Then � witnesses that E(G) ≤B E∗(G).
To show the converse, for x ∈ G� , we define ϑ(x) ∈ G� as

ϑ(x)(n) = x(0)x(1) ... x(n).

Then ϑ witnesses that E∗(G) ≤B E(G). 

In this article, we focus on abelian Polish groups. For abelian Polish groups G, it
is more convenient to take E∗(G) as research object than E(G).

Some reducibility results are obtained in [5]. Since we will use them again and
again in this article, for the convenience of readers, we list them as follows.

Proposition 2.3 [5, Proposition 3.4]. Let G,H be two Polish groups. If G is
topologically isomorphic to a closed subgroup of H, then E(G) ≤B E(H ).
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4 LONGYUN DING AND YANG ZHENG

A metric d on a group G is called two-sided invariant if d (ghl, gkl) = d (h, k)
for all g, h, k, l ∈ G . We say that a Polish group G is TSI if it admits a compatible
two-sided invariant metric. Any abelian Polish group is TSI (cf. [7, Exercise 2.1.4]).

Lemma 2.4 [5, Theorem 6.5]. Let G,H,K be three TSI Polish groups. Suppose
� : G → H andϕ : H → K are continuous homomorphisms withϕ(�(G)) = K such
that ker(ϕ ◦ �) is non-archimedean. If the interval [0, 1] embeds into H, thenE(G) ≤B
E(H ).

Lemma 2.5 [5, Theorem 6.13]. Let G,H be TSI Polish groups such that H is
locally compact. If E(G) ≤B E(H ), then there exist an open normal subgroup Gc of
G and a continuous map S : Gc → H with S(1G ) = 1H such that, for x, y ∈ G�c , if
limn x(n)y(n)–1 = 1G , then

xE∗(Gc)y ⇐⇒ S(x)E∗(H )S(y),

where S(x)(n) = S(x(n)), S(y)(n) = S(y(n)) for each n ∈ �.
In particular, ifG = Gc and the interval [0, 1] embeds in H, then the converse is also

true.

Remark 2.6. Since Gc in the preceding lemma is an open subgroup, it is also
closed. So G0 ⊆ Gc as it is connected. Since S is continuous, we have S(G0) ⊆ H0.
Moreover, for all x, y ∈ G�0 , if limn x(n)y(n)–1 = 1G , we have

xE∗(G0)y ⇐⇒ S(x)E∗(H0)S(y).

The next lemma plays the key role in the proof of Theorem 2.8.

Lemma 2.7. Let G and H be two abelian Polish groups such that:
(1) H is locally compact,
(2) H0 ⊆ R� × T� ,
(3) there is a nonzero continuous homomorphism f : Rm → G for some m ∈ N+.

If E∗(G) ≤B E∗(H ), then there is a continuous map S : G0 → H0 such that the map
S restricted on f(Rm) is a homomorphism toH0.

Proof. First, from Remark 2.6, we can obtain a continuous map S : G0 → H0

with S(1G0 ) = 1H0 such that, for x, y ∈ G�0 , if limn x(n)y(n)–1 = 1G0 , then

xE∗(G0)y ⇐⇒ S(x)E∗(H0)S(y),

where S(x)(n) = S(x(n)), S(y)(n) = S(y(n)) for each n ∈ �.
Since H0 ⊆ R� × T� , without loss of generality we may assume that h(2k) ∈ R

and h(2k + 1) ∈ T for all h ∈ H0.For k ∈ �, we define continuous homomorphisms
φ2k : H0 → R and φ2k+1 : H0 → T by φj(h) = h(j).

Now fix g0, g1 ∈ f(Rm) and find a0, a1 ∈ Rm such that f(a0) = g0 and
f(a1) = g1. For t ∈ [0, 1] and l ∈ {1, 2}, define al (t) ∈ Rm as

al (t) =
{
a0 + t(a1 – a0), l = 1,
t(a0 + a1), l = 2.

By the following claim, we can easily construct a continuous functionF lj : [0, 1] → R
for each l ∈ {1, 2} and k ∈ � such that

F l2k(t) = φ2k(S(f(al (t)))), exp(iF l2k+1(t)) = φ2k+1(S(f(al (t)))). (∗)
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ON EQUIVALENCE RELATIONS INDUCED BY LCA POLISH GROUPS 5

The nontrivial part of the construction, i.e., j = 2k + 1, follows from a more general
claim.

Claim 1. Given a continuous function 	 : [0, 1] → T and t0 ∈ [0, 1] with exp(is0) =
	(t0) for some s0 ∈ R, there exists a continuous function 	̃ : [0, 1] → R such that
exp(ĩ	(t)) = 	(t) and 	̃(t0) = s0.

Proof. Note that the map t �→ exp(it) is a covering map from R to T, and the
interval [0, 1] is simply connected (see Definitions A2.1 and Proposition A2.8 of
[11]). So such a 	̃ exists (cf. [11, Definition A2.6]).

For the convenience of readers, we briefly explain the construction of 	̃. Since
the map t �→ exp(it) is a local homeomorphism, by the continuity of 	, for each
u ∈ [0, 1], there is an open interval Ju containing u and a continuous function 	̃u :
Ju ∩ [0, 1] → R such that supt,t′∈Ju∩[0,1] |	(t) – 	(t′)| < 1

2 and exp(i	̃u(t)) = 	(t) for
t ∈ Ju ∩ [0, 1]. Note that exp(i(	̃u(t) + 2p
)) = exp(i	̃u(t)) for each p ∈ Z. By the
compactness of [0, 1], there are u0, u1, ... , uq ∈ [0, 1] such that [0, 1] ⊆

⋃
0≤i≤q Jui .

We can find 0 = p0, p1, ... , pq ∈ Z such that for each t ∈ Jui ∩ Juj ∩ [0, 1], we have
	̃ui (t) + 2pi
 = 	̃uj (t) + 2pj
. Then for t ∈ [0, 1] ∩ Jui , let 	̃ ′(t) = 	̃ui (t) + 2pi
. In
the end, we put 	̃(t) = 	̃ ′(t) – 	̃ ′(t0) + s0. It is obvious that exp(ĩ	(t)) = 	(t) and
	̃(t0) = s0. 

Note that S(f(a2(0))) = 1H . We can assume that F 2
j (0) = 0 for each j.

Next we claim that F lj are linear functions.

Claim 2. F lj (t) = F lj (0) + t(F lj (1) – F lj (0)) for t ∈ [0, 1].

Proof. We only verify the claim for l = 1. It is similar for l = 2.
Fix j0 ∈ �. Define 	 : [0, 1] → R as 	(t) = F 1

j0
(t) – F 1

j0
(0) – t(F 1

j0
(1) – F 1

j0
(0)).

Note that 	 is continuous and 	(0) = 	(1) = 0. We only need to prove that 	(t) = 0
for all t ∈ (0, 1).

If not, without loss of generality we may assume that 	(t0) > 0 for some t0 ∈ (0, 1).
Similar to the proof of [5, Lemma 6.17], we can find 0 < �0 < �1 < �2 < ··· < � < 1
such that 	(�k) = k+1

k+2	(t0) for each k ∈ �, and 1 > �0 > �1 > �2 > ··· > � > 0, K ∈
� such that, for k ≥ K , we have

� – �k > �k – � > � – �k+1,

limk �k = �, limk �k = � , 	(�) = 	(t0), and 	(�) > 	(�k) for each k.
Note that f : Rm → G is a nonzero continuous homomorphism. For p ∈ �, we

set

x(p) =
{
f(a1(�)), p = 2k,
f(a1(�)), p = 2k + 1,

y(p) =
{
f(a1(�k)), p = 2k,
f(a1(�k)), p = 2k + 1.

From the alternating series test, the following series:

(� – �0) + (� – �0) + ··· + (� – �k) + (� – �k) + ···
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6 LONGYUN DING AND YANG ZHENG

is convergent. Then

x(0)x(1) ... x(2k)y(2k)–1 ... y(1)–1y(0)–1

= x(0)y(0)–1x(1)y(1)–1 ... x(2k)y(2k)–1

= f(((� – �0) + (� – �0) + ··· + (� – �k))(a1 – a0)).

Since f is continuous and limp x(p)y(p)–1 = 1G , we have xE∗(G)y. And hence, by
Remark 2.6, we have S(x)E∗(H )S(y).

On the other hand, we have∑
k

(	(�) – 	(�k) + 	(�) – 	(�k)) ≥
∑
k

(	(�) – 	(�k)) =
∑
k

	(t0)
k + 2

= ∞.

Note that

F 1
j0

(�) – F 1
j0

(�k) + F 1
j0

(�) – F 1
j0

(�k)
= 	(�) – 	(�k) + 	(�) – 	(�k) + (� – �k + � – �k)(F 1

j0
(1) – F 1

j0
(0)).

If j0 = 2i , then

φ2i(S(x(0))S(x(1)) ... S(x(2k))S(y(2k))–1 ... S(y(1))–1S(y(0))–1)
= F 1

j0
(�) – F 1

j0
(�0) + F 1

j0
(�) – F 1

j0
(�0) + ··· + F 1

j0
(�) – F 1

j0
(�k).

Thus S(x)E∗(H )S(y) fails. We get a contradiction. If j0 = 2i + 1, following similar
arguments, we can also get a contradiction. This complete the proof of the claim. 

Now by Claim 2 and F 2
j (0) = 0, we know that

F 1
j (1/2) = F 1

j (0) + (F 1
j (1) – F 1

j (0))/2 = (F 1
j (0) + F 1

j (1))/2,

F 2
j (1/2) = F 2

j (1)/2.

By comparing equation (∗) before Claim 1, it follows that

S(f(a1(1/2)))2 = S(f(a0))S(f(a1)) = S(g0)S(g1),

S(f(a2(1/2)))2 = S(f(a0 + a1)) = S(g0g1).

Since a1(1/2) = a2(1/2), we have S(g0)S(g1) = S(g0g1).
So, the map S : f(Rm) → H0 is a continuous homomorphism. 
Let us recall the structure of Hausdorff locally compact abelian groups. Let G

be a Hausdorff locally compact abelian group, then G is topologically isomorphic
to the group Rn ×H , where H is a locally compact abelian group containing a
compact open subgroup (cf. [10, Theorem 24.30]). Moreover, if G is also connected,
then it is a direct product of a compact connected abelian group K and the group
Rn (cf. [10, Theorem 9.14]). Any locally compact connected metrizable abelian
group can be embedded as a closed subgroup of Rn × T� . In particular, all compact
metrizable abelian groups can be embedded in T� (see page 119 of [1]). G is said to
be solenoidal if there is a continuous homomorphism f : R → G such that f(R)
is dense in G (see [10, (9.2)]). It is well known that a compact metrizable abelian
group is solenoidal iff it is connected (see page 13 and Proposition 5.16 of [1]).
Thus for each locally compact connected metrizable abelian group G, there is a
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ON EQUIVALENCE RELATIONS INDUCED BY LCA POLISH GROUPS 7

continuous homomorphism f : Rm → G which satisfies f(Rm) = G . For more
details on locally compact abelian groups, we refer to [1, 10].

By applying Lemma 2.7 for locally compact abelian Polish groups, we get the
following result.

Theorem 2.8. Let G and H be two locally compact abelian Polish groups. If
E(G) ≤B E(H ), then there is a continuous homomorphism S : G0 → H0 such that
ker(S) is non-archimedean.

Proof. If E(G) ≤B E(H ), then E∗(G) ≤B E∗(H ). Without loss of generality
we may assume that G0 is nontrivial. First note that H0 can be embedded into
Rn × T� . Thus we may assume without loss of generality thatH0 ⊆ R� × T� . Let f
be a continuous homomorphism from Rm toG0 withf(Rm) = G0. Then by Lemma
2.7 there exists a continuous map S : G0 → H0 such that the map S restricted on
f(Rm) is a homomorphism to H0. Since f(Rm) is dense in G0, we see that S is a
homomorphism from G0 toH0.

Then we only need to check that ker(S) is non-archimedean. Assume toward a
contradiction that ker(S) is not non-archimedean.

Note that ker(S) is an abelian Polish group. Fix a compatible two-sided invariant
metric on ker(S). Let Vk ⊆ ker(S), k ∈ � be an open symmetric neighborhood
base of 1ker(S) = 1G with limk diam (Vk) = 0. Then there exists a k0 ∈ � such that
Vk0 does not contain any open subgroup of ker(S). Since Vk is symmetric,

⋃
m V

m
k

is an open subgroup of ker(S), so
⋃
m V

m
k � Vk0 for each k. Thus we can find an

mk ∈ � and gk,0, ... , gk,mk–1 ∈ Vk such that gk,0gk,1 ... gk,mk–1 /∈ Vk0 .
DenoteM–1 = 0 andMk = m0 +m1 + ··· +mk for k ∈ �. Now for n ∈ �, define

x(n) =
{
gk,j , n =Mk–1 + j, 0 ≤ j < mk,
1G, otherwise.

Therefore xE∗(G)1G� fails. Note that we have limn x(n) = 1G and S(x(n)) = 1H
for each n. So it is trivial that S(x)E∗(H0)S(1G� ), where S(x)(n) = S(x(n)),
contradicting Lemma 2.5. 

In particular, if G is compact connected, then the converse of Theorem 2.8 is also
true.

Theorem 2.9 (Rigid Theorem). Let G be a compact connected abelian Polish
group and let H be a locally compact abelian Polish group. Then E(G) ≤B E(H ) iff
there is a continuous homomorphismS : G → H such that ker(S) is non-archimedean.

Proof. Let S be a continuous homomorphism from G to H such that ker(S) is
non-archimedean. Since G is compact, S(G) is a compact, thus closed subgroup of
H. So we have E(S(G)) ≤B E(H ).

Note that S(G) is also a compact connected abelian Polish group. Let f be a
continuous homomorphism f : R → S(G) such that f(R) = S(G). Then ker(f)
is a proper closed subgroup of R. Hence ker(f) is a discrete group. This gives
that the interval [0, 1] embeds in S(G). Then by Lemma 2.4, we get that E(G) ≤B
E(S(G)) ≤B E(H ).
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8 LONGYUN DING AND YANG ZHENG

On the other hand, if E(G) ≤B E(H ), by Theorem 2.8, there is a continuous
homomorphism S : G0 → H0 such that ker(S) is non-archimedean. Since G is
connected, we have G = G0. 

Corollary 2.10. Let G be a compact connected abelian Polish group and let H be
a locally compact abelian Polish group. SupposeH0

∼= Rn ×K , where K is a compact
connected abelian group. Then E(G) ≤B E(H ) iff E(G) ≤B E(K).

Proof. (⇐) part is trivial, since E(K) ≤B E(H0) ≤B E(H ).
(⇒). If E(G) ≤B E(H ), then there exists a continuous homomorphism S : G →

H such that ker(S) is non-archimedean. So S(G) is a connected compact subgroup
of H, thus S(G) ⊆ H0. Without loss of generality, we assume that H0 = Rn ×K .
Let 
 : H0 → Rn and 
K : H0 → K be canonical projections. Then 
(S(G)) is a
compact subgroup of Rn, so 
(S(G)) = {0}. It follows that ker(
K ◦ S) = ker(S).
Applying Theorem 2.9 on 
K ◦ S : G → K , we have E(G) ≤B E(K). 

Recall that a topological group G is totally disconnected if G0 = {1G}. For
any locally compact abelian Polish group, it is totally disconnected iff it is non-
archimedean (cf. [11, Theorem 1.34]).

For every normal space X, denoted by dim(X ) the covering dimension of X, where
dim(X ) is an integer ≥ – 1 or the “infinite number ∞.” We omit the definition
of covering dimension since it is very complicated (see page 54 of [6]). We recall
the following useful facts concerning compact abelian group G: dim(G) = n <∞
iff G has a totally disconnected closed subgroup Δ such that G/Δ ∼= Tn iff there
is a compact totally disconnected subgroup N of G and a continuous surjective
homomorphism ϕ : N × Rn → G which has a discrete kernel (see Theorem 8.22
and Corollary 8.26 of [11]). In this case, we say that G is finite dimensional (cf.
[11, Definitions 8.23]). Clearly, dim(G) = 0 iff G is totally disconnected. For more
details on compact abelian groups, see [11].

Now we recall two equivalence relationsE�0 andE(M ; 0) (see [4, Definition 3.2]).
The equivalence relation E�0 on 2�×� defined by

xE�0 y ⇐⇒ ∀k ∃m ∀n ≥ m (x(n, k) = y(n, k)).

Fix a metric space M. The equivalence relation E(M ; 0) onM� defined by

xE(M ; 0)y ⇐⇒ lim
n
d (x(n), y(n)) = 0.

From the above discussions, we can establish the following theorem.

Theorem 2.11. Let G,H be locally compact abelian Polish groups.

(1) If G is non-archimedean, then E(G) ≤B E�0 .
(2) If G is not non-archimedean, then E(R) ≤B E(G).
(3) If G is not non-archimedean and G0 is open, then E(G) ∼B E(G0).
(4) If n is a positive integer, then E(Tn) ≤B E(G) iff Tn embeds in G.
(5) If n is a positive integer and G is compact, then G is n-dimensional iffE(Rn) <B
E(G) ≤B E(Tn).

Proof. (1) It follows from [5, Theorem 3.5(3)].
(2) Note that G is not totally disconnected (cf. [11, Theorem 1.34]), so G0

contains at least two points. We haveG0
∼= Rn ×K , where K is a compact connected
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abelian group. If n > 0, it is trivial that E(R) ≤B E(G). By Proposition 2.3,
E(K) ≤B E(G0) ≤B E(G). Thus we may assume that G is compact connected
andG ⊆ T� . Note that there is a continuous homomorphism f : R → G such that
f(R) = G . For g ∈ G ⊆ T� and p ∈ �, let φp(g) = g(p). Since G contains at least
two points, we can find p0 ∈ � such that φp0(f(R)) �= {1T}, so φp0(f(R)) = T. By
[11, Corollary 8.24], the interval [0, 1] embeds in G. Then by Lemma 2.4, we have
E(R) ≤B E(G).

(3) By [10, Section 24.45], we have G ∼= G0 ×G/G0. Since G0 is open, G/G0 is
countable and discrete. By [5, Corollary 3.6], this implies that E(G0 ×G/G0) ∼B
E(G0) and thus E(G) ∼B E(G0).

(4) The “if” part follows Proposition 2.3. Assume that E(Tn) ≤B E(G). By
Theorem 2.8 and [7, Corollary 2.3.4], there is a closed subgroup Δ of Tn such that
the group Tn/Δ can be embedded in G, where Δ is non-archimedean. It is obvious
that Tn/Δ is a locally connected, connected and compact abelian Polish group. By
[1, Proposition 8.17], Tn/Δ ∼= Tn.

(5) If n = dim(G), then we have (N × Rn)/Δ1
∼= G andG/Δ2

∼= Tn, whereN,Δ1,
and Δ2 are totally disconnected, and hence are non-archimedean. Then Proposition
2.3 and Lemma 2.4 imply that

E(Rn) ≤B E(N × Rn) ≤B E(G) ≤B E(Tn).

So we only need to show that E(G) �B E(Rn). To see this, assume toward a
contradiction that E(G) ≤B E(Rn). By Theorem 2.8, there exists a continuous
homomorphism S : G0 → Rn such that ker(S) is non-archimedean. Note that Rn

has no nontrivial compact connected subgroup. So this implies that S(G0) = {0},
contradicting that ker(S) is non-archimedean.

On the other hand, supposeE(Rn) <B E(G) ≤B E(Tn). Letm = dim(G). By (1)
we havem > 0. Assume for contradiction thatm = ∞, then there exists a continuous
homomorphism S : G0 → Tn such that ker(S) is non-archimedean. Then we have
dim(G0/ ker(S)) = ∞, and hence [0, 1]� embeds into G0/ ker(S) (cf. [11, Corollary
8.24]). By [7, Corollary 2.3.4], S induces an embedding from G0/ ker(S) to Tn. So
[0, 1]� embeds into Tn, contradicting that n is finite. Therefore, we have 0 < m <∞,
and hence E(Rm) <B E(G) ≤B E(Tm). Then [5, Theorem 6.19] gives m = n. 

Remark 2.12. Let G and H be two locally compact abelian Polish groups.
Suppose that G0 is an open subgroup of G, and that G0 is compact or G0

∼= R.
Then Theorems 2.8, 2.9, and 2.11(2),(3) imply that E(G) ≤B E(H ) iff there is
a continuous homomorphism S : G0 → H0 such that ker(S) is non-archimedean.
This generalizes Rigid Theorem, i.e., Theorem 2.9. We don’t know whether this can
be generalized to all locally compact abelian Polish groups.

Question 2.13. Does the converse of Theorem 2.8 hold for all locally compact
abelian Polish groups?

Question 2.14. Let G be a locally compact abelian Polish group. If G is not non-
archimedean, does E(G) ∼B E(G0)?
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§3. P-adic solenoids. Let P = (P(0), P(1), ... ) be a sequence of integers greater
than 1. Recall that the P-adic solenoid SP is defined by

SP = {g ∈ T� : ∀l (g(l) = g(l + 1)P(l))}.

In particular, if for each i, P(i) is a prime number, then the P-adic solenoid
is denoted by ΣP (cf. [8]). Let P denote the set of all primes. The group
SP is topologically isomorphic to ΣP′ for some P′ ∈ P� satisfying that P(l) =
P′(il ) ... P′(il+1 – 1), where 0 = i0 < i1 < ··· < il < ··· . For example, we have
S(4,6,8,9,...,9,... )

∼= Σ(2,2,2,3,2,2,2,3,3,...,3,3,... ).
It is well known that, the group ΣP is a compact connected abelian group

which is neither locally connected (cf. [8]), nor arcwise connected (see [1, Theorem
8.27]). Every nontrivial proper closed subgroup H of a P-adic solenoid is totally
disconnected (cf. [12, Proposition 2.7]), and thus H is non-archimedean. Clearly,
ΣP is a 1-dimensional and metrizable group.

Denote Ω = {R,T,ΣP : P ∈ P�}.

Lemma 3.1. Let m, n ∈ N+ and let G1, G2, ... , Gm,H1, H2 ... , Hn ∈ Ω. Then the
following are equivalent:

(1) E(G1 ×G2 × ··· ×Gm) ≤B E(H1 ×H2 × ··· ×Hn).
(2) There is a injective map �∗ : {1, 2, ... , m} → {1, 2, ... , n} such that E(Gi) ≤B
E(H�∗(i)) for 1 ≤ i ≤ m.

In particular, E(Gm1 ) ≤B E(Hn1 ) iff m ≤ n and E(G1) ≤B E(H1).

Proof. (2) ⇒ (1) is obvious. We only prove (1) ⇒ (2).
Denote G = G1 ×G2 × ··· ×Gm and H = H1 ×H2 × ··· ×Hn. For 1 ≤ i ≤

m, let ei be the canonical injection of Gi into G1 × ··· ×Gm, i.e., ei(g) =
(1G1 , ... , 1Gi–1 , g, 1Gi+1 , ... , 1Gm ).

Suppose E(G) ≤B E(H ). Since G and H are both connected, by Theorem 2.8,
there is a continuous homomorphism S : G → H such that ker(S) is non-
archimedean. For each 1 ≤ j ≤ n, let
j be the canonical projection from H ontoHj .

Note that, except for R, all groups in Ω are compact. By rearranging, we may
assume that there is an i0 ≤ m such that, Gi is compact for 1 ≤ i ≤ i0, and Gi = R
for i0 < i ≤ m.

For any 1 ≤ i ≤ i0, since ker(S) is non-archimedean, there exists j satisfying that

j(S(ei(Gi))) �= {1Hj}. Note that Hj has no nontrivial proper connected compact
subgroup. It follows that 
j(S(ei(Gi))) = Hj . Now we construct a bipartite graph
G [X,Y ] as follows. Let X = {G1, G2, ... , Gi0},

Y = {Hj : ∃i (1 ≤ i ≤ i0 and 
j(S(ei(Gi))) = Hj)}.

ForGi ∈ X andHj ∈ Y , we put an edge betweenGi andHj if 
j(S(ei(Gi))) = Hj .
Given K ⊆ X , we denote the set of all neighbors of the vertices in K by N (K).

Next we show that |N (K)| ≥ |K | for all K ⊆ X . Given K ⊆ X , denote

GK = {x ∈ G : x(i) = 1Gi for all Gi /∈ K},

HN (K) = {z ∈ H : z(j) = 1Hj for all Hj /∈ N (K)}.
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Then the restriction of S on GK is a continuous homomorphism to HN (K).
By Theorem 2.9, E(GK ) ≤B E(HN (K)). Again by Theorem 2.11(5), this implies
E(R|K|) ≤B E(T|N (K)|). Then [5, Theorem 6.19] gives |N (K)| ≥ |K |.

By Hall’s theorem (cf. [3, Theorem 16.4]), there is a injective map �∗ :
{1, 2, ... , i0} → {1, 2, ... , n} such that 
�∗(i)(S(ei(Gi))) = H�∗(i). Since every proper
closed subgroup of Gi is non-archimedean, from Theorem 2.9, we have E(Gi) ≤B
E(H�∗(i)).

In the end, since dim(G) = m and dim(H ) = n, by Theorem 2.11(5), we have
E(Rm) ≤B E(Tn). So m ≤ n. Since E(R) ≤B E(Hj) for each j, we can trivially
extend �∗ to an injection from {1, 2, ... , m} to {1, 2, ... , n} such that E(Gi) ≤B
E(H�∗(i)) for each i. 

Let P and Q be in P� . We write Q 
 P provided there is a co-finite subset A of
� and an injection f : A→ � such that Q(n) = P(f(n)) for each n ∈ A (for more
details, see [8, 9, 16]).

Lemma 3.2 (folklore). Let P and Q be in P� . Then the following are equivalent:

(1) There is a nonzero continuous homomorphism f : ΣP → ΣQ.
(2) There is a surjective continuous homomorphism g : ΣP → ΣQ.
(3) There is a surjective continuous map h : ΣP → ΣQ.
(4) Q 
 P.

Proof. (2) ⇒ (1) and (2) ⇒ (3) are obvious. (1) ⇒ (2) follows immediately
from the fact that each nontrivial proper closed subgroup of a P-adic solenoid
is totally disconnected. The equivalence of (3) and (4) follows from [16, Theorem
4.4].

It remains to show (3) ⇒ (1). Let h be a surjective continuous map from ΣP to ΣQ.
Without loss of generality assume that h(1ΣP ) = 1ΣQ . Then there exists a continuous
homomorphism f : ΣP → ΣQ such that h is homotopic to f (cf. [17, Corollary 2]).
Since ΣQ is not arcwise connected, ker(f) �= ΣP . 

Theorem 3.3. Let P and Q be in P� . Then E(ΣP) ≤B E(ΣQ) iff Q 
 P iff there
is a nonzero continuous homomorphism f : ΣP → ΣQ.

Proof. Note that every nontrivial proper closed subgroup of ΣP is non-
archimedean. Then this follows from Theorem 2.9 and Lemma 3.2. 

Let Fin denote the set of all finite subsets of �. For A,B ⊆ �, we use A ⊆∗ B to
denote A \ B ∈ Fin.

We prove that, for n ∈ N+, the partially ordered set P(�)/Fin can be embedded
into Borel equivalence relations between E(Rn) and E(Tn).

Lemma 3.4. Let P be in P� . Then E(R) <B E(ΣP) <B E(T).

Proof. By Theorem 2.11(5), we have that E(R) <B E(ΣP) ≤B E(T).
Assume toward a contradiction that E(T) ≤B E(ΣP). From Theorem 2.11(4), T

embeds in ΣP . This is impossible, since ΣP is not arcwise connected and every proper
closed subgroup of ΣP is non-archimedean. 
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For P ∈ P� and 	 ∈ P , we define tP(	) ∈ � ∪ {�} as

tP(	) =
{
�, ∃∞j ∈ � (P(j) = 	),
|{j : P(j) = 	}| , otherwise.

Given P,Q ∈ P� , denote

D(P,Q) = {	 ∈ P : tP(	) < tQ(	)}.

From the definition of Q 
 P, we can easily see that

E(ΣP) ≤B E(ΣQ) ⇐⇒ Q 
 P ⇐⇒
∑

	∈D(P,Q)

(tQ(	) – tP(	)) is finite.

Lemma 3.5. Let P,Q ∈ P� with E(ΣQ) ≤B E(ΣP). Suppose that D(P,Q) is
infinite. Then forA ⊆ �, there is a group ΣPA such thatE(ΣQ) <B E(ΣPA) <B E(ΣP)
and for A,B ⊆ �, we have

A ⊆∗ B ⇐⇒ E(ΣPA) ≤B E(ΣPB ).

Proof. Enumerate D(P,Q) as d0 < d1 < d2 < ... . Let P∗
0 ∈ P� such that

P∗
0 (i) = d3i for all i ∈ �.
For L,M ∈ P� , we define an element L⊕M ∈ P� as

(L⊕M )(n) =
{
L(k), n = 2k,
M (k), n = 2k + 1.

It is clear that

tL⊕M (	) =
{
�, tL(	) = � or tM (	) = �,
tL(	) + tM (	), otherwise.

Given a setA ⊆ �, definePA ∈ P� as follows. If� \ A is finite, putPA = P∗
0 ⊕ P.

Then

tPA(	) =
{
tP(	) + 1, 	 = d3i , i ∈ �,
tP(	), otherwise.

If � \ A is infinite, enumerate it as a0 < a1 < a2 < .... Define P∗
A ∈ P� as P∗

A(j) =
d1+3aj for j ∈ �, and put PA = P∗

A ⊕ (P∗
0 ⊕ P). Then

tPA(	) =
{
tP(	) + 1, (	 = d3i , i ∈ �) or (	 = d1+3a, a ∈ (� \ A)),
tP(	), otherwise.

Next we show that E(ΣQ) <B E(ΣPA) <B E(ΣP) for all A ⊆ �.
First, since tP(	) ≤ tPA(	) for all 	 ∈ P , we have D(PA,P) = ∅. So P 
 PA, and

hence E(ΣPA) ≤B E(ΣP).
Since E(ΣQ) ≤B E(ΣP), by Theorem 3.3, we have P 
 Q, and hence∑

	∈D(Q,P)

(tP(	) – tQ(	)) is finite.

Note that tPA(	) = tP(	) + 1 only occurs when tQ(	) > tP(	) holds, in which case
we always have 	 /∈ D(Q,PA). So we haveD(Q,PA) = D(Q,P) and tPA(	) = tP(	)
for all 	 ∈ D(Q,PA). This gives E(ΣQ) ≤B E(ΣPA).
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Since d3i ∈ D(P,PA) for i ∈ �, D(P,PA) is infinite, so E(ΣP) �≤B E(ΣPA).
Similarly, since tPA(d2+3i) = tP(d2+3i) < tQ(d2+3i), we have d2+3i ∈ D(PA,Q) for
i ∈ �, so E(ΣPA) �≤B E(ΣQ).

Given A,B ⊆ �, note that A ⊆∗ B iff (� \ B) \ (� \ A) = (A \ B) is finite. We
will check that A ⊆∗ B iff PB 
 PA. We consider four cases as follows: (1) If both
� \ A and � \ B are finite, then we have A ⊆∗ B and PA = PB = P∗

0 ⊕ P. (2) If
� \ A is infinite and � \ B is finite, then we have A ⊆∗ B and PB = P∗

0 ⊕ P 

P∗
A ⊕ (P∗

0 ⊕ P) = PA, since tPB (	) ≤ tPA(	) for all 	 ∈ P . (3) If � \ A is finite
and� \ B is infinite, thenA �⊆∗ B and PB = P∗

B ⊕ (P∗
0 ⊕ P) �
 P∗

0 ⊕ P = PA, since
tPA(d1+3b) < tPB (d1+3b) for b ∈ (� \ B). (4) If both � \ A and � \ B are infinite,
then tPA(	) < tPB (	) iff 	 = d1+3b for some b ∈ (� \ B) \ (� \ A) = (A \ B).
Moreover, tPB (d1+3b) = tP(d1+3b) + 1 = tPA(d1+3b) + 1 for all b ∈ (A \ B). So

∑
	∈D(PA,PB )

(tPB (	) – tPA(	)) = |A \ B |,

and hence A ⊆∗ B iff PB 
 PA.
Again by Theorem 3.3, we have A ⊆∗ B iff E(ΣPA) ≤B E(ΣPB ). 

Theorem 3.6. Let n ∈ N+. Then for A ⊆ �, there is an n-dimensional compact
connected abelian Polish group GA such that E(Rn) <B E(GA) <B E(Tn) and for
A,B ⊆ �, we have

A ⊆∗ B ⇐⇒ E(GA) ≤B E(GB).

Proof. It follows from Theorem 2.11(5) and Lemmas 3.1, 3.4, and 3.5. 

§4. Dual groups. Let G and H be two abelian topological groups. Denote the class
of all continuous homomorphisms of G to H by Hom(G,H ), which is an abelian
group under pointwise addition. We always equip Hom(G,H ) with compact-open
topology. The abelian topological group Hom(G,T) is called the dual group of G,
denoted by Ĝ (cf. [11, Definition 7.4]).

Let (A,+) be an abelian group whose identity element denoted by 0A. We say that
(A,+) is a torsion group if each element of A is finite order. We say that (A,+) is
torsion-free if n · g �= 0A for all g ∈ A with g �= 0A and n ∈ N+. A subset X of A is
free if any equation

∑
x∈X nx · x = 0A implies nx = 0 for all x ∈ X . The torsion-free

rank of A, written rank(A), is the cardinal number (uniquely determined) of any
maximal free subset of A.

Each Hausdorff locally compact abelian group G is reflexive, thus it is
topologically isomorphic to the double dual group ̂̂G (cf. [11, Theorem 7.63]).
A Hausdorff locally compact abelian group is compact and metrizable iff its dual
group is a countable discrete group (cf. Proposition 7.5(i) and Theorem 8.45 of
[11]). Let G be a Hausdorff compact abelian group, then G is connected iff Ĝ is
torsion-free; and G is totally disconnected iff Ĝ is torsion (cf. [11, Corollary 8.5]).
For any finite dimensional compact abelian Polish group G, the covering dimension
of A is equal to rank(Ĝ) (cf. Lemma 8.13 and Corollary 8.26 of [11]).
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If H is a subset of an abelian topological group G, then the subgroup

H⊥ = {	 ∈ Ĝ : ∀x ∈ H (	(x) = 1T)}

is called the annihilator of H in Ĝ (cf. [11, Definition 7.12]).
Now we focus on compact connected abelian Polish groups.

Theorem 4.1 (Dual Rigid Theorem). Let G be a compact connected abelian Polish
group and let H be a locally compact abelian Polish group. Then E(G) ≤B E(H ) iff
there is a continuous homomorphism S∗ : Ĥ → Ĝ such that Ĝ/im(S∗) is a torsion
group.

Proof. (⇒). We assume that E(G) ≤B E(H ). By Theorem 2.8, there is a
continuous homomorphism S : G → H such that ker(S) is non-archimedean. This
implies that there is a homomorphism S∗ from Ĥ to Ĝ such that ker(S) ∼= im(S∗)⊥

(cf. [1, P.22 and P.23(a)]). By [11, Lemma 7.13(ii)], we have that ker(S) ∼=
(Ĝ/im(S∗))̂, and hence k̂er(S) ∼= Ĝ/im(S∗). Since ker(S) is non-archimedean, thus
is totally disconnected, so Ĝ/im(S∗) is a torsion group.

(⇐). Since G ∼= ̂̂G and H ∼= ̂̂H , we can define S : G → H via (S∗)∗ : ̂̂G → ̂̂H
(cf. [10, (24.41)]). Then the similar arguments as the preceding paragraph give the
desired result. 

Corollary 4.2. Let G be a compact connected abelian Polish group and let H be
a locally compact abelian Polish group. If E(G) ≤B E(H ), then there is a nonzero
continuous homomorphism S∗ : Ĥ → Ĝ .

Proof. It follows from Theorem 4.1 and that Ĝ is non-torsion. 

Example 4.3. T̂ ∼= Z (cf. [10, Examples 23.27(a)]). Fix a P ∈ P� , then Σ̂P ∼={
m

P(0)P(1)...P(n) : m ∈ Z, n ∈ N
}

(see [10, (25.3)]). In view of Corollary 4.2, we get

E(T) �B E(ΣP) again.

Recall that Q̂ ∼= S(2,3,4,5,6,... ) (see [10, (25.4)]). We have the following.

Corollary 4.4. Let G be an n-dimensional compact abelian Polish group with
n ∈ N+. Then E((Q̂)n) ≤B E(G).

Proof. By [11, Theorem 8.22(4)], G0
∼= (Q̂)n/Δ, where Δ is a compact totally

disconnected subgroup of (Q̂)n. Again by Theorem 2.9, this means thatE((Q̂)n) ≤B
E(G0), and thus E((Q̂)n) ≤B E(G). 

From the arguments above, if Γ is a countable discrete torsion-free abelian group,
then Γ̂ is a compact connected abelian Polish group.

Remark 4.5. Let G be a compact connected Polish group with E(Rn) ≤B
E(G) ≤B E(Tn) for some n > 0. By Theorem 2.11(5), dim(G) = n, so rank(Ĝ) = n.
Thus Ĝ is isomorphic to a subgroup of Qn (cf. [7, Exercise 13.4.3]). In particular, if
n = 1, we have either G ∼= T or there exists a P ∈ P� such that G ∼= ΣP .

The following proposition shows that, if n > 1, the structure of G can be more
complicated.
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Proposition 4.6. There is a 2-dimensional compact connected Polish group G such
that E(G) �B E(ΣP0 × ΣP1 × ··· × ΣPn ) for n ∈ N and each Pi ∈ P� . Moreover, if
|{i ∈ � : P(i) = 2}| <∞, then E(ΣP) �B E(G).

Proof. Pontryagin has constructed a countable torsion-free abelian group Γ ⊆
Q2 whose rank is two (cf. [15, Example 2]). Then Γ̂ is a 2-dimensional compact
connected abelian Polish group. The group Γ defined by its generators , �i , (i =
0, 1, 2 ... ) and relations,

2ki+1�i+1 = �i + , (∗∗)

where i ∈ � and ki ∈ N+ such that sup{ki : i ∈ �} = ∞.
Put G = Γ̂. We claim that E(G) �B E(ΣP0 × ΣP1 × ··· × ΣPn ). Otherwise, by

Corollary 4.2 and [10, Theorem 23.18], there exists i ≤ n such that there is a nonzero
continuous homomorphism f from Σ̂Pi to Ĝ . Note that for any a ∈ Σ̂Pi , there are
infinitely many positive integers n such that the equation nx = a has a solution. But
any element in Γ does not admit such property. This implies that f(Σ̂Pi ) = {1Γ}
contradicting that f is a nonzero homomorphism.

Now assume that E(ΣP) ≤B E(G) for some P ∈ P� . We show that {i ∈ � :
P(i) = 2} is infinite. By Corollary 4.2, there is a nonzero homomorphism f
from Ĝ to Σ̂P . Without loss of generality we may assume Ĝ = Γ and Σ̂P ={

m
P(0)P(1)...P(n) : m ∈ Z, n ∈ N

}
⊆ Q. From (∗∗), a straightforward calculation shows

that

2k1+k2+···+ki �i = �0 + (1 + 2k1 + 2k1+k2 + ··· + 2k1+k2+···+ki–1 ).

So we have

2k1+k2+···+ki f(�i) = f(�0) + f()(1 + 2k1 + 2k1+k2 + ··· + 2k1+k2+···+ki–1).

Note that limi 2–(k1+k2+···+ki )f(�0) = 0 and

1 + 2k1 + 2k1+k2 + ··· + 2k1+k2+···+ki–1

2k1+k2+···+ki
f() ≤ f()

2ki –1
→ 0 (i → ∞).

This implies that limi f(�i) = 0.
Let f(�0) = a/b and f() = c/d for some integers a, b, c, d with c, d > 0. Note

that 2ki+1f(�i+1) = f(�i) + f(). Since f is a nonzero homomorphism, there can
be at most one f(�i) = 0. For large enough i, we have f(�i) �= 0. So there exist
integers mi,m′

i , c
′, d ′, li with mi,m′

i �= 0 and c′, d ′ > 0 such that

f(�i) =
mi

2k1+k2+···+ki cd
=

m′
i

2li c′d ′
,

where m′
i and 2li c′d ′ are coprime and c′|c, d ′|d . It follows that

|f(�i)| ≥
1

2li c′d ′
≥ 1

2li cd
→ 0 (i → ∞).

So li → ∞ as i → ∞, and hence {i ∈ � : P(i) = 2} is infinite. 
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