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OPERATORS ON LOCALLY CONVEX SPACES
OF VECTOR-VALUED CONTINUOUS FUNCTIONS

A, GArRcia LOPEZ

Let F and F be locally convex spaces and let KX be a compact
Hausdorff space. C((K,E) 1is the space of all E-valued continuous

functions defined on K , endowed with the uniform topology.

Starting from the well-known fact that every linear continuous
operator T from C(K,E) to F can be represented by an integral
with respect to an operator-valued measure, we study, in this paper,
some relationships between these operators and the properties of
their representing measures. We give special treatment to the

unconditionally converging operators.

As a consequence we characterise the spaces E for which an operator
T defined on C((K,E) is unconditionally converging if and only if
(17%) tends to zero for every bounded and converging pointwise to

zero sequence (fh) in C(X,E) .
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1. Introduction

Throughout this paper K is a compact Hausdorff topological space,
L the Borel o-field of K, F and F are quasicomplete Hausdorff

locally convex spaces, PE and PF saturated families of seminorms

defining the topologies of E and F respectively, C((X,E) is the space
of all continuous FE-valued functions defined on KX , with the uniform

convergence topology.

We are interested in operators (= continuous linear operators) T
from C(K,E) to F and their operator-valued representing measures. The
study of the relationship between an operator and its representing measure
has been considered by many authors, see for instance [1], [21, [31, [51],
[91, [111 oxr [12]. Some interesting characterisations for several
properties of T in terms of properties of m are known when E and F
are Banach spaces. In this paper we consider this class of problems in

the general case where F and F are locally convex spaces.

The notation and terminology used and not defined can be found in

(4] or [&].

Before proceeding further, let us give some definitions and results

for reference purpose.

DEFINITION 1. {31 1f m:I - L(E,F) is a (finitely additive)

operator-valued measure, q € P_, p ¢ P, and A € I then define

m(p,q) (4) = sup{q(Af:E"m(Ai)xi) : mell(4), xieVp}

where w(A) denotes the set of disjoint finite EI-partitions of A4 and

v, = {w<E: pla) s 1} .

We say that m has bounded semivariation if for each g in PF

there is a p in P, with (X¥) finite, and we write png to

(v,q)

denote this correspondence.
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THEOREM 2. [31. If T:C(K,E) » F 1is an operator, then there is a

a unique representing measure m:L > L(E,F'") such that

Z) m has bounded semivariation

1) for x ¢ E and z' ¢ F’, mxz,(.) = <m(.)x,z2'> is a finite regular
Borel measure

i11)  for f e C(K,E)
T(f) = [ fam .
‘x

The reader could consult [3], [(77] and [12] for more information

about representing measures.

Remarks: It is easy to prove for f e C(K,E), A e L and p ~ g
that

(1) q(jAfdm) £ m(p,q)(A) sup{p(f(t)): teA}l .

»

If x ¢ E , the vector measure defined from % with values in F by

mx(.) =m(.)x is the representing measure of the operator
Tx:C(K) > F, I&(W} = T(x¥) ; so an easy extension of a classical theorem

of Bartle, Dunford and Schwartz (VI.2.1. of [4]), proves that
m(t) < L(E,F} if and only if T, is a weakly compact operator for every

x e F .
2. The strongly continuous at ¢ measures

In this section we introduce a new concept of semivariation for an
operator-valued measure very helpful in characterising some properties of

an operator T from C(K,E) to F .

DEFINITION 3. For m:r > L(E,F), q € P,, B a bounded subset of F

Pp
and 4 ¢ I, we define ﬁBq(A) by

ﬂBq(A) = sup{q(AEE“m(Ai)xi): Te(A), {x;} < B} .

We say that m is strongly continuous at ¢ (s.c.v.) if for each bounded
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set B c EF and each q € PF

lim mBq(An) =0

for every decreasing sequence (An) v+ ¢ in L

When E and F are Banach spaces, the s.c.v. measures are the
s-bounded measures of [3], or those with semivariation continuous at ¢
(see [2], [5] or [9]), so the representing measure of every compact,
weakly compact, absolutely summing, nuclear or unconditionally converging

operator possesses this property.

Now we study some properties of ﬁBq

For each z' in F' , let m. s be the vector measure, with values
in the locally convex space (E',B(E',E})) , defined by
<x,mz,(A)> = <m(A)x,2'> x e E, Ae L,
wWhenever m 1is a representing measure, mz, has bounded variation, that
is:

lmzylp,(K) = sup{izl p'(m,(A)): {Ai}e N(K)}<=

for every continuous seminorm p’ on E! , Indeed each lmz,f is a

p!
finite positive Borel regular measure on K .

It can also easily be shown that the following property holds:

If B is a bounded set in E, pp is the seminorm defined on E'

by pB(x') = sup {|<z,z’>|: 2 ¢ B} and q ¢ Py , then

(2) ﬁqu(A) = sup{|mz,| (4): z' € V(;},A €L,

Pp
PROPOSITION 4. Let m:L - L(E,F) be a representing measure, B a
bounded disc (absolutely convex set) tn E and A ¢ I, then:

a) ';'B (4) = sup{q(J fam): f e C(K,E), f(4) < B} for q € P,
q 4 F

b) |m (a) = sup{|<J[ fdm,z'>|: f ¢ C(K,EJ, f(A) < B} for z' € E'.
A

z'lpB
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Proof. We prove a), the proof of b) is similar.

For f € C(K,E) and f(A) c B, there is a net (fj) of
I-simple functions which converges uniformly to f and fj(A) c B for
every j. Then

! r )
q( JAfcbn) = q(1im JAf‘J-dm) < Mg (4)
On the other hand, for € > { there is a partition 1w ¢ II(4)

T = {‘41""’An}’ a finite set {r;,...x }c B anda z'e VC;

such. that

.n n
7] p - - - » ' 3 -
mBq(A) € < |1'__§1 m(Ag)x;,z >| |z_£1 mxiz,(A,L)l .

For the reqularity of m, 51 + We can choose some compact sets Ki c Ai
T

and disjoint open sets Gi E) Ki , with

€

€

on -
(Here || denotes the variation of the scalar measure).

Now there are functions ¥, € C(XK) , with ¢ < ¥, < 1., “’i(Ki) = {1}

and \yi(K\Gi) = {0} . let f e C(K,E) be

n
f= 11-2-1 xz\yz ?
then
n n
mBq(A) -e< liﬁz’"xiz'mi) - iéz”’xiz'”‘i” + |1:§1’"x1:z'(Ki)

n
- ;L JA \yimxiz'l + |<J[A fdm,z'>| < e + q(IA fam)

Since € 1is arbitrary, this completes the proof.

Remark : Looking at the above proof, we can deduce, when A4 is an

open set, that:
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rTqu(A) = sup[q(j fdm): f e C(K,E), f(A) < B, supp(f) c A};
A

Imz"p (A) = sup{|<J fdm,a'>|: f € C(K,E}, f(A) c B, supp(f) < A}.
B A

In the next theorem, the equivalence a ¢ d gives an interesting

characterisation of the operators with s.c.v. representing measure.

THEOREM 5. Let T:C(K,E) - F be an operator with representing

measure m:I + L(E,F") . Then, the following assertions are equivalent:

al m 18 8.6.v.;
b) m(t) < L(E,F) and for every bounded disec B c E and every q e P,

the set of scalar measures {lmz,|p : gl e V;} is untformly eountably
B

additive;

el For each B and q as in b) there is a finite positive regular

Borel control measure M on K such that

lim m, (4) =0 ;
u(a)so Ba

d) ( Tfn) tends to zero for every uniformly bounded sequence

( fn) ¢ C(K,E) converging pointwise to zero.

Proof: The equivalence q ® b ® ¢ follows from (2) and from some
classical results for sets of scalar measures (see I. 2 of [4] or IV. 9 of
(61 .

e »d) let (fn) c C(K,E) be a uniformly bounded sequence, converging
pointwise to zero, we shall prove that (Tfn) tends to zero. Let
B ¢ E be a bounded disc with fn(K) < B for every n . I1f q e P, ,

there is a finite positive regular Borel measure u and a 93 > ¢ such

that

IﬁBq(A) <% when u(4) <29

Now let p € P, satisfy p v q , thenthe sequence (pef,) < C(X)

converges pointwise to zero, so that, by the Egoroff theorem, there is a
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(-]

K, e £, with u(K\K,) <3, and 7, such that

p(fn(s)_) <

Zrﬁ(p,q) K]
for s ¢ XK and n >n, . Then
g oy (Ke)
q(Tf,) < q(J £y dn) + ac| Fodn) s g8 s pg (K \Ko)
K\K, M p,q)

Hence q(jjh) <1 for n > n, and we conclude that (17%) >0
d=®b) Since ((K) has the reciprocal Dunford-Pettis property (see [7]),
for each x ¢ X the operator Tx is weakly compact, So©

m(Z) < L(E,F) and it suffices to show that for any bounded disc

B cFE and any q € PF the family of scalar measures

{Imz,[p 2’ e Vg} is uniformly countably additive. Indeed if it were
B

o
not, then there is a sequence (zé} c Vq , and another (Gn) of

disjoint open sets in K , with

Im '] (G)>€
anB n

Now by proposition 4 and its remark, we can choose a sequence of functions

(fh) c C(K,E) such that for every 7 we have
0 < B, £,(0G,) = {0}, |<JK fdnsl> | > e

This sequence is uniformly bounded and converges pointwise to zero.

However (Tfh) does not converge to zero in F because
q(rf,) = | < JKfndm’zrlz > | >e

and this contradicts 4).
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3. Unconditionally converging operators
In the following, we are going to characterise the unconditionally

converging operators from ((X,E) to F .

Recall that an operator T between F and F is unconditionally
converging if 7T maps weakly unconditionally Cauchy (w.u.c.) series into

unconditionally convergent ones, or, what is equivalent, (Txn) tends

to zero in F when Zmn is a w.u.c. series in F .
The next result follows from 14.6 of [§].
LEMMA 6. For every sequence (z,) 1in E, the following assertions
are equivalent: '
a) Lz, 18 w.u.C.;
b) ti< xn,.r’>| < o for each x' ¢ E';

e) {: x : M e F(IW)Y 4is a bounded set in E .
neM

Here F(IN) denotes the system of all finite subsets of IV .

THEOREM 7. Let T:C(K,E) ~ F be an unconditionally converging
operator, them its representing measure m satisfies
a m 18 s.c.v.;
b) for every A e L , m(A):E ~F tis an unconditionally converging

operator.

Proof. The proof of a) is just like that of "d = b" in

Theorem S, since the sequence (fh) mentioned there satisfies:

i) {2 fpi Me F(IN)} is a bounded set in C((K,E) . So if, is a
neM

w.u.Cc. series;

ii) (ZTh) does not converge to zero.

b) Suppose that T is an unconditionally converging operator, A4 € I

and Zmn a w.u.c. series in E . We shall prove that (m(A)xn) tends

to zero in F .
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Let B be a bounded disc in E such that {xn: nelW} cB. If
q ¢ P,, using the existence of a regular control measure for ﬁBq , we can

find a compact H and an open (¢ in K with Hc A4 ¢ G and

A
-
IA
~

ﬁBq(G\K7 < % , then there is a function Y ¢ C(K) such that 0
Y(G\H) = {0} and ¥(H) = {1} . wWe define f, € C(K,E) by f, =x ¥,
it is clear that th is a w.u.c. series, so (]jh) tends to zero and we

have

q(Tfh - m(A)xn) = q(JK (Y - xAxn)dm) < mBq (G\H) < % .

Therefore we obtain that q(m(A)xn) < 1 for almost every »n . Hence

(m(A)xn) converges to zero and the proof is complete.

An immediate consequence of Teorems 5 and 7 is:

COROLLARY 8. If T:C(K,E) -~ F <s an unconditionally converging
operator, then (IT%) tends to zero for every uniformly bounded sequence
(fh) « C(K,E) converging pointwise to zero.

The converse of the above result is not true in general. Now, we

characterise those spaces E for which this converse holds.

DEFINITION 9. A locally convex space E is weakly L-complete if

every w.u.c. series in E is weakly convergent.

All the weakly sequentially complete spaces, and so all the semi-
reflexive ones, are weakly I-complete. An easy extension of the Bessaga-
Pelczynski theorem proves that a sequentially complete locally convex space

E 1is weakly ZI-complete if and only if it does not contain a copy of (C,

If F 1is a weakly ZI-complete space, the converse of Corollary 8 is
true; furthermore this property characterises the weakly I-complete

spaces, as we prove in the next theorem.

THEOREM 10. The following assertions are equivalent;

a) E is weakly I-complete;
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b) for any compact Hausdorff space K and any space F, an operator
T:C(K,E) » F 1ig unconditionally converging if and only if its representing

measure 18 s.c.V.;

el there is a compact K such that every operator T from C(K,E) to

E with representing measure s.c.v. is8 unconditionally converging.

Proof. a = b) 1ILet th be a w.u.c. series, then th(t) is

weakly convergent for every ¢ € K , then, according to the Orlicz-Pettis

theorem, th(t) is convergent for each t . Therefore (Tfn) tends to
zero in F , because (fh) is a uniformly bounded sequence converging

pointwise to zero in C((K,E) and m is s.c.v.

b=c¢) Trivial.

c=a) First we fix a € K and define an operator T on C(K,E) by
T(f) = f(a) . Then, by Theorem 5, the representing measure of T is

s.c.v., so T is unconditionally converging.

Now we consider a function ¥ € C(K) with 0 £ ¥ <1 and ¥Y(a) =1.

If an is a w.u.c. series in E , then th , with fh =z, ¥ is w.u.c.

in C(X,E) , so ZT(fn) =z, is unconditionally convergent in E . Hence

E 1is weakly ZI-complete.

The result "b = g" of the above theorem extends, with an easier
proof, an analogous theorem proved by Saab in [9] for £ and F Banach

spaces.

Bombal and Cembranos show in [2] that conditions a) and b) in
theorem 7 characterise the unconditionally converging operators from
C(K,E) to F , for E and F Banach spaces, if and only if X is a
dispersed compact (that is, it does not contain any perfect set). In our

case this result is also true.

THEOREM 11. Let K be a dispersed compact and T an operator from
C(X,E) to F , with representing measure m , then the following assertions

are equivalent:
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al T s an unconditionally converging operator

b) m 18 s.c.v. and for each A e t, m(A):E » F is an unconditionally

eonverging operator.

Proof. The proof of "b = a@" is similar to that of Theorem 7 of
[2]), but we use that for a regular Borel measure 1 in a dispersed

compact K there is a countable family (xn) in K such that

p= 3 ulx) 3
nelll n xn

(see [10] p.338) instead, to consider a metrisable quotient of K .

Remark: It is also possible to prove an analogue of the previous

theorem for compact and weakly compact operators from C(K,E) to F .
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