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A conducting cylinder with a uniform magnetic field along its axis and radial temperature
gradient is considered at the stationary state. At large temperature gradients the azimuthal
Hall electrical current creates an axial magnetic field whose strength may be comparable
with the original one. It is shown that the magnetic field, generated by the azimuthal
Hall current, leads to the decrease of a magnetic field originated by external sources, and
this suppression increases with an increase of the electromotive force, connected with
thermodiffusion. Obtained results can help to investigate the influence of the Hall current
on the coupled magnetothermal evolution of magnetic and electric fields in neutron stars,
white dwarfs and, possibly, in laboratory facilities.
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1. Introduction

The X-ray observations of some isolated neutron stars (NSs) show periodic variabilities
of their thermal emission, indicating an anisotropic temperature distribution. One can
say that the geometry of the magnetic field in the interior of a NS leaves an observable
imprint on the surface, which potentially allows us to study the internal structure of the
magnetic field through modelling of the spectra and pulse profiles of thermally emitting
NSs. Transport coefficients determining a heat flux and diffusion (electrical current)
in plasma have a tensor structure in the presence of a magnetic field. It means that a
direction of the heat and diffusion fluxes do not coincide with a direction of corresponding
vectors of electrical field E, and temperature gradient ∇T , responsible for these fluxes’
formation. A difference of transport coefficients is related to differences of fluxes along
and perpendicular to the magnetic field direction. A drift motion of charged particles
(Alfvén & Fälthammar 1963), in the direction perpendicular to the plane to which both
E and B belong, determines the electrical current flux jH along this perpendicular, which
is called the Hall current. The same property is characteristic for the electronic heat
flux current QH . The influence of Hall current on the behaviour of magnetized plasmas
in laboratory conditions was studied by Fruchtman & Gomberoff (1992), Gomberoff &
Fruchtman (1993) and Gomez, Mahajan & Dmitruk (2008).
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In astrophysical objects an effect of Hall currents on the magnetic field geometry was
studied in Goldreich & Reisenegger (1992) where they analysed magnetic field decay in an
isolated NS. In Gourgouliatos & Cumming (2015), braking index measurements of young
radio pulsars is explained by the influence of magnetic field evolution in the NS crust due
to Hall drift. In Gourgouliatos, Wood & Hollerbach (2016), three-dimensional simulations
were presented for magnetic field in magnetar crusts.

In Viganò et al. (2021), they performed a simulation of temperature and magnetic
field evolution of NSs with coupled ohmic, hall and ambipolar effects; Pons & Viganò
(2019) reviewed theoretical and numerical research of NSs’ magnetothermal evolution,
supplemented with detailed calculations of microphysical properties.

Determination of transport coefficient tensors from the solution of the Boltzmann
kinetic equation was described in the classical book of Chapmen & Cowling (1952).

Application to laboratory and astrophysical plasma of this theory, and calculations
of transport coefficients by the method described in the book by Chapmen & Cowling
(1952), are performed by Braginskii (1958b). In Bisnovatyi-Kogan & Glushikhina (2018a)
and Glushikhina (2020), such calculations have been performed for wider region of
parameters, including the case of strongly degenerate electrons.

The heat and diffusion fluxes in plasma are governed by diffusion vector d and
temperature gradient vector ∇T . In the presence of a magnetic field B the connection
of fluxes with these vectors has a tensor structure. A part of the electrical current vector
j is connected with the electrical field vector E, which is the main part of the diffusion
vector d, by electrical conductivity tensor←→σ E. Another part of j is connected with the
temperature gradient vector ∇T by a tensor←→σ T .

In a non-degenerate non-magnetized plasma, the scalar electron thermodiffusion
coefficient σT is connected with the scalar heat conductivity coefficient λ̃T , related to ∇T ,
as (Bisnovatyi-Kogan & Glushikhina 2018a; Glushikhina 2020)

σT ≈ 3eλ̃T

20kT
. (1.1)

This relation becomes exact in the Lorenz gas approximation (Bisnovatyi-Kogan 2001).
In following, we discuss the behaviour of a magnetic field in the stationary state,

generated by the azimuthal Hall current, produced by a temperature gradient only.
Obtained results can be used for evaluating temperature distribution on the NS’s surface,
modelling the structure of a magnetic field on the surface and in the crust, as well as for
studying magnetic and electric field distribution in plasma in laboratory conditions.

2. Magnetic fields, electromotive force and electrical currents in a conducting
cylinder

In Bisnovatyi-Kogan & Glushikhina (2018a), the following general relations in
Cartesian coordinates were written for the four kinetic coefficients, namely heat
conductivity (λij), diffusion (ηij), thermodiffusion (μij) and diffusional thermal effect (νij)
of electrons in non-degenerate non-relativistic plasma, that depends on magnetic field Bi,
concentration of electrons ne, electric field Ei, temperature T and mass-average velocity
c0k:

qi = q(T)

i + q(D)

i = −(λ(1)δij − λ(2)εijkBk + λ(3)BiBj)
∂T
∂xj

−ne(ν
(1)δij − ν(2)εijkBk + ν(3)BiBj)dj, (2.1)
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〈vi〉 = 〈v(D)

i 〉 + 〈v(T)

i 〉
= −ne(η

(1)δij − η(2)εijkBk + η(3)BiBj)dj

−(μ(1)δij − μ(2)εijkBk + μ(3)BiBj)
∂T
∂xj

, (2.2)

di = ρN

ρ

∂ ln Pe

∂xi
− ρe

Pe

1
ρ

∂PN

∂xi
+ e

kT

(
Ei + 1

c
εiklc0kBl

)
. (2.3)

The indices (T) and (D) correspond to the heat flux qi, and diffusion velocity 〈vi〉
of electrons, determined by temperature gradient ∂T/∂xj, and diffusion vector dj,
respectively.

Here Pe is the electron pressure, PN is the ion pressure, ρ is the density, defined as
ρ = mNnN , nN is the concentration of ions. The tensor kinetic coefficients λ(i), μ(i), η(i)

and ν(i) determine the heat and diffusion fluxes in the following directions. The upper
indices (1) determine the above-mentioned fluxes along the temperature gradient ∂T/∂xi,
or diffusion vector di. The upper indices (3) are related to the direction along the magnetic
field; and the upper indices (2) determine fluxes perpendicular to the plane defined by the
magnetic field vector Bi and any of the vectors ∂T/∂xi or di. These last fluxes are referred
to as the Hall ones, qHall and jHall. We consider here terms in the heat flux and the electrical
current produced by the temperature gradient only, so (2.1) and (2.2) can be written as

qi = q(T)

i = −(λ(1)δij − λ(2)εijkBk + λ(3)BiBj)
∂T
∂xj

, (2.4)

〈vi〉 = 〈v(T)

i 〉 = −(μ(1)δij − μ(2)εijkBk + μ(3)BiBj)
∂T
∂xj

. (2.5)

Let us consider a plasma cylinder (see figures 1 and 2) with a uniform magnetic field
B along the z axis, and a temperature gradient vector along the radius. In the case of a
cylinder symmetry ∂/∂z = ∂/∂φ = 0, the only non-zero parameters are qr, qφ, jr, jφ, Bz.
Using the definition of the electrical current

ji = −nee〈vi〉, (2.6)

we obtain from (2.4) and (2.5) the following relations:

qr = −λ(1) dT
dr

, qφ = −Bz

(
λ(2) dT

dr

)
, qz = 0, (2.7a–c)

jr = −ene

(
μ(1) dT

dr

)
, jφ = −eneBz

(
μ(2) dT

dr

)
, jz = 0. (2.8a–c)

Figures 1 and 2 have opposite directions of the initial magnetic field B0. In both cases
this field is deceasing due to the action of the Hall current. The same decrease of Bz
remains in the opposite direction of the heat flux, with heating of the outer boundary of
the cylinder.

The Lorentz approximation is applied when the mass of light particles (electrons)
is much smaller than the mass of heavy particles (ions or nuclei), and in addition
electron–electron collisions are neglected. In this approximation the linearized Boltzmann
equation, from which kinetic coefficients are derived, has an exact solution at zero
magnetic field. In different approaches the solution in Lorentz approximation was
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FIGURE 1. Conducting cylinder with Hall current jHall, depending on the magnitude of the
radial temperature gradient and external constant magnetic field B0 along its axis. The induced
magnetic field B1 is determined by the Hall current. Here R1 is the radius of the central heated
region with constant temperature T0. The toroidal region, coloured in grey, contains Hall current
and associated magnetic field, which has an opposite direction to the external field B0, decreasing
the resulting field along the cylinder.

FIGURE 2. The same cylinder as in figure 1, with opposite direction of the constant magnetic
field B0. We see that the magnetic field B1, induced by Hall currents jHall is again opposite to
the direction of B0. Therefore, the resulting magnetic field decreases, for any direction of the
magnetic field B0.
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considered by Chapmen & Cowling (1952) (p. 187), see also Schatzman (1958) and
Bisnovatyi-Kogan (2001).

The explicit exact solution in Lorentz approximation is obtained for the case of a zero
magnetic field. The heat flux connected only with the temperature gradient, is given in
Schatzman (1958) and Bisnovatyi-Kogan (2001):

qT
i = −λ̃T

∂T
∂xi

, λ̃T = 320
3π

k2Tne

me
τe. (2.9a,b)

For the average velocity we can write the expression in the Lorentz approximation
(Glushikhina 2020) with the thermal diffusion for the non-degenerate case:

〈vT
i 〉 = −μl ∂T

∂xi
, μl ≡ σT

ene
= 16k

meπ
τe. (2.10a,b)

Using the expression for the electric current density, we obtain the thermodiffusion part
in the form

jT
i = −nee〈vT

i 〉 = −σT
∂T
∂xi

. (2.11)

We use here the parameters: electron Larmor frequency ωB; the time between eN collisions
τe; and thermal electrical conductivity coefficient σT ; which in the non-degenerate Lorentz
gas approximation are determined as (Bisnovatyi-Kogan 2001)

ωB = eB
mec

, τe = 3
4

√
me

2π

(kT)3/2

Z2e4nNΛ
,

σT = eneμe = 6
√

2
π3/2Λ

enek2T
nNe4Z2

(
kT
me

)1/2

= 16kene

meπ
τe.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

Here ne, nN are concentrations of electrons and nuclei with atomic number Z; Λ is a
Coulomb logarithm. The microscopic process of binary collision is not disturbed here
by the magnetic field. For a very large magnetic field this approximation is not exact, but it
does not change qualitatively the macroscopic behaviour of the system (Braginskii 1958a).

Components of the kinetic coefficient’s tensor in the presence of the magnetic field
can be expressed using the kinetic coefficient in Lorentz approximation. In particular for
thermal electrical conductivity with a Bz magnetic field, the conductivity along magnetic
field lines is σT , and across magnetic field lines it is equal to σT/(1+ ω2

Bτ
2
e ) In the Hall

direction, that is perpendicular to the plane defined by Bz and ∂T/∂x the conductivity
is written as σTωBτe/(1+ ω2

Bτ
2
e ) (Chapmen & Cowling 1952) (p. 322, p. 338). Hence

components of the electrical current density vector j in a cylinder with Bz and temperature
gradient vector along the radius are determined as

jr = − σT(∇T)r

1+ ω2
Bτ

2
e

,

jϕ = −(σT(∇T)r)ωBτe

1+ ω2
Bτ

2
e

, jz = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

The connection of vectors jφ and induced field B is determined by the Maxwell
equations.
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3. Model description, solutions and results

From Maxwell equations we obtain the following relations for the magnetic field
components in the cylinder:

Br = Bϕ = 0,
c

4π

dBz

dr
= σT(∇T)rωBτe

1+ ω2
Bτ

2
e

. (3.1a,b)

The magnetic field Bz in the cylinder consists of the constant component B0, created by
external source, and the field B1, created by electrical current inside the cylinder:

Bz = B0 + B1. (3.2)

Let us consider a stationary state of the cylinder with a constant radial heat flux Q. The
radial heat flux density is written now as

qr = Q
2πr
= −λ̃T

(∇T)r

1+ (ωBτe)2
. (3.3)

This equation should be solved in combination with the equation for Bz written as

dBz

dr
= 4π

c
σT(∇T)rωBτe

1+ (ωBτe)2
. (3.4)

Using (∇T)r from (3.3), we obtain the dependencies of the magnetic field derivative on
the temperature, using (1.1), in the form

dBz

dr
= −3QωBτee

10kTcr
. (3.5)

Equations (3.3) and (3.5) cannot be extended on the axis with r = 0 because of
singularities at zero radius. It is suggested in this problem, that the only source of heat
is situated near the axis of the cylinder, and is represented by a uniformly heated cylinder
with radius R1 << R0, where R0 is the outer radius of the cylinder.

Equations (3.3) and (3.5) are solved jointly under boundary conditions Bz(R1) =
B0, T(R0) = T0, at given parameter Q. Introducing non-dimensional Hall component
b1 as B1 = B0b1, taking into account the definition ωB = eBz/mec = e(B0 + B1)/mec =
ωB0(1+ b1) and x = r/R0 we write the (3.5) in the form

db1

dx
= − 3eQτe

10kcTB0x
ωB0(1+ b1). (3.6)

Equation (3.3) may be written in the following form:

Q = −λ̃T(∇T)r2πr
1+ ω2

B0τ
2
e (1+ b1)2

. (3.7)

Assuming in (3.6) constant ratio τe/T = F, then (3.5) takes the form

db1

dx
= − 3eQF

10ckB0x
ωB0(1+ b1), 1 > x > x1 = R1

R0
, b1(x1) = 0. (3.8)

The analytical solution of (3.8) is written as

b1 =
(x1

x

)γ

− 1, γ = 3eQF
10kcB0

ωB0. (3.9a,b)

The value of b1 is approaching (−1) at x1 → 0. In the case of a plasma cylinder with
parameters from (2.12), the equations (3.6) and (3.7), determining the Hall component b1,
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are written as follows:

db1

dx
= − 3eQ

10kcB0x
ωB0(1+ b1)C1T1/2,

dT
dx
= −1+ C2

1T3ω2
B0(1+ b1)

2

2πxC2T5/2
Q.

⎫⎪⎪⎬
⎪⎪⎭

(3.10)

The constants C1 and C2 are determined from relations

τe = 3(kT)3/2

4Z2e4nNΛ

√
me

2π
= C1T3/2, (3.11)

λ̃T = 20kTσT

3e
= 40
√

2kne

π3/2ΛnN

(
kT
e2Z

)2 (
kT
me

)1/2

= C2T5/2 (3.12)

so that
ωB = ωB0(1+ b1), ωBτe = C1T3/2ωB0(1+ b1). (3.13a,b)

Let us introduce dimensionless parameters:

T̃ = T
T0

, N = 3eQωB0C1

10kcB0
T1/2

0 , G = C2
1T3

0ω
2
B0, E = 2πC2T7/2

0

Q
. (3.14a–d)

Equations (3.10) have following form with new parameters:

db1

dx
= −N

(1+ b1)T̃1/2

x
,

dT̃
dx
= −1+ G(1+ b1)

2T̃3

xET̃5/2
. (3.15a,b)

We solve (3.13a,b) numerically in the interval x1 ≤ x ≤ 1 at boundary conditions

b1(x1) = 0, T̃(x1) = 1. (3.16a,b)

Results of the solution are presented in the figures 3–8 for the case of plasma parameters
in the NS crust.

Equation (3.13a,b) can be used for analysing the magnetized plasma in laboratory
facilities. Results of these calculations are presented in the figures 9–14.

4. Discussion

It is shown in this paper that the magnetic field, generated by the azimuthal Hall current,
decreases the magnetic field, produced by external sources. Equation (3.15), determining
B1/B0 ratio of the magnetic field produced by the Hall current to the external magnetic
field, is derived. Hall current in the present consideration is produced by a temperature
gradient for the case when the diffusion vector is equal to zero (Bisnovatyi-Kogan
& Glushikhina 2018a,b; Glushikhina 2020). Analytical results are obtained for the
case, when coefficients of heat conductivity, electroconductivity and a time between
collisions are constant. Results of numerical calculations performed for the case of plasma
parameters in NS envelopes, are shown in figures 3–14. The calculations for parameters,
related to laboratory plasma, are presented in figures 9–14.

Kinetic coefficients in the magnetic field are determined by tensors, connected with
a temperature gradient and a diffusion vector. Influence of the Hall current on the
temperature distribution, structure of magnetic and electric fields, in realistic geometry
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FIGURE 3. Magnetic field in the cylinder, induced by the Hall current, for F = 5.2× 10−5,
E = 0.012 and three values of N: N1 = 6.0; N2 = 0.6; N3 = 6.0× 10−2. These values are related
to Z = 26, and include combinations B0 = 1012 G, T0 = 109 K, ρ0 = 107 g cm−3 for N1; B0 =
1013 G, T0 = 109 K, ρ0 = 108 g cm−3 for N2; B0 = 1014 G, T0 = 109 K, ρ0 = 109 g cm−3

for N3.

FIGURE 4. Temperature distribution in the cylinder for the same parameters as in figure 3.
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FIGURE 5. Magnetic field in the cylinder, induced by the Hall current, for N = 6 and
three variants: F1 = 5.2× 10−5, E1 = 0.012; F2 = 3.1× 10−4, E2 = 0.012; F3 = 2.2×
10−5, E3 = 0.018. These values are related to Z = 26, and include combinations B0 =
1012 G, T0 = 109 K, ρ0 = 107 g cm−3 for F1, E1; B0 = 1013 G, T0 = 1.8× 109 K, ρ0 =
108 g cm−3 for F2, E2; B0 = 1013 G, T0 = 3.5× 109 K, ρ0 = 109 g cm−3 for F3, E3.

FIGURE 6. Temperature distribution in the cylinder for the same parameters as in figure 5.
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FIGURE 7. Magnetic field in the cylinder, induced by the Hall current, for E = 0.012, and three
variants: F1 = 5.1× 10−3, N1 = 6.0; F2 = 5.1× 10−5, N2 = 0.6; F3 = 5.1× 10−7, N3 =
0.06. These values are related to Z = 26, and include combinations B0 = 1013 G, T0 =
109 K, ρ0 = 107 g cm−3 for F1, N1; B0 = 1013 G, T0 = 109 K, ρ0 = 108 g cm−3 for F2, N2;
B0 = 1013 G, T0 = 109 K, ρ0 = 109 g cm−3 for F3,N3.

FIGURE 8. Temperature distribution in the cylinder for the same parameters as in figure 7.
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FIGURE 9. Magnetic field in the cylinder, induced by the Hall current, for F = 1.2× 10−5,
E = 0.1, and three variants: N = 0.8; N2 = 8.5; N3 = 85.2. These values are related to Z = 1
and include combinations B0 = 5× 103 G, T0 = 2× 105 K, ρ0 = 10−4 g cm−3 for N1; B0 =
5× 102 G, T0 = 2× 105 K, ρ0 = 10−5 g cm−3 for N2; B0 = 50 G, T0 = 2× 105 K, ρ0 =
10−6 g cm−3 for N3.

FIGURE 10. Temperature distribution in the cylinder for the same parameters as in figure 9.
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FIGURE 11. Magnetic field in the cylinder, induced by the Hall current, for E = 0.1 and three
variants: F1 = 1.3× 10−11, N1 = 0.085; F2 = 1.3× 10−9, N2 = 0.8; F3 = 1.3× 10−7, N3 =
8.5. These values are related to Z = 1, and include variants T0 = 2× 105 K, B0 = 50 G, ρ0 =
10−3 g cm−3 for N1, F1; ρ0 = 10−4 g cm−3 for N2, F2; ρ0 = 10−5 g cm−3 for N3 F3.

FIGURE 12. Temperature distribution in the cylinder for the same parameters as in figure 11.

of a NS envelope needs further consideration. It can be important for modelling of
the structure of the magnetic field along the surface of the NS, and for studying a
coupled magnetothermal evolution of temperature, magnetic and electric fields in NSs.
The electrons in the inner envelope of the NS may become degenerate and relativistic
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FIGURE 13. Magnetic field in the cylinder, induced by the Hall current, N = 0.8, E = 0.1 and
three variants: F1 = 4.7× 10−5; F2 = 4.7× 10−7; F3 = 4.7× 10−9. These values are related
to Z = 1, and include variants ρ = 10−4 g cm−3, T0 = 2× 105 K, B0 = 104 G, for F1; B0 =
103 G, for F2; B0 = 102 G, for F3.

FIGURE 14. Temperature distribution in the cylinder for the same parameters as in figure 13.

in conditions of high density and temperature. We have used non-relativistic and
non-degenerate approximation for transport coefficients in all our calculations. Therefore,
the results presented in figures 3–8 can be considered as correct only qualitatively.
Account of relativistic corrections and degeneracy in calculations of transport coefficients
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of plasma meets with difficulties, so analytical formulae for these conditions have been
obtained approximately, with considerable simplifications. In the situation, when the
structure of the NS is far from a very simple cylindrical model, used here, we have done
calculations of the nonlinear Hall effects using simplified transport coefficients for NS
parameters.

In recent years experimental study of astrophysical processes is developing (laboratory
astrophysics). The goal is to model astrophysical processes in a terrestrial laboratory, based
on the similarity theory relations. Our results can be useful for studying the Hall current
effects in the laboratory plasma, which may be applied for astrophysical conditions. High
temperature gradients in the presence of very strong magnetic fields are formed during
stellar core collapses, leading to formation of NSs, accompanying supernovae explosions.
The newborn NS is very hot, strongly magnetized and with large temperature gradients.
Thermoelectric processes are very important on this short (few years) stage of the NS’s
life, during a rapid cooling by neutrino energy losses (Tsuruta & Cameron 1965). The
magnetic field structure formed in this short stage keeps it frozen, and the time of its slow
changes may exceed millions of years.
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