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Abstract We find approximate solutions (chord–arc curves) for the system of equations of geodesics in
Ω ∩ H̄ for every Denjoy domain Ω, with respect to both the Poincaré and the quasi-hyperbolic metrics.
We also prove that these chord–arc curves are uniformly close to the geodesics. As an application of
these results, we obtain good estimates for the lengths of simple closed geodesics in any Denjoy domain,
and we improve the characterization in a 1999 work by Alvarez et al . on Denjoy domains satisfying the
linear isoperimetric inequality.
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Denjoy domain

2010 Mathematics subject classification: Primary 30F45
Secondary 53C22; 30C99

1. Introduction

Our main aim is to study the geodesics of Denjoy domains, that is, plane domains Ω with
∂Ω ⊂ R. These kinds of surface are becoming more and more important in geometric
theory of functions since they are a very general type of Riemann surface, yet they
are also more manageable than many other types due to their symmetry. For example,
Garnett and Jones [15] proved the Corona Theorem for Denjoy domains, and Alvarez et
al . [2] obtained a characterization of Denjoy domains that satisfies a linear isoperimetric
inequality.

Obtaining the explicit location of the geodesics in a Riemannian surface is not possible
except for in a few examples, since in order to do so we must solve a second-order system
of two nonlinear differential equations. In the case of a domain with the Poincaré or
the quasi-hyperbolic metric, the situation is even worse: on the one hand, usually we do
not have an explicit expression for the density of the Poincaré metric, and hence, or for
the equations; on the other hand, for the quasi-hyperbolic metric, the coefficients in the
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differential equations are the derivatives of a non-differentiable function. However, the
geodesics are a fundamental object of Riemannian geometry.

We find approximate solutions (chord–arc curves, a very regular kind of quasi-
geodesics; see Definition 2.4) for the system of equations of geodesics in Ω ∩ H̄ for every
Denjoy domain Ω (see Theorems 4.2 and 4.4). Furthermore, using results on Gromov
hyperbolicity (although in general Ω is not Gromov hyperbolic), we also prove that these
chord–arc curves are uniformly close to the geodesics (see Theorems 4.5 and 4.6). There
exist several papers studying Gromov hyperbolicity of Euclidean domains and Riemann
surfaces in general [3,5,8,19–25,28–35,37] (see also [9,38,39]).

Using these results on chord–arc curves we obtain good estimates for the Poincaré
distance of

(i) any couple of points z, w ∈ Ω ∩ R (see Theorem 5.2),

(ii) any pair of connected components of Ω ∩ R (see Theorem 5.3),

(iii) any point z ∈ Ω ∩ R and any connected component of Ω ∩ R (see Theorem 5.5).

In particular, (ii) is equivalent to estimating the length of simple closed geodesics, which
is a very interesting and difficult problem for the Poincaré metric.

We obtain these estimates up to multiplicative constants, which are the best possible
results for the Poincaré metric, since the sharpest known estimate for the density of the
Poincaré metric (see Theorem 2.9) also has this property.

In [22] there is a weaker version of Theorems 4.2 and 4.4: but Hästö proved [22] that
the curves are (a, b)-quasi-geodesics with b > 0; although these weaker versions are good
enough for the purposes of [22], in order to deal with some applications in § 6 we need
to work with (a, 0)-quasi-geodesics (see Remark 6.7).

As an application of these results, we improve the characterization in [2] of the Denjoy
domains satisfying the linear isoperimetric inequality (see Theorem 6.8).

Notation

If we do not specify the metric, we always assume that in any Denjoy domain Ω

we consider the Poincaré metric. By dΩ , LΩ and AΩ we shall denote, respectively, the
distance, the length and the area with respect to the Poincaré metric of Ω.

2. Previous definitions and results

We denote by H the upper half-plane {z ∈ C : Im z > 0} and by D the unit disc {z ∈ C :
|z| < 1}. For D ⊂ C we denote by ∂D and D̄ its boundary and closure, respectively. For
z ∈ D � C we denote by δD(z) the distance to the boundary, mina∈∂D |z − a|.

The quasi-hyperbolic metric in Ω is the distance induced by the density 1/δΩ(z).
Recall that a domain Ω ⊂ C is said to be non-exceptional if it has at least two

finite boundary points.The universal cover of such a domain is the unit disc D. In Ω we
can define the Poincaré metric, i.e. the metric obtained by projecting the metric ds =
2|dz|/(1−|z|2) of the unit disc by any universal covering map π : D → Ω. Equivalently, we
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can project the metric ds = |dz|/ Im z of the upper half-plane H. Therefore, any simply
connected subset of Ω is isometric to a subset of D. With this metric, Ω is a geodesically
complete Riemannian manifold with constant curvature −1; in particular, Ω is a geodesic
metric space. The Poincaré metric is natural and useful in complex analysis; for instance,
any holomorphic function between two domains is Lipschitz with constant 1 when we
consider the respective Poincaré metrics.

We denote by λΩ the density of the hyperbolic metric in Ω. It is well known that, for
all domains Ω1 ⊆ Ω2, we have λΩ1(z) � λΩ2(z) for every z ∈ Ω1.

A Denjoy domain Ω ⊂ C is a domain whose boundary is contained in the real axis.
As mentioned in § 1, Denjoy domains are becoming increasingly relevant to Geometric
Function Theory (see, for example, [1,2,15,17]).

Definition 2.1. If γ : [a, b] → X is a continuous curve in a metric space (X, d), the
length of γ is

L(γ) := sup
{ n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b

}
.

We say that γ is a geodesic if it is an isometry, i.e. L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for
every s, t ∈ [a, b]. We say that X is a geodesic metric space if, for every x, y ∈ X, there
exists a geodesic joining x and y; we denote by xy any such geodesic (since we do not
require the uniqueness of geodesics, this notation is ambiguous, but also convenient).

Definition 2.2. Consider a geodesic metric space X. If x1, x2, x3 ∈ X, a geodesic
triangle T = {x1, x2, x3} is the union of three geodesics x1x2, x2x3 and x3x1. We say
that T is δ-thin if, for every x ∈ xixj , we have that d(x, xjxk ∪ xkxi) � δ. The space X

is δ-hyperbolic (or satisfies the Rips condition with constant δ) if every geodesic triangle
in X is δ-thin.

Example 2.3.

(i) Every bounded metric space X is (diam X)-hyperbolic (see, for example, [16,
p. 29]).

(ii) Every complete simply connected Riemannian manifold with sectional curvature
that is bounded from above by −k, with k > 0, is hyperbolic (see, for example, [16,
p. 52]).

(iii) Every tree with edges of arbitrary length is 0-hyperbolic (see, for example, [16,
p. 29]).

Definition 2.4. A function between two metric spaces f : X → Y is an (a, b)-quasi-
isometry, a � 1, b � 0, if

1
a
dX(x1, x2) − b � dY (f(x1), f(x2)) � adX(x1, x2) + b for every x1, x2 ∈ X.

An (a, b)-quasi-geodesic in X is an (a, b)-quasi-isometry between an interval of R and X.
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A map f between an interval I of R and X is a-chord–arc if

LX(f |[x1,x2]) � adX(x1, x2) for every [x1, x2] ⊆ I.

Chord–arc curves play a key role in harmonic analysis and in geometry. It is clear that
the a-chord–arc curves with their arc-length parametrization are (a, 0)-quasi-geodesics;
they are a very special type of ‘very regular’ quasi-geodesics (note that a quasi-geodesic
can be discontinuous).

Definition 2.5. Let us consider ε > 0, a metric space X and subsets Y, Z ⊆ X. The
set Nε(Y ) := {x ∈ X : (x, Y ) � ε} is called the ε-neighbourhood of Y in X. The Hausdorff
distance of Y to Z is defined by

H(Y, Z) := inf{ε > 0: Y ⊆ Nε(Z), Z ⊆ Nε(Y )}.

The following is a beautiful and useful result.

Theorem 2.6 (Ghys and de la Harpe [16, p. 87]). For each δ � 0, a � 1 and
b � 0, there exists a constant H0 that depends only on δ, a and b, with the following
property.

Let us consider a δ-hyperbolic geodesic metric space X and an (a, b)-quasi-geodesic g

starting in x and finishing in y. If γ is a geodesic joining x and y, then H(g, γ) � H0.

This property is known as geodesic stability. Bonk [7] proved that, in fact, geodesic
stability is equivalent to hyperbolicity. There is an explicit expression for H0, but it is
very complicated. However, we have the following particular result which gives a simple
bound.

Theorem 2.7 (Bonk [7, Proposition 3.1]). Let X be a δ-hyperbolic geodesic metric
space and let g be an a-chord–arc curve joining x and y. Then g ⊂ NM/2(γ) for every
geodesic γ joining x and y, with

M = M(δ, a) := 2(1 + 8δa)(8δa2 + 12δa + 2a) + 8δa + 4δ + 4.

Furthermore, H(g, γ) � M .

Definition 2.8. For every non-exceptional domain Ω ⊂ C and for every z ∈ Ω, define
δΩ(z) := inf{|z − a| : a ∈ ∂Ω} and βΩ(z) as the function

βΩ(z) := inf
{∣∣∣∣log

∣∣∣∣z − a

b − a

∣∣∣∣
∣∣∣∣ : a, b ∈ ∂Ω, |z − a| = δΩ(z)

}
.

It is clear that the infimum in δΩ(z) and in βΩ(z) is attained.
The function βΩ was introduced by Beardon and Pommerenke [6], who showed that it

provides the connection between the densities of the hyperbolic and the quasi-hyperbolic
metrics. Combining the argument of Beardon and Pommerenke [6, Theorem 1] with
the inequality of Minda [26, Theorem 5], we obtain the following result (note that the
definition of the Poincaré metric used in this paper differs from that in [6,26] by a factor
of 2).
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Theorem 2.9. For every non-exceptional domain Ω ⊂ C and for every z ∈ Ω, we
have that

1 � λΩ(z)δΩ(z)(k0 + βΩ(z)) � 2k0 + 1
2π,

where k0 = Γ ( 1
4 )4/4π2 = 4.3768796 . . . . Furthermore, for every z ∈ Ω and a, b ∈ ∂Ω, we

have

λΩ(z) �
(

|z − a|
(

k0 +
∣∣∣∣log

∣∣∣∣z − a

b − a

∣∣∣∣
∣∣∣∣
))−1

.

3. Technical lemmas

In this section some technical lemmas are collected. All of them have been used in the
next section in order to simplify the proof of Theorem 4.2.

Definition 3.1. If k0 is the constant in Theorem 2.9, for c � 1, let us define the
function

k(c) := c(2k0 + 1
2π)

(
1 +

1
k0

log c

)
.

Lemma 3.2. Let us consider any non-exceptional domain Ω, z ∈ Ω, a ∈ ∂Ω with
|z − a| = δΩ(z), and c � 1. For every w ∈ Ω with |w − a| � c|z − a|, we have

λΩ(z) � k(c)λΩ(w).

Remark 3.3. This result trivially holds for the quasi-hyperbolic metric, replacing k(c)
by c. This remark is applicable to every lemma in this section.

Proof. Let us assume first that there exists b ∈ ∂Ω with

βΩ(z) =
∣∣∣∣log

∣∣∣∣z − a

b − a

∣∣∣∣
∣∣∣∣.

(Although the infimum in βΩ(z) is attained, perhaps βΩ(z) = |log |z − a′|/|b′ − a′|| with
a′ �= a and |z − a′| = |z − a| = δΩ(z).)

Assume now that |w − a| � |z − a|. Since the function f(x) := x(k0 + |log(x/s)|) is
increasing in x ∈ (0,∞) for any fixed positive constant s,

λΩ(z) �
2k0 + 1

2π

|z − a|(k0 + |log |(z − a)/(b − a)||)

�
2k0 + 1

2π

|w − a|(k0 + |log |(w − a)/(b − a)||)

� (2k0 + 1
2π)λΩ(w).

Assume now that |z − a| < |w − a| � c|z − a|. Note that, for any u, v ∈ R, we have

k0 + |u|
k0 + |u − v| � 1 +

|v|
k0

.
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250 J. M. Rodŕıguez and J. M. Sigarreta

Hence,

λΩ(z) �
2k0 + 1

2π

|z − a|(k0 + |log |(z − a)/(b − a)||)

�
2k0 + 1

2π

(1/c)|w − a|(k0 + |log(1/c)|(w − a)/(b − a)||)

� k0 + |log |(w − a)/(b − a)||
k0 + |log |(w − a)/(b − a)| − log c|

c(2k0 + 1
2π)

|w − a|(k0 + |log |(w − a)/(b − a)||)

�
(

1 +
1
k0

log c

)
c(2k0 + 1

2π)
|w − a|(k0 + |log |(w − a)/(b − a)||)

=
k(c)

|w − a|(k0 + |log |(w − a)/(b − a)||)

� k(c)λΩ(w).

Let us assume now that there is no b ∈ ∂Ω with

βΩ(z) =
∣∣∣∣log

∣∣∣∣z − a

b − a

∣∣∣∣
∣∣∣∣.

Without loss of generality we can assume that a = 0 and z > 0. For 0 < ε < z, we have
δΩ(z − ε) = z − ε and |z − ε − ζ| > δΩ(z − ε) for every ζ ∈ ∂Ω \ {0}. Hence, there exists
b ∈ ∂Ω with

βΩ(z − ε) =
∣∣∣∣log

∣∣∣∣z − ε

b

∣∣∣∣
∣∣∣∣.

Therefore, |w| � cε|z − ε|, for some constant cε with cε → c as ε → 0. Then the theorem
follows by the previous case, since λΩ and k(c) are continuous functions. �

Lemma 3.4. Let us consider any non-exceptional domain Ω and two curves σ, η in Ω

with the same Euclidean length and parametrized with Euclidean arc length. Assume that
there exists a constant c � 1 with the following property: for each fixed t, there exists at ∈
∂Ω with |σ(t) − at| = δΩ(σ(t)) and |η(t) − at| � c|σ(t) − at|. Then LΩ(σ) � k(c)LΩ(η).

Proof. Lemma 3.2 gives that λΩ(σ(t)) � k(c)λΩ(η(t)) for every t. Since η(t) and σ(t)
are parametrized with Euclidean arc length, this inequality gives LΩ(σ) � k(c)LΩ(η). �

Using Lemma 3.4 (with σ(t) = z0 + it, t ∈ [0, r] and c =
√

2), we obtain the following
result.

Lemma 3.5. Let us consider a Denjoy domain Ω, z0 ∈ Ω ∩ H̄, a curve η with Euclidean
length r starting at z0 and σ := [z0, z0 + ir]. Then LΩ(σ) � k(

√
2)LΩ(η).

Lemma 3.6. Let us consider a Denjoy domain Ω, z0 ∈ Ω with Im z0 � T > 0, a curve
η with Euclidean length T starting at z0 and σ := [z0, z0 +T ]. Then LΩ(σ) � k(3)LΩ(η).
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Proof. Consider the curve η parametrized with Euclidean arc length starting at
z0. For each fixed t ∈ [0, T ], let us define σ(t) := z0 + t, and consider at ∈ ∂Ω with
|σ(t) − at| = δΩ(σ(t)). We have

|η(t) − at| � |η(t) − z0| + |z0 − σ(t)| + |σ(t) − at| � 2t + |σ(t) − at|.

Since t � T � Im z0 � |σ(t) − at|, we deduce that

|η(t) − at| � 3|σ(t) − at|.

Lemma 3.4 with c = 3 gives the result. �

Definition 3.7. Let us define the function F : C → C as

F (reit) :=

{
r + ir tan t if r � 0, 0 � t � 1

4π,

r cotan t + ir if r � 0, 1
4π � t � 1

2π.

F (−z) = −F (z) and F (z̄) = F (z) for every z ∈ C.

Note that the transformation F has a simple geometric meaning: the image by F of
the circle {|z| = r} is the boundary of the square [−r, r] × [−r, r] (i.e. F applies C-lines
on B-lines; see Definition 4.1). This function will allow us to obtain information about
C-lines from results about B-lines (see the proof of Theorem 4.2).

It is not difficult to check the following inequalities.

Lemma 3.8. This function F satisfies

1√
2
|z − x| � |F (z) − x| �

√
3|z − x|

for every z ∈ C and every x ∈ R.

Lemma 3.9. The following inequalities hold for the function F and every Denjoy
domain Ω.

(i) For every z ∈ Ω,

1
k(

√
2)

λΩ(F (z)) � λΩ(z) � k(
√

3)λΩ(F (z)).

(ii) For every curve γ contained in any circle {|z| = r} ∩ Ω,

LΩ(γ) � k(
√

3)LΩ(F (γ)).

(iii) For every curve g contained in Ω,

LΩ(F (g)) � 2
√

2k(
√

2)LΩ(g).

(iv) For every z1, z2 ∈ Ω,

dΩ(F (z1), F (z2)) � 2
√

2k(
√

2)dΩ(z1, z2).

https://doi.org/10.1017/S0013091509000686 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000686
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4. Chord–arc curves in every Denjoy domain

The following curves will play a key role in our results.

Definition 4.1. We denote by A-lines the set of curves which can be written as

{z ∈ H̄ ∩ Ω : Im z = a}

for some constant a ∈ R.
We denote by B-lines the set of curves which can be written as

([a, a + ir] ∪ [a + ir, a + 2r + ir] ∪ [a + 2r + ir, a + 2r]) ∩ Ω

for some constants a ∈ R, r > 0.
Half-circles of the type

{z ∈ H̄ ∩ Ω : |z − x0| = r}, x0 ∈ R, r > 0,

are called C-lines.

Note that A-lines and C-lines are the geodesics for the Poincaré metric in H (and also
for the quasi-hyperbolic metric, since both metrics are the same in H). It is useful to
consider B-lines, since in practical cases the computations with B-lines are easier than
with the C-lines.

The following surprising result shows that the geodesics for H are chord–arc curves in
every Denjoy domain (with universal constants), whether or not some of the endpoints
of the curves belong to ∂Ω.

Theorem 4.2. Let Ω be any Denjoy domain. Then the following result holds for the
Poincaré metric.

(i) Every A-line is k(
√

2)-chord–arc.

(ii) Every B-line is k1-chord–arc, with k1 := k(
√

2) + k(3).

(iii) Every C-line is k2-chord–arc, with k2 := 2
√

2k(
√

2)k(
√

3)k1.

Remark 4.3. By symmetry, a similar result holds for {z ∈ Ω : Im z � 0}.

Proof. Consider σ, which is either an A-line, a B-line or a C-line parametrized with
Poincaré arc length, and s < t in the domain of σ.

Assume first that σ is an A-line σ = {z ∈ H̄ ∩ Ω : Im z = a}. Let us consider a hyper-
bolic geodesic η joining σ(s) and σ(t). Without loss of generality we can assume that
Im σ(s) < Im σ(t). Since the graph of σ is a straight line, we obtain LEucl(σ|[s,t]) �
LEucl(η), and we can denote by η0 the subcurve of η starting at σ(s) with LEucl(η0) =
LEucl(σ|[s,t]). Applying Lemma 3.5, we deduce

t − s = LΩ(σ|[s,t]) � k(
√

2)LΩ(η0) � k(
√

2)LΩ(η) = k(
√

2)dΩ(σ(s), σ(t)).
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Consider now a B-line

σ := ([a, a + ir] ∪ [a + ir, a + 2r + ir] ∪ [a + 2r + ir, a + 2r]) ∩ Ω.

If σ(s) and σ(t) are both either in [a, a+ir] or in [a+2r+ir, a+2r], it suffices to apply the
previous argument. Hence, without loss of generality we can assume that σ(s) ∈ [a, a+ir]
and σ(t) ∈ [a + 2r + ir, a + 2r], since the other cases are easier.

Let us consider a hyperbolic geodesic η joining σ(s) and σ(t). Denote by η1 the subcurve
of η starting at σ(s) with LEucl(η1) = r − Im σ(s), and by η2 the subcurve of η finishing
in σ(t) with LEucl(η2) = r − Im σ(t). Since the Euclidean length of η is at least 2r, η1

and η2 are disjoint. Applying Lemma 3.5 twice, we deduce

LΩ([σ(s), a + ir]) + LΩ([a + 2r + ir, σ(t)]) � k(
√

2)LΩ(η1) + k(
√

2)LΩ(η2)

� k(
√

2)LΩ(η)

= k(
√

2)dΩ(σ(s), σ(t)).

We now bound LΩ([a + ir, a + 2r + ir]).
Let us consider a connected component η∗ of η ∩ {z ∈ C : Im z � r}. Then η∗ joins

z1 := x1 + iy1 and z2 := x2 + iy2, with 0 � y1, y2 � r, and we define

σ∗ := [x1 + ir, x2 + ir].

Since Ω is a Denjoy domain, we conclude that b 
→ λΩ(a + ib) is decreasing for b > 0
(see [26, Theorem 4.1 (i)]); hence, LΩ(σ∗) � LΩ(η∗).

Let us consider now the closure η∗ of a connected component of η ∩ {z ∈ C : Im z > r};
hence, η∗ joins z3 := x3 + ir with z4 := x4 + ir, and we define σ∗ := [z3, z4]. If T :=
1
2 (z4 − z3), then we define σ∗

1 := [z3, z3 + T ] and σ∗
2 := [z3 + T, z4].

Denote by η∗
1 the subcurve of η∗ starting at z3 with LEucl(η∗

1) = T , and by η∗
2 the

subcurve of η∗ finishing at z4 with LEucl(η∗
2) = T . Since the Euclidean length of η∗ is at

least 2T , η∗
1 and η∗

2 are disjoint. Since σ is a B-line, we deduce that Im z3 = Im z4 = r � T .
Therefore, applying Lemma 3.6 twice, we deduce

LΩ(σ∗) = LΩ(σ∗
1) + LΩ(σ∗

2) � k(3)LΩ(η∗
1) + k(3)LΩ(η∗

2) � k(3)LΩ(η∗).

Hence,
LΩ([a + ir, a + 2r + ir]) � k(3)LΩ(η),

and consequently,

t − s = LΩ(σ|[s,t]) � k(
√

2)LΩ(η) + k(3)LΩ(η) = (k(
√

2) + k(3))dΩ(σ(s), σ(t)).

This completes the proof of part (ii).
Finally, let us consider a C-line σ. Applying a transformation Tz = z + c if necessary,

without loss of generality we can assume that the image of σ is {x2 + y2 = r2} for some
r > 0. Using part (ii) of Lemma 3.9, we obtain

t − s = LΩ(σ|[s,t]) � k(
√

3)LΩ(F (σ)|[s,t]).
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Since we have proved that F (σ) is k1-chord–arc, we have

LΩ(F (σ)|[s,t]) � k1dΩ(F (σ(t)), F (σ(s))).

This inequality and part (iv) of Lemma 3.9 give

LΩ(σ|[s,t]) � k(
√

3)k1dΩ(F (σ(t)), F (σ(s))) � 2
√

2k(
√

2)k(
√

3)k1dΩ(σ(t), σ(s)).

This completes the proof of the theorem. �

Using the same argument as in the proof of Theorem 4.2, and always replacing k(c)
by c (see Remark 3.3), we obtain a similar result for the quasi-hyperbolic metric.

Theorem 4.4. Let Ω be any Denjoy domain. Then the following result holds for the
quasi-hyperbolic metric.

(i) Every A-line is
√

2-chord–arc.

(ii) Every B-line is k′
1-chord–arc, with k′

1 :=
√

2 + 3.

(iii) Every C-line is k′
2-chord–arc, with k′

2 := 4
√

3k′
1.

Now we prove that chord–arc curves are uniformly close to geodesics in every Denjoy
domain.

Theorem 4.5. For every Denjoy domain Ω with its Poincaré metric, and for every
z, w ∈ Ω ∩ H̄, let γ be the geodesic joining z and w in Ω ∩ H̄ and let g be the subarc of
either an A-line, a B-line or a C-line joining z and w. Then H(γ, g) � M(δ0, k2), where
δ0 := log(1 +

√
2), k2 is the constant in Theorem 4.2, and M(δ, a) is the function in

Theorem 2.7.

Proof. Let us consider the bordered Riemann surface Ω+ = Ω ∩ H̄. By [4, p. 130], we
know that the unit disc and the upper half-plane are δ0-hyperbolic. Since Ω is symmetric
about the real axis, we have that the Poincaré metric in Ω is also symmetric about
the real axis, i.e. λΩ(z̄) = λΩ(z) for every z ∈ Ω. This implies that each connected
component of Ω ∩ R is a geodesic. Ω+ is isometric to a geodesically convex subset of the
unit disc, since it is a simply connected set bounded by disjoint geodesics; therefore, it
is also δ0-hyperbolic.

By Theorem 4.2, g is k2-chord–arc, with k2 the constant in Theorem 4.2, and Theo-
rem 2.7 completes the proof. �

We also have a similar result for the quasi-hyperbolic metric, but without a beautiful
expression for the constant.

Theorem 4.6. For every Denjoy domain Ω with its quasi-hyperbolic metric, and for
every z, w ∈ Ω ∩ H̄, let γ be a geodesic joining z and w in Ω ∩ H̄ and let g be the subarc
of either an A-line, a B-line or a C-line joining z and w. Then H(γ, g) � H0, for some
universal constant H0.
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Proof. Let us consider the bordered Riemann surface Ω+ = Ω ∩ H̄. This set Ω+ with
its quasi-hyperbolic metric is c-hyperbolic for a universal constant c [20, Lemma 3.1].

By Theorem 4.4, g is a k′
2-chord–arc (is a (k′

2, 0)-quasi-geodesic), with k′
2 :=

4
√

3(
√

2 + 3).
By Theorem 2.6, we have H(γ, g) � H0, for some universal constant H0 (depending

only on c and k′
2, which are universal constants). �

5. Distance estimates and lengths of simple closed geodesics

Using the results in the previous sections, here we obtain good estimates for the Poincaré
distance of

(i) any pair of points z, w ∈ Ω ∩ R (see Theorem 5.2),

(ii) any pair of connected components of Ω ∩ R (see Theorem 5.3),

(iii) any point z ∈ Ω ∩ R and any connected component of Ω ∩ R (see Theorem 5.5).

In this section we consider only the Poincaré metric, since there exists a simple func-
tion comparable to the quasi-hyperbolic distance for every Denjoy domain (see, for exam-
ple, [22, Lemma 5.1]), which allows us to solve these three problems for this latter metric.

We obtain these estimates up to multiplicative constants, which are the best possible
results for the Poincaré metric, since the sharpest known estimates for the density of the
Poincaré metric in Theorem 2.9 also have this property.

Note that (ii) is equivalent to estimating the length of simple closed geodesics, a very
interesting and difficult problem for the Poincaré metric. These geodesics are a key con-
cept of Riemannian geometry. The closed geodesics are the periodic orbits of the dynam-
ical system associated to a manifold on its unit tangent bundle, and they provide tools
to study the geodesic flow, just as the fixed points of an automorphism help to study
it. Lastly, closed geodesics are becoming increasingly important in the study of heat
and wave equations, and the study of the spectrum of the manifold. The lengths of all
closed geodesics largely determine the spectrum. Conversely, the spectrum completely
determines the lengths of the closed geodesics [11,13,18].

Lemma 5.1. Let Ω be any Denjoy domain, with a ∈ R and r > 0. Then we have

LΩ([a + ir, a ± r + ir]) � k(2)LΩ([a, a + ir]).

Proof. We shall prove that

λΩ(a + t + ir) � k(2)λΩ(a + ir) (5.1)

for every real t with |t| � r. Since Ω is a Denjoy domain, we conclude that b 
→ λΩ(a + ib)
is decreasing for b > 0 (see [26, Theorem 4.1 (i)]), and then

λΩ(a + t + ir) � k(2)λΩ(a + i(r − |t|)) for every t ∈ [−r, r].

https://doi.org/10.1017/S0013091509000686 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000686
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This inequality proves the lemma, since the three intervals involved have the same Euclid-
ean length.

Now let us prove (5.1). Choose at ∈ ∂Ω with δΩ(a + t + ir) = |a + t + ir − at|. Let us
note that

|a + ir − at| � |a + ir − (a + t + ir)| + |a + t + ir − at|
= |t| + |a + t + ir − at|
� r + |a + t + ir − at|
� 2|a + t + ir − at|.

Therefore, Lemma 3.2 gives λΩ(a + t + ir) � k(2)λΩ(a + ir). �

The next result allows us to estimate the distance of any pair of points of Ω ∩ R in Ω.

Theorem 5.2. Let Ω be any Denjoy domain and let g be any B-line. Then we have

1
k(2) + 1

LΩ(g) � LΩ([a, a + ir] ∪ [a + 2r, a + 2r + ir]) < LΩ(g).

Furthermore,

1
k(2) + 1

dΩ(a, a + 2r) � LΩ([a, a + ir] ∪ [a + 2r, a + 2r + ir]) < k1dΩ(a, a + 2r)

for every a, a + 2r ∈ R, with k1 = k(
√

2) + k(3).

Proof. Applying Lemma 5.1 twice, we obtain, for every B-line g,

LΩ([a + ir, a + 2r + ir]) � k(2)LΩ([a, a + ir] ∪ [a + 2r, a + 2r + ir]),

LΩ(g) = LΩ([a, a + ir]) + LΩ([a + ir, a + 2r + ir])
+ LΩ([a + 2r, a + 2r + ir])

� (k(2) + 1)LΩ([a, a + ir] ∪ [a + 2r, a + 2r + ir]),

which is the first inequality in the second display. The first one is trivial.
In order to finish the proof we just need to note that

dΩ(a, a + 2r) � LΩ(g) � k1dΩ(a, a + 2r)

by Theorem 4.2. �

The next result allows us to estimate the distance of any pair of connected components
of Ω ∩ R or, equivalently, the length of simple closed geodesics in Ω.

Theorem 5.3. Let Ω be any Denjoy domain with Ω ∩ R =
⋃

n(an, bn). Denote by xn

the midpoint of (an, bn) and by γmn the shortest geodesic joining (am, bm) and (an, bn)
with am < an. There exist universal constants c1, c2 and c3 verifying the following.
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(i) If bm − am � an − bm and bn − an � an − bm, then

c1LΩ(γmn) � LΩ([xm, xm + 1
2 i|xn − xm|]) + LΩ([xn, xn + 1

2 i|xn − xm|])
� c2LΩ(γmn).

(ii) If bn − an � bm − am, an − bm � bm − am and

r(am, bm, an, bn) :=
(bm − am)(bn − an)
(an − bm)(bn − am)

� r0

for some positive constant r0, then

c3LΩ(γmn) � LΩ([xn, xn + i(xn − bm)]) � c2(3r0 + 2)LΩ(γmn).

In fact, we can choose

c1 =
1

k(2) + 1
, c2 = 2k(1)(k(

√
2) + k(3)), c3 =

1
(k(2) + 1)(k(3

√
2) + 1)

.

(iii) If r(am, bm, an, bn) � r0 for some r0 > 1, then there exist constants c4, c5, which
just depend on r0, such that

c4LΩ(γmn) � 1
log r(am, bm, an, bn)

� c5LΩ(γmn).

Remark 5.4.

(i) By symmetry, we can always assume am < an and bn − an � bm − am; therefore,
these hypotheses are just technical, and Theorem 5.3 covers all possible cases.

(ii) We also allow am = −∞. The case am = −∞ and bn = ∞ is direct, since then ∞
is a puncture and LΩ(γmn) = 0.

(iii) Although bn − am > 0, it is possible to have an − bm = 0, and then

r(am, bm, an, bn) = ∞

(therefore an = bm and LΩ(γmn) = 0).

Proof. Recall that the first part of Theorem 5.2 states that, for every B-line g,

LΩ(g) � (k(2) + 1)LΩ([a, a + ir] ∪ [a + 2r + ir, a + 2r]).

Note that, since the map b 
→ λΩ(a + ib) is decreasing for b > 0 (see [26, Theorem 4.1 (i)]),
we have, for every constant Q � 1,

LΩ([x, x + iQy]) � QLΩ([x, x + iy]).
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If η := [x, x + iy], we denote by Qη the segment Qη := [x, x + iQy]. Then LΩ(Qη) �
QLΩ(η).

Let us consider the B-line B joining xm and xn. If ym and yn are the endpoints of
γmn, consider the B-line B′ joining ym and yn.

Let us denote by σj (respectively, σ′
j) the vertical segment of B (respectively, B′)

starting in (aj , bj), for j = m, n. We define σ̃n := [xn, xn + i(xn − bm)].
We denote by h (respectively, h′, h̃) the maximum of the imaginary part of the points

in σn (respectively, σ′
n, σ̃n).

First we prove part (i). Then bm − am � an − bm and bn − an � an − bm imply

2h′ = yn − ym � an − bm � 1
2 (xn − xm) = h.

If ζj is a point in {aj , bj} (j = m, n) with δΩ(yj) = |yj − ζj |, then we also have δΩ(xj) =
|xj − ζj |, since |xj − aj | = |xj − bj |. Hence,

|yj + it − ζj | � |xj + it − ζj |.

Since h � 2h′, we have σj ⊆ 2σ′
j , and Lemma 3.4 gives

LΩ(σj) � k(1)LΩ(2σ′
j) � 2k(1)LΩ(σ′

j).

Therefore, using Theorem 4.2,

1
k(2) + 1

LΩ(γmn) � 1
k(2) + 1

LΩ(B)

� LΩ(σm) + LΩ(σn)

� 2k(1)LΩ(σ′
m) + 2k(1)LΩ(σ′

n)

� 2k(1)LΩ(B′)

� 2k(1)(k(
√

2) + k(3))LΩ(γmn).

We now prove (ii). Since bn − an � bm − am and an − bm � bm − am, we have
bn − am � 3(bm − am) and, consequently, bn − an � 3r0(an − bm).

We distinguish two cases.

Case (a). We assume first that 1
2 (bm − am) � xn − bm. We have

xn − bm = 1
2 (bn − an) + an − bm � 1

2 (bm − am) + bm − am = 3(bm − xm),

and hence

|xn + it − bm| � t + xn − bm

� 3
√

2 1√
2
(t + bm − xm)

� 3
√

2|xm + it − bm|
= 3

√
2δΩ(xm + it).
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Lemma 3.4 gives LΩ(σm) � k(3
√

2)LΩ(σn). Therefore,

1
(k(2) + 1)(k(3

√
2) + 1)

LΩ(γmn) � 1
(k(2) + 1)(k(3

√
2) + 1)

LΩ(B)

� 1
k(3

√
2) + 1

(LΩ(σm) + LΩ(σn))

� LΩ(σn).

Since we are assuming 1
2 (bm − am) � xn − bm, we have

h = 1
2 (xn − xm)

� 1
2 (xn − bm)

= 1
2 h̃,

= 1
2 (xn − xm)

= 1
2 (xn − bm) + 1

2 (bm − xm)

= 1
2 (xn − bm) + 1

4 (bm − am)

� 1
2 (xn − bm) + 1

2 (xn − bm)

= h̃,

and then h � h̃ � 2h. Therefore, σn ⊂ σ̃n ⊂ 2σn and

LΩ(σn) � LΩ(σ̃n) � LΩ(2σn) � 2LΩ(σn).

We also have

h � h̃

= xn − bm

= xn − an + an − bm

= 1
2 (bn − an + 2(an − bm))

� 1
2 (3r0(an − bm) + 2(an − bm))

� (3r0 + 2)h′,

and then h̃ � 2h � 2(3r0 + 2)h′. A similar argument to that used in the proof of (i),
using Lemma 3.4, gives

LΩ(σ̃n) � k(1)LΩ(2(3r0 + 2)σ′
n) � 2(3r0 + 2)k(1)LΩ(σ′

n).

Hence, using Theorem 4.2,

1
(k(2) + 1)(k(3

√
2) + 1)

LΩ(γmn) � LΩ(σn) � LΩ(σ̃n)

� 2(3r0 + 2)k(1)LΩ(σ′
n)

� 2(3r0 + 2)k(1)LΩ(B′)

� 2(3r0 + 2)k(1)k1LΩ(γmn)

= c2(3r0 + 2)LΩ(γmn).
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Case (b). We now consider the case when xn − bm < 1
2 (bm − am). Note that in this

case it is possible that xm is not well defined, since the case am = −∞ is allowed, and
then xm = −∞. We define B in this case as the B-line joining x∗

m := 2bm − xn and xn.
Note that, by our hypothesis,

x∗
m = 2bm − xn = bm − (xn − bm) > bm − 1

2 (bm − am) = xm,

and then x∗
m is nearer to bm than xm; hence, δ(x∗

m + it) = |x∗
m + it − bm|. We also have

h̃ = h = xn − bm and σ̃n = σn. Then

h = xn − bm = 1
2 (bn − an) + 2 1

2 (an − bm) � (3r0 + 2) 1
2 (an − bm) � (3r0 + 2)h′.

A similar argument to that used in the proof of (i), using Lemma 3.4, gives

LΩ(σn) � k(1)LΩ((3r0 + 2)σ′
n) � (3r0 + 2)k(1)LΩ(σ′

n).

We also have
|xn + it − bm| = |x∗

m + it − bm| = δΩ(x∗
m + it),

and then Lemma 3.4 gives LΩ(σm) � k(1)LΩ(σn). Therefore, using Theorem 4.2,

1
(k(2) + 1)(k(1) + 1)

LΩ(γmn) � 1
(k(2) + 1)(k(1) + 1)

LΩ(B)

� 1
k(1) + 1

(LΩ(σm) + LΩ(σn))

� LΩ(σn)

� (3r0 + 2)k(1)LΩ(σ′
n)

� (3r0 + 2)k(1)LΩ(B′)

� (3r0 + 2)k(1)k1LΩ(γmn)

� c2(3r0 + 2)LΩ(γmn).

This completes the proof of (ii).

Finally, we prove (iii). Assume that r := r(am, bm, an, bn) � r0 for some r0 > 1. Let us
consider the Möbius map

T (z) :=
(bm − am)(z − an)
(an − bm)(z − am)

.

It is clear that T (am) = ∞, T (bm) = −1, T (an) = 0 and T (bn) = r. If we define

Sr := C \ {−1, 0, r} and Tr := C \ {[−1, 0] ∪ [r, ∞)},

then Tr ⊂ T (Ω) ⊂ Sr. It is easy to check that

σr := {z ∈ C : |z + 1| =
√

1 + r}

is the simple closed geodesic in Sr (and in Tr) that surrounds {−1, 0} and does not
surround {r}. Since Tr ⊂ T (Ω) ⊂ Sr, we have

LSr (σr) � LT (Ω)(T (γmn)) = LΩ(γmn) � LTr (σr).

Then we just need to apply [2, Lemma 4.5]. This completes the proof. �
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The next result allows us to estimate the distance from any connected component of
Ω ∩ R to a point of Ω ∩ R.

Theorem 5.5. Let Ω be any Denjoy domain with Ω ∩ R =
⋃

n(an, bn). Given x ∈
(an, bn), denote by γx

m the shortest geodesic joining x and (am, bm). There exist universal
constants c1, c2, C1 and C2 verifying the following.

(i) If bm − am � 2dEucl(x, (am, bm)), then

c1LΩ(γx
m) � LΩ([xm, xm + 1

2 i|x − xm|]) + LΩ([x, x + 1
2 i|x − xm|]) � c2LΩ(γx

m),

where xm is the midpoint of (am, bm).

(ii) If bm − am > 2dEucl(x, (am, bm)), then

C1LΩ(γx
m) � LΩ([x, x + i(x − bm)]) � C2LΩ(γx

m).

In fact, we can choose c1, c2 as in Theorem 5.3, and

C1 =
1

(k(2) + 1)(k(1) + 1)
, C2 = 2(k(

√
2) + k(3)).

Proof. By symmetry, without loss of generality we can assume that am < an.
Recall that the first part of Theorem 5.2 states that, for every B-line g,

LΩ(g) � (k(2) + 1)LΩ([a, a + ir] ∪ [a + 2r, a + 2r + ir]).

As we saw at the beginning of the proof of Theorem 5.3, we also have

LΩ([x0, x0 + iQy0]) � QLΩ([x0, x0 + iy0]) for every x0 ∈ R, y0 > 0, Q � 1.

If bm −am � 2(x− bm), we have defined xm as the midpoint of (am, bm). If bm −am >

2(x − bm), let us define xm as xm := 2bm − x.
Let us consider the B-line B joining xm and x. If ym := γx

m ∩ (am, bm), consider the
B-line B′ joining ym and x.

Let us denote by σj (respectively, σ′
j) the vertical segment of B (respectively, B′)

starting in (aj , bj), for j = m, n.
We denote by h (respectively, h′) the maximum of the imaginary part of the points in

σn (respectively, σ′
n).

First we prove (i). Then bm − am � 2(x − bm) and this implies

2h′ = x − ym � x − bm � 1
2 (x − bm + 1

2 (bm − am)) = h.

If ζ is a point in {am, bm} with δΩ(ym) = |ym − ζ|, then we also have δΩ(xm) = |xm − ζ|,
since |xm − am| = |xm − bm|. Hence,

|ym + it − ζ| � |xm + it − ζ|.
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Since h � 2h′, we have σj ⊆ 2σ′
j . Then

LΩ(σn) � LΩ(2σ′
n) � 2LΩ(σ′

n),

and Lemma 3.4 gives

LΩ(σm) � k(1)LΩ(2σ′
m) � 2k(1)LΩ(σ′

m).

Therefore, using Theorem 4.2,

1
k(2) + 1

LΩ(γx
m) � 1

k(2) + 1
LΩ(B)

� LΩ(σm) + LΩ(σn)

� 2k(1)LΩ(σ′
m) + 2LΩ(σ′

n)

� 2k(1)LΩ(B′) � 2k(1)(k(
√

2) + k(3))LΩ(γx
m).

We now prove (i). Since 2(x − bm) < bm − am and xm = 2bm − x, we have

xm > 1
2 (am + bm), bm − xm = δΩ(xm), x − bm = bm − xm.

Hence,
|x − bm + it| = |xm + it − bm| = δΩ(xm + it).

Lemma 3.4 gives LΩ(σm) � k(1)LΩ(σn). Therefore,

1
(k(2) + 1)(k(1) + 1)

LΩ(γx
m) � 1

(k(2) + 1)(k(1) + 1)
LΩ(B)

� 1
k(1) + 1

(LΩ(σm) + LΩ(σn))

� LΩ(σn).

Note that 2h′ = x − ym � x − bm = h. Therefore, σn ⊆ 2σ′
n and, using Theorem 4.2,

LΩ(σn) � LΩ(2σ′
n) � 2LΩ(σ′

n) � 2LΩ(B′) � 2(k(
√

2) + k(3))LΩ(γx
m).

�

Lastly, we need a technical lemma.

Lemma 5.6. Let us consider a Denjoy domain Ω, x ∈ Ω ∩ R and 0 � u < v. Then

v − u

k(
√

1 + v2/
√

1 + u2)
√

1 + u2(k0 + βΩ(x + iuδΩ(x)))

� LΩ([x + iuδΩ(x), x + ivδΩ(x)])

�
(2k0 + 1

2π)k(1)(v − u)√
1 + u2(k0 + βΩ(x + iuδΩ(x)))

.
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Proof. Let us consider 0 � u � y � v, and a ∈ ∂Ω with δΩ(x) = |x−a|. We obviously
have

δΩ(x + iyδΩ(x)) = |x + iyδΩ(x) − a|.

It is easy to check that

1 � |x + iyδΩ(x) − a|
|x + iuδΩ(x) − a| =

δΩ(x)
√

1 + y2

δΩ(x)
√

1 + u2
�

√
1 + v2

√
1 + u2

,

and applying Lemma 3.2 we obtain

1
k(1)

λΩ(x + iyδΩ(x)) � λΩ(x + iuδΩ(x)) � k

(√
1 + v2

√
1 + u2

)
λΩ(x + iyδΩ(x)).

Consequently, using Theorem 2.9,

LΩ([x + iuδΩ(x), x + ivδΩ(x)]) =
∫ v

u

λΩ(x + iyδΩ(x))δΩ(x) dy

� (v − u)δΩ(x)k(1)λΩ(x + iuδΩ(x))

�
(2k0 + 1

2π)k(1)(v − u)√
1 + u2(k0 + βΩ(x + iuδΩ(x)))

,

LΩ([x + iuδΩ(x), x + ivδΩ(x)]) � (v − u)δΩ(x)
k(

√
1 + v2/

√
1 + u2)

λΩ(x + iuδΩ(x))

� v − u

k(
√

1 + v2/
√

1 + u2)
√

1 + u2(k0 + βΩ(x + iuδΩ(x)))
.

�

Theorems 5.2, 5.3 and 5.5 estimate distances (which are very difficult to compute) in
terms of lengths of vertical segments. The following result gives a practical criterion for
estimating LΩ([a, a + ir]) in a simple way, by using a comparable quantity (which is easy
to compute).

We define, as usual, the integer part of x ∈ R as [x] := n if x ∈ [n, n + 1).

Theorem 5.7. Let us consider a Denjoy domain Ω, a ∈ Ω ∩ R, r > 0 and m :=
[log2(r/δΩ(a))]. Then

(i) if r � δΩ(a) (m � 0),

1√
2k(2)

(
1

k0 + βΩ(a)
+

m−1∑
n=0

1
k0 + βΩ(a + i2nδΩ(a))

)

� LΩ([a, a + ir])

� (4k0 + π)k(1)
(

1
k0 + βΩ(a)

+
m−1∑
n=0

1
k0 + βΩ(a + i2nδΩ(a))

)
;
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264 J. M. Rodŕıguez and J. M. Sigarreta

(ii) if r < δΩ(a),

1
k(

√
2)

r

δΩ(a)(k0 + βΩ(a))
� LΩ([a, a + ir])

� (2k0 + 1
2π)k(1)

r

δΩ(a)(k0 + βΩ(a))
.

Remark 5.8. As usual, we define
∑−1

n=0 := 0.

Proof. In order to prove (i), note that m � log2(r/δΩ(a)) < m + 1, and therefore
2mδΩ(a) � r < 2m+1δΩ(a). Recall that, as we have seen in the beginning of the proof of
Theorem 5.3, we have LΩ(Qη) � QLΩ(η) for every constant Q � 1. Therefore,

LΩ([a, a + i2mδΩ(a)]) � LΩ([a, a + ir])

< LΩ([a, a + i2 · 2mδΩ(a)])

� 2LΩ([a, a + i2mδΩ(a)]),

and

LΩ([a, a + i2mδΩ(a)]) = LΩ([a, a + iδΩ(a)]) +
m−1∑
n=0

LΩ([a + i2nδΩ(a), a + i2n+1δΩ(a)]).

If u = 0 and v = 1, then

v − u√
1 + u2

= 1,

√
1 + v2

√
1 + u2

=
√

2;

if u = 2n and v = 2n+1, then

v − u√
1 + u2

=
2n

√
1 + 22n

∈ [1/
√

2, 1],
√

1 + v2
√

1 + u2
=

√
1 + 22n+2
√

1 + 22n
< 2.

These facts and Lemma 5.6 give (i).
Now let us prove (ii). If u = 0 and v = r/δΩ(a), then

v − u√
1 + u2

=
r

δΩ(a)
,

√
1 + v2

√
1 + u2

<
√

2.

These facts and Lemma 5.6 give (ii). �

6. Isoperimetric inequalities

Let us consider a non-exceptional Riemann surface S with its Poincaré metric. We say
that S satisfies the linear isoperimetric inequality (LII) if there exists a constant h > 0
such that, for every relatively compact domain (open and connected set) G with smooth
boundary, we have that

AS(G) � hLS(∂G). (6.1)

We denote by h(S) the best constant in (6.1).
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There are a number of natural questions concerning the LII property of Riemann
surfaces. Particularly interesting are the stability under appropriate maps, its relation
with other conformal invariants and its characterization for plane domains.

Concerning the study of the stability of the LII, in [14, Theorem 1] it was proved that
the LII is invariant by quasi-conformal maps.

One of the conformal invariants related with the LII property is the bottom of the
spectrum of the Laplace–Beltrami operator, b(S), defined in terms of Rayleigh’s quotient.
The number b(S) belongs to [0, 1

4 ] and a celebrated theorem of Elstrodt et al . [36, p. 333]
relates it to another important conformal invariant of S, its exponent of convergence
δ(S) (see, for example, [27, p. 21] for basic background). It is a well-known fact that
0 � δ(S) � 1 (see, for example, [27, p. 21]).

It is also well known (see, for example, [10, p. 95], [12], [14, Theorem 2]) that

1
4 � b(S)h(S)2 and b(S)h(S) � 3

2 .

Therefore, S has the LII property if and only if b(S) > 0 or, equivalently, δ(S) < 1.
It is also known that δ(S) coincides with the Hausdorff dimension of the conical limit

set of the covering group of S (see, for example, [27, p. 154]). This tells us that the LII
property must also be related to the size of the ‘boundary’ of S.

Although the characterization of LII for plane domains is a very difficult problem, there
exists such a characterization of LII for Denjoy domains in [2]. We need some definitions
in order to explain this result.

Definition 6.1. A subset I of a non-exceptional Riemann surface S is strongly uni-
formly separated in S if there exists a positive constant ρ such that the hyperbolic balls
BS(p, ρ), where p ∈ I, are simply connected and pairwise disjoint.

Definition 6.2. Given a Denjoy domain Ω we denote by I = I(Ω) the isolated points
of ∂Ω, and we define Ω0 := Ω ∪ I. Then Ω0 is also a Denjoy domain and Ω = Ω0 \ I.

Definition 6.3. We say that a finite subset A = {α1, . . . , α2n}, n � 2, of points of
∂Ω ∪ {∞} is a border set of ∂Ω if A verifies the following two conditions.

(i) A is ‘ordered’ in R̄ := R ∪ {∞}, i.e. there exists j ∈ Z2n = Z/(2nZ) such that
αj+1 < · · · < αj+2n, where the subscripts belong to Z2n.

(ii) The set
⋃n

k=1(α2k−1, α2k) is contained in Ω.

Obviously, every subset A = {α1, . . . , α2n} of R̄ can be ‘ordered’ in such a way that
condition (i) is satisfied. So (ii) is the significant condition in the definition above.

Example 6.4. Let us consider the Denjoy domain Ω := C \
⋃∞

n=1[2n − 1, 2n]. It is
clear that the ordered sets {2, 3, 6, 7, 10, 11} and {4, 5,∞, 1} are border sets of ∂Ω, but
{1, 4, 5,∞} is not.

Definition 6.5. Given a border set of ∂Ω with four points, A = {α1, α2, α3, α4}, we
denote by γ(A) the unique simple closed geodesic in Ω which separates [α2, α3] from
[α4, α1] (γ(A) meets R only in (α1, α2) and (α3, α4)).
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The characterization of the LII in [2] is as follows.

Theorem 6.6 (Alvarez et al . [2, Theorems 4 and 5]). Let Ω be a Denjoy domain.
Then, Ω satisfies the LII if and only if I is strongly uniformly separated in Ω0 and there
exists a positive constant c such that, for any border set of ∂Ω0, A = {α1, . . . , α2n} with
n � 3, we have that

1
n

n∑
j=1

LΩ0(γ({α2j−1, α2j , α2j+1, α2j+2})) > c.

Remark 6.7. At the sight of this characterization of LII, it is clear that we just need
to estimate the lengths of simple closed geodesics up to multiplicative constants; however,
an additive constant in the estimate would be a ‘large error’. For this reason, we need
A-lines and B-lines to be chord–arc instead of (a, b)-quasi-geodesics (with b > 0).

Furthermore, [2, Theorem 4] provides an estimate of

LΩ0(γ({α2j−1, α2j , α2j+1, α2j+2})).

Unfortunately, this estimate involves a different Möbius map U = U{α2j−1,α2j ,α2j+1,α2j+2}
for each border set, the expression of which is not nice [2, p. 378], and there is no explicit
expression for the constants in the estimates. In addition, there are no criteria that
guarantee that the set I is strongly uniformly separated; rather than having a topological
condition like ‘BΩ0(x, ρ) is simply connected’, we would prefer to have a metric condition
(especially having good results at our disposal which allow us to estimate the metric
easily).

Using the results of this paper we obtain an improvement of Theorem 6.6, which
removes the inconveniences of the results in [2, Theorem 4]. We have a direct estimate
of

LΩ0(γ({α2j−1, α2j , α2j+1, α2j+2}))

(without any Möbius map), by Theorems 5.3 and 5.7.
Let us define first a function DΩ , if Ω ∩ R =

⋃
n(an, bn), as follows.

If a, b ∈ Ω ∩ R, we define DΩ(a, b) as the function comparable to dΩ(a, b) appearing
in Theorem 5.2, i.e.

DΩ(a, b) := LΩ([a, a + 1
2 i|b − a|] ∪ [b, b + 1

2 i|b − a|]).

If a ∈ Ω ∩ R, we define DΩ(a, (am, bm)) as the function comparable to dΩ(a, (am, bm))
appearing in Theorem 5.5:

DΩ(a, (am, bm)) := LΩ([xm, xm + 1
2 i|a − xm|]) + LΩ([a, a + 1

2 i|a − xm|])

if bm − am � 2dEucl(a, (am, bm)), and

DΩ(a, (am, bm)) := LΩ([a, a + i(a − bm)])

if bm − am > 2dEucl(a, (am, bm)).
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We define DΩ((am, bm), (an, bn)) as the function comparable to dΩ((am, bm), (an, bn))
appearing in Theorem 5.3:

DΩ((am, bm), (an, bn)) := LΩ([xm, xm + 1
2 i|xn − xm|]) + LΩ([xn, xn + 1

2 i|xn − xm|])

if bm − am � an − bm and bn − an � an − bm;

DΩ((am, bm), (an, bn)) := LΩ([xn, xn + i(xn − bm)])

if bn − an � bm − am, an − bm � bm − am and r(am, bm, an, bn) < 2; and

DΩ((am, bm), (an, bn)) := 1/log r(am, bm, an, bn)

if r(am, bm, an, bn) � 2.
If a ∈ (am, bm), we also define DΩ(a) as DΩ(a) := infn �=m DΩ(a, (an, bn)).
Therefore, DΩ can easily be estimated by Theorem 5.7.
Now we can state our characterization of LII.

Theorem 6.8. Let Ω be a Denjoy domain. Then, Ω satisfies the LII if and only if
there exists a positive constant c such that

(i) for any border set of ∂Ω0, A = {α1, . . . , α2n} with n � 3, we have that

1
n

n∑
j=1

DΩ0((α2j−1, α2j), (α2j+1, α2j+2)) > c ;

(ii) DΩ0(x1, x2) > c for any x1, x2 ∈ I;

(iii) DΩ0(x) > c for any x ∈ I.

Proof. Theorems 5.2, 5.3 and 5.5 allow us to use the simple function DΩ instead
of dΩ .

By Theorem 6.6, it is sufficient to show that the condition ‘BΩ(x, ρ) is simply connected
for every x ∈ I’ is equivalent to (iii). This equivalence is a consequence of the following
two facts:

sup{t > 0: BΩ0(x, t) is simply connected}
= 1

2 min{LΩ0(γ) : γ is a geodesic loop with base point x},

and a geodesic loop in Ω0 is not homotopically trivial in Ω0.
We prove only the second fact since the first one is well known. Let us consider a

geodesic loop γ with base point x, a universal covering map π : D → Ω0, and the lift γ̃ of
γ starting in x̃ ∈ D. If γ is homotopically trivial in Ω0, then γ̃ finishes in x̃ too, i.e. γ̃ is
a geodesic loop in D, which is a contradiction since there are no geodesic loops in D. �
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35. J. M. Rodŕıguez and E. Touŕıs, Gromov hyperbolicity of Riemann surfaces, Acta
Math. Sinica 23 (2007), 209–228.

36. D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Diff. Geom. 25
(1987), 327–351.
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